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Summary 

Particle Image Velocimetry (PIV) is a leading technique that allows flow 

velocity measurements in two- and three- dimensional domains. PIV is a full-

field, non-intrusive and quantitative technique. However, due to the 

complexity of the measurement chain, PIV results are often affected by 

errors from various sources. It is therefore necessary to identify these errors 

and quantify the uncertainties. The available PIV uncertainty quantification 

(UQ) approaches are limited in estimating systematic uncertainties in the 

measurements and mostly focus on the random uncertainty. In order to 

exploit full benefits of PIV, the knowledge of the full uncertainty comprising 

both random and systematic uncertainties is necessary. The present work 

proposes a comprehensive PIV-UQ framework which not only quantifies the 

systematic uncertainties but is also universal as it can potentially be used for 

any measurement irrespective of the measurement setup (e.g. planar PIV, 

tomographic PTV, large scale PIV or microscopic PTV) or the output quantity 

(e.g. mean velocity or higher order statistics).  

Initially, background and motivation for the present work are discussed in 

chapter 1 along with objectives and outline of the thesis. Chapter 2 presents 

the working principle of PIV and different aspects in the acquisition and 

analysis of the PIV images. The errors and uncertainties in PIV are illustrated 

in chapter 3, where various error sources and PIV-UQ approaches are 

discussed.  

In the present work, a survey on PIV error sources and UQ is performed and 

the outcomes are presented in chapter 4. The aim of the survey is to 

understand how users and researchers in academia and industry perceive 

the PIV technique, especially for what concerns the measurement errors and 

uncertainties. 

As peak-locking is recognized as one of the major error sources in PIV 

measurements, a novel approach is devised for the quantification of 

systematic uncertainty due to peak locking which also leads to correction of 
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the peak-locking errors. The approach, applicable to statistical flow 

properties such as time-averaged velocity and Reynolds stresses, relies on 

image recordings with multiple time separations Δt and a least-squares 

regression of the measured quantities. The methodology is assessed for 

planar PIV measurements of the flow over a NACA0012 airfoil in chapter 5. 

A comprehensive framework based on a statistical tool called Design of 

Experiments (DOE) is introduced for uncertainty quantification in chapter 

6. DOE allows to quantify the total uncertainty as well as the systematic 

uncertainties arising from various experimental factors. The approach is 

based on measuring a quantity (e.g. time-averaged velocity or Reynolds 

stresses) several times by varying the levels of the experimental factors 

which are known to affect the value of the measured quantity. Then, using 

Analysis of Variances (ANOVA), the total variance in the measured quantity 

is computed and hence the total uncertainty. The methodology is assessed 

for planar PIV measurements of the flow over a NACA0012 airfoil as well as 

applied to the investigation by stereoscopic PIV of the flow at the outlet of a 

ducted Boundary Layer Ingesting (BLI) propulsor. 

Finally, a novel approach is proposed in chapter 7 to eliminate background 

reflections in PIV images as they produce high systematic errors in the 

vector fields if not removed. The approach relies upon anisotropic diffusion 

of the light intensity, which is used to generate a background image to be 

subtracted from the original image. 

The thesis ends with summary of the major results and conclusions drawn 

in the chapters 4 to 7.   
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Samenvatting 

Particle Image Velocimetry (PIV) is een toonaangevende techniek waarmee 

stromingssnelheidsmetingen in twee- en driedimensionale domeinen 

mogelijk zijn. PIV is een volledig veld, niet-intrusieve en kwantitatieve 

techniek. Door de complexiteit van de meetketen worden de resultaten van 

PIV echter vaak beïnvloed door fouten uit verschillende bronnen. Het is 

daarom noodzakelijk om deze fouten te identificeren en de onzekerheden te 

kwantificeren. De beschikbare benaderingen voor het kwantificeren van de 

PIV-onzekerheid (Uncertainty Quantification, UQ) zijn beperkt in het 

schatten van systematische onzekerheden in de metingen en richten zich 

meestal op de willekeurige onzekerheid. Om de voordelen van PIV ten volle 

te benutten, is kennis van de volledige onzekerheid nodig, die zowel 

toevallige als systematische onzekerheden omvat. In dit werk wordt een 

uitgebreid PIV-UQ raamwerk voorgesteld dat niet alleen de systematische 

onzekerheden kwantificeert, maar ook universeel is, omdat het potentieel 

voor elke meting kan worden gebruikt, ongeacht de meetopstelling (bijv. 

planaire PIV, tomografische PTV, grootschalige PIV of microscopische PTV) 

of de outputgrootheid (bijv. gemiddelde snelheid of statistieken van hogere 

orde).  

In hoofdstuk 1 worden eerst de achtergrond en motivatie van dit werk 

besproken, samen met de doelstellingen en de opzet van het proefschrift. 

Hoofdstuk 2 presenteert het werkingsprincipe van PIV en verschillende 

aspecten bij het verwerven en analyseren van de PIV-beelden. De fouten en 

onzekerheden in PIV worden geïllustreerd in hoofdstuk 3, waar 

verschillende foutbronnen en PIV-UQ benaderingen worden besproken.  

In dit werk wordt een onderzoek uitgevoerd naar PIV-foutenbronnen en UQ 

en de resultaten worden gepresenteerd in hoofdstuk 4. Het doel van de 

enquête is om te begrijpen hoe gebruikers en onderzoekers in de 

academische wereld en de industrie tegen de PIV-techniek aankijken, vooral 

wat betreft de meetfouten en -onzekerheden. 
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Aangezien peak-locking wordt gezien als een van de belangrijkste 

foutbronnen in PIV-metingen, is een nieuwe aanpak ontwikkeld voor de 

kwantificering van de systematische onzekerheid als gevolg van peak-

locking, die ook leidt tot correctie van de peak-locking fouten. De aanpak, die 

toepasbaar is op statistische stromingseigenschappen zoals tijdgemiddelde 

snelheid en Reynolds spanningen, is gebaseerd op beeldopnames met 

meerdere tijdseparaties Δt en een kleinste-kwadraten regressie van de 

gemeten grootheden. De methodologie wordt beoordeeld voor vlakke PIV 

metingen van de stroming over een NACA0012 aërodynamisch vlak in 

hoofdstuk 5. 

In hoofdstuk 6 wordt een uitgebreid raamwerk voor 

onzekerheidskwantificering geïntroduceerd, gebaseerd op een statistisch 

hulpmiddel genaamd Design of Experiments (DOE). DOE maakt het mogelijk 

om zowel de totale onzekerheid als de systematische onzekerheden te 

kwantificeren die voortkomen uit verschillende experimentele factoren. De 

aanpak is gebaseerd op het meermaals meten van een grootheid 

(bijvoorbeeld tijdgemiddelde snelheid of Reynoldsspanningen) door de 

niveaus van de experimentele factoren, waarvan bekend is dat ze de waarde 

van de gemeten grootheid beïnvloeden, te variëren. Vervolgens wordt met 

behulp van ANOVA (Analysis of Variances) de totale variantie in de gemeten 

grootheid berekend en daarmee de totale onzekerheid. De methodologie 

wordt beoordeeld voor vlakke PIV-metingen van de stroming over een 

NACA0012-airfoil en toegepast op het onderzoek met stereoscopische PIV 

van de stroming bij de uitlaat van een gekanaliseerde Boundary Layer 

Ingesting (BLI) propulsor. 

Ten slotte wordt in hoofdstuk 7 een nieuwe aanpak voorgesteld om 

achtergrondreflecties in PIV-beelden te elimineren, omdat deze hoge 

systematische fouten in de vectorvelden veroorzaken als ze niet worden 

verwijderd. De aanpak is gebaseerd op anisotrope diffusie van de 

lichtintensiteit, die wordt gebruikt om een achtergrondbeeld te genereren 

dat van het originele beeld wordt afgetrokken. 

Het proefschrift eindigt met een samenvatting van de belangrijkste 

resultaten en conclusies uit de hoofdstukken 4 tot en met 7.  



 

VII 

Table of Contents 

1. Introduction …………………………………………………………………………………… 1 

1.1. Background ….………………………………………………………….........………… 1 

1.2. PIV in brief ………………………………………………………………………….…… 2 

1.3. Motivation for the present work ……………………………………………..... 5 

1.4. Thesis objectives ………………………………………………………………….... 12  

1.5. Thesis outline ……………………………………………………………………...… 13 

2. Particle Image Velocimetry ………………………………………………………..….. 15 

2.1. Working principle ………………………………………………………………..… 15 

2.2. Flow Seeding …………………………………………………………………….…… 17 

2.2.1.  Mechanical properties of seeding particles ……………..……..... 18 

2.2.2.  Scattering properties of seeding particles …………………..…… 19 

2.3. Illumination ……………………………………………………………………...…… 21 

2.4. Imaging ……………………………………………………………………………….… 22 

2.5. Image recording ………………………………………………………………….…. 24 

2.6. Evaluation of images ……………………………………………………………… 26 

3. PIV Errors and Uncertainty ………………………………………………………….... 29 

3.1. Definitions and classification of measurement errors ……………… 29 

3.2. Definitions and classification of measurement uncertainties ….… 30 

3.3. Error sources in PIV ………………………………………………………...…….. 32 

3.3.1.  Errors caused by system components ……………….................… 33 

3.3.1.1. Errors related to installation and alignment …….… 33 



 

VIII 

3.3.1.2. Timing and synchronization errors …………………… 34 

3.3.1.3. Illumination errors ………………………………………..…. 34 

3.3.1.4. Imaging errors ……………………………………………....…. 34 

3.3.2.  Errors due to the flow ……………………………..…………………...… 36 

3.3.3.  Errors related to the evaluation technique ………………………. 37 

3.4. PIV uncertainty quantification ……………………………………………...… 37 

3.4.1.  A-priori uncertainty quantification approaches ………...…..… 38 

3.4.1.1. A-priori uncertainty quantification by theoretical 

 modelling ………………………………………………………… 38 

3.4.1.2. A-priori uncertainty quantification by numerical or 

 experimental assessment ………………………………….. 39 

3.4.2.  A-posteriori uncertainty quantification approaches ………… 40 

3.4.2.1. Uncertainty surface method ……………………………… 40 

3.4.2.2. Cross-correlation peak ratio criterion ……………..… 42 

3.4.2.3. Particle disparity method …………………………….…… 43 

3.4.2.4. Correlation statistics approach …………………………. 44 

4. Survey on PIV Errors and Uncertainty Quantification ……………….…..... 45 

4.1. Introduction ……………………………………………………………….…………. 45 

4.2. Survey structure …………………………………………………………………..... 47 

4.3. Results ……………………………………………….………………………………….. 49 

4.3.1.  Advantages and limitations of PIV ……………………......…………. 49 

4.3.2.  PIV error sources ……………………………………...………..………….. 50  

4.3.3.  PIV uncertainty quantification …………………………………...….... 53 

4.4. Conclusions ………………………………………………………………………..….. 56 



 

IX 

5. Multi-∆t Approach for Peak-locking Uncertainty Quantification …...…. 59 

5.1. Introduction ………………………………………………………………………….. 60 

5.2. Proposed methodology ………………………………………………………..… 62 

5.2.1.  Mean displacement and velocity ……………………………...……… 62 

5.2.1.1. Quantification of peak-locking uncertainty ……...… 64 

5.2.1.2. Correction of peak-locking errors …………….……….. 66 

5.2.2.  Reynolds stress ………………………………………..…………………..... 67 

5.2.2.1. Quantification of peak-locking uncertainty ………... 74 

5.3. Validation of proposed methodology ………………………………………. 76 

5.4. Experimental setup …………………………………………………………...…… 78 

5.5. Results ……………………………………………………………………..……………. 81 

5.5.1.  Mean displacement and velocity ……………………………...……… 81 

5.5.2.  Reynolds stress ……………………………………………...………………. 86 

5.5.3.  Selection of ∆t’s ………………………………………………..…………..... 91 

5.6. Conclusions ……………………………………………...……………………………. 93 

6. Design of Experiments (DOE) for PIV Uncertainty Quantification ….... 95 

6.1. Introduction ………………………………………………………………………….. 96 

6.2. Design of Experiments and Analysis of Variances ……………...….. 100 

6.3. Experimental assessment …………………………………………...…….….. 103 

6.3.1.  Experimental setup ……………………...…………...………………….. 103 

6.3.2.  Results ……………………………………………………..……...…………... 107 

6.3.2.1. Uncertainty of mean velocity …………………..….…… 107 

6.3.2.2. Uncertainty of Reynolds stress …………………….….. 112 

6.4. Application to boundary layer ingesting propulsor flow ………… 115 



 

X 

6.4.1.  Experimental setup ………………………………...…...…………….…. 115 

6.4.2.  Results ………………………………………………...……………….……… 117 

6.5. Conclusions …………………………………………………………………….…… 123 

7. Elimination of Background Reflections by Anisotropic Diffusion …... 125 

7.1. Introduction ………………………………………………………………………… 126 

7.2. Proposed methodology ………………………………………………………… 129 

7.2.1.  Numerical implementation …………………………………...….…... 133 

7.2.2.  Selection of threshold parameter and number of iterations 

……………………………………………………………………………………... 134 

7.3. Experimental assessment …………………………………………………….. 139 

7.4. Conclusions …………………………………………………………………….…… 148 

8. Conclusions and Outlook ………………………………………………...………..…. 151 

8.1. Survey on PIV errors and uncertainty quantification …………..…. 151 

8.2. Multi-∆t approach for peak-locking uncertainty quantification 

…………………………………………………………………………………………….. 152 

8.3. Design of Experiments (DOE) for PIV uncertainty quantification 

………………………………………………………………………………………..…… 153 

8.4. Elimination of background reflections by anisotropic diffusion 

………………………………………………………………………………………..…… 155 

8.5. Outlook ……………………………………………………………………………….. 156 

References ……………………………………………..………………………………………… 159 

List of Publications and Awards ………………………………………………………… 171 

 

 



1. Introduction 

1 

Chapter 1 

Introduction 

1.1. Background 

Most of the natural and man-made phenomena deal with fluid flows. Fluid 

dynamics is a branch of science which deals with basic understanding as well 

as complex applications of the fluid flows. Aerodynamics, for example, plays 

an important role in the design and development of aircraft. The air flow 

around the aircraft needs to be studied to investigate its performance in 

presence of different flow conditions. This aerodynamic study can be carried 

out by means of theoretical computation, numerical analysis or 

experimental investigation.  

The theoretical approach is based on the analytical solution of non-linear 

differential equations called the Navier-Stokes equations. This approach is 

only used for very simple flows and geometries because of the complexity of 

solving those equations (Anderson 2011, among others). 

The numerical analysis or computational fluid dynamics (CFD) relies on 

solving the continuous equations with the help of computers after 

discretizing them. Large eddy simulation (LES) and Reynolds averaged 

Navier-Stokes (RANS) equations are computationally less expensive as 

compared to direct numerical simulation (DNS). The LES and RANS are 

characterized by the assumptions on the behaviour of small turbulent scales, 

whereas the DNS solves the Navier-Stokes equations without any models for 

turbulent properties so that all motions in the flow are resolved (Robinson 

1991, among others). 

The experimental investigations are necessary in the cases of complex fluid 

flows and models where the accuracy of theoretical approach and numerical 

simulations might not be high, especially close to the boundaries of the 

model. In early days, the flow measurements were mostly carried out with 
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probe-based techniques like Pitot tube (Pitot 1732) and hot-wire 

anemometry (HWA, Fingerson and Freymuth 1983). Laser Doppler 

velocimetry (LDV, Adrian 1983) was the first non-intrusive technique used 

for velocity measurements. However, these three techniques are point-wise 

techniques in the sense that they measure the velocity at a single location in 

the flow. That makes it very laborious if one is interested in the velocity field 

along a plane or volume in the flow. The problem was solved by adding 

seeding particles in the flow and illuminating them by a light source by 

Prandtl (1905) so that the velocity at numerous points in the flow can be 

evaluated at a time. The images of the seeding particles show streaks which 

represent the motion of the particles and hence the motion of the fluid. The 

technique was named as particle streak velocimetry. The main drawback of 

the technique is the use of limited number of tracer particles due to 

overlapping streaks, resulting in relatively lower spatial resolution. To 

overcome the limitations of particle streak velocimetry, a technique called 

particle image velocimetry (PIV) was introduced (Adrian 1991) which is 

characterized by higher spatial resolution and  accuracy due to better flow 

illumination and processing algorithms.       

1.2. PIV in brief 

PIV is the chief technique for the quantitative visualization of fluid flows. The 

concept of PIV is to measure the displacement of seeding or tracer particles 

mixed in the fluid over a short time interval. It is to be noted that the seeding 

particles should follow the fluid flow accurately. As shown in figure 1.1, the 

seeding particles are illuminated by a light source such as a pulsed laser and 

the light scattered by the particles is recorded by a digital camera. The digital 

images are captured as two frames separated by a short time gap ∆t. The 

displacement of the particles during this time interval is estimated by cross-

correlation of the two image frames. The measured displacement of the 

particles is easily converted to their velocity using the value of  ∆t. Since it is 

assumed that the particles follow the flow perfectly, their displacement or 

velocity can be equated to that of the fluid flow. 
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Figure 1.1. A typical set-up of planar PIV, adapted from Raffel et al. (2018) 

PIV is widely used for fluid dynamics experiments in universities, research 

institutes and industries. Its applications are in various fields like turbulence 

research (Westerweel et al. 2013), hypersonic flows (Schrijer et al. 2006), 

turbo machineries (Wernet 1997), aeroacoustics (Tuinstra et al. 2013), 

micro-channels (Meinhart et al. 1999), combustion (Honoré et al. 2000), 

biomedical flows (Jamison et al. 2012), etc. Some of the PIV applications are 

illustrated in figure 1.2. 
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(a) 

 
(b) 

 
(c) 

Figure 1.2. Examples of PIV applications: (a) Streamwise velocity fluctuations at 

different planes along leg of a full-scale cyclist mannequin, experiment conducted at 

Open Jet Facility in TU Delft (Terra et al. 2020); (b) Iso-contours of mean axial 

velocity of a circular jet at the nozzle exit, experiment conducted at water facility at 

the Aerodynamic Laboratories of TU Delft (Violato and Scarano 2011); (c) Mean 

velocity magnitude contours for different Richardson number in urban flow over a 

model of a city quarter in a newly built part of Zürich, experiment conducted at 

Empa Atmospheric Boundary Layer (ABL) wind tunnel in ETH Zürich (Tsalicoglou 

et al. 2018) 
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1.3. Motivation for the present work 

PIV is a full-field, non-intrusive and quantitative technique. These 

advantages make it potentially suitable for understanding complex flows, 

aerodynamic certification and validation of results based on numerical 

simulations (computational fluid dynamics, CFD). However, the technique is 

seldom employed outside universities. Its use in industry is extremely 

scattered because PIV data are not considered sufficiently trustworthy for 

system certification and design validation on top of high cost of the PIV 

system and high cost of training people to use it. Figure 1.3 shows an 

example of CFD validation by PIV for an airfoil with circulation control 

(Jones et al. 2008). Although numerical and experimental results show clear 

similarities, they do not match perfectly. We cannot validate the CFD 

simulations by comparing them with PIV results as long as PIV uncertainty 

(i.e. an interval that likely contains the error) is unknown.  

     

Figure 1.3. Comparison between CFD and PIV: velocity field and stagnation 

streamline of the leading edge of an airfoil with circulation control (Jones et al. 

2008) 

Despite the quantification of the PIV uncertainty being the key to discern 

measurement errors from the true flow physics, PIV uncertainty 

quantification (UQ) is often hindered by the complexity of the measurement 

chain, which introduces errors from various sources such as particles, 

illumination, calibration, imaging and processing. Most of the early 

approaches for PIV-UQ are a-priori based on theoretical modelling or Monte 
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Carlo simulations (Westerweel 2000, Westerweel 2008, Stanislas et al. 2005, 

Stanislas et al. 2008, Kähler et al. 2016, among others). Those approaches 

often yield largely inaccurate uncertainty estimates, because of simplified 

hypotheses or the assumption of too idealized conditions. Several a-

posteriori approaches have also been proposed for PIV-UQ (Timmins et al. 

2012, Sciacchitano et al. 2013, Charonko and Vlachos 2013, Xue et al. 2015, 

Wieneke 2015, Bhattacharya et al. 2018), which evaluate the uncertainty 

directly from the computed displacement or velocity field. However, such 

approaches mostly focused on quantifying the uncertainty from random 

errors and were limited in the quantification of the systematic uncertainty 

(Sciacchitano et al. 2015). The reader is referred to chapter 3 for more 

information on these PIV-UQ approaches along with their advantages and 

limitations. 

In volumetric and tomographic PIV measurements, a-posteriori UQ is 

further complicated by the use of multiple cameras, calibration and presence 

of ghost particles (i.e. reconstruction noise produced by erroneous 

reconstruction of actual particles at incorrect locations due to multiple lines 

of sight of the multiple cameras). Approaches based on the compliance with 

physical laws have been proposed (Atkinson et al. 2011, Scarano and Poelma 

2009) which have limited applicability and rely upon assumptions often not 

verified. 

It is also worth to note that most of the measurements or experiments also 

feature errors in the results due to subjective error sources like human 

factor, changes in surrounding, etc. Figure 1.4 shows velocity field 

measurements in a confined array of cylinders (Smith and Oberkampf 

2014). These measurements were repeated daily over the course of a month 

in the facility shown in figure 1.4(a). A sample of time-averaged stream-wise 

velocity profiles behind the fourth cylinder is shown in figure 1.4(b). It is 

clear from these data that the position of the wake varied daily. These 

variations in state of the flow field would lead to changes in velocity at any 

particular position that were much larger than the instrument uncertainty. 
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(a) 

 

(b) 

Figure 1.4. (a) Schematic of the flow facility discussed in Harris et al. (2013), flow is 

from left to right; (b) Time-averaged stream-wise velocity acquired on the line 

indicated in the experimental setup in (a) over the course of more than one month, 

adapted from Smith and Oberkampf (2014) 

Moreover, the main results of the 4th international PIV challenge (Kähler et 

al. 2016) showed that, even for the same set of image recordings, large 

differences in the PIV results occurred among the participants due to the 

selection of the different processing parameters. Additionally, the 

systematic errors in PIV arise not only in the selection of the processing 
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algorithm and the related parameters, but also during the data acquisition 

phase (Sciacchitano 2019). For instance, peak-locking errors were found to 

be dependent on the inter-frame time separation by Nogueira et al. (2011), 

Legrand et al. (2012), among others. Because PIV-UQ algorithms do not 

account for the systematic error sources or account for them only partly, 

they give an incomplete or underestimated prediction of the total 

uncertainty. In order to optimize the PIV data acquisition and processing of 

a specific experiment, it is crucial to know which experimental factors 

contribute the most to the uncertainty of the measured velocity fields. 

Thus, the investigations up till now provide an incomplete picture on the PIV 

uncertainty. If we want to fully exploit the potential of PIV for fluid dynamics 

research and development, the work must be completed including 

systematic uncertainty. 

There are a large number of researchers worldwide who use PIV for flow 

measurements. The error sources encountered by them and the UQ 

approaches they employ depend on their level of experience, the type of 

experimental setup (e.g. planar PIV, stereoscopic PIV, tomographic PIV/PTV 

or LPT, micro-PIV, etc.), the flow cases (e.g. high speed flow, multi-phase 

flow, etc.) and flow properties (e.g. instantaneous or statistically derived) of 

interest (Kähler et al. 2016). Therefore, conducting a survey and collecting 

their opinions would create awareness in the PIV community and foster 

further developments for error minimization.  

Peak-locking (also referred to as pixel-locking) is recognized as one of the 

major error sources in PIV measurements. Such an error source, mainly 

ascribed to particle image diameters small with respect to the sensor’s pixel 

size, causes a bias of the measured particle image displacement towards the 

closest integer value (Westerweel 1997, Adrian and Westerweel 2011, 

Michaelis et al. 2016, Raffel et al. 2018). It is particularly relevant in high-

speed PIV measurements with CMOS cameras, whose large pixel size (of the 

order of 10 to 20 µm) yields particle image diameters often smaller than one 

pixel. For example, peak locking can be detected in vector fields when there 

are dominant vortical structures in the flow field and the relative variation 

of the measured velocities is small. Due to the peak-locking errors the 
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circular cross-sectional shapes of the vortices are altered, as illustrated in 

figure 1.5 (Raffel et al. 2018).  

 

Figure 1.5. The effect of peak locking on vector field and stream lines of a synthetic 

Lamb-Oseen vortex for two particle image diameters. The maximum displacement 

is only 0.5 pixel (Raffel et al. 2018) 

It is to be noted that the measurements with particle image diameters 

greater than one pixel are also affected by the peak-locking errors, although 

the peak-locking errors are likely to be less prominent than the random 

errors in this case (Westerweel 1997). Thus, the recent development of 

high-speed cameras has been influencing the study on peak-locking errors 

and their correction in PIV. Moreover, the peak-locking errors significantly 

affect the turbulence statistics extracted from the PIV measurements. When 

the flow velocity fluctuations encompass at least one pixel unit, the mean 

velocity is usually unaffected by the peak-locking errors in the instantaneous 

velocities. In such cases, the peak-locking errors appear instead in the 

fluctuations of velocity leading to inaccurate estimation of higher-order 

turbulence statistics, e.g. Reynolds stresses (Christensen 2004). Hence, the 

quantification and correction of the peak-locking errors in the PIV 

measurements is crucial for the evaluation of accurate turbulence statistics. 
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The problem of peak-locking errors due to small particle image diameters, 

especially in the case of CMOS cameras for high-speed PIV measurements, is 

still unsolved.  

 

Figure 1.6. Effect of different parameters on the uncertainty of the estimated shift 

vector component ΔX (Scharnowski and Kähler 2016a) 
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PIV measurements also have the systematic uncertainties due to sources 

other than peak locking, e.g. change in camera angles, particle image density, 

interrogation window size in processing, etc. Figure 1.6 summarizes the 

effects of six parameters, namely particle image diameter (D), signal-to-

noise ratio (SNR), fluctuations in particle image shift (∆X’, ∆Y’), seeding 

density (NPPP), out-of-plane loss-of-pairs (Fo) and displacement gradient 

(𝜕∆X / 𝜕Y), on the random error of the estimated particle image shift 

(Scharnowski and Kähler 2016a). The systematic effect of such parameters 

on the total uncertainty of the measurements can be significant. Therefore, 

it is important to quantify the complete uncertainty (both random and 

systematic components) of flow measurements, and the contribution of the 

experimental factors to the uncertainty. In PIV, UQ methods have been 

proposed that are mainly focused on the random uncertainty, which can be 

retrieved from the data statistics. Approaches based on the error sampling 

method (Smith and Oberkampf 2014) or comparisons of different PIV 

measurements at the same locations (DeBonis et al. 2012) showed that PIV 

uncertainties are potentially significantly larger than those predicted by 

conventional PIV-UQ approaches because of the presence of systematic 

error sources. Hence, there is a need to develop a PIV-UQ approach where 

the significant experimental factors can be identified along with the 

systematic uncertainties arising from them. Moreover, the approach should 

be comprehensive in that it can be applied universally, irrespective of the 

kind of PIV setup, e.g. planar PIV, tomographic PTV, large scale PIV or 

microscopic PTV, for uncertainty quantification in any of the measured 

quantities, e.g. mean velocity or higher order statistics. 

Finally, it is also observed that the background reflections in PIV images is a 

critical problem as the reflections produce high systematic errors in the 

vector field if they are not removed from the images. Figure 1.7 shows a raw 

image pair and the corresponding cross-correlation function in an 

interrogation window (Sciacchitano and Scarano 2014). As it can be seen in 

figure 1.7(a), the raw images are affected by strong laser light reflections, 

especially at the model’s surface. The image interrogation by cross-

correlation fails to return a valid peak that corresponds to the particle 

motion because of the presence of a self-correlation stripe in the correlation 
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map [figure 1.7(b)]. The problem of reflections removal is found to be not 

resolved especially in the case of unsteady reflections in a limited number of 

PIV recordings (insufficient for statistical convergence). Hence, it is highly 

significant to work on removing the reflections to minimize the uncertainty. 

 

Figure 1.7. Raw image pair (left) and corresponding displacement field in chosen 

interrogation window (right) (Sciacchitano and Scarano 2014) 

1.4. Thesis objectives 

In summary, the present research aims at quantifying the total uncertainty 

of PIV data, i.e. labelling the quality of PIV results by devising a 

comprehensive framework for uncertainty quantification.  

The specific objectives of the thesis are: 

a) To conduct a survey among PIV researchers and users worldwide to 

know the significant PIV errors and UQ strategies  

b) To quantify the systematic uncertainty due to peak-locking errors using 

a multi-Δt approach which relies on image recordings with multiple 

inter-frame time separations Δt and a least-squares regression of the 

measured quantities 
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c) To propose a comprehensive PIV-UQ framework based on Design of 

Experiments (DOE) and Analysis of Variances (ANOVA), where DOE 

allows to quantify the total uncertainty as well as the systematic 

uncertainties arising from various experimental factors by varying their 

levels in the measurements  

d) To eliminate background reflections from PIV images, caused by the 

laser light impinging on solid surfaces 

1.5. Thesis outline 

The present chapter mainly describes the motivations behind the work 

along with the specific objectives of the thesis. Furthermore, an outline of 

the thesis is discussed briefly. The PIV technique and its various aspects are 

outlined in chapter 2. The error sources in PIV and the available PIV 

uncertainty quantification approaches are discussed in chapter 3. The 

survey on the PIV errors and uncertainties and its outcomes are presented 

in chapter 4. In chapter 5, an approach based on multiple ∆t acquisitions for 

peak-locking error correction and uncertainty quantification is explained. 

The results of the assessment of the approach for wind tunnel 

measurements of flow over a NACA0012 airfoil are also shown in that 

chapter. To analyze the significance of various experimental parameters and 

quantify the systematic uncertainties arising from them, a methodology 

based on statistical tools of DOE and ANOVA is proposed and explained in 

chapter 6. The methodology is experimentally assessed for planar PIV 

measurements of the flow over a NACA0012 airfoil in a wind tunnel. 

Moreover, the methodology is applied to a stereoscopic PIV experiment 

dealing with the flow at the outlet of a ducted Boundary Layer Ingesting 

(BLI) propulsor. The results of this application are also briefly shown in the 

chapter 6. An approach based on anisotropic diffusion to eliminate 

undesired background reflections from PIV images is introduced in chapter 

7. The results of its application and comparison with conventional image 

pre-processing methods are also illustrated. Finally, chapter 8 presents a 

summary of the main results and conclusions. 
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Chapter 2 

Particle Image Velocimetry 

2.1. Working principle 

The PIV technique is based on the principle of measuring the fluid velocity 

by means of measuring the displacement of seeding particles dispersed in 

the fluid. The seeding particles are small enough to follow the fluid motion 

without altering the fluid and flow properties.  The particles are illuminated 

twice with a small time gap by a light sheet generated from a light source, 

typically a pulsed laser. The light scattered by them is recorded by a digital 

imaging device, typically a CCD camera, placed perpendicular to the 

measurement plane. A typical setup of planar PIV measurements is shown 

in figure 2.1.  

 

Figure 2.1. A typical set-up of planar PIV measurement system (www.lavision.de) 

http://www.lavision.de/


2. Particle Image Velocimetry 

16 

The planar measurements are referred to as two-dimensional-two-

component (2D2C) measurements as they provide two components of 

velocity in a plane. By using two cameras capturing the same measurement 

plane from different angles, it is possible to estimate the third component 

(perpendicular to the measurement plane) of the velocity. This arrangement 

is known as Stereoscopic PIV system or 2D3C measurements (Prasad and 

Adrian 1993, among others) as shown in figure 2.2. Moreover, tomographic 

PIV enables to determine all three velocity components in three dimensional 

(3D3C) measurement domain (Elsinga et al. 2006) as shown in figure 2.3. 

 

Figure 2.2. Experimental setup for single-camera 2D-PIV and dual camera 

stereoscopic PIV (Wieneke 2017) 

The acquired images are typically analyzed on a digital computer with the 

help of image interrogation algorithms. The particle images are analyzed by 

cross correlation of the particle-image patterns in smaller interrogation 

windows or sub-domains. The estimated particle displacement is converted 

to the local fluid velocity by dividing it by the time interval between two light 
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pulses. The steps are repeated for the entire image to evaluate the 

instantaneous velocity in the chosen measurement plane in the fluid flow. 

Many advanced improvements and algorithms have been developed for 

higher accuracy and spatial resolution (Adrian and Westerweel 2011, Raffel 

et al. 2018, among others). 

 

Figure 2.3. Experimental setup for volumetric tomographic PIV (Wieneke 2017) 

2.2. Flow seeding 

Small microscopic particles are used as seeding in fluid flows for PIV 

measurements. Ideally, the seeding particles are randomly distributed in the 

flow and carried along the flow without disturbing the flow properties. 

Therefore, choosing the correct seeding material is crucial and requires the 

knowledge of mechanical properties of small particles dispersed in the fluid 

flow. Moreover, scattering properties of the particles are important and the 
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particles are required to scatter enough light for their detection by the 

cameras.  

2.2.1. Mechanical properties of seeding particles 

Since the seeding particles in PIV are very small, they can be considered to 

be analogous to a sphere in a fluid in Stokes flow regime (Melling 1997). The 

slip velocity Vs of a particle of diameter dp can be given by (Raffel et al. 2018): 

𝑉𝑠 = 𝑉𝑝 − 𝑉𝑓 = 𝑑𝑝
2

(𝜌𝑝 − 𝜌𝑓)

18𝜇

𝑑𝑉𝑝

𝑑𝑡
 

                                   (2.1) 

where, Vp and Vf are the particle velocity and fluid velocity, respectively, ρp 

and ρf are the particle density and fluid density, respectively, and μ is the 

dynamic viscosity of the fluid. Equation (2.1) shows that the condition for 

neutrally buoyant particles (𝜌𝑝 − 𝜌𝑓) 𝜌𝑓⁄ ≪ 1 allows the particles to follow 

the flow perfectly i.e. the slip velocity Vs to be zero. Though this condition 

can be easily achieved in liquid flows, it cannot be fulfilled in gas flows, 

where 𝜌𝑝 𝜌𝑓 = 𝑂(103)⁄ . 

The term relaxation time τp can be used to estimate whether the seeding 

particles follow the flow accurately or not. It is defined as the response time 

of the particle to a sudden change in the fluid velocity. From equation (2.1) 

the relaxation time for the particle of diameter dp can be given by: 

𝜏𝑝 = 𝑑𝑝
2

(𝜌𝑝 − 𝜌𝑓)

18𝜇
 

                                                (2.2) 

For the particle to follow the flow accurately, the relaxation time should be 

low. Since the value of relaxation time depends on the values of the particle 

diameter and density, the condition can be achieved by small particle 

diameter or by having the particle density very similar to that of the fluid. In 

turbulent flows, the capability of seeding particles to follow the flow is 

estimated by the particles’ Stokes number Sk. It is calculated as the ratio of 

relaxation time τp to characteristic flow time scale τf, 



2. Particle Image Velocimetry 

19 

𝑆𝑘 =
𝜏𝑝

𝜏𝑓
 

                                                             (2.3) 

The particles’ Stokes number should be less than 0.1 for the particles to 

follow the flow accurately (Samimy and Lele 1991).  

For gas flows, seeding particles with small diameters of the order of 1 μm 

are usually chosen for good flow tracking capability. As shown in table 2.1 

(Sciacchitano 2014), the common materials for the seeding particles in gas 

flows are titanium dioxide (TiO2), alumina (Al2O3), glass, olive oil and di-

ethyl-hexyl-sebacate (DEHS). The particle response times achieved are in 

the range of 1 μs to 20 μs. For large scale flows with large field of view, 

helium filled soap bubbles are used due to the possibility of having larger 

seeding particles of diameter of around 1mm (Bosbach et al. 2009). 

Table 2.1. Typical seeding particles for gas flows (Sciacchitano 2014) 

Material ρp [kg/m3] dp [μm] τp [μs] Reference 

TiO2 4230 0.01 – 0.5 0.4 – 3.7 Ragni et al. (2011) 

Al2O3 4000 0.3 20 – 28 Urban and Mungal (2001) 

Glass 2600 1.67 22.6 Melling (1997) 

Olive oil 970 3 22.5 Melling (1997) 

DEHS 912 1 2 Ragni et al. (2011) 

Kähler et al. (2002) 

2.2.2. Scattering properties of seeding particles 

As described in the previous section, the seeding particles are required to 

follow the flow. Moreover, the particles should scatter enough light so that 

they are present in the PIV images. The intensity of light scattered by the 
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seeding particles depends on the ratio of particles’ refractive index to that of 

the fluid; on the particles’ size, shape and orientation; and on polarization 

and observation angles (Raffel et al. 2018). For spherical particles of 

diameters dp larger than the wavelength λ of incident light, Mie’s scattering 

theory applies (Mie 1908). Following Mie’s theory, the scattering can be 

characterized by normalized diameter q: 

𝑞 =
𝜋𝑑𝑝

𝜆
 

                                                      (2.4) 

If q is larger than unity, approximately q local maxima appear in the angular 

distribution from 0° to 180° as shown in figure 2.4 (Raffel et al. 2018). For 

increasing q, the ratio of forward to backward scattering increases rapidly. 

Therefore, it is advantageous to record in the forward scatter. However, 

recording in the forward scatter is limited due to limited depth of field and 

limited optical access. Therefore recording is mostly done from the sides. 

 

Figure 2.4. Light scattering by a 1 μm oil particle in air (Raffel et al. 2018) 

According to Mie’s theory, the scattering signal increases with increase in 

the particles’ diameter. Therefore, larger particles are suitable as the seeding 

particles to achieve higher signal. Moreover, the materials with high index of 

refraction are preferred as the scattering efficiency increases with increase 

in the ratio between particle and fluid refractive indices. 
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2.3. Illumination 

In PIV, the seeding particles need to be illuminated and imaged twice with a 

certain time gap ∆t. The duration of illumination, called pulse duration δt, 

should be short. The particle images should not appear as streaks but as 

circular dots. This can be achieved if the particle image displacement during 

the illumination i.e. for time δt is very small compared to the particle image 

size: 

𝛿𝑡 ≪
𝑑𝜏

𝑀𝑉𝑝
 

                                                      (2.5) 

where, dτ, M and Vp are the particle image diameter, optical magnification 

factor and particle velocity, respectively. 

The seeding particles are captured on a two-dimensional image from a 

three-dimensional field. Therefore, only the particles from a very small slice 

of the three-dimensional domain need to be illuminated when one is 

interested in two-dimensional measurements of the flow field. This is 

possible with the help of a thin light sheet illuminating the seeding particles 

in small slice. The thin light sheet is achieved with the help of optics 

consisting of cylindrical and/or spherical lenses as shown in figure 2.5. 

 

Figure 2.5. Light sheet optics using two spherical lenses (one of them with negative 

focal length) and one cylindrical lens (Raffel et al. 2018) 
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Lasers are the most widely used illumination sources for PIV experiments as 

they emit monochromatic light with high energy density that can be shaped 

into a thin light sheet using the lenses. The lasers commonly used in PIV 

measurements are pulsed Q-switched solid state Nd:YAG and Nd:YLF. The 

Nd:YAG lasers can emit light with a wavelength of 532 nm with a pulse 

duration of 5 ns to 10 ns and pulse energy between 10 mJ and 1 J. The 

repetition rates achievable with these lasers are only up to 50 Hz. Therefore, 

for high-speed flows Nd:YLF lasers are usually employed as they have higher 

repetition rate of 1 to 10 kHz. They produce light of 527 nm wavelength with 

pulse energy between 10 and 60 mJ.  

2.4. Imaging 

In PIV, the particle images are acquired by an imaging system consisting of 

camera and optical lenses. The imaging system is characterized by its focal 

length (f), f-stop or f-number (f#) and optical magnification factor (M) as 

given by: 

1

𝑓
=

1

𝑑𝑖
+

1

𝑑𝑜
  , 𝑓# =

𝑓

𝐷
  , 𝑀 =

𝑑𝑖

𝑑𝑜
 

(2.6) 

where, di, do and D are image distance i.e. the distance between lens and 

image plane, object distance i.e. the distance between lens and object plane, 

and the lens aperture diameter, respectively. Furthermore, the 

magnification factor M can also be given by the ratio of image size to the 

object size or field of view (FOV): 

𝑀 =
𝑝𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑛𝑠𝑜𝑟

𝐹𝑂𝑉
 

                       (2.7) 

Therefore, by following geometric optics, the geometrical diameter of 

particle images of the particles of diameter dp is: 

𝑑𝑔𝑒𝑜𝑚 = 𝑀𝑑𝑝 

                                                 (2.8) 
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According to Fraunhofer diffraction theory, the particles imaged by an 

aberration-free lens do not appear as point images but rather spread over a 

small spot known as Airy disc (Hecht 2002). The particle image diameter 

due to the diffraction effect is given by (Raffel et al. 2018): 

𝑑𝑑𝑖𝑓𝑓 = 2.44𝑓#(𝑀 + 1)𝜆 

                                    (2.9) 

In practice, for PIV images, the light distribution in the Airy disc is 

approximated by a Gaussian intensity distribution with e-2 diameter of 

0.74ddiff as shown in figure 2.6. 

 

Figure 2.6. Normalized intensity distribution of Airy pattern and its approximation 

by a Gaussian curve (Raffel et al. 2018) 

If the lens aberrations are assumed to be negligible, then the resulting 

particle image diameter is given by: 
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𝑑𝜏 = √𝑑𝑔𝑒𝑜𝑚
2 + 𝑑𝑑𝑖𝑓𝑓

2  

                                      (2.10) 

In presence of lens aberrations, the particle image diameter can be different 

from that estimated with the above formula. Refer to Raffel et al. (2018) for 

detailed description of the effect of lens aberrations on imaging the small 

particles. Moreover, equation (2.10) is valid only for the particles in focus i.e. 

the particles falling within the depth of field. The focal depth of field δz of the 

optical system can be given by (Raffel et al. 2018): 

𝛿𝑧 = 4.88𝑓#
2𝜆(𝑀 + 1)2/𝑀2 

                               (2.11) 

The focal depth represents the region in which the particles are in focus. The 

focal depth should be at least equal to the thickness of laser sheet in order to 

minimize the background noise by out-of-focus particles. 

2.5. Image recording 

In early days, PIV measurements were employed with photographic films to 

record the images. In order to record the images at two time instances, the 

shutter of photographic camera was opened twice during two light pulses. 

That resulted into a single PIV image consisting of the particle images at two 

time instances, known as single-frame-double-exposure, which caused 

difficulty in identifying the direction of flow. Another limitation of the 

photographic recording was that the unavailability of images during the 

recording phase. The images were only available and viewed after 

photochemical processing of the photographic films. Figure 2.7(a) shows an 

example of the image recorded by photographic film.  

Due to the limitations of the photographic recording for PIV experiments, it 

is replaced by digital image recording using image sensors: charge couple 

device (CCD) and complementary metal oxide semiconductor (CMOS). Both 

sensor types consist of pixels i.e. the array of sensitive elements which 

convert the incoming light photons into electric charge. The electric charge 

is finally converted to the digital signals as various intensity levels in digital 
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images (Falchi and Romano 2009). CCD sensors have limited number of 

output nodes which results into their limited repetition rate of about 10 Hz 

(Hain et al. 2007). Contrary, in case of CMOS sensors, each pixel has 

individual output leading to high acquisition frequency up to 10 kHz. 

However, they have lower fill factor (ratio of optically sensitive area to the 

total area of pixel, Raffel at al. 2018) compared to the CCD sensors. 

Therefore, CMOS sensors have larger pixel size of 10 to 20 μm against 5 to 7 

μm of CCD sensors in order to increase light sensitivity. Figure 2.7(b) shows 

an example of the image captured by CMOS camera. 

          

(a)     (b) 

Figure 2.7. (a) an example of image captured by photographic recording taken from 

Adrian (1991), the grey levels have been inverted; (b) an example of image captured 

by CMOS camera 

Recent developments in image sensors have provided scientific CMOS 

(sCMOS) sensors with better image quality and system performance. They 

are suitable for PIV experiments with limited laser power or low contrast 

between particles and background to get better quality images. They have 

resolution of about 5 mega pixels with low readout noise and high frame 

rates. 
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2.6. Evaluation of images 

The major steps in evaluating the particle images are: 

a) Division of image into interrogation windows:  

The image is divided into small cells or windows such that each of 

them contain enough number of particle images (around 10) for 

analysis. The interrogation windows are usually of size 16 × 16 

pixels to 128 × 128 pixels. Each interrogation window from the first 

image is analyzed with respect to the corresponding window of the 

second image to estimate a local velocity vector for that window.  

b) Cross-correlation analysis: 

A discrete cross-correlation function is computed between the two 

corresponding interrogation windows of the pair of images. It results 

into a cross-correlation map, where the position of peak relative to 

origin gives the average displacement of the particles in that 

interrogation window. The normalized cross-correlation function C 

for two interrogation windows I1(x, y, t) and I2(x, y, t+∆t) of size I × 

J pixels from the two images captured at t and t+∆t is given by 

(Huang et al. 1997):  

𝐶(𝑚, 𝑛) =
∑ ∑ [𝐼1(𝑖, 𝑗) − 𝐼1̅] ∙

𝐽
𝑗=1 [𝐼2(𝑖 + 𝑚, 𝑗 + 𝑛) − 𝐼2̅]𝐼

𝑖=1

√∑ ∑ [𝐼1(𝑖, 𝑗) − 𝐼1̅]2 ∙𝐽
𝑗=1

[𝐼2(𝑖 + 𝑚, 𝑗 + 𝑛) − 𝐼2̅]2𝐼
𝑖=1

 

            (2.12) 

where, 𝐼1̅ and 𝐼2̅ are the spatial averages within the interrogation 

windows of I1 and I2, respectively. Equation (2.12) is known as direct 

cross-correlation. The convolution theorem (De Groot 1989) in 

combination with fast Fourier transform (Raffel et al. 2018) are 

more efficient ways to obtain the cross-correlation function. 

c) Estimation of fractional displacement: 

The position of the highest peak in cross-correlation map 

corresponds to the particle image displacement. Therefore, the 

displacement or the particle image shift is computed as an integer 
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value in pixels. For more accurate estimation of the particle image 

shift, peak interpolation is necessary. Various peak-fitting 

algorithms have been proposed, like centre of mass method, 

parabolic fit and Gaussian fit (Raffel et al. 2018). The Gaussian peak 

fit for horizontal displacement is given by (Willert and Gharib 1991): 

∆𝑥 = 𝑖 +
ln 𝐶(𝑖 − 1, 𝑗) − ln 𝐶(𝑖 + 1, 𝑗)

2[ln 𝐶(𝑖 − 1, 𝑗) + ln 𝐶(𝑖 + 1, 𝑗) − 2 ln 𝐶(𝑖, 𝑗)]
 

                     (2.13) 

where, (i, j) is the discrete position of the peak of cross-correlation 

function. Since the particle image shape is approximated to Gaussian, 

the Gaussian peak-fitting is more accurate than the other types of 

fittings (Raffel et al. 2018). 

d) Conversion from pixels to physical units: 

The computed particle image shift or displacement is in pixels. The 

velocity in physical units (e.g. m/s) is obtained by dividing it by the 

time separation between the laser pulses ∆t and magnification factor 

M calculated using equation (2.7) and then multiplying by the pixel 

size of the image sensor s: 

𝑢 =
∆𝑥 ∙ 𝑠

∆𝑡 ∙ 𝑀
 

                                                   (2.14) 

where, u and ∆x are the horizontal velocity in physical units and 

particle image displacement in pixels, respectively. 

It is to be noted that nowadays, more advanced algorithms consisting of 

multiple passes and window deformation are used for evaluation of images 

Some of the velocity fields computed by PIV are shown in figure 2.8. 
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(a) 

 

(b) 

Figure 2.8. Examples of PIV velocity fields: (a) flow around a cylinder in a Hele-Shaw 

cell (Kislaya et al. 2018), (b) flow over a high-lift airfoil (Faleiros et al. 2019) 
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Chapter 3 

PIV Errors and Uncertainty 

3.1. Definitions and classification of measurement errors 

Measurement error is defined as the difference between the measured value 

and the true value of a quantity. For a measured quantity X, the error δ with 

respect to it true value Xtrue is: 

𝛿 = 𝑋 − 𝑋𝑡𝑟𝑢𝑒 

                                              (3.1) 

The measurement errors are classified into two components, namely 

systematic (or bias) error and random error (ISO-GUM 2018): 

𝛿 = 𝛽 + 휀 

                                                    (3.2) 

where, β and ε are the systematic and random errors, respectively. The 

systematic or bias errors are constant and do not vary during all the 

measurements (Coleman and Steele 2009). However, in the PIV community, 

the systematic errors are considered to be fixed or relatively fixed function 

of their sources (Smith and Oberkampf 2014). Conversely, the random 

errors are not constant and usually change their values during the 

measurements. 

Figure 3.1 shows the effect of errors on successive measurements of a 

quantity X. For measurement X1, the difference between the measured value 

and the true value is the total error 𝛿𝑋1
. As per equation (3.2), the total error 

is the sum of systematic error β and random error ε1. As the random error is 

not the same for all measurements, different value of the total error 𝛿𝑋2
can 

be seen for another measurement X2 in figure 3.1. 
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Figure 3.1. Effect of errors on successive measurements of a quantity X (Coleman 

and Steele 2009)  

3.2. Definitions and classification of measurement 

uncertainties 

Measurement uncertainty is defined as an interval which is likely to contain, 

with a given confidence level, the magnitude of total measurement error. 

Figure 3.1, where two measured values of X are shown, can be extended to 

plot distribution of the measured values from N number of measurements 

as shown in figure 3.2(a). 

   

(a)      (b) 

Figure 3.2. Successive measurements of a quantity X: (a) sample population 

distribution and (b) parent population distribution (Coleman and Steele 2009) 

This distribution of sample population of N measured values of X is 

characterized by a higher number of measured values near the mean �̅� and 
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lower number of measured values away from the mean �̅�. As the number of 

measurements approached infinity, the distribution of sample population 

approaches to that of the parent population shown in figure 3.2(b). The 

mean of the parent population μ becomes the true value Xtrue in the absence 

of systematic errors i.e. when β = 0. 

Measurement uncertainties are of two types- systematic and random based 

on the type of error source they arise from i.e. systematic or random error 

source, respectively. Following ISO-GUM (2018), a standard uncertainty is 

defined as an estimate of the standard deviation of the parent population 

from which a particular elemental error originates. The total standard 

uncertainty uX is given by the sum of squares of the systematic standard 

uncertainty bX and random standard uncertainty rX (Coleman and Steele 

2009):  

𝑢𝑋 = √𝑏𝑋
2 + 𝑟𝑋

2 

                                               (3.3) 

In the estimation of uncertainty, it is necessary to specify some range (Xbest 

± uX) within which Xtrue might lie. However, no probability can be associated 

with this range while using the standard uX uncertainty for it. Therefore, an 

expanded uncertainty UX is required to state that Xtrue lies within the interval 

(Xbest ± UX) with certain confidence. Here, Xbest is the best estimate of Xtrue 

and assumed to be equal to the mean �̅� of the N number of measurements. 

The expanded uncertainty is calculated from the standard uncertainty by 

multiplying it with a coverage factor k: 

𝑈𝑋 = 𝑘𝑢𝑋 

                                                    (3.4) 

The coverage factor is determined based on the error distribution. The error 

distribution is assumed to be Gaussian for most of the experimental data. 

The coverage factors of 1,2 and 3 in Gaussian distribution lead to 68%, 95% 

and 99.7% confidence levels, respectively. 
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3.3. Error sources in PIV 

PIV measurements are characterized by different stages of the measurement 

chain, like experimental setup, image acquisition, velocity estimation and 

data reduction. All these stages might introduce errors as shown in figure 

3.3 (Sciacchitano 2019). 

  

Figure 3.3. Major stages of PIV measurement chain and the relevant error sources; 

error sources indicated in blue and red are mainly systematic and mainly random, 

respectively (Sciacchitano 2019) 

The errors in PIV measurements can be categorized into errors caused by 

system components, errors due to the flow itself and errors related to the 

evaluation technique (Raffel et al. 2018). 
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3.3.1. Errors caused by system components 

3.3.1.1. Errors related to installation and alignment 

In planar (2D2C) PIV measurements, if the laser sheet or measurement 

plane is not aligned properly with the desired plane in the flow field, then 

the velocity components retrieved from the evaluation do not correspond to 

the true velocity components. This introduces a systematic error in the 

results (Discetti and Adrian 2012, Raffel et al. 2018, among others). 

Moreover, in presence of significant out-of-plane motion of particles, 

perspective errors are introduced. The magnitude of perspective error 

increases with increasing distance from the optical axis of camera lens as 

shown in figure 3.4 (Raffel et al. 2018). These errors can be reduced by 

decreasing the observation angle α (i.e. by increasing the distance between 

the image plane and measurement plane or by reducing the field of view), by 

using telecentric lenses (Konrath and Schöder 2002) or by acquiring the 

images in stereoscopic configuration with two cameras (Prasad 2000).  

 

Figure 3.4. Illustration of the perspective error for a constant out-of-plane particle 

motion (ΔZ ≠ 0) and zero in-plane motion (ΔX = ΔY = 0) 

Furthermore, the errors during calibration process can be significant if the 

calibration plate does not align perfectly with the measurement plane or the 

calibration plate itself has manufacturing defects. The calibration errors can 



3. PIV Errors and Uncertainty 

34 

also occur if the laser sheet is thick and the distance between image plane 

and measurement plane is relatively short. The magnification, in this case, 

can vary drastically across the laser sheet thickness introducing errors in the 

flow velocity estimation (Raffel et al. 2018). 

3.3.1.2. Timing and synchronization errors 

The measurement errors are introduced when the value of time gap ∆t 

between two light pulses deviates from the selected value by the 

experimenter. This can be caused by different cable lengths used to trigger 

the system components or change in the firing order of the laser oscillators 

of double-pulsed laser when the oscillators are not identical (Raffel et al. 

2018). To detect and correct these timing errors in PIV measurements of the 

flows with large Mach numbers or the measurements with large 

magnification (in microfluidics), it is recommended to use a fast diode to 

monitor the exact pulse delay with an oscilloscope.   

3.3.1.3. Illumination errors 

Errors can be introduced when the two laser pulses are not aligned perfectly 

or when they have different intensity profiles. That can lead to variation in 

the intensities of particle images (Nobach and Bodenschatz 2009, Nobach 

2011). Since the cross-correlation operator is insensitive to absolute 

intensity variations in the images, the slight variation in the intensities of 

two light pulses or slight spatial intensity variation along the light sheet do 

not cause the measurement errors (Wieneke 2017). Nevertheless, it is 

important that the illumination system provides sufficient light intensity in 

order to have enough contrast between the background and seeding 

particles in the images (Scharnowski and Kähler 2016b).  

3.3.1.4. Imaging errors 

Peak-locking is one of the most significant error sources in PIV 

measurements (Westerweel 1997, Christensen 2004, Overmars et al. 2010, 

among others). It usually occurs when the particle image diameter is very 
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small (less than one pixel) which causes the measured displacement to be 

biased to the nearest integer value. The measured displacement is therefore 

underestimated or overestimated based on the amount of sub-pixel 

displacement. The magnitude of peak-locking error depends on the 

algorithm used for fitting cross-correlation peak (Roesgen 2003). The peak-

locking errors have a significant effect on the estimation of turbulence 

statistics accurately (Christensen 2004). Various approaches have been 

proposed to minimize or correct the peak-locking errors, such as using 

smaller optical aperture or higher f-stop (f#), image defocussing (Overmars 

et al. 2010), optical diffusers (Michaelis et al. 2016, Kislaya and Sciacchitano 

2018), multi-∆t acquisition (Nogueira et al. 2009, 2011, Legrand et al. 2012, 

2018) and data post-processing approaches (Roth and Katz 2001, Hearst 

and Ganapathisubramani 2015, Michaelis et al. 2016). 

 

Figure 3.5. Effect of optical aberrations and out-of-focus imaging; where the upper 

left image shows the ideal imaging conditions (focused particle images without 

strong optical aberrations), the lower left image illustrates out-of-focus particle 

images and the right column reveals the effect of astigmatic aberrations 

superimposed on the focused (upper image) and unfocused particle images (lower 

image) (Raffel et al. 2018) 
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Image noise can also cause errors in imaging the seeding particles. It affects 

the performance of image evaluation algorithms in measuring the particle 

image displacements. Digital cameras are characterized by three types of 

noise sources, namely background noise, photon noise and device noise 

(Adrian and Wesrerweel 2011). Optical elements between the flow and 

imaging system, such as glass window, can cause optical aberrations which 

introduce errors in the measurements. The image distortions (see figure 

3.5) can also be introduced by the imaging system itself if the field of view is 

large and the distance between image plane and measurement plane is small 

(Raffel et al. 2018). 

3.3.2. Errors due to the flow 

The flow features usually also have an effect on the accuracy of PIV 

measurements. Flow fluctuations, velocity gradients and streamline 

curvatures might cause measurement errors due to the particle slip or due 

to the failure of image processing algorithms to estimate the velocity field 

correctly in presence of these flow features (Sciacchitano 2019). The effect 

of in-plane velocity gradients on the velocity estimation can be minimized 

by state-of-the-art algorithms with window deformation (Scarano and 

Riethmuller 2000). However, due to the finite number of particles in the 

interrogation windows, the out-of-plane velocity gradients affect the 

accuracy of measuring the in-plane velocity components. Moreover, the 

variations in the fluid properties, like temperature, density, viscosity, or in 

the Reynolds and Mach numbers during the course of experimental tests 

cause additional errors in the measurements. The seeding particles entering 

or leaving the light sheet (in-plane and/or out-of-plane motion of particles) 

can produce background noise in the correlation function as they are not 

matched with the other particles. Also, the particles present at different 

depths across the light sheet can produce overlapping particle images 

causing the random errors in the measurements (Nobach and Bodenschatz 

2009, Nobach 2011). For microscopic PIV measurements of very low 

velocity flows (less than 1mm/s), measurement errors are introduced due 

to Brownian motion of the seeding particles (Olsen and Adrian 2001). Such 
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an error increases with increase in the fluid temperature and decreases with 

increase in particle diameter and flow velocity (Devasenathipathy et al. 

2003) 

3.3.3. Errors related to the evaluation technique 

The errors related to image evaluation techniques and processing 

parameters have been analyzed in details as can be seen in the international 

PIV challenges (Stanislas et al. 2003, 2005, 2008, Kähler et al. 2016). In the 

early days of PIV, major attention was on detection and removal of outliers 

i.e. the wrong vectors from the estimated velocity field (Keane and Adrian 

1990, Westerweel and Scarano 2005). Though it is relatively easy to detect 

and remove the isolated outliers, the problem of clusters of outliers still need 

more attention (Masullo and Theunissen 2016). From the end of 1990s, the 

research has been focused on minimization of uncertainty and maximization 

of spatial resolution in the development of PIV algorithms (Sciacchitano 

2019). The researchers have assessed the effectiveness of various PIV 

evaluation algorithms based on correlation analysis, interrogation window 

sizes and shapes, cross-correlation peak-fitting, vector interpolation 

schemes, etc.    

3.4. PIV uncertainty quantification 

In PIV, the local flow velocity u is computed by estimating the displacement 

∆x of particle images within a short time step ∆t (Adrian and Westerweel 

2011): 

𝑢 =
𝛥𝑥

𝛥𝑡
=

𝛥𝑋

𝑀𝛥𝑡
 

                                               (3.5) 

where, ∆X is the displacement in the object plane and M is the magnification 

factor of imaging system. The uncertainty of the velocity is estimated by 

Taylor’s series method (Coleman and Steele 2009), considering ∆X, ∆t and 

M as independent variables: 
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                           (3.6) 

The uncertainty of laser pulse separation U∆t is considered as a Type B 

uncertainty i.e. it cannot be evaluated from data statistics of repeated 

measurements. Its value is usually provided by the manufacturer. Whereas, 

the work on quantification of uncertainty of the magnification factor UM is 

limited. Gui et al. (2001) estimated the magnification uncertainty based on 

the uncertainties of the sizes of field of view in the object plane and image 

plane. The magnification uncertainty has also been calculated based on the 

uncertainties of position and size of dots on the calibration plate, image 

distortion due to perspective errors, the misalignment between calibration 

plate and measurement plane and the misalignment between calibration 

plate and image plane (Campagnole dos Santos et al. 2018). When the 

calibration procedure is performed properly, the magnification and 

calibration uncertainties are negligible. Therefore, the uncertainty of 

displacement U∆X is a dominant term in equation (3.6) and most of the PIV 

uncertainty quantification (UQ) approaches focus on estimating U∆X. These 

PIV-UQ approaches are classified as a-priori and a-posteriori approaches 

(Sciacchitano et al. 2013). A-priori approaches provide a general value of 

uncertainty using theoretical modelling of the measurement chain or 

numerical and experimental assessment with synthetic images. Conversely, 

a-posteriori approaches provide the uncertainty of instantaneous or 

averaged velocity field by analyzing the measured data (Sciacchitano 2019). 

3.4.1. A-priori uncertainty quantification approaches 

A-priori approaches have been proposed in the early days for PIV-UQ. Such 

approaches are mostly based on the theoretical modelling of the 

measurement chain and/or Monte Carlo simulations using synthetic images. 

3.4.1.1. A-priori uncertainty quantification by theoretical modelling 

In the earliest days of PIV, Adrian (1986) proposed to quantify the 

uncertainty of measured particle image displacement as cdτ, where dτ is the 
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particle image diameter and c is a parameter related to the uncertainty in 

detecting particle image centroid. The particle image diameter can be 

computed a-priori by analytical formula or a-posteriori from auto-

correlation function (Adrian and Westerweel 2011). The typical values of c 

are in the order of 0.1. However, this approach is very simplistic and does 

not account for the errors like peak locking which is evident for small 

particle image sizes. Moreover, the approach does not take into account the 

effect of flow conditions, like velocity gradients, out-of-plane motion, 

streamline curvature and imaging conditions. The approaches based on 

theoretical models are mostly based on simplified assumptions of the flow 

conditions and image evaluation and are, therefore, limited to provide actual 

uncertainty values. 

3.4.1.2. A-priori uncertainty quantification by numerical or experimental 

assessment 

Since the approaches based on theoretical models use simplified 

assumptions and do not consider the experimental complexity and image 

evaluation, many researchers employed numerical or experimental 

assessment to quantify the uncertainty a-priori. The approaches of 

numerical simulations (Monte Carlo) use synthetic images which are 

generated with random distribution of seeding particles and with a known 

motion. The synthetic images are advantageous for the analysis as the true 

velocity field is known beforehand, the values of experimental parameters 

can be modified easily without affecting the other parameters as well as their 

values can be set to the values not easily achievable in the real experiments 

(e.g. low or high turbulence levels). The synthetic images and Monte Carlo 

simulations have been used very often for a-priori PIV-UQ and analysis due 

to these advantages. The measurement errors have been characterized for 

different evaluation algorithms in PIV as a function of parameters, like 

particle image size and displacement, displacement gradient, seeding 

density, out-of-plane particle motion, image interpolation algorithm, cross-

correlation peak fit algorithm (Sciacchitano 2019). However, the synthetic 

images are known to yield low measurement errors due to ideal imaging and 
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flow conditions. Therefore, experimental assessments have been proposed 

which better represent the conditions of real experiments. For such 

assessments, the measurement error is computed by comparing the 

measured velocity field to the true velocity field. The true velocity field is 

either imposed or quantified via a more accurate measurement system 

(Sciacchitano 2019). The measurement errors from the experimental 

assessments are found to be large, especially in presence of severe out-of-

plane motion, peak locking, under resolved length scales and low image 

quality. Moreover, the human factor is also significant in the PIV 

measurements as the values of different experimental parameters are 

chosen based on personal experience (Kähler et al. 2016).  

3.4.2. A-posteriori uncertainty quantification approaches 

In PIV, as the measurement errors depend on several factors throughout the 

measurement chain and they might vary in space and time, the errors and 

uncertainties are not uniform within the measured flow field. Therefore, a-

posteriori uncertainty quantification is necessary where the local 

uncertainty of each velocity vector can be quantified (Sciacchitano 2019). 

Various a-posteriori UQ approaches have been proposed for PIV 

measurements. Following Bhattacharya et al. (2018), these approaches are 

classified into indirect and direct methods. The indirect methods make use 

of information pre-calculated from calibration, whereas the direct methods 

estimate the uncertainty directly from the measured velocity field. Some of 

the commonly used indirect methods, namely uncertainty surface method 

(Timmins et al. 2012) and cross-correlation peak ratio criterion (Charonko 

and Vlachos 2013), and direct methods, namely particle disparity method 

(Sciacchitano et al. 2013) and correlation statistics approach (Wieneke 

2015) are discussed briefly in the following sections.   

3.4.2.1. Uncertainty surface method 

The uncertainty surface method (Timmins et al. 2012) was the first a-

posteriori approach for PIV-UQ to quantify instantaneous uncertainty of 

each velocity vector. In this approach, it is required to identify major error 
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sources in the experiment. Timmins et al (2012) considered four sources, 

namely particle image diameter, seeding density, shear rate and particle 

image displacement. Synthetic images are then generated by varying the 

values of these chosen parameters and the images are analyzed by PIV 

evaluation algorithms. The computed velocity fields are compared with the 

known true velocity fields to determine the error distributions as a function 

of the selected parameters and generate an uncertainty surface. The 

experimental PIV images are analyzed using the generated uncertainty 

surface to compute the uncertainty bounds for each velocity vector. The 

working principle of the method is shown schematically in figure 3.6. 

 

Figure 3.6. Schematic representation of the working principle of the uncertainty 

surface method (Sciacchitano 2019) 

The uncertainty surface method determines the error distributions without 

any assumption of their shape and can distinguish systematic and random 

uncertainty components. However, the method relies on selection of the 

major error sources and estimation of their values, which are also affected 

by the measurement uncertainty. Moreover, generation of the uncertainty 

surface is time consuming and the uncertainty surface needs to be generated 

every time when the parameters are changed (Sciacchitano 2019). 



3. PIV Errors and Uncertainty 

42 

3.4.2.2. Cross-correlation peak ratio criterion 

Approaches based on cross-correlation peak ratio criterion (Charonko and 

Vlachos 2013, among others) estimate the uncertainty from the quantities 

derived from cross-correlation plane without requiring any assumption or 

selection and evaluation of error sources (Sciacchitano 2019).  

 

Figure 3.7. Graphical representation of 1D cross-correlation SNR: (a) primary peak 

ratio (PPR), (b) peak to root mean square ratio (PRMSR), (c) peak to correlation 

energy (PCE) (Xue et al. 2014)  
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In such methods, a metric ϕ representative of the signal-to-noise ratio (SNR) 

of the cross-correlation function is computed and is considered to be an 

empirical function of the experimental parameters or error sources. 

Different metrics for the evaluation of the cross-correlation SNR have been 

proposed in the literature, some of them are as shown in figure 3.7. Overall, 

these approaches are easy to implement and fully rely on the estimated 

cross-correlation function. However, the metric ϕ is empirically developed 

using synthetic images and the uncertainties of the displacement 

components are computed from the estimated uncertainty of the total 

displacement by following certain assumptions (Sciacchitano 2019). 

3.4.2.3. Particle disparity method 

Particle disparity or image matching method (Sciacchitano et al. 2013) is 

based on the contribution of individual particle images to the cross-

correlation peak. If the particle images between the two PIV images match 

perfectly then there is a sharp peak in the cross-correlation function and the 

uncertainty is minimum. The width of the correlation peak represents the 

uncertainty bounds (see figure 3.8).  

 

Figure 3.8. Illustration of the positional disparity between paired particle images 

(left) and their distribution (right) (Sciacchitano 2019) 
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When the particle images in the two images do not match perfectly, the 

correlation peak is wider and the uncertainty is higher. The method provides 

the standard uncertainty of each velocity vector without any assumptions on 

the flow and imaging conditions. However, it is dependent on identifying the 

individual particle images which can be erroneous in presence of 

overlapping particle images and poor imaging conditions (Sciacchitano 

2019). 

3.4.2.4. Correlation statistics approach 

Correlation statistics approach (Wieneke 2015) is an extension of the 

particle disparity method (Sciacchitano et al. 2013) and based on the 

contribution of individual pixels in the images to the cross-correlation peak. 

While applying this approach, it is necessary to employ iterative multi-pass 

PIV algorithm with window deformation and predictor-corrector filtering 

(Sciacchitano 2019). The predictor-corrector scheme, after convergence, 

provides a symmetric cross-correlation peak by compensating the errors. 

The measurement error can be given by comparing the measured 

displacement associated with the symmetric correlation peak to the true 

displacement characterized by asymmetric correlation peak as shown in 

figure 3.9. The approach thus evaluates the contribution of each pixel in the 

image to the asymmetry of the correlation peak which in turn is associated 

with the uncertainty of the measured displacement. 

 

Figure 3.9. Illustration of the working principle of the correlation statistics method 

(Wieneke 2015) 
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Chapter 4 

Survey on PIV Errors and Uncertainty 

Quantification 

Abstract 

A survey on PIV error sources and uncertainty quantification (UQ) is 

performed and the outcomes are presented in this chapter. The aim of the 

survey is to understand how users and researchers in academia and industry 

perceive the PIV technique, especially for what concerns the measurement 

errors and uncertainties. A questionnaire is designed to determine the 

respondents’ areas of work/research, type of PIV setup they typically 

employ, flow properties they measure, challenges they encounter, most 

significant error sources and their UQ strategies. Over 100 respondents have 

provided valuable answers to the questions and supporting explanations. 

The responses are analyzed both quantitatively and qualitatively. The 

quantitative results are presented in form of figures, such as pie charts, bar 

graphs, bubble plots, and are supported by the analysis of the descriptive 

answers from the respondents. Overall, this chapter not only provides a 

picture of the current status of PIV perceived by the users and researchers 

but also highlights areas where further development is needed. 

4.1. Introduction 

The complex measurement chain, which includes setting up the experiment, 

recording the particle images, processing them and then analyzing the 

results, is affected by errors from various sources (Sciacchitano 2019). 
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Moreover, these error sources have different severity for different PIV users 

due to their level of experience, the type of experimental setup (e.g. planar 

PIV, stereoscopic PIV, tomographic PIV/PTV or LPT, micro-PIV, etc.), the 

flow cases (e.g. high speed flow, multi-phase flow, etc.) and flow properties 

(e.g. instantaneous or statistically derived) of interest (Kähler et al. 2016). 

However, a hierarchical classification of the PIV error sources has never 

been attempted, possibly because of the vast diversity of the experiments 

conducted in the PIV community. In particular, it is not clear which error 

sources affect the most the accuracy and precision of PIV measurements. 

Knowledge on this would create awareness in the PIV community and foster 

further developments for error minimization.  

Additionally, error analysis and uncertainty quantification (UQ) are also of 

primary importance to the PIV users as demonstrated by the increasing 

number of scientific publications on the topic (see Sciacchitano 2019, among 

others). PIV results with known uncertainty levels are more trustworthy and 

therefore suitable for industrial applications and validation of numerical 

simulations. However, the experimental protocols and strategies for PIV-UQ 

may vary significantly among research groups and even individual 

researchers. It is thus considered important to determine how the PIV 

community tackles the topic of uncertainty quantification, and to 

understand whether the PIV users consider the available tools and 

approaches for PIV-UQ sufficient. 

The present chapter aims to perform a survey among PIV users and 

researchers from all over the world to characterize the views of the 

community on PIV errors and uncertainty. The structure and design of the 

questionnaire for the survey is explained in section 4.2. The results of the 

survey are presented in section 4.3 with emphasis on the participants’ views 

on advantages and limitations of PIV over other measurement techniques, 

PIV error sources and PIV-UQ. 

 

 



4. Survey on PIV Errors and Uncertainty Quantification 

47 

4.2. Survey structure 

The questionnaire, which is illustrated in form of a flow chart in figure 4.1, 

consists of 11 main questions with answers of two kinds, namely multiple-

choice and descriptive answers. The multiple-choice questions allow simple 

quantitative analyses, whereas the descriptive answers provide qualitative 

data to support the quantitative results. 

 

Figure 4.1. Flow chart of questionnaire designed for the survey 
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The questions have been formulated in order to receive answers from 

respondents about their areas of work/research, kind of PIV setup they 

employ, flow properties they measure, challenges they encounter, 

significant error sources and their PIV-UQ strategies. The questionnaire has 

been sent to 475 researchers from various countries and responses were 

received from 103 of them. Figure 4.2 shows the division of the respondents 

based on their present role in academia and industry. 

Around 22% of the respondents are Associate/Full Professors, 13% are 

Assistant Professors, 21% are Post Doctorates, 18% are PhD Candidates, 

20% are Senior Engineers/Scientists from the industries and other 6% are 

also from the industries with different function names. The respondents 

work in various research fields from fundamental sciences (such as biology, 

heat transfer, etc.) to applied sciences and engineering (such as automotive, 

aerospace etc.), from small scale flows to large scale flows, from low speed 

to high speed flows, and also in the development of measurement techniques 

for analyzing the fluid flows. 

 

Figure 4.2. Pie chart of division of roles in academia and industry of the survey 

respondents 
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4.3. Results 

The responses of the survey are analyzed both quantitatively and 

qualitatively. The results are presented in this section to highlight the views 

of the PIV users and researchers on advantages and limitations of PIV, 

significant error sources and uncertainty quantification methodologies. 

4.3.1. Advantages and limitations of PIV 

It is observed that not all the respondents use PIV as their primary 

measurement technique. Around 78% of them use PIV more often than other 

measurement techniques (typically Hotwire Anemometry, Laser Doppler 

Velocimetry, etc.), around 10% use other techniques more often than PIV, 

and the remaining 12% use PIV as frequently as the other techniques. The 

perceived advantages and limitations of PIV are summarized in figure 4.3. 

 

Figure 4.3. Advantages (green) and limitations (red) of PIV that make the technique 

more or less favorable than other techniques, respectively 

The major advantages and limitations are shown in the bar graph where the 

length of the bar represents the percentage of respondents who have 

mentioned the respective advantage or limitation. Around 27% of the 
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respondents use PIV because it provides full field data as opposed to a single 

point measurement like Hotwire Anemometry (HWA) or Laser Doppler 

Velocimetry (LDV). PIV is non-intrusive (14% of the respondents), provides 

not only averaged velocity fields but also instantaneous and higher order 

statistics (16% of the respondents) and provides good spatial and temporal 

resolution (15% of the respondents). Another 11% of the respondents 

prefer PIV due to other advantages, namely high data efficiency, high 

accuracy and high information density, among others. Contrary, the main 

limitations and disadvantages in using PIV are that it is difficult to setup and 

execute, expensive to perform, time consuming (in terms of setup, 

acquisition and processing), provides limited temporal resolution compared 

to the other techniques (e.g. HWA) and is prone to various seeding problems 

(distribution, density, etc.). Overall, the survey shows that more researchers 

prefer PIV over other measurement techniques as its advantages overpower 

its limitations. 

4.3.2. PIV error sources 

In order to discuss the error sources in the PIV measurements, it is 

important to determine which types of PIV setup are most commonly used 

by the respondents. A pictorial representation of the types of PIV setup 

employed is shown in figure 4.4 in the form of a bubble chart.  

The location of the center of the bubble along the vertical axis and its 

diameter represent the percentage of the total respondents who typically 

perform that kind of PIV experiment. It is clear that most of the PIV users 

perform planar 2-dimensional-2-component i.e. 2D2C (28% of the 

respondents) and stereoscopic 2D3C measurements (23%), followed by 

tomographic 3D3C PIV measurements (16%). Nevertheless, 3D 

measurements, especially tomographic particle tracking velocimetry (PTV) 

or Lagrangian particle tracking (LPT), are becoming more common. They 

are reported by 11% of the respondents. As mentioned earlier, the 

developments in the hardware and software have expanded the applications 

of PIV such that it is being used in large scale (9%) as well as micro scale 

(8%) measurements. The bubble of other measurements in the figure 4.4 
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accounts for 5% of the PIV users who work with specific applications, such 

as echo PIV and fluorescent PIV.  

 

Figure 4.4. Types of PIV used by the survey respondents 

All these PIV measurements suffer from errors from various sources during 

experimental setup, image acquisition and data processing. Figure 4.5 

presents the most significant error sources encountered by the PIV 

community. It is clear that the problems related to the background image 

reflections and seeding are more severe than those of limited spatial 

resolution and distortions/ aberrations of the optical access. It is found that 

PIV users consider the error sources related to the experimental setup or 

image acquisition as more troublesome than those from the processing 

algorithms.  

It is to be noted that the error sources have some correlation with the type 

of PIV measurements performed. This is verified by checking the responses 

of the PIV users separately who employ either planar (2D2C and 2D3C) 

measurement setups or volumetric 3D3C (tomographic PIV and 3D 

PTV/LPT) measurement setups. Figure 4.6 shows the division of the error 

sources based on the kind of PIV users i.e. the users who perform only planar 

measurements (2D users), the users who perform only volumetric 
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measurements (3D users) and the users who perform both planar and 

volumetric measurements (2D and 3D users).  

 

Figure 4.5. Most relevant error sources in PIV measurements 

It is found that around 14%, 20% and 12% of the planar setup users (only 

2D users) mentioned the reflections, seeding and image noise as the 

significant error sources, respectively. Similarly, the reflections, seeding and 

image noise are reported as the significant error sources by around 22%, 

22% and 11% of the volumetric setup users (only 3D users), respectively. 

The errors due to calibration are considered more significant by the 

volumetric setup group (44%) than the planar setup group (10%). It is to be 

noted that the percentages here are related to the main effects of the kind of 

measurement setup i.e. 2D or 3D. The interaction effects which are hidden 

in the answers of the users who perform both 2D and 3D measurements are 

not evaluated. 
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Figure 4.6. PIV error sources divided based on the kind of PIV users [2D users only: 

the users who employ only planar (2D2C and 2D3C) measurement setups, 3D users 

only: the users who employ only volumetric 3D3C (tomographic PIV and 3D 

PTV/LPT) measurement setups, 2D and 3D users: the users who employ both planar 

and volumetric setups] 

4.3.3. PIV uncertainty quantification 

Uncertainty quantification is of primary importance in any kind of 

measurements. The variety of error sources mentioned earlier makes UQ for 

PIV experiments as a challenging task (Sciacchitano 2019). While random 

error sources are promptly quantified by data statistics, the systematic 

effects of various error sources are often difficult to estimate (Smith and 

Oberkampf 2014). The survey reveals that the PIV users do not always 

quantify the uncertainty of their PIV measurements. In particular, it is found 

that only 49% of the PIV users always perform UQ, 41% perform it only 

sometimes, and 10% do not perform it at all [see figure 4.7(a)]. The major 

reasons for not always performing PIV-UQ are: limitation of the available 

PIV-UQ approaches to account for all the error sources; not well-defined 

approaches and hence difficulty to use them; unavailability of a standard and 



4. Survey on PIV Errors and Uncertainty Quantification 

54 

recognized approach which can be used for all kinds of PIV measurements; 

requirement of extra efforts and resources. Moreover, for some of the PIV 

users, UQ is not necessary as they are interested in rough estimates of the 

flow or UQ is difficult due to the complexity of the measurements. 

The users that perform PIV-UQ employ a wide variety of algorithms. Those 

include: 

• Correlation Statistics (CS) method by Wieneke (2015); 

• Data statistics (Coleman and Steele 2009, Benedict and Gould 1996);  

• Cross-correlation Peak Ratio (PR) approach by Charonko and 

Vlachos (2013); 

• Particle Disparity (PD) or Image Matching approach by Sciacchitano 

et al. (2013); 

• Guide to Expression of Uncertainty in Measurement of the 

International Organization for Standardization (ISO-GUM 2018).  

As demonstrated for the error sources, the choice of the PIV-UQ approach is 

also influenced by the kind of measurements employed by the PIV users. It 

is found that all the five approaches are mostly implemented by users of 

planar (2D2C and 2D3C) measurement setups. Instead, most of the users of 

volumetric 3D3C (tomographic PIV and 3D PTV/LPT) setups do not perform 

uncertainty quantification due to the complexity of the measurements and 

those who do perform uncertainty quantification make use of the statistics 

formulae to quantify the uncertainty. The other UQ approaches are found to 

be limited for volumetric measurements. 

Figure 4.7(b) shows the pie chart of the percentages of the five major UQ 

strategies implemented by the planar setup users. It is clear that the CS 

method is the most used followed by the Statistics formulae, reported by 

40% and 29% of the PIV users, respectively. Both of the approaches focus on 

random uncertainty. These methods are widely used because they are easy 

to implement, validated and found to be reliable by many users in the PIV 

community. The CS method has additional advantages in that it can provide 

the uncertainty of instantaneous data and the method is readily available in 

a commercial software. The other PIV-UQ approaches of PR, PD and ISO-

GUM are also commonly used by around 10% of the PIV users each. The ISO-
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GUM specifications for UQ are mostly of interest to the PIV users in the 

industry because they are standard and globally recognized.  

While the PIV users can choose among many PIV-UQ algorithms, it is clear 

that none of them is universally considered the standard approach for PIV-

UQ. Additionally, the approaches commonly used rely on data statistics and 

quantify the uncertainty stemming from random error sources, strongly 

underestimating the uncertainty due to systematic error sources. Hence, it 

is apparent that a comprehensive framework for PIV-UQ, universally 

acknowledged and accounting for both random and systematic errors, is still 

missing. Moreover, the survey reveals the need of a single PIV-UQ approach 

applicable to all kinds of measurements ranging from the planar (2D2C and 

2D3C) to the volumetric 3D3C (tomographic PIV and 3D PTV/LPT) 

measurements.  

 

        (a)                                                                                   (b) 

Figure 4.7. Pie charts of (a) percentages of PIV users who perform or do not perform 

uncertainty quantification and (b) percentages of different UQ approaches used by 

the planar (2D2C and 2D3C) measurement setup users [Correlation Statistics 

method by Wieneke (2015); Statistics formulae (Coleman and Steele 2009, Benedict 

and Gould 1996); Cross-correlation Peak Ratio criterion by Charonko and Vlachos 

(2013); Particle Disparity or Image Matching approach by Sciacchitano et al. (2013); 

ISO-GUM: Guide to Expression of Uncertainty in Measurement of the International 

Organization for Standardization (ISO-GUM 2018)] 
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4.4. Conclusions 

In this chapter, we performed a survey to determine how PIV users and 

researchers worldwide perceive the PIV error sources and the current 

approaches for uncertainty quantification. A questionnaire consisting of 11 

questions has been formulated and sent to 475 researchers from both 

academia and industry. The total number of responses was 103, resulting in 

a response rate of 22%. The responses were analyzed quantitatively in pie 

charts, bar graphs and bubble plots, whereas the descriptive answers 

supported the analysis of the charts. Overall, it is found that the PIV 

community struggles more with the error sources associated with 

measurement setup and image acquisition, such as background image 

reflections, seeding density and its distribution, image calibration. 

Conversely, the image analysis step is perceived as easy and accurate, 

possibly because much work in the last three decades has been dedicated to 

optimize image interrogation algorithms to maximize the accuracy of the 

resulting velocity fields. Further detailed analysis was performed by 

separating the responses of two groups of PIV users, namely users who 

employ planar (2D2C and 2D3C) measurement setups and users who 

perform volumetric 3D3C (tomographic PIV and 3D PTV/LPT) 

measurements. It is found that the errors due to background image 

reflections, seeding and image noise are considered significant by both the 

groups. However, the errors due to the laser and camera misalignment and 

out-of-plane motion of particles are more relevant for the planar setup users. 

Contrary, the errors related to the calibration procedure are more 

problematic for the users of volumetric setups. 

The PIV users are aware of the importance of uncertainty quantification 

(UQ). However, only 49% of the respondents always quantify the 

uncertainty of their PIV measurements. PIV users can choose among a wide 

range of UQ algorithms, some of which are also implemented in commercial 

software, thus making them easy to use. Nevertheless, given the wide variety 

of UQ approaches used, it is clear that no approach can be currently 

considered as the standard tool for PIV-UQ. Furthermore, the analysis of the 

two groups of PIV users employing either planar or volumetric setups shows 
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that the standard UQ approaches are limited for the uncertainty 

quantification in volumetric measurements. The need for a universally 

accepted PIV-UQ approach that can deal with random as well as systematic 

errors has emerged from this analysis. 
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Chapter 5 

Multi-∆t Approach for Peak-locking 

Uncertainty Quantification 

Abstract 

A novel approach is devised for the quantification of systematic uncertainty 

due to peak locking in particle image velocimetry (PIV), which also leads to 

correction of the peak-locking errors. The approach, applicable to statistical 

flow properties such as time-averaged velocity and Reynolds stresses, relies 

on image recordings with multiple time separations Δt and a least-squares 

regression of the measured quantities. In presence of peak locking, the 

measured particle image displacement is a non-linear function of Δt due to 

the presence of measurement errors which vary non-linearly with the sub-

pixel particle image displacement. Additionally, the measured displacement 

fluctuations are a combination of the actual flow fluctuations and the 

measurement error. When the image recordings are acquired with multiple 

Δt’s, a least-squares regression among the statistical results yields a 

correction where systematic errors due to peak locking are significantly 

diminished. The methodology is assessed for planar PIV measurements of 

the flow over a NACA0012 airfoil at 10 degrees angle of attack. Reference 

measurements with much larger Δt than the Δt’s of the actual measurements, 
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such that relative peak-locking errors are negligible for the former, are used 

to assess the validity of the proposed approach. 

5.1. Introduction 

Several approaches have been proposed for quantification and correction of 

the peak-locking errors. A-priori estimations and correction of the peak-

locking errors based on theoretical models were presented by Angele and 

Muhammad-Klingmann (2005) and Cholemari (2007). Both the models 

have showed the effect of peak locking on the turbulence statistics following 

the work of Christensen (2004). The peak-locking errors have been 

corrected by assuming Gaussian distribution for the displacement and 

velocity probability density functions in the former model (Angele and 

Muhammad-Klingmann 2005), whereas the correction has been achieved by 

assuming sinusoidal variation of the peak-locking error with respect to the 

sub-pixel displacement in the latter model (Cholemari 2007). A number of 

works on the peak-locking correction at the processing (i.e. velocity 

estimation) and post-processing stages have been devised in the literature. 

Roth and Katz (2001) have applied a histogram equalization to the sub-pixel 

particle image displacements for the correction. However, Hearst and 

Ganapathisubramani (2015) have demonstrated that pixel locking is non-

uniform across an image. Therefore, identifying and adjusting for pixel 

locking with histograms computed based on the entire vector fields, as done 

by Roth and Katz (2001), may have been erroneous and the equalization 

process should be applied on a vector-by-vector basis (Hearst and 

Ganapathisubramani 2015). However, their approach is effective only in the 

absence of other error sources which might affect the histogram of the 

measured displacements and velocities. The peak-locking errors arising at 

the processing stage can be reduced by using state-of-the-art processing 

algorithms (Scarano 2002, Roesgen 2003, Chen and Katz 2005, Liao and 

Cowen 2005). However, the peak-locking errors due to small particle image 

diameters are difficult to quantify or correct for. The concept of defocusing 

to increase the particle image diameter has become a common practice: a 

slight defocusing has been shown effective in reducing the peak-locking 
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errors as reported by Overmars et al. (2010). However, the optimal amount 

of defocusing is not possible to estimate and the excessive defocusing 

increases random errors in the detection of the particle images (Kislaya and 

Sciacchitano 2018). Furthermore, defocusing cannot be applied in 

tomographic measurements, where the same amount of defocusing cannot 

be imposed to the particles of the entire measurement volume. Michaelis et 

al. (2016) proposed the use of optical diffusers to enlarge the particle image 

diameters by increasing the point spread function of the imaging system. A 

reduction of both systematic and random error components of the measured 

velocity by a factor of 3 was reported by Kislaya and Sciacchitano (2018). 

However, the effectiveness of the diffusers is limited for the CMOS cameras 

with large pixel size. Using the diffusers, a spread of about 10 µm for the 

incoming light can be achieved in the image plane (Michaelis et al. 2016). 

Nevertheless, several CMOS cameras feature pixel sizes exceeding 10 µm. 

For those cameras, as discussed by Kislaya and Sciacchitano (2018), peak-

locking errors remain present even when using two optical diffusers as 

proposed by Michaelis et al. (2016); furthermore, the uncertainty associated 

with the peak locking errors remains unknown, as it cannot be easily 

evaluated via standard uncertainty quantification approaches (Sciacchitano 

et al. 2015). 

The discussion above shows that the problem of peak-locking errors due to 

small particle image diameters, especially in the case of CMOS cameras for 

high-speed PIV measurements, is still unsolved. In such a situation, a 

continuous development in the approaches based on multiple Δt image 

acquisition (Nogueira et al. 2009, Nogueira et al. 2011, Legrand et al. 2012, 

Legrand et al. 2018) has shown a high potential in peak-locking error 

quantification and correction, Δt being a time separation between two 

frames in PIV. Using a set of different Δt’s for the same flow measurement 

allows for segregating the errors that scale with Δt (e.g. peak-locking errors) 

from those that do not (Nogueira et al. 2011). The recent work of Legrand et 

al. (2018) has offered a 1-D analytical modeling of the peak-locking errors 

and has allowed for measurement correction. However, the method is 

iterative and computationally expensive to estimate the calibration 

coefficients mentioned in the algorithm. Also, selection of two Δt’s is not 
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trivial in presence of turbulence in the flow and the Δt values should be 

adjusted for different levels of turbulence. In the present chapter, a simple 

approach based on a least-squares regression of the measured time-

averaged displacements and Reynolds stresses from multiple Δt acquisitions 

is proposed to correct the peak-locking errors and quantify the uncertainty. 

The proposed methodology and its validation are explained in sections 5.2 

and 5.3, respectively. The approach is then assessed for planar PIV 

measurements of the flow over a NACA0012 airfoil in a wind tunnel; the 

experimental setup and the results of such assessment are presented in 

sections 5.4 and 5.5, respectively. 

5.2. Proposed methodology 

The peak-locking uncertainty in PIV measurements is proposed to be 

quantified and reduced using regression analysis from acquisitions with 

multiple Δt’s. The approach, applicable for stationary processes (whose 

statistics do not change in time), is devised for the uncertainty in the time-

averaged displacements (and velocities) as well as Reynolds stresses. 

5.2.1. Mean displacement and velocity 

Consider a stationary process, where the local actual time-averaged flow 

velocity trueu is constant in time. When PIV measurements are conducted 

with inter-frame time separation Δt, the actual time-averaged particle image 

displacement in pixel units, not affected by any measurement error, is: 

𝛥𝑥𝑡𝑟𝑢𝑒 = 𝑢𝑡𝑟𝑢𝑒 ⋅ 𝛥𝑡 ⋅
𝑀

𝑠
 

                                        (5.1) 

where, M is the magnification factor relating the image plane to the object 

plane and s is pixel size of the camera sensor.  

From equation (5.1) it is evident that the actual particle image displacement 

increases linearly with the inter-frame time separation. In presence of the 
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peak-locking errors, the measured particle image displacement is the sum of 

the true displacement and the measurement error: 

𝛥𝑥 = 𝑢𝑡𝑟𝑢𝑒 ⋅ 𝛥𝑡 ⋅
𝑀

𝑠
+ 휀𝛥𝑥 = 𝛥𝑥𝑡𝑟𝑢𝑒 + 휀𝛥𝑥 

                       (5.2) 

The peak-locking errors are often modelled as a sinusoidal (or close-to-

sinusoidal, Cholemari 2007) function of the sub-pixel particle image 

displacements, hence they vary non-linearly with 𝛥𝑥𝑡𝑟𝑢𝑒 . Therefore, the 

measured particle image displacement becomes a non-linear function of Δt, 

as illustrated in figure 5.1. In the proposed approach, the measurements are 

repeated with multiple Δt’s, provided that the Δt’s are selected such as to 

sample a sufficient portion of the peak-locking period (i.e. the variation of 

the time-averaged displacements is at least one pixel). Performing a linear 

regression of the measured displacements 𝛥𝑥(𝛥𝑡) allows to average out the 

systematic errors 휀𝛥𝑥, thus yielding a regression displacement ∆𝑥𝑟𝑒𝑔𝑟(∆𝑡) 

which is a better estimate of 𝛥𝑥𝑡𝑟𝑢𝑒 (see figure 5.1). 

 

Figure 5.1. Graphical representation of measured displacements for multiple Δt 

acquisitions and the displacements from least-squares regression of the measured 

displacements 
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5.2.1.1. Quantification of peak-locking uncertainty 

Following Coleman and Steele (2009), the uncertainty of the time-averaged 

displacement is divided into systematic uncertainty and random 

uncertainty: 

𝑈𝛥𝑥(𝛥𝑡) = √𝑈
𝑏,𝛥𝑥
2 + 𝑈

𝑟,𝛥𝑥
2 (𝛥𝑡) 

                                (5.3) 

where, 𝑈𝑏,𝛥𝑥 and 𝑈𝑟,𝛥𝑥(𝛥𝑡) are the systematic and random uncertainties in 

the time-averaged displacement 𝛥𝑥, respectively. In this work, we assume 

that the systematic uncertainty 𝑈𝑏,𝛥𝑥  is mainly ascribed to peak locking and 

not to the other bias error sources, such as modulation effects due to limited 

spatial resolution (Nogueira et al., 2005) or bias errors due to velocity 

gradients (Keane and Adrian, 1990; Cowen and Monismith, 1997). The 

random uncertainty 𝑈𝑟,𝛥𝑥(𝛥𝑡) can be attributed to several sources, including 

the actual flow fluctuations, noise in the recordings and out-of-plane particle 

motion (Raffel et al. 2018, Sciacchitano 2019). 

Considering the regression displacement as the best estimate of the true 

displacement, the systematic uncertainty can be estimated based on the 

difference between the measured and regression displacements: 

𝑈𝑏,𝛥𝑥 = 𝑡𝐶.𝐼.,𝜈√
1

𝑛 − 1
∑[𝛥𝑥(𝛥𝑡𝑖) − 𝛥𝑥𝑟𝑒𝑔𝑟(𝛥𝑡𝑖)]

2
𝑛

𝑖=1

 

            (5.4) 

where, 𝑡𝐶.𝐼.,𝜈 is the t-statistic describing the desired confidence interval and 

n is the number of Δt acquisitions. In presence of severe peak locking, this 

systematic uncertainty constitutes a major part of the total uncertainty in 

the mean displacement, as can be seen in figure 5.1, where the measured 

time-averaged displacements are underestimated or overestimated 

producing large systematic error and leading to large systematic 

uncertainty. 
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The random uncertainty in the time-averaged displacement is due to the 

finite number of measurement samples (Coleman and Steele 2009) and is 

given by: 

𝑈𝑟,𝛥𝑥(𝛥𝑡) =
𝑡𝐶.𝐼.,𝜈

√𝑁
√

1

𝑁 − 1
∑[𝛥𝑥𝑖(𝛥𝑡) − 𝛥𝑥(𝛥𝑡)]

2
𝑁

𝑖=1

 

              (5.5) 

where N is the number of instantaneous measured displacements (Δx) at 

each Δt acquisition. It is to be noted that the regression analysis does not 

affect the random uncertainty and random error in the measurements. The 

random uncertainty (and random error) in the time-averaged displacement 

at each Δt acquisition can be reduced by acquiring large enough number of 

samples at that Δt acquisition.  

Moreover, when time-resolved PIV measurements are conducted, the 

instantaneous measured displacements are correlated. As a consequence, an 

additional term appears in the calculation of the total uncertainty, namely 

the correlated systematic uncertainty 𝑈𝑏,𝑐𝑜𝑟𝑟(𝛥𝑥) (Coleman and Steele 

2009): 

𝑈
𝑏,𝑐𝑜𝑟𝑟(𝛥𝑥)
2 (𝛥𝑡) = 2 ∑ ∑ (

𝜕𝛥𝑥

𝜕𝛥𝑥𝑖
) (

𝜕𝛥𝑥

𝜕𝛥𝑥𝑗
)

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

𝜎2
𝑏(𝛥𝑥𝑖), 𝑏(𝛥𝑥𝑗)

=
2

𝑁2
∑ ∑ 𝜎2

𝑏(𝛥𝑥𝑖), 𝑏(𝛥𝑥𝑗)

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 

(5.6) 

The value thus calculated in equation (5.6) should be added to the two terms 

under radical in equation (5.3) to calculate the total uncertainty in the time-

averaged displacement. 

The equation (5.6) can further be simplified considering that the covariance 

between the bias errors in the successive instantaneous displacements can 

be expressed as the product of the correlation coefficient (ρ) between them 
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and the individual standard deviations (σ) assuming normal distribution for 

the bias errors (εb). 

𝑈
𝑏,𝑐𝑜𝑟𝑟(𝛥𝑥)
2 (𝛥𝑡) =

2

𝑁2
∑ ∑ 𝜌

𝑏(𝛥𝑥𝑖), 𝑏(𝛥𝑥𝑗) ⋅ 𝜎
𝑏(𝛥𝑥𝑖) ⋅ 𝜎

𝑏(𝛥𝑥𝑗)

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 

   (5.7) 

The estimation of the correlated systematic uncertainty 𝑈𝑏,𝑐𝑜𝑟𝑟(𝛥𝑥) is non-

trivial as the bias errors in the instantaneous displacements are unknown 

and difficult to determine. Moreover, most of the measurements are 

followed by statistical analysis requiring uncorrelated samples in which case 

𝑈𝑏,𝑐𝑜𝑟𝑟(𝛥𝑥) is negligible (or zero for completely uncorrelated samples). In 

this work, for sake of simplicity, only this case of uncorrelated samples is 

considered and the correlated systematic uncertainty is not included in the 

calculation of the total uncertainty. Finally, the total uncertainty in the 

measured time-averaged velocity 𝑢 at each Δt acquisition can be estimated 

using Taylor’s approach from the uncertainty in the time-averaged 

displacement [calculated using equation (5.3)] at that particular Δt 

acquisition: 

𝑈𝑢(𝛥𝑡) =
𝑈𝛥𝑥(𝛥𝑡)

𝛥𝑡
⋅

𝑠

𝑀
 

                                           (5.8) 

5.2.1.2. Correction of peak-locking errors 

The peak-locking errors in the time-averaged PIV measurements can be 

corrected for by removing the bias errors estimated via regression analysis. 

Thus, the measured displacements and velocities (𝛥𝑥 and 𝑢) are replaced 

with the displacements and velocity from regression (∆𝑥𝑟𝑒𝑔𝑟 and 𝑢𝑟𝑒𝑔𝑟), 

respectively. The total standard uncertainty in the corrected displacement 

at each Δt acquisition is then given by the uncertainty of the regression 

model (Coleman and Steele 2009): 
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𝑈𝛥𝑥𝑟𝑒𝑔𝑟
(𝛥𝑡) = 𝑈𝑏,𝛥𝑥

√
1

𝑛
+

(𝛥𝑡 − 𝛥𝑡)
2

𝜎𝛥𝑡,𝛥𝑡
 

                             (5.9) 

where, 𝑈𝑏,𝛥𝑥 is the systematic peak-locking uncertainty in the measured 

mean displacement [calculated using equation (5.4)], n is the number of Δt’s 

and 𝜎∆𝑡,∆𝑡 is the covariance in the Δt’s: 

𝜎𝛥𝑡,𝛥𝑡 = ∑ 𝛥𝑡𝑖
2

𝑛

𝑖=1

−
(∑ 𝛥𝑡𝑖

𝑛
𝑖=1 )2

𝑛
 

                               (5.10) 

The uncertainty in the corrected velocity is then derived from the 

uncertainty in the corrected displacement using Taylor’s approach. It is to 

be noted that the uncertainty in the velocity is calculated at the mean of the 

Δt’s, that is where the regression error is the minimum (Montgomery et al. 

2011). 

𝑈𝑢𝑟𝑒𝑔𝑟
=

𝑈𝛥𝑥𝑟𝑒𝑔𝑟
(𝛥𝑡)

𝛥𝑡
⋅

𝑠

𝑀
=

1

√𝑛
[
𝑈𝑏,𝛥𝑥

𝛥𝑡
] ⋅

𝑠

𝑀
 

                      (5.11) 

5.2.2. Reynolds stress 

When the flow is turbulent and the velocity fluctuations encompass at least 

one pixel, the mean velocity is usually unaffected by the peak-locking errors 

in the instantaneous velocities. In such cases, the peak-locking errors appear 

instead in the velocity fluctuations leading to inaccurate estimation of 

higher-order turbulent statistic, e.g. Reynolds stress (Christensen 2004). 

The measured displacement fluctuations (𝛥𝑥′) are a combination of the 

actual flow fluctuations (𝛥𝑥𝑡𝑟𝑢𝑒
′ ), the random error of the displacement 

measurement (휀𝛥𝑥) and the bias error fluctuations in the measured 

displacements (𝑏𝛥𝑥
′ ), as also explained by Wilson and Smith (2013a), 

Sciacchitano and Wieneke (2016) and Scharnowski et al. (2019a): 
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𝛥𝑥′ = 𝛥𝑥𝑡𝑟𝑢𝑒
′ + 휀𝛥𝑥 + 𝑏𝛥𝑥

′  

                                 (5.12) 

The equation (5.12) can be written in terms of total fluctuating 

measurement error (𝛿𝛥𝑥 = 휀𝛥𝑥 + 𝑏𝛥𝑥
′ ) as: 

𝛥𝑥′ = 𝛥𝑥𝑡𝑟𝑢𝑒
′ + 𝛿𝛥𝑥  

                                       (5.13) 

and in terms of velocity fluctuations as: 

𝑢′ = 𝑢𝑡𝑟𝑢𝑒
′ +

𝛿𝛥𝑥

𝛥𝑡
⋅

𝑠

𝑀
 

                                       (5.14) 

The equation (5.14) can also be written in terms of the total fluctuating error 

in physical units (𝛿𝛥𝑋 =
𝛿𝛥𝑥

𝛥𝑡
⋅

𝑠

𝑀
) as: 

𝑢′ = 𝑢𝑡𝑟𝑢𝑒
′ + 𝛿𝛥𝑋  

                                              (5.15) 

where, 𝛿𝛥𝑋 is the measured displacement in physical units (e.g. m or cm). 

The measured variance of the velocity, or Reynolds stress, is then given by: 

𝑅𝑢𝑢 = 𝑅𝑢𝑢,𝑡𝑟𝑢𝑒 +
𝜎𝛿,𝛥𝑋

2

𝛥𝑡2
+

2 𝑐𝑜𝑣( 𝑢′𝑡𝑟𝑢𝑒 , 𝛿𝛥𝑋)

𝛥𝑡
 

                                  (5.16) 

where, 𝑅𝑢𝑢 (or σu2) and 𝑅𝑢𝑢,𝑡𝑟𝑢𝑒 (or σu,true2) are the measured and “true” 

Reynolds stresses, respectively. 

The relative importance of the different terms in the right-hand-side of 

equation (5.16) is evaluated by means of Monte Carlo simulations. Two flow 

cases are considered, namely:  

(i) mean velocity of 10 m/s (same as the free stream velocity) 

and low flow fluctuations with turbulence intensity of 4%;  

(ii) mean velocity of 2.5 m/s and high flow fluctuations with 

turbulence intensity of 31%. 
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The two flow cases are representative of measurements in a potential-like 

flow region and turbulent region, respectively. The turbulence intensity is 

calculated as the ratio of RMS velocity fluctuations to the free stream 

velocity. The maximum absolute values of the peak-locking bias error and 

the measurement random error are 0.25 pixel and 0.05 pixel, respectively 

and are kept the same for the two cases for ease of comparison. It is to be 

noted that the peak-locking bias error is modelled as a sinusoidal function of 

the sub-pixel displacement following Cholemari (2007). Also, the camera 

pixel size (s) of 20 µm and magnification factor (M) of 0.4 are considered 

while generating the synthetic data for Δt’s = 10, 11, …, 30 μs; those values 

are representative of a typical high-speed PIV experiment conducted with 

CMOS camera sensors. The measured Reynolds stresses for these Δt’s along 

with the true Reynolds stress, error variance over Δt2 and the covariance 

(between the velocity fluctuations and fluctuating error) over Δt are plotted 

in figures 5.2(a) and (b) for the above mentioned synthetic data examples. 

    

                     (a)                                                                                     (b) 

Figure 5.2. Measured Reynolds stresses, true Reynolds stress (𝑅𝑢𝑢,𝑡𝑟𝑢𝑒), error 

variance term (𝜎𝛿,𝛥𝑋
2 𝛥𝑡2⁄ ) and covariance term [2 𝑐𝑜𝑣( 𝑢′𝑡𝑟𝑢𝑒 , 𝛿𝛥𝑋) 𝛥𝑡⁄ ], as 

mentioned in the equation (5.16) for the synthetic data- (a) in case (i) of potential 

flow region and (b) case (ii) of turbulent region 
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When the flow fluctuations are low compared to the peak-locking bias error, 

as in the case (i) of potential flow, the effect of peak-locking errors is visible 

in terms of the non-linear (sine-like function) variation in the measured 

Reynolds stress with respect to Δt or the sub-pixel displacement. This is due 

to the variation in the variance of total fluctuating error (𝜎𝛿,𝛥𝑋
2 ) and the 

covariance of the true flow fluctuations and fluctuating errors in the 

measurements [𝑐𝑜𝑣( 𝑢′𝑡𝑟𝑢𝑒 , 𝛿𝛥𝑋)] with different Δt’s. It is to be noted that the 

covariance can be positive or negative based on the amount of flow 

fluctuations and the magnitude of peak-locking errors which in turn 

depends on the measured sub-pixel displacement at a particular Δt 

acquisition. In particular, when the average fractional displacement is close 

to zero, as it occurs for Δt’s = 10, 11, 14, 15 and 16 μs, positive flow 

fluctuations will yield negative peak-locking errors (and vice-versa), thus 

resulting in negative values of the covariance terms at those Δt acquisitions 

[figure 5.2(a)]. Instead, when the average fractional displacement is close to 

0.5 pixels, positive (respectively negative) flow fluctuations will yield 

positive (negative) peak locking errors, thus resulting in positive values of 

the covariance terms [see for instance the results for Δt’s = 12 and 13 μs in 

figure 5.2(a)]. It is to be noted that this behavior of the covariance 

[𝑐𝑜𝑣( 𝑢′𝑡𝑟𝑢𝑒 , 𝛿𝛥𝑋)] with respect to Δt in the case (i) of potential flow is due to 

the flow fluctuations being smaller than the magnitudes of peak-locking 

errors. When the flow fluctuations are higher than the magnitudes of peak-

locking errors, the behavior of covariance is not trivial as can be seen in the 

case (ii) of turbulent region in figure 5.2(b). However, the covariance terms 

in the case (ii) also depend on the flow fluctuations, amount of peak locking 

and the measured sub-pixel displacements as in the case (i). Therefore, 

similar overall trends can be seen for the measured Reynolds stresses, error 

variances (𝜎𝛿,𝛥𝑋
2 ) and covariances [𝑐𝑜𝑣( 𝑢′𝑡𝑟𝑢𝑒 , 𝛿𝛥𝑋)] in both the synthetic 

data cases of potential flow region and turbulent region in figures 5.2(a) and 

(b), respectively. However, the non-linear variation with respect to Δt is 

smother in the case (ii) compared to that in the case (i). It is due to the flow 

fluctuations being higher than the magnitude of peak-locking error in this 

case. Thus, in presence of peak locking, the Reynolds stresses may be 

overestimated or underestimated depending on the inherent flow 
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fluctuations and the magnitude of peak-locking errors. In absence of peak 

locking, the Reynolds stresses are usually overestimated due to the random 

errors in the measurement as illustrated by Wilson and Smith (2013a) and 

also demonstrated by Scharnowski et al. (2019a) who estimated the 

turbulence levels of the flow facility using a multi-Δt approach. 

It is clear from equation (5.16) that the Reynolds stresses measured at a 

particular spatial location are different when the PIV measurements are 

carried out with different inter-frame time separations (Δt’s). Moreover, the 

error variance (𝜎𝛿,𝛥𝑋
2 ) and the covariance [𝑐𝑜𝑣( 𝑢′𝑡𝑟𝑢𝑒 , 𝛿𝛥𝑋)] are functions of 

Δt and in turn functions of sub-pixel displacement 𝛥𝑥𝑠𝑢𝑏. Following 

Cholemari (2007), the fluctuating bias error due to peak locking is modelled 

as a sinusoidal function of measured sub-pixel displacement: 

𝛿𝛥𝑋,𝑖 = [휀𝛥𝑥,𝑖 + 𝑏𝛥𝑥,𝑖
′ ]

𝑠

𝑀
= [휀𝛥𝑥,𝑖 + 𝐴 𝑠𝑖𝑛(2𝜋𝛥𝑥𝑠𝑢𝑏,𝑖)]

𝑠

𝑀
 

         (5.17) 

where, i represents the instantaneous measured values and A is a constant. 

Assuming that 휀𝛥𝑥,𝑖 and 𝑏𝛥𝑥,𝑖
′  are uncorrelated, the variance of the total errors 

in the displacement measurement at each Δt acquisition is then given by: 

𝜎𝛿,𝛥𝑋
2 = (

𝑠

𝑀
)

2

𝑣𝑎𝑟(휀𝛥𝑥,𝑖) + (
𝐴 ⋅ 𝑠

𝑀
)

2

𝑣𝑎𝑟[𝑠𝑖𝑛(2𝜋𝛥𝑥𝑠𝑢𝑏,𝑖)] 

         (5.18) 

Moreover, the synthetic data analysis shows that the covariance between the 

true velocity fluctuations and the fluctuating error varies non-linearly with 

Δt or the sub-pixel displacement. Therefore, the covariance at each Δt can be 

approximated as a cosine function of the mean measured sub-pixel 

displacement 𝛥𝑥𝑠𝑢𝑏  at that Δt acquisition (figure 5.2): 

𝑐𝑜𝑣( 𝑢′𝑡𝑟𝑢𝑒 , 𝛿𝛥𝑋) = −𝐵 𝑐𝑜𝑠(2𝜋𝛥𝑥𝑠𝑢𝑏) 

                           (5.19) 

Substituting the equations (5.18) and (5.19) in the equation (5.16), the 

Reynolds stress is expressed as: 
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𝑅𝑢𝑢 = 𝑅𝑢𝑢,𝑡𝑟𝑢𝑒 +
(

𝑠
𝑀

)
2

𝑣𝑎𝑟(휀𝛥𝑥,𝑖) + (
𝐴 ⋅ 𝑠

𝑀
)

2

𝑣𝑎𝑟[𝑠𝑖𝑛(2𝜋𝛥𝑥𝑠𝑢𝑏,𝑖)]

𝛥𝑡2

+
−2𝐵 𝑐𝑜𝑠(2𝜋𝛥𝑥𝑠𝑢𝑏)

𝛥𝑡
 

(5.20) 

It is to be noted that the variance of the random errors 𝑣𝑎𝑟(휀𝛥𝑥,𝑖) in the 

equation (5.20) is constant for different Δt acquisitions. Moreover, s, M, A 

and B are constants. Therefore, the equation (5.20) can also be written as: 

𝑅𝑢𝑢 = 𝑅𝑢𝑢,𝑡𝑟𝑢𝑒 +
𝛽1 + 𝛽2 𝑣𝑎𝑟[𝑠𝑖𝑛(2𝜋𝛥𝑥𝑠𝑢𝑏,𝑖)]

𝛥𝑡2
+

𝛽3 𝑐𝑜𝑠(2𝜋𝛥𝑥𝑠𝑢𝑏)

𝛥𝑡
 

     (5.21) 

Thus, it is proposed to perform a least-squares non-linear regression of the 

form of equation (5.21) to estimate the “true” Reynolds stress from the 

measured Reynolds stresses at different Δt’s. The coefficients β1 and β2 are 

positive as they represent the variance and square of a constant, 

respectively. For the ease of processing, the non-linear regression model in 

the equation (5.21) can be transformed to a linear regression model 

(Montgomery et al. 2011) as: 

𝑅𝑢𝑢 = 𝑅𝑢𝑢,𝑡𝑟𝑢𝑒 + 𝛽1𝑝1 + 𝛽2𝑝2 + 𝛽3𝑝3 

                             (5.22) 

where, 

𝑝1 =
1

𝛥𝑡2
 

                                                   (5.23) 

𝑝2 =
𝑣𝑎𝑟[𝑠𝑖𝑛(2𝜋𝛥𝑥𝑠𝑢𝑏,𝑖)]

𝛥𝑡2
 

                                    (5.24) 

𝑝3 =
𝑐𝑜𝑠(2𝜋𝛥𝑥𝑠𝑢𝑏)

𝛥𝑡
 

                                          (5.25) 
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In principle, the accuracy of the measured Reynolds stresses is the maximum 

when a large Δt is selected (Δt → ∞). However, this condition cannot be met 

in practice due to limitations caused by the out-of-plane particle motion and 

by the increasing truncation errors (Raffel et al. 2018). Hence, the “true” 

Reynolds stress is estimated by conducting measurements with different 

Δt’s, and then fitting a curve of the type mentioned in equation (5.22) by 

least-squares regression, where 𝑅𝑢𝑢,𝑡𝑟𝑢𝑒 represents the best estimate of the 

“true” Reynolds stress.  

The results of regression for the synthetic data can be seen in figures 5.3(a) 

and (b) for the potential flow region and turbulent region, respectively. 

 

                   (a)                                                                                   (b) 

Figure 5.3. Measured Reynolds stresses, true Reynolds stress, estimates of “true” 

Reynolds stress and the total Reynolds stress from the regression for the synthetic 

data- (a) in case (i) of potential flow region and (b) in case (ii) of turbulent region 

It is clear that the total Reynolds stress from regression is comparable to the 

measured Reynolds stress at each Δt in both the cases. Also, depending on 

the ∆t, the measured Reynolds stress can differ significantly from the true 

Reynolds stress, as much as by 0.5 m2/s2 in the potential flow region and by 

1 m2/s2 in the turbulent region. When the true Reynolds stress is estimated 

from the regression analysis, this difference is reduced to 0.07 m2/s2 and 
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0.05 m2/s2, respectively. The quantification of the uncertainty of the 

estimated “true” Reynolds stress is discussed in the following section 5.2.2.1.  

5.2.2.1. Quantification of peak-locking uncertainty 

The estimate of the “true” Reynolds stress obtained from regression �̂�𝑢𝑢,𝑡𝑟𝑢𝑒 

represents a correction to the measured Reynolds stress, where the 

systematic error due to peak locking is removed, and can be used to quantify 

the systematic uncertainty in the measured Reynolds stress 𝑅𝑢𝑢 at a given 

Δt: 

𝑈𝑏,𝑅𝑢𝑢
= 𝑡𝐶.𝐼.,𝜈√

1

𝑛 − 4
∑[𝑅𝑢𝑢(𝛥𝑡𝑖) − �̂�𝑢𝑢,𝑡𝑟𝑢𝑒]

2
𝑛

𝑖=1

 

                  (5.26) 

where, 𝑡𝐶.𝐼.,𝜈 is the t-statistic describing the desired confidence interval and 

n is the number of Δt acquisitions. 

Moreover, the random uncertainty in the measured Reynolds stress (𝑅𝑢𝑢) is 

given by (Sciacchitano and Wieneke 2016): 

𝑈𝑟,𝑅𝑢𝑢
(𝛥𝑡) = 𝑡𝐶.𝐼.,𝜈√

2

𝑁 − 1
𝑅𝑢𝑢(𝛥𝑡) 

                       (5.27) 

where, N is the number of samples acquired at that Δt.  

The random errors of the measured instantaneous velocity vectors are 

known to yield overestimated Reynolds stress values (Wilson and Smith, 

2013b), consistently with the second term of the right-hand-side of equation 

(5.16). However, in presence of peak locking, the Reynolds stresses may be 

overestimated or underestimated depending on the covariance between the 

actual velocity fluctuations and the measurement error fluctuations. As a 

consequence, the uncertainty distribution of the Reynolds stresses is 

asymmetric: 
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𝑈𝑅𝑢𝑢,1(𝛥𝑡) = √𝑈𝑏,𝑅𝑢𝑢

2 + 𝑈𝑟,𝑅𝑢𝑢

2 (𝛥𝑡) 

                           (5.28) 

𝑈𝑅𝑢𝑢,2(𝛥𝑡) = √𝑈𝑟,𝑅𝑢𝑢

2 (𝛥𝑡) = 𝑈𝑟,𝑅𝑢𝑢
(𝛥𝑡) 

                     (5.29) 

where, 𝑈𝑅𝑢𝑢,1 and 𝑈𝑅𝑢𝑢,2 are the total uncertainties in the measured 

Reynolds stresses, either of them representing the upper or lower 

uncertainty bounds depending on the shape of error distribution (Wilson 

and Smith 2013a). Moreover, the shape of error distribution is influenced by 

the flow fluctuations, affected by the peak-locking errors, and it is different 

in the flow regions with low fluctuations than those with high fluctuations 

compared to the magnitude of the peak-locking errors. Therefore, in the case 

of overestimated Reynolds stresses 𝑈𝑅𝑢𝑢,1  and 𝑈𝑅𝑢𝑢,2 represent the lower 

and upper uncertainty bounds on the Reynolds stresses, respectively. 

Whereas, in the case of underestimated Reynolds stresses the lower and 

upper uncertainty bounds are given by 𝑈𝑅𝑢𝑢,2 and 𝑈𝑅𝑢𝑢,1, respectively. 

The uncertainty of the estimated “true” Reynolds stress from regression 

�̂�𝑢𝑢,𝑡𝑟𝑢𝑒 can be expressed in terms of the uncertainty of the total Reynolds 

stress from regression 𝑅𝑢𝑢,𝑟𝑒𝑔𝑟  (Montgomery et al. 2011): 

𝑈�̂�𝑢𝑢,𝑡𝑟𝑢𝑒

2 = 𝑈𝑅𝑢𝑢,𝑟𝑒𝑔𝑟

2 (𝑃′𝑃)−1 

                                  (5.30) 

where, 𝑈𝑅𝑢𝑢,𝑟𝑒𝑔𝑟
 is the uncertainty of the regression model and is calculated 

as: 

𝑈𝑅𝑢𝑢,𝑟𝑒𝑔𝑟
= 𝑡𝐶.𝐼.,𝜈√

1

𝑛 − 4
∑[𝑅𝑢𝑢(𝛥𝑡𝑖) − 𝑅𝑢𝑢,𝑟𝑒𝑔𝑟(𝛥𝑡𝑖)]

2
𝑛

𝑖=1

 

            (5.31) 

and P is a n × 4 matrix of regression variables p1, p2, p3 (Montgomery et al. 

2011): 
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𝑃 = [

1 𝑝11 𝑝21 𝑝31

1 𝑝12 𝑝22 𝑝32

⋮ ⋮ ⋮ ⋮
1 𝑝1𝑛 𝑝2𝑛 𝑝3𝑛

] 

                                     (5.32) 

where, n is the number of Δt acquisitions. 

5.3. Validation of proposed methodology 

It can be observed that the uncertainties in the measured mean velocity and 

Reynolds stress decrease with the increasing Δt (or Δx) as the relative peak-

locking errors for larger displacements (at larger Δt’s) are less than those 

for the smaller displacements (at smaller Δt’s), as also reported by Wilson 

and Smith (2013b). It is to be noted that the considered range of Δt’s should 

be sufficiently small such that the effect of other error sources such as 

velocity gradients and out-of-plane particle motion can be considered 

negligible. This fact is used for validation of the proposed uncertainty 

quantification approach where reference measurements are carried out 

with a much larger Δt than the actual measurement Δt’s. The errors in the 

measured quantities can then be calculated with respect to the reference 

quantities. Comparing the errors with the uncertainties estimated using the 

proposed methodology (explained in Sections 5.2.1.1 and 5.2.2.1), it is 

possible to evaluate the effectiveness of the uncertainty quantification 

approach. Following Kislaya and Sciacchitano (2018), the reference 

measurements can be conducted with a time separation Δtaux which is much 

larger than the Δt’s used in the actual measurements. Due to the large 

displacement 𝛥𝑥𝑎𝑢𝑥 in the reference measurements, the relative peak-

locking error in 𝛥𝑥𝑎𝑢𝑥 is negligible with respect to that in the measured 

displacements at Δt’s. The reference displacement 𝛥𝑥𝑟𝑒𝑓 at each Δt is thus 

calculated from the auxiliary displacement 𝛥𝑥𝑎𝑢𝑥 measured at Δtaux: 

𝛥𝑥𝑟𝑒𝑓 = 𝛥𝑥𝑎𝑢𝑥

𝛥𝑡

𝛥𝑡𝑎𝑢𝑥
 

                                        (5.33) 
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The reference velocity 𝑢𝑟𝑒𝑓 and Reynolds normal stress 𝑅𝑢𝑢,𝑟𝑒𝑓 are equal to 

the auxiliary velocity 𝑢𝑎𝑢𝑥 and Reynolds normal stress 𝑅𝑢𝑢,𝑎𝑢𝑥 respectively, 

from the auxiliary measurements: 

𝑢𝑟𝑒𝑓 = 𝑢𝑎𝑢𝑥 

                                                  (5.34) 

𝑅𝑢𝑢,𝑟𝑒𝑓 = 𝑅𝑢𝑢,𝑎𝑢𝑥 =
1

𝑁 − 1
∑(𝑢𝑎𝑢𝑥,𝑖 − 𝑢𝑎𝑢𝑥)

2
𝑁

𝑖=1

 

                      (5.35) 

where, N is the number of instantaneous measured displacements (or 

velocities) in the reference measurements. 

The errors in the measured quantities at each Δt can then be calculated with 

respect to the reference quantities: 

휀𝛥𝑥(𝛥𝑡) = 𝛥𝑥(𝛥𝑡) − 𝛥𝑥𝑟𝑒𝑓(𝛥𝑡) 

                                 (5.36) 

휀𝑢(𝛥𝑡) = 𝑢(𝛥𝑡) − 𝑢𝑟𝑒𝑓 

                                       (5.37) 

휀𝑅𝑢𝑢
(𝛥𝑡) = 𝑅𝑢𝑢(𝛥𝑡) − 𝑅𝑢𝑢,𝑟𝑒𝑓 

                                     (5.38) 

These errors in the measured displacements, velocities and Reynolds 

stresses are used to estimate the reliability of the uncertainty quantification 

approach by means of uncertainty coverages. An uncertainty coverage is the 

percentage of measurements for which the error magnitudes are contained 

within the uncertainty limits (Timmins et al. 2012): 

|휀| ≤ 𝑈 

                                                     (5.39) 

When U represents the standard uncertainty, the uncertainty coverage (CU) 

should be equal to the error standard deviation coverage (CSD); the latter is 

calculated as the percentage of measurements for which the errors are 

within the standard deviation of the errors distributions: 
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|휀| ≤ 𝑆𝐷  

                                                  (5.40) 

In case of Gaussian error distribution, the above is analogous to comparing 

the one-sigma uncertainty coverage to 68%, as done in Sciacchitano et al. 

(2015), among others. However, in the case of non-normal error 

distributions, it is necessary to first calculate the standard deviation of the 

errors and the corresponding standard deviation coverage to compare it 

with the uncertainty coverage. To assess the effectiveness of the uncertainty 

quantification approach, a term called relative coverage index (RCI) is 

proposed and is defined as the ratio between uncertainty coverage (CU) and 

error standard deviation coverage (CSD): 

𝑅𝐶𝐼 =
𝐶𝑈

𝐶𝑆𝐷
 

                                                 (5.41) 

Values of RCI close to one indicate accurate uncertainty estimations. Values 

of RCI less than one indicate that the uncertainty is underestimated, whereas 

values greater than one show that it is overestimated. Note that this 

parameter is applicable to any error distribution after estimation of the 

errors standard deviation. 

5.4. Experimental setup 

Planar PIV measurements of the flow over a NACA0012 airfoil at 10 degrees 

angle of attack were performed. Figure 5.4 illustrates a schematic of the 

experimental setup. The experiment was conducted in the W-tunnel of Delft 

University of Technology, which is an open-jet open-return wind tunnel with 

an exit cross section of 0.4 × 0.4 m2 and an area contraction ratio of 9. The 

maximum achievable free-stream velocity is 30 m/s with 0.3% turbulence 

intensity (Tummers 1999). In this experiment, the free stream velocity was 

set to 10 m/s. The flow was seeded by a SAFEX seeding generator, which 

produces water-glycol droplets of 1 μm mean diameter. The particles were 

illuminated by a Quantronix Darwin-Duo laser (Nd:YLF, pulse energy of 

25mJ at 1 kHz, wavelength of 527 nm) and images were recorded with a 
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LaVision High Speed Star 6 CMOS camera (12 bits, 20 μm pixel size, 1024 × 

1024 pixels maximum resolution). The camera was equipped with a Nikon 

objective of 105 mm focal length and the optical aperture was set to f# = 5.6. 

A field of view (FOV) of 45 mm × 45 mm was imaged with optical 

magnification of 0.46, which resulted in a theoretical particle image 

diameter of 0.5 pixel, following Raffel et al. (2018). The small size of the 

particle image diameter caused peak locking in the measured displacements, 

influencing the estimation of mean velocity and Reynolds stresses. 

 

Figure 5.4. Schematic experimental setup of the planar PIV measurements of the 

flow over a NACA0012 airfoil at 10 degrees angle of attack  

The image acquisition was conducted at a frequency of 200 Hz 

independently for multiple Δt’s from 10 μs to 24 μs in steps of 2 μs. The data 

sets at each Δt consisted of 500 double-frame images. To validate the 

proposed multi-Δt approach, reference measurements were conducted with 

optical aperture f# = 11 and the time separation Δt of 50 μs, which is larger 

than the Δt’s used in the actual measurements, following Kislaya and 

Sciacchitano (2018). It is to be noted that the effect of out-of-plane motions 

and gradient bias errors is negligible in the measurements with Δt of 50 μs, 

as the free-stream particle image displacement is equal to 11.5 pixels. The 
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processing was done via the LaVision DaVis 10 software, using Gaussian 

interrogation windows of 64 × 64 pixels with 75% overlap for the initial 

passes and 16 × 16 pixels with 75% overlap for the final passes. 

    
     (a)                                                                         (b)          

Figure 5.5. (a) Time-averaged velocities and (b) RMS of velocity fluctuations in the 

reference measurements, normalized with respect to the free stream velocity 

(Regions I and II are the areas where the proposed approach is applied and 

demonstrated in section 5.5) 

The estimated time-averaged velocities ( u ) and RMS of the velocity 

fluctuations (u’rms) in the reference measurements, normalized with respect 

to the free stream velocity (u∞), are shown in figures 5.5(a) and (b), 

respectively. It is clear that the flow has varying degrees of fluctuations, e.g. 

low fluctuations in the potential flow region (0 < u’rms/u∞ < 0.05) and 

relatively high fluctuations in the turbulent region (0.2 < u’rms/u∞ < 0.6). As 

a consequence, the measured flow field is considered suitable to assess the 

effectiveness and limitations of the proposed approach in a range of flow 

conditions encountered in typical PIV measurements. A detailed analysis of 

the peak-locking errors correction and uncertainty quantification is 

conducted in regions I and II of figure 5.5(b), corresponding to the potential 

flow region and a turbulent region, respectively. 

 

I 

II 
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5.5. Results 

The approach proposed in section 5.2.1 is applied to correct the peak-locking 

errors in the measured mean displacements and velocities, where the 

uncertainties in the corrected displacements and velocity obtained from 

regression are also provided. The analogous approach discussed in section 

5.2.2 is then applied to correct the measured Reynolds stresses and quantify 

the uncertainty. The results are shown for the two selected regions in the 

flow as marked in figure 5.5(b).  

5.5.1. Mean displacement and velocity 

From the displacement plots of figure 5.6, it is evident that, while the 

reference displacement increases linearly with Δt, the measured mean 

displacement does not, consistently with the discussion of section 5.2.1. It is 

clear from figures 5.6(a) and (b) that the regression displacement is much 

closer to the reference displacement, indicating a significant reduction in the 

peak-locking errors.  

  

           (a)              (b) 

Figure 5.6. Reference displacements, measured displacements and regression 

displacements with one standard deviation uncertainty bounds at (a) a point [(x/c, 

y/c) = (0.23, 0.17)] in the potential flow region I and (b) a point [(x/c, y/c) = (0.23, 

0.07)] in the turbulent region II, the two regions being marked by rectangles in 

figure 5.5(b) 
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The reduction in the peak-locking errors can further be seen in figures 5.7(a) 

and (b), where the errors in the measured mean displacement and the 

regression displacements at each Δt, calculated with respect to the 

corresponding reference displacements, are shown. The maximum errors in 

the measured displacements are observed to be around ±0.15 pixels in both 

the regions I of potential flow [figure 5.7(a)] and II of high turbulence [figure 

5.7(b)]. Whereas, the errors in the regression displacements are very close 

to zero in both the regions, being below 0.05 pixels. The peak-locking errors 

in the measured displacements are reduced up to 86% in the potential flow 

region I and up to 73% in the turbulent region II, when correcting the 

measured displacements by linear regression.  

   

            (a)                (b) 

Figure 5.7. Errors in measured displacements and regression displacements with 

respect to the reference displacements at (a) a point [(x/c, y/c) = (0.23, 0.17)] in 

the potential flow region I and (b) a point [(x/c, y/c) = (0.23, 0.07)] in the turbulent 

region II, the two regions being marked by rectangles in figure 5.5(b) 

The uncertainty bounds are also shown for both the uncorrected 

(measured) and corrected displacements (from regression) in figure 5.6. In 

the potential flow region, as shown in figure 5.6(a), the uncertainties in the 

measured displacements are around 0.07 pixels at different Δt’s, whereas 

those on the regression displacements are around 0.03 to 0.05 pixels. 



5. Multi-∆t Approach for Peak-locking Uncertainty Quantification 

83 

Similarly, in the turbulent region, shown in figure 5.6(b), the uncertainties 

in the measured displacements are around 0.09 pixels at different Δt’s, and 

those on the regression displacements are around 0.03 to 0.05 pixels.  

Figures 5.8(a) and (b) show the distributions of the errors in the measured 

displacements and the regression displacements with respect to the 

reference displacements in the regions I and II, respectively. In the potential 

flow region [figure 5.8(a)], the pdfs of error distributions for different Δt 

acquisitions are narrow and separated from each other and from the pdf of 

regression error distribution. Whereas, in the turbulent region [figure 

5.8(b)], they are wide and close to each other and close to the regression 

one. The reason behind the pdfs being narrow in the potential flow region 

and wide in the turbulent region is the inherent fluctuations in the flow 

which are low in the potential flow region I and relatively high in the 

turbulent region II. Moreover, in the potential flow region, where the 

fluctuations are low, the peak-locking errors are significant and vary 

drastically (largely overestimated or underestimated) with varying Δt. As a 

consequence, the error pdfs exhibit different mean values, from -0.13 pixels 

at Δt = 12 µs to +0.16 pixels at Δt = 10 µs. Although the errors at most Δt’s 

exhibit an approximately normal distribution, at some Δt’s the distribution 

is skewed positively (e.g. Δt = 12 µs) or negatively (e.g. Δt = 20 µs). 

Conversely, the error distribution stemming from the linear regression has 

a Gaussian shape, with 0.02 pixels mean and 0.001 pixels standard deviation. 

In contrast, in the turbulent region, the large velocity fluctuations induce 

particle image displacement variations larger than the peak-locking errors; 

as a consequence, the errors pdfs exhibit lower variations with varying Δt. 

Nevertheless, the mean errors vary between -0.11 pixels and +0.08 pixels 

depending on the selected Δt. The application of the linear regression 

reduces the mean bias error to -0.04 pixels. It should be remarked that, as it 

is clear from figures 5.8(a) and (b), the pdfs of displacement error 

distribution in different Δt acquisitions lie on either side of the pdf of 

regression displacement error distribution. This is due to the fact that the 

measured mean displacements are overestimated or underestimated 

depending on the sub-pixel displacement which in turn depends on Δt. 
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Analogous results in terms of time-averaged velocity are illustrated in figure 

5.9. The errors in the measured velocities calculated with respect to the 

reference velocity are reduced up to 86% in the potential flow region I and 

up to 73% in the turbulent region II, after correcting the measured velocities 

by the regression analysis. In the potential flow region [figure 5.9(a)], the 

uncertainty in the corrected velocity estimated from the regression analysis 

is 0.07 m/s, which is much smaller than the uncertainties in the measured 

mean velocities (0.13 to 0.31 m/s) at different Δt’s. Similarly, in the 

turbulent region [figure 5.9(b)], the uncertainties of 0.17 to 0.36 m/s in the 

measured mean velocities are reduced to the uncertainty of 0.07 m/s in the 

corrected velocity obtained from regression. Thus, the overall reductions of 

the velocity uncertainties between 50% and 80% are achieved in both 

regions I and II. 

 

             (a)               (b) 

Figure 5.8. Error distributions for the measured displacements and regression 

displacements from multiple Δt acquisitions in (a) the potential flow region I and 

(b) the turbulent region II, the two regions being marked by rectangles in figure 

5.5(b) 

A visual comparison of the reference, measured and regression velocities is 

conducted in figure 5.10. A particular zoomed area in the flow field is 

selected to make the comparison vivid. It is clear that, the mean measured 

velocities at different Δt acquisitions are either overestimated or 
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underestimated with respect to the velocities in the reference measurement 

depending on the sub-pixel displacement. For example, in the top region of 

the selected area, the measured velocities are overestimated at Δt = 10 µs 

and 24 µs, whereas, they are underestimated at Δt = 12 µs, consistent with 

figure 5.9(a) for the potential flow region. These measured velocities at 

different Δt acquisitions are thus corrected by the regression analysis as can 

be seen in the third row of figure 5.10. It is clear that the corrected mean 

velocities from the regression are comparable to the corresponding mean 

velocities from the reference measurement. 

 

             (a)                (b) 

Figure 5.9. Reference velocity, measured velocities and regression velocity with one 

standard deviation uncertainty bounds at (a) a point [(x/c, y/c) = (0.23, 0.17)] in 

the potential flow region I and (b) a point [(x/c, y/c) = (0.23, 0.07)] in the turbulent 

region II, the two regions being marked by rectangles in figure 5.5(b) 

The uncertainty coverages (CU) for the uncertainties in the measured 

displacements and velocities are calculated following equation (5.39). The 

uncertainties exhibit a coverage of 52% and 62% considering the 

measurements at different Δt acquisitions in the potential flow region I and 

turbulent region II, respectively. Whereas, the standard deviation coverages 

(CSD), calculated by the equation (5.40) are 61% and 70% in the regions I 

and II, respectively. Thus, the relative coverage indices (RCI) for the 
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uncertainty quantification in the measured displacements and velocities are 

0.85 and 0.89 in the potential flow region I and turbulent region II, 

respectively. This analysis proves the validity of the proposed approach for 

uncertainty quantification as the RCI’s are close to one and the uncertainties 

are slightly underestimated in both the regions. 
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Figure 5.10. Measured time-averaged velocities in the reference measurement, in 

multiple Δt acquisitions and after correcting by the regression analysis  

5.5.2. Reynolds stress 

The results of the proposed methodology for correcting the Reynolds 

stresses are summarized in figures 5.11(a) and (b) in the potential flow 
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region and turbulent region, respectively. It is clear from figure 5.11(a) that 

the effect of peak-locking errors is significant and can be seen by non-linear 

variation of the measured Reynolds stresses with respect to Δt. Such result 

is associated with the magnitude of flow fluctuations being lower than the 

magnitude of peak-locking errors in this region I of potential flow, consistent 

with the results of the Monte Carlo simulations described in section 5.2.2. 

Conversely, in the turbulent region II, the measured Reynolds stresses show 

smoother variation with respect to the changing Δt. In this region, the effect 

of the peak-locking errors is hidden due to the inherent flow fluctuations 

being higher.  

   

            (a)                (b) 

Figure 5.11. Reference, measured and regression Reynolds stresses with the 

estimates of “true” Reynolds stress (�̂�𝑢𝑢,𝑡𝑟𝑢𝑒) at (a) a point [(x/c, y/c) = (0.23, 0.17)] 

in the potential flow region I and (b) a point [(x/c, y/c) = (0.23, 0.07)] in the 

turbulent region II, the two regions being marked by rectangles in figure 5.5(b). Red 

error bars and green shaded regions represent one standard deviation uncertainty 

in the measured and estimated “true” Reynolds stress, respectively 

The reference Reynolds stress in the potential flow region is 0.08 m2/s2 

which is comparatively low due to the low flow fluctuations in this region. 

However, the measured Reynolds stresses overestimate the reference value 

by up to 700%. The regression approach provides an estimate of the 
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Reynolds stress that agrees within 50% with the true value. Conversely, in 

the turbulent region, higher flow fluctuations are encountered and the 

reference Reynolds stress is 2.0 m2/s2. The measured Reynolds stresses in 

this region are overestimated by 4% to 95%. When the regression approach 

is employed, the estimated Reynolds stress is slightly overestimated by 19% 

with respect to the reference value. 

The errors in the measured Reynolds stresses are calculated with respect to 

the reference one using the equation (5.38) and the pdfs of the error 

distributions are shown in figures 5.12(a) and (b) for the potential flow 

region I and the turbulent region II, respectively. It is clear that the pdfs are 

narrow in the region I and wider in the region II due to the inherent low flow 

fluctuations in the region I and high flow fluctuations in the region II, as also 

observed for the displacement error distributions. The errors in the 

regression Reynolds stress are comparatively lower than that in the 

measured Reynolds stresses at different Δt’s. Most of the errors in the 

potential flow region are positive, whereas those in the turbulent region are 

either positive or negative. Moreover, most of the pdfs for the measured 

Reynolds stresses lie on the positive side of the regression pdf in region I; in 

region II, instead, the pdfs of the measured Reynolds stresses lie on both 

positive and negative sides of the regression pdf. This fact is accounted for 

in the calculation of the total uncertainty in the Reynolds stresses at each Δt 

using equations (5.28) and (5.29). For the Reynolds stresses overestimated 

with respect to the regression estimate, URuu,1  represents the lower 

uncertainty bound and URuu,2  is the upper uncertainty bound. Whereas, in 

case of the underestimated Reynolds stresses, URuu,1 and URuu,2  are the upper 

and lower uncertainty bounds, respectively, as can be seen in figures 5.11(a) 

and (b). In the potential flow region I, the largest uncertainty bound in the 

measured Reynolds stresses is 0.35 m2/s2, whereas the uncertainty in the 

corrected Reynolds stress (i.e. the estimate of the “true” Reynolds stress 

from regression) is 0.09 m2/s2. At the point in the turbulent region II, the 

bigger uncertainty bound in the measured Reynolds stresses is around 0.95 

m2/s2, whereas the uncertainty in the corrected Reynolds stress is 0.61 

m2/s2. The uncertainties in the measured Reynolds stresses are reduced by 

around 75% in the potential flow region, and by around 35% in the turbulent 
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region, after correction with the estimates of the “true” Reynolds stresses 

from regression.    

   

           (a)               (b) 

Figure 5.12. Error distributions for the measured Reynolds stresses and the 

regression estimate of “true” Reynolds stress from multiple Δt acquisitions in (a) the 

potential flow region I and (b) the turbulent region II, the two regions being marked 

by rectangles in figure 5.5(b) 

The uncertainty coverages (CU) are determined by comparing the calculated 

uncertainties with the errors (computed with respect to the reference 

measurements) in the measured Reynolds stresses as per the equation 

(5.39). The coverages for the errors standard deviation are also calculated 

using the equation (5.40). In the potential flow region I, the uncertainties 

exhibit a coverage (CU) of 73% and the corresponding error standard 

deviation coverage (CSD) is 61%. These values lead to the relative coverage 

index (RCI) of 1.2 indicating that the uncertainties in the measured Reynolds 

stresses are slightly overestimated in the potential flow region. In the 

turbulent region II, the uncertainty coverage is 64% and the error standard 

deviation coverage is 72%, resulting in RCI = 0.89. Thus the Reynolds stress 

uncertainties are slightly underestimated in the turbulent region. 

The results of the regression analysis are also summarized in figure 5.13, 

where the reference Reynolds stresses and the corrected Reynolds stresses 
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are shown along with the measured Reynolds stresses at different Δt 

acquisitions. It is to be noted that the measured values only at three Δt’s are 

plotted for sake of conciseness.  
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Figure 5.13. Measured Reynolds stresses in the reference measurement, in multiple 

Δt acquisitions and after correcting by the regression analysis 

Consistent with the findings of figure 5.11(b), the measured Reynolds 

stresses in the bottom region of the selected area are overestimated at Δt’s 

= 12 and 24 µs. The corrected Reynolds stresses by the regression analysis 

in this bottom region are slightly underestimated with respect to the 

reference values and are found to be comparable to the measured Reynolds 
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stresses at Δt = 10 µs acquisition. Similarly, in the potential flow region of 

this selected area in figure 5.13, the corrected Reynolds stresses are 

comparable to the reference ones, as also were seen in the figure 5.11(a). 

The results show that the peak-locking errors can be reduced by the 

regression analysis in the Reynolds stresses. 

5.5.3. Selection of Δt’s  

The proposed approach is based on the simple concept of least-squares 

regression of the measured quantities from multiple Δt acquisitions. The 

selection of Δt’s is an important step in the methodology. The first 

requirement for the selection of the Δt’s is that a minimum number of four 

Δt’s is considered. This requirement is a direct consequence of the four-

degree of freedom model (β0, β1, β2 and β3) employed for the Reynolds stress. 

Additionally, it is deemed likely that the accuracy of the regression result 

degrades when the range of the selected ∆t’s covers a particle image 

displacement below one pixel, that is less than a period of the peak-locking 

error. Hence, the second requirement for selecting the Δt’s is that the particle 

image displacement range, defined as the difference between the largest 

time-averaged displacement (occurring in the acquisition with the largest 

Δt) and the smallest time-averaged displacement (for the smallest Δt), 

should be at least one pixel. In this section, the effect of the number of Δt’s 

selected for the regression analysis and the displacement range is 

investigated. Based on the two requirements, two sets of four values of Δt’s 

each are selected arbitrarily in the NACA0012 experiment. It is to be noted 

that, with four Δt acquisitions, it is possible to perform the regression 

analysis for Reynolds stresses and to correct the peak-locking errors by the 

estimated “true” Reynolds stress from the regression. However, it is not 

feasible to compute the uncertainty in the estimate of “true” Reynolds stress, 

as the regression curve passes exactly through all the data points. The two 

sets of Δt’s are selected as follows: set I consists of measurements at Δt’s 

equal to 10, 12, 14, 16 µs, whereas in set II the measurements are performed 

at Δt’s of 10, 14, 18, 22 µs. 
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The proposed approach of regression is applied for both the cases of Δt’s to 

correct the measured mean displacements (and velocities) and Reynolds 

stresses. It can be seen in figure 5.14(a) that the measured displacements 

cover more than one pixel range in both cases of Δt’s. Hence, the corrected 

displacements in both the cases are comparable to the reference 

displacements, and to each other. However, when the measured 

displacements do not cover one pixel range, the regression is not effective. 

This result is due to the majority of the measured displacements lying on one 

side of the reference displacements, resulting in the regression 

displacements to be on the same side and away from the reference one. Thus, 

for the effective displacements regression, it is necessary to have both the 

overestimated and underestimated measured displacements, which is 

possible when the range is greater than or equal to one pixel. 

         

(a)               (b) 

Figure 5.14. Measured and corrected (a) displacements and (b) Reynolds stresses 

at a point [(x/c, y/c) = (0.23, 0.17)] (case I: Δt’s = 10, 12, 14, 16 µs and case II: Δt’s 

= 10, 14, 18, 22 µs)  

When analyzing the Reynolds stresses results [figure 5.14(b)], it is clear that 

the corrected Reynolds stress in the case II is closer to the reference one than 

that in the case I. This is because of the larger range of Δt’s in the case II. Thus 

the regression in the case II performs slightly better than that in the case I. 
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Nevertheless, the Reynolds stress estimated with the four ∆t’s of set II is less 

accurate than the result obtained from the full set of eight ∆t’s, which has 

been shown in figure 5.11(a). Hence, although four is the minimum number 

of time separations for the regression analysis, the use of more ∆t’s can 

further increase the accuracy of the estimated Reynolds stresses. 

Furthermore, to quantify the uncertainty in the estimate of “true” Reynolds 

stress from regression, more than four data points or measured Reynolds 

stresses are required. Therefore, in the present work, eight Δt’s were 

selected with the gap of 2 µs between the consecutive values while acquiring 

the measurements, the results of which were presented in the sections 5.5.1 

and 5.5.2. As a guideline for future applications of the proposed 

methodology, it is suggested that more than four Δt’s are selected, and that 

the particle image displacement range covers at least one pixel in the regions 

of interest, to ensure an effective evaluation and correction of the peak-

locking errors.          

5.6. Conclusions 

A novel approach is proposed for the quantification of the peak-locking 

systematic uncertainty in PIV, which in turn also corrects the measured 

particle image displacement (and velocity) and Reynolds stress for peak-

locking errors. The approach is based on the assumption that local flow 

statistics are constant in time, according to which the particle image 

displacement should vary linearly with the time separation (Δt) between 

two frames. However, in the presence of peak locking, the measured particle 

image displacement is a non-linear function of Δt as the measurement error 

in the displacement varies non-linearly with sub-pixel particle image 

displacement. Similarly, in presence of peak locking the Reynolds stress may 

vary significantly depending on the selected Δt. Hence, in the present 

approach, it is proposed to acquire the measurements at various Δt’s and 

perform a least-squares regression of the measured quantities 

(displacements and Reynolds stresses). The displacement (and velocity) 

and Reynolds stress from regression represent more accurate estimates of 

the “true” values and thus used to quantify systematic errors and 
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uncertainty due to peak locking in the measured displacement (and velocity) 

and Reynolds stresses, respectively. Guidelines for the selection of the ∆t’s 

are also provided. The methodology is assessed for planar PIV 

measurements of the flow over a NACA0012 airfoil at 10 degrees angle of 

attack. The uncertainties in the measured velocity and Reynolds stresses are 

reduced by 50 to 80% and 35 to 75%, respectively, after correcting by the 

regression analysis. Relative coverage indices close to one are obtained for 

the mean velocity uncertainty and Reynolds stress uncertainty in both the 

potential and turbulent regions of the flow, indicating the ability of the 

methodology to quantify the uncertainty associated with peak-locking 

errors. 
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Chapter 6 

Design of Experiments (DOE) for PIV 

Uncertainty Quantification 

Abstract 

A statistical tool called Design of Experiments (DOE) is introduced for 

uncertainty quantification in particle image velocimetry (PIV). DOE allows 

to quantify the total uncertainty as well as the systematic uncertainties 

arising from various experimental factors. The approach is based on 

measuring a quantity (e.g. time-averaged velocity or Reynolds stresses) 

several times by varying the levels of the experimental factors which are 

known to affect the value of the measured quantity. Then, using Analysis of 

Variances (ANOVA), the total variance in the measured quantity is computed 

and hence the total uncertainty. Moreover, the analysis provides the 

individual variances for each of the experimental factors, leading to the 

estimation of the systematic uncertainties from each factor and their 

contributions to the total uncertainty. The methodology is assessed for 

planar PIV measurements of the flow over a NACA0012 airfoil at 15 degrees 

angle of attack considering five experimental factors, namely camera 

aperture, inter-frame time separation, interrogation window size, laser 

sheet thickness and seeding density. Additionally, the methodology is 

applied to the investigation by stereoscopic PIV of the flow at the outlet of a 
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ducted Boundary Layer Ingesting (BLI) propulsor. The total uncertainty in 

the time-averaged velocity as well as the constituent systematic 

uncertainties due to the experimental factors, namely camera aperture, 

inter-frame time separation, interrogation window size and stereoscopic 

camera angle, are quantified. 

6.1. Introduction 

Design of Experiments (DOE) is a statistical tool used in many fields of 

science and engineering to evaluate the systematic effect of input factors on 

the measurement output (Coleman and Montgomery 1993). The approach 

was first proposed for wind tunnel measurements by DeLoach (2000) at 

NASA Langely Research Center due to its various advantages over 

conventional One Factor At a Time (OFAT) wind tunnel testing. The chief 

advantage is that DOE focuses on the generation of adequate prediction 

models rather than high volume data collection (DeLoach 2000). In a 

comparison study between OFAT and DOE wind tunnel testing, DeLoach and 

Micol (2011) showed that the DOE method is more efficient in terms of both 

resources requirements and ease of data analysis. By using DOE, DeLoach et 

al. (2012) were able to quantify the total variance in their wind tunnel 

measurements and segregate the random and systematic components. The 

tests were performed in a transonic wind tunnel on a NACA0012 airfoil to 

compute lift and drag at various angles of attack. The authors found that the 

systematic component of the variance due to the time variations in sample 

means was as significant as the ordinary random error. Therefore, the 

authors concluded that it is important to identify any sources of systematic 

errors and eliminate them when possible. However, they also highlighted 

that a residual level of variance is unavoidable, whose systematic component 

is likely to exceed its random component. An accurate assessment of 

uncertainty requires that systematic variations be taken into account along 

with the random variations in the data (DeLoach et al. 2012). 

Aeschliman and Oberkampf (1998) first demonstrated how DOE could be 

applied to measurement uncertainty quantification by choosing the bias 

error sources as factors of interest. Oberkampf and Roy (2010) reported the 



6. Design of Experiments (DOE) for PIV Uncertainty Quantification 

97 

use of DOE for wind tunnel validation experiments; additionally, they 

compared the DOE uncertainties with those from the ISO/ANSI method. The 

authors found that the random component of uncertainty, i.e. uncertainty 

computed by comparing a large number of replications of the experiment, 

compare well with the ISO/ANSI approach. However, the total estimated 

experimental uncertainty using the DOE technique was significantly greater 

than that estimated by the ISO/ANSI method. With the ISO/ANSI approach, 

the analyst must make assumptions about which individual uncertainty 

sources are present as well as the relative magnitudes of those uncertainties 

and their correlations and interactions. Conversely, in DOE the levels of the 

related experimental factors are varied to measure the response multiple 

times such that the main effects of the uncertainty sources as well as their 

correlations and interactions can be computed rather than assumed.    

Smith and Oberkampf (2014) demonstrated that a simplified version of 

DOE, named Error Sampling Method (ESM), was an alternative tool to 

overcome the limitations of the traditional PIV-UQ methods. The ESM 

requires the repetition of an experiment after varying one or more possible 

sources of errors. In ESM, one seeks to replace as many aspects of the 

experiment as possible, starting with those that are likely to cause error and 

that can be varied. By doing so, one is sampling the experimental bias errors, 

making it possible to quantify the uncertainty due to these contributing 

error sources. The DOE and ESM techniques provide a means to determine 

the impact of any variable (i.e. a bias), as well as interaction between the 

variables (i.e. correlations). In order to do so, one needs to design an 

experiment in such a way that variations of systematic error sources can be 

sampled (Smith and Oberkampf 2014). 

DeBonis et al. (2012) made use of a methodology based on DOE to quantify 

the uncertainty in PIV data for validation of Computational Fluid Dynamics 

(CFD) simulations. The uncertainties were estimated by comparing the 

measurements at the intersections of span-wise and stream-wise planes. 

These comparisons returned not only the uncertainty associated with the 

statistical convergence of the results, but also a wider range of systematic 

uncertainties, e.g. due to changes in the laser sheet thickness or 
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interrogation window size. The work showed that the total uncertainty of 

mean velocity measurements was much larger than that estimated by 

traditional methods. However, it is to be noticed that the PIV-UQ was 

conducted only at the intersection lines of the two measurement planes, 

whereas the uncertainty was not quantified in the rest of the fluid domain. A 

similar validation experiment using DOE was performed by Rhode and 

Oberkampf (2012) to assess the predictive accuracy of CFD models for a 

blunt-body supersonic retro-propulsion configuration at various Mach 

numbers. The total experimental uncertainty and the constituent 

uncertainties from a range of sources such as random measurement error, 

flow field non-uniformity and model/instrumentation asymmetries were 

successfully evaluated, which were necessary for the validation of the CFD 

models. 

Similarly, Beresh (2009) performed a comparison among the PIV results 

from multiple experimental configurations and data processing techniques 

to quantify the uncertainties associated with the selection of the 

experimental setup and processing parameters. The data were acquired in 

the far-field of the interaction between a transverse supersonic jet and a 

transonic crossflow. The experimental configurations included two-

component PIV in the centerline stream-wise plane at two overlapping 

stations, as well as stereoscopic PIV in both the same stream-wise plane and 

in the cross plane. Beresh (2009) demonstrated that the bias errors related 

to calibration and window deformation, which were nontrivial to predict 

beforehand, dominated the results in the turbulent flow region. This 

comparison between different PIV configurations and data reduction 

techniques thus suggests that state-of-the-art methods of uncertainty 

quantification may not fully capture all error sources in PIV measurements.  

The discussion above shows that the DOE is a valuable tool for quantifying 

the complete uncertainty (both random and systematic components) of flow 

measurements, and the contribution of the experimental factors to the 

uncertainty. In PIV, UQ methods have been proposed that mainly focused on 

the random uncertainty, which can be retrieved from the data statistics. 

Approaches based on the error sampling method or comparisons of different 
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PIV measurements at the same locations showed that PIV uncertainties are 

potentially significantly larger than those predicted by conventional PIV-UQ 

approaches because of the presence of systematic error sources. Hence, in 

this paper, we propose a PIV-UQ approach based on DOE and Analysis of 

Variances (ANOVA) where the significant experimental factors can be 

identified along with the systematic uncertainties arising from them. The 

proposed approach does not aim to replace the established PIV-UQ 

methodologies such as correlation statistics approach (Wieneke 2015), 

particle disparity method (Sciacchitano et al. 2013), uncertainty surface 

method (Timmins et al. 2012), cross-correlation peak ratio criterion 

(Charonko and Vlachos 2013), etc. Rather, it is complementary to them. In 

fact, these established PIV-UQ methodologies quantify the uncertainty of 

instantaneous velocity fields, whereas the proposed DOE approach 

evaluates the uncertainty of statistical flow properties such as time-

averaged velocity and Reynolds stresses. Although the DOE approach and 

the peak ratio and uncertainty surface methods all require the selection of 

relevant error sources or experimental factors, there is a fundamental 

difference among these methods: the latter two methods evaluate the 

uncertainty associated only with the selected error sources. Instead, in the 

DOE approach, the uncertainty that is not ascribed to the selected 

experimental factors is evaluated and appears in error term ε (effects of 

unknown factors) as explained in section 6.2. As the proposed approach 

allows to evaluate the uncertainty of systematic error sources and to 

quantify their contributions to the total uncertainty, it can be used to 

optimize experiments and minimize the overall uncertainty. Moreover, the 

approach is comprehensive in that it can be applied universally, irrespective 

of the kind of PIV setup, e.g. planar PIV, tomographic PTV, large scale PIV or 

microscopic PTV, for uncertainty quantification in any of the measured 

quantities, e.g. mean velocity or higher order statistics. The proposed 

methodology is described in section 6.2. The approach is experimentally 

assessed for planar PIV measurements of the flow over a NACA0012 airfoil 

in a wind tunnel. The experimental setup and results of the uncertainty 

quantification in mean velocity and Reynolds stress are presented in section 

6.3. Moreover, the methodology is applied to a stereoscopic PIV experiment 
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dealing with the flow at the outlet of a ducted BLI propulsor. The results of 

this application are briefly shown in section 6.4. 

6.2. Design of Experiments and Analysis of Variances 

DOE refers to the process of planning the experiment in order to collect 

appropriate data that can be analyzed by statistical methods resulting in 

valid and objective conclusions (Montgomery 2013). In any experiment, 

some of the experimental parameters directly affect the output value and are 

called design factors; in PIV measurements, those are for instance the inter-

frame time separation, interrogation window size, camera aperture, laser 

sheet thickness, etc. Additionally, some of the parameters, which affect the 

output directly or indirectly (in combination with the design factors) but are 

uncontrollable (or only partly controllable) during the measurements, are 

called nuisance factors; for PIV, those include variations of the fluid 

properties during a measurement, seeding density and its distribution, etc. 

Different measurements of an ideally constant quantity with varying levels 

of the design and/or nuisance factors show variations in the measured 

quantity. A proper data acquisition model and statistical analysis can be used 

to quantify the variance in the output quantity due to the variations in the 

levels of input factors (and their combinations).  

The present work employs the statistical tools DOE and ANOVA to quantify 

the total uncertainty and the contribution of the design and nuisance factors 

to the total uncertainty. Following Montgomery (2013), a Randomized 

Complete Block Design (RCBD) is considered for data acquisition, as 

blocking is necessary for tackling the effect of the nuisance factors; in such 

experimental design, measurements are carried out in two or more blocks 

(or levels of the nuisance factor) and levels of the design factors are varied 

randomly in each block. The analysis can be performed by choosing as many 

factors as one is interested in. However, the number of measurement runs 

increases with the number of factors and their levels as LN, being N the 

number of experimental factors and L the number of levels of each factor 

(assumed to be the same for all factors). Let us take an example of 

experiment with two design factors A and B with a and b number of levels, 
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respectively, and one blocking factor with n number of levels. Following 

Montgomery (2013), a linear statistical model for this design is: 

  

𝑦𝑖𝑗𝑘 = 𝜇 + 𝐴𝑖 + 𝐵𝑗 + (𝐴𝐵)𝑖𝑗 + 𝐵𝑙𝑜𝑐𝑘𝑘 + 𝜀𝑖𝑗𝑘 

                    (6.1) 

where, yijk is the observed response at the ith level of factor A and jth level of 

factor B in kth block , μ is the overall mean effect, Ai is the effect of the ith level 

of factor A, Bj is the effect of the jth level of factor B, (AB)ij is the effect of the 

interaction between Ai and Bj, Blockk is the effect of the kth level of the 

blocking factor, and εijk is an error component consisting of random error 

and the effect of unknown factors in the measurements. For this model, we 

are interested in checking whether the effects Ai, Bj, (AB)ij and Blockk are 

zero (null hypothesis) or non-zero (alternative hypothesis). This can be 

achieved by the factorial ANOVA (Montgomery 2013) as shown in table 6.1, 

where yi.. denotes the total of all observations under the ith level of factor A, 

y.j. denotes the total of all observations under the jth level of factor B, yij. 

denotes the total of all observations under the ith level of factor A and jth level 

of factor B, y..k denotes the total of all observations under the kth level of 

blocking factor, and y... denotes the grand total of all the observations. These 

terms can be expressed mathematically as: 

  

𝑦𝑖.. = ∑ ∑ 𝑦𝑖𝑗𝑘

𝑛

𝑘=1

𝑏

𝑗=1

, 𝑦.𝑗. = ∑ ∑ 𝑦𝑖𝑗𝑘

𝑛

𝑘=1

𝑎

𝑖=1

, 𝑦𝑖𝑗. = ∑ 𝑦𝑖𝑗𝑘

𝑛

𝑘=1

,   

𝑦..𝑘 = ∑ ∑ 𝑦𝑖𝑗𝑘

𝑏

𝑗=1

𝑎

𝑖=1

, 𝑦... = ∑ ∑ ∑ 𝑦𝑖𝑗𝑘

𝑛

𝑘=1

𝑏

𝑗=1

𝑎

𝑖=1

 

 (6.2) 

From ANOVA table 6.1, the significance of the factor effects is determined by 

performing F-test with desired confidence level, where the F0 values are 

computed as the ratios of the mean squares (MS) of the effects to the error 

mean square (MSε). The F0 values are then compared with a critical value Fc 

based on the desired confidence level and degrees of freedom of the factors. 
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If the F0 value is greater than Fc, then the corresponding effect is statistically 

significant with the desired level of confidence, and the null hypothesis shall 

be rejected. The reader is referred to any standard book on statistics for a 

detailed explanation of the F-test (for example, Montgomery 2013). It is thus 

possible to segregate the contribution of every factor in the total variance of 

the measurement.  

Table 6.1. Analysis of Variances (ANOVA) table for Two-Factor Randomized 

Complete Block Design (RCBD) 

Source Sum of Squares 
Degrees of 

Freedom 
Mean Squares F0 

A 𝑆𝑆𝐴 =
1

𝑏𝑛
∑ 𝑦𝑖..

2

𝑎

𝑖=1

−
𝑦...

2

𝑎𝑏𝑛
 𝑎 − 1 𝑀𝑆𝐴 =

𝑆𝑆𝐴

𝑎 − 1
 

𝐹0

=
𝑀𝑆𝐴

𝑀𝑆𝜀
 

B 𝑆𝑆𝐵 =
1

𝑎𝑛
∑ 𝑦.𝑗.

2

𝑏

𝑗=1

−
𝑦...

2

𝑎𝑏𝑛
 𝑏 − 1 𝑀𝑆𝐵 =

𝑆𝑆𝐵

𝑏 − 1
 

𝐹0

=
𝑀𝑆𝐵

𝑀𝑆𝜀
 

AB 
𝑆𝑆𝐴𝐵 =

1

𝑛
∑ ∑ 𝑦𝑖𝑗.

2

𝑏

𝑗=1

𝑎

𝑖=1

−
𝑦...

2

𝑎𝑏𝑛
− 𝑆𝑆𝐴

− 𝑆𝑆𝐵 

(𝑎 − 1)(𝑏 − 1) 

𝑀𝑆𝐴𝐵

=
𝑆𝑆𝐴𝐵

(𝑎 − 1)(𝑏 − 1)
 

𝐹0

=
𝑀𝑆𝐴𝐵

𝑀𝑆𝜀
 

Block 𝑆𝑆𝐵𝑙𝑜𝑐𝑘 =
1

𝑎𝑏
∑ 𝑦..𝑘

2

𝑛

𝑘=1

−
𝑦...

2

𝑎𝑏𝑛
 𝑛 − 1 𝑀𝑆𝐵𝑙𝑜𝑐𝑘 =

𝑆𝑆𝐵𝑙𝑜𝑐𝑘

𝑛 − 1
 

𝐹0

=
𝑀𝑆𝐵𝑙𝑜𝑐𝑘

𝑀𝑆𝜀
 

ε 
𝑆𝑆𝜀 = 𝑆𝑆𝑇𝑜𝑡𝑎𝑙 − 𝑆𝑆𝐴 − 𝑆𝑆𝐵 − 𝑆𝑆𝐴𝐵

− 𝑆𝑆𝐵𝑙𝑜𝑐𝑘 
(𝑎𝑏 − 1)(𝑛 − 1) 

𝑀𝑆𝜀

=
𝑆𝑆𝜀

(𝑎𝑏 − 1)(𝑛 − 1)
 

 

Total 𝑆𝑆𝑇𝑜𝑡𝑎𝑙 = ∑ ∑ ∑ 𝑦𝑖𝑗𝑘
2

𝑛

𝑘=1

𝑏

𝑗=1

𝑎

𝑖=1

−
𝑦...

2

𝑎𝑏𝑛
 𝑎𝑏𝑛 − 1 

𝑀𝑆𝑇𝑜𝑡𝑎𝑙

=
𝑆𝑆𝑇𝑜𝑡𝑎𝑙

𝑎𝑏𝑛 − 1
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The total uncertainty (UTotal) and constituent systematic uncertainties (UX) 

in the response variable are calculated as: 

𝑈𝑇𝑜𝑡𝑎𝑙 = √
𝑆𝑆𝑇𝑜𝑡𝑎𝑙

𝑎𝑏𝑛 − 1
= √𝑈𝐴

2 + 𝑈𝐵
2 + 𝑈𝐴𝐵

2 + 𝑈𝐵𝑙𝑜𝑐𝑘
2 + 𝑈𝜀

2 

             (6.3) 

𝑈𝑋 = √
𝑆𝑆𝑋

𝑎𝑏𝑛 − 1
  𝑎𝑛𝑑  𝑋 = 𝐴, 𝐵, 𝐴𝐵, 𝐵𝑙𝑜𝑐𝑘, 𝜀 

                  (6.4) 

where SS is the sum of squares and represents the variability in the response 

variable as shown in the table 6.1. 

6.3. Experimental assessment 

The proposed methodology was assessed for planar PIV measurements of 

the flow over a NACA0012 airfoil at 15 degrees angle of attack. For sake of 

limiting the times for data acquisition and processing, we considered only 

four design factors, namely camera aperture, inter-frame time separation, 

interrogation window size, laser sheet thickness and one blocking factor of 

seeding density. The total uncertainties as well as the constituent systematic 

uncertainties due to the five factors were quantified for the measured time-

averaged velocity and Reynolds stress.   

6.3.1. Experimental setup 

The planar PIV measurements were performed for the flow over a 

NACA0012 airfoil where the experimental setup was similar to that of the 

measurements conducted in section 5.4 of this thesis. Figure 6.1 illustrates a 

schematic of the experimental setup. The seeding particles were illuminated 

by a Quantel Evergreen 200 laser (Nd:YAG, pulse energy of 200 mJ per pulse, 

wavelength of 532 nm) and images were recorded with a LaVision Imager 

sCMOS camera (12 bits, 6.5 μm pixel size, 2560 × 2160 pixels maximum 

resolution) with image sensor cropped to 2240 ×1622 pixels. The camera 
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was equipped with a Nikon objective of 105 mm focal length and a field of 

view (FOV) of 135 mm × 98 mm was imaged with optical magnification of 

0.11.  

 

Figure 6.1. Schematic experimental setup of the planar PIV measurements of the 

flow over a NACA0012 airfoil at 15 degrees angle of attack 

The aim of this experimental assessment was to employ the statistical tools 

DOE and ANOVA to quantify the total uncertainty in time-averaged PIV 

measurements and the contribution of the design and nuisance factors to the 

total uncertainty. Various factors during the acquisition and processing 

stages contribute to the total uncertainty. However, only some of the most 

important ones are considered for the analysis. Following Scharnowski et al. 

(2019b), five factors, namely camera aperture (f#), inter-frame time 

separation (∆t), interrogation window size (DI), laser sheet thickness (∆z) 

and seeding density were considered to be the most relevant. Therefore, for 

the analysis four design factors f#, ∆t, DI, ∆z (assigned with A, B, C, D, 

respectively) and a blocking factor (seeding density) with two levels of each 

were selected. The two levels of the factors are: f# = 4 and 8, ∆t = 50 and 70 

μs [resulting displacements in the free stream (Uꝏ = 10 m/s) are 8.5 and 
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11.8 pixels, respectively], DI = 16 × 16 and 64 × 64 pixels (0.95 × 0.95 and 

3.78 × 3.78 mm in physical units), ∆z = 1 and 3 mm, and seeding density = 

0.01-0.02 and 0.08-0.09 ppp (resulting in mean particle distances of 0.2 and 

0.5 mm, respectively), as summarised in table 6.2.  

Table 6.2. Factors and their levels in the planar PIV measurements of the flow over 

a NACA0012 airfoil  

Factor Parameter Levels 

A f# 4, 8 

B ∆t 50, 70 μs 

C DI 16 × 16, 64 × 64 pixels 

(0.95 × 0.95, 3.78 × 3.78 mm) 

D ∆z 1, 3 mm 

Block seeding density 0.01-0.02, 0.08-0.09 ppp 

(mean particle distances of 0.2 and 0.5 mm) 

 

Following the 2N rule, N being the number of design factors, a total of 32 

measurements were performed (24 = 16 in each block). The images were 

recorded and processed using LaVision Davis10 software. The data set at 

each run consisted of 1000 double-frame images and a total of 16 runs per 

block were performed in a random order. Each measurement run was 

unique corresponding to the combination of one of the two levels of the four 

design factors. The processing was done using Gaussian interrogation 

windows of 128 × 128 pixels with 75% overlap for the initial passes and 16 

× 16 pixels or 64 × 64 pixels with 75% overlap for the final passes. 

The estimated time-averaged stream-wise velocity component u and in-

plane velocity vectors are shown in figure 6.2; the measured Reynolds 
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normal stresses Ruu are shown in figure 6.3. It is to be noted that figures 6.2 

and 6.3 show the values averaged over all 32 measurement runs.  

 

Figure 6.2. Measured time-averaged stream-wise velocity component u and in-plane 

velocity vectors (averaged over 32 measurement runs) 

It is clear that the flow has varying degrees of fluctuations, e.g. low 

fluctuations in the potential flow region (0.01 < Ruu < 0.1 m2/s2) and 

relatively high fluctuations in the separated shear layer and the turbulent 

wake (5 < Ruu < 8 m2/s2). Therefore, the measured flow field is a suitable 

case to implement and assess the feasibility of the proposed approach in a 

range of flow conditions encountered in typical PIV measurements. The 

analysis was performed for the whole FOV  to quantify the total uncertainties 

in the time-averaged velocities and Reynold stresses and the contribution of 

the individual factors to the total uncertainties. However, for simplicity, two 

points were chosen in two different regions based on the amount of flow 

fluctuations, as shown in figure 6.3, to explain the contribution of the factors 

to the total uncertainties. The results at these two points are explained in 

detail in section 6.3.2. 
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Figure 6.3. Reynolds normal stresses averaged over 32 measurement runs (The 

results of application of the proposed approach are shown in detail in section 6.3.2 

at points I and II) 

6.3.2. Results 

6.3.2.1. Uncertainty of mean velocity 

The total uncertainties of the mean or time-averaged stream-wise velocities 

were calculated following equation (6.3) and are shown in figure 6.4(a). As 

expected, the uncertainties estimated by the DOE approach are higher than 

the random uncertainties calculated from data statistics for a specific run 

(the considered case is: f# = 8, ∆t = 50 μs, DI = 16 × 16 pixels, ∆z = 1 mm 

and seeding density = 0.08-0.09 ppp) as 𝜎 √𝑁𝑠⁄  [see figure 6.4(b)], with σ 

the standard deviation and Ns the number of samples (Sciacchitano and 

Wieneke, 2016). It is clear that the random uncertainties from data statistics 

are underestimated as the systematic effects of the experimental factors are 

not taken into consideration. The methodology based on DOE, on the other 

hand, is able to compute the systematic contributions of the factors 

considered in the analysis to the total uncertainty. Nevertheless, the random 
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uncertainty of the mean velocity is proportional to the flow fluctuations or 

Reynolds stress values. Moreover, larger total uncertainty is retrieved in the 

regions of high velocity gradients, as reported by Scarano (2002), which are 

mainly encountered in the shear layer. Following these observations, a 

detailed analysis of the constituent systematic uncertainties is made at 

points I and II, located in the potential flow region and turbulent region, 

respectively (see figure 6.3). 

   

(a) total uncertainty by proposed 

methodology based on DOE 

(b) random uncertainty from data 

statistics (𝜎 √𝑁𝑠⁄  )

Figure 6.4. Uncertainty in time-averaged stream-wise velocity u  

The ANOVA results at the two selected points were obtained in the form of 

table 6.3, where the F0 values corresponding to the main and interaction 

effects of the design and blocking factors are calculated as shown in the last 

column in table 6.1. The F-test is then performed to estimate whether the 

effects are statistically significant or not, which is done by comparing the F0 

values with the critical value Fc that, in the present case (for 1 degree of 

freedom of numerator and 20 degrees of freedom of denominator), is 4.35 

for 95% confidence level (Montgomery 2013). If the F0 value is greater than 

Fc, then the corresponding effect is statistically significant with the desired 

level of confidence. For example, for the point I, the main effect of factor B 

(i.e. ∆t) is statistically significant as it yields an F0 value of 40.17. Instead, at 

point II, where the flow fluctuations are larger, factor D (i.e. the laser sheet 
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thickness ∆z) has a statistically significant effect, leading to an F0 value of 

6.81. 

Table 6.3. Analysis of Variances (ANOVA) results in the uncertainty quantification 

of mean stream-wise velocity u where A, B, C, D and Block correspond to the factors: 

camera aperture f#, inter-frame time separation ∆t, interrogation window size DI, 

laser sheet thickness ∆z and seeding density, respectively [The critical value Fc = 

4.35 for 1 degree of freedom of numerator and 20 degrees of freedom of 

denominator at 95% confidence level (Montgomery 2013)] 

Source DOF 

Point I Point II 

SS 

(m2/s2) 

MS 

(m2/s2) 
F0 

UX  

(m/s) 

SS 

(m2/s2) 

MS 

(m2/s2) 
F0 

UX  

(m/s) 

A (f#) 1 0.0026 0.0026 3.98 0.0092 0.0000 0.0000 0.00 0.0008 

B (∆t) 1 0.0264 0.0264 40.17 0.0292 0.0006 0.0006 0.04 0.0042 

C (DI) 1 0.0000 0.0000 0.06 0.0011 0.0099 0.0099 0.68 0.0178 

D (∆z) 1 0.0003 0.0003 0.40 0.0029 0.0995 0.0995 6.81 0.0566 

AB 1 0.0028 0.0028 4.27 0.0095 0.0017 0.0017 0.12 0.0074 

AC 1 0.0000 0.0000 0.00 0.0002 0.0034 0.0034 0.23 0.0104 

AD 1 0.0000 0.0000 0.01 0.0004 0.0241 0.0241 1.65 0.0279 

BC 1 0.0000 0.0000 0.01 0.0005 0.0016 0.0016 0.11 0.0071 

BD 1 0.0002 0.0002 0.34 0.0027 0.0000 0.0000 0.00 0.0005 

CD 1 0.0000 0.0000 0.01 0.0005 0.0039 0.0039 0.27 0.0112 

Block 1 0.0246 0.0246 37.38 0.0282 0.1896 0.1896 12.99 0.0782 

ε 20 0.0131 0.0007 - 0.0206 0.2921 0.0146 - 0.0971 

Total 31 0.0701 0.0023 - 0.0476 0.6262 0.0202 - 0.1421 
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At both points I and II, as in most of the measurement domain, the effect of 

the seeding density (block) is statistically significant, because it directly 

affects the valid detection probability as reported by Scharnowski et al. 

(2019b). Instead, the other experimental factors (factors A, C and D at point 

I; factors A, B, C at point II) as well as the interaction effects between the 

factors do not have a statistically significant effect on the total uncertainty.  

The constituent uncertainties due to the main and interaction effects of the 

factors were calculated by equation (6.4) and are reported in the last column 

of table 6.3. Their contributions to the total uncertainty in the stream-wise 

velocity u are shown in the form of pie charts in figure 6.5. It is to be noted 

that the percentage contributions were calculated for the squares of the 

individual uncertainties as they add to the square of the total uncertainty 

[see equation (6.3)]. The sub-figures (a) and (b) are for the points I and II, 

respectively, which are marked in figure 6.3. The mean stream-wise velocity 

(u) components at these points are 11.02 m/s and 4.58 m/s, respectively. 

The corresponding total uncertainties are 0.05 m/s and 0.14 m/s, which are 

shown in the centre of the pie charts in figure 6.5. 

It is clear that the total uncertainty increases with increase in the velocity 

gradient and the flow fluctuations, which agrees with the observation in the 

contour plot of total uncertainty in figure 6.4. The seeding density (block) 

contributes to around 35% and 30% to the total uncertainty in the time-

averaged stream-wise velocity at the points I and II, respectively. The factor 

B, i.e. inter-frame time separation ∆t, is the most significant factor at point I 

and contributes to 38% of the total uncertainty. At this point, where the flow 

fluctuations are very low and the mean velocity is largely affected by peak-

locking errors, the factor ∆t influences directly the magnitude of peak-

locking errors the most, as observed by Legrand et al. (2012). 



6. Design of Experiments (DOE) for PIV Uncertainty Quantification 

111 

  

           (a) Point I (potential flow region)                 (b) Point II (turbulent region) 

Figure 6.5. Contribution of systematic uncertainties to the total uncertainty in time-

averaged stream-wise velocity at the two points marked in the figure 6.3, due to 

main and interaction effects of the factors: A (camera aperture f#), B (inter-frame 

time separation ∆t), C (interrogation window size DI), D (laser sheet thickness ∆z) 

and block of seeding density 

At the point II, i.e. in the flow region of high flow fluctuations, apart from the 

seeding density, the factor D i.e. laser sheet thickness ∆z is statistically 

significant and contributes to 16% of the total uncertainty of the time-

averaged stream-wise velocity as shown in the pie chart in figure 6.5(b). This 

is due to the three-dimensional nature of the flow in the turbulent region of 

the flow, thus the larger value of ∆z may cause a larger dispersion of the 

particles displacements within the interrogation window. Moreover, the 

random error (factors not directly considered in the analysis, e.g. limited 

statistical convergence, image noise, etc.) shows significant contribution of 

47% to the total uncertainty. This is due to the flow fluctuations in these 

regions being high which, owed to the limited statistical convergence of the 

measurements, makes it difficult to segregate the contribution of individual 

systematic uncertainties. It is to be noted that the “error uncertainty  ε” from 

the ANOVA represents the random uncertainty in the measurements plus 

the uncertainty due to the unknown experimental factors (i.e. the factors not 
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considered as design or blocking factors). The effect of the factor C 

(interrogation window size DI) is not statistically significant at the points I 

and II. However, in high-shear regions of the flow, it contributes significantly 

to the total uncertainty of the mean stream-wise velocity (the results are not 

shown for conciseness).  

6.3.2.2. Uncertainty of Reynolds stress 

The proposed methodology was also applied for uncertainty quantification 

of the higher order statistics such as the Reynolds stresses. The equations 

(6.3) and (6.4) were used to calculate the total uncertainty and the 

constituent systematic uncertainties, respectively. The estimated total 

uncertainties of the Reynolds normal stresses are shown in figure 6.6(a). 

 

(a) total uncertainty by proposed 

methodology based on DOE 

(b) random uncertainty from data 

statistics (𝑅𝑢𝑢√
2

𝑁𝑠−1
) 

Figure 6.6. Uncertainty in Reynolds normal stress Ruu  

As seen for the total uncertainty of the mean stream-wise velocity, also the 

total uncertainties of the Reynolds normal stresses are the highest in the 

regions of high flow fluctuations. These total uncertainties estimated by the 

proposed DOE approach are compared to random uncertainties calculated 

from data statistics. Figure 6.6(b) shows the random uncertainties in a single 

run (f# = 8, ∆t = 50 μs, DI = 16 × 16 pixels, ∆z = 1 mm and seeding density 



6. Design of Experiments (DOE) for PIV Uncertainty Quantification 

113 

= 0.08-0.09 ppp) calculated as 𝑅𝑢𝑢√
2

𝑁𝑠−1
 , with Ruu the Reynolds normal 

stress and Ns the number of samples (Sciacchitano and Wieneke, 2016). It is 

clear that the random uncertainties are highly underestimated as the 

systematic effects of the experimental factors are not taken into 

consideration, as was also shown for the uncertainty of mean velocity in 

section 6.3.2.1.  

Two points in two flow regions were selected as marked in figure 6.3 to 

evaluate the results for the constituent systematic uncertainties based on 

the amount of flow fluctuations. The results of ANOVA tests for these two 

points can be seen in table 6.4, and the pie charts in figure 6.7 show the 

contribution of the main and interaction effects of the design and blocking 

factors to the total uncertainty.  

The average Reynolds normal stresses at the points I and II are 0.01 and 5.99 

m2/s2, respectively, and the corresponding total uncertainties are 0.008 and 

0.65 m2/s2, which are shown in the centre of pie charts in figure 6.7. It is clear 

that the total uncertainty increases with increase in the flow fluctuations, 

which agrees with the observation in the contour plot of total uncertainty in 

figure 6.6. In most of the measurement domain, the main effects of the factor 

C (interrogation window size DI) and the seeding density (block) are 

statistically significant, whereas all the two-way interaction effects are found 

to be insignificant, as also observed in the measurement of the mean stream-

wise velocities. The seeding density directly affects the valid detection 

probability (Scharnowski et al. 2019b) and thus has a significant effect on 

the measurement uncertainty. It contributes to around 7% and 11% of the 

total uncertainty in the Reynolds normal stress at the points I and II, 

respectively. As shown in table 6.4 and figure 6.7, the factor C interrogation 

window size DI is the most significant at both the points and contributes to 

53% and 78% of the total uncertainty at the points I and II, respectively. 

Moreover, the factors B and D, i.e. inter-frame time separation ∆t and laser 

sheet thickness ∆z, are also statistically significant at the point I in the 

potential flow region. They contribute to 8% and 9% of the total uncertainty, 

respectively. 
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Table 6.4. Analysis of Variances (ANOVA) results in the uncertainty quantification 

of Reynolds normal stress Ruu where A, B, C, D and Block correspond to the factors: 

camera aperture f#, inter-frame time separation ∆t, interrogation window size DI, 

laser sheet thickness ∆z and seeding density, respectively [The critical value Fc = 

4.35 for 1 degree of freedom of numerator and 20 degrees of freedom of 

denominator at 95% confidence level (Montgomery 2013)] 

Source DOF 

Point I Point II 

SS 

(m4/s4) 

MS 

(m4/s4) 
F0 

UX  

(m2/s2) 

SS 

(m4/s4) 

MS 

(m4/s4) 
F0 

UX  

(m2/s2) 

A (f#) 1 0.0000 0.0000 1.26 0.0008 0.0038 0.0038 0.07 0.0111 

B (∆t) 1 0.0002 0.0002 8.62 0.0022 0.1849 0.1849 3.57 0.0772 

C (DI) 1 0.0010 0.0010 58.20 0.0057 9.9625 9.9625 192.17 0.5669 

D (∆z) 1 0.0002 0.0002 9.60 0.0023 0.1418 0.1418 2.73 0.0676 

AB 1 0.0000 0.0000 0.37 0.0005 0.0002 0.0002 0.00 0.0026 

AC 1 0.0000 0.0000 0.90 0.0007 0.0069 0.0069 0.13 0.0149 

AD 1 0.0000 0.0000 0.49 0.0005 0.0000 0.0000 0.00 0.0004 

BC 1 0.0000 0.0000 0.67 0.0006 0.0339 0.3394 0.65 0.0331 

BD 1 0.0000 0.0000 0.75 0.0006 0.0442 0.0442 0.85 0.0378 

CD 1 0.0000 0.0000 0.74 0.0007 0.0178 0.0178 0.34 0.0240 

Block 1 0.0001 0.0001 8.04 0.0021 1.3195 1.3195 25.45 0.2063 

ε 20 0.0003 0.0000 - 0.0034 1.0368 0.0518 - 0.1829 

Total 31 0.0021 0.0001 - 0.0083 13.0577 0.4212 - 0.6490 
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           (a) Point I (potential flow region)              (b) Point II (turbulent region) 

Figure 6.7. Contribution of systematic uncertainties to the total uncertainty in 

Reynolds normal stress at the two points marked in the figure 6.3, due to main and 

interaction effects of the factors- A (camera aperture f#), B (inter-frame time 

separation ∆t), C (interrogation window size DI), D (laser sheet thickness ∆z) and 

block of seeding density 

6.4. Application to boundary layer ingesting propulsor flow 

The proposed methodology was applied on a wind tunnel experiment of a 

ducted Boundary Layer Ingesting (BLI) propulsor.  

6.4.1. Experimental setup 

The experiment was conducted in the Low-Speed Tunnel (LST) operated by 

the German-Dutch Wind Tunnels (DNW). The measurements were 

performed at a Mach number of 0.174 and a body length-based Reynolds 

number of 6×106 corresponding to a freestream velocity (U∞) of 60 m/s. The 

test case consisted of an axisymmetric body placed upstream of the 

propulsor as shown in figure 6.8, where stereoscopic PIV measurements 

were performed in a cross plane at the outlet of the propulsor. 
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Figure 6.8. Schematic experimental setup of stereoscopic PIV measurements at the 

outlet of the ducted Boundary Layer Ingesting (BLI) propulsor 

In this experimental campaign, we employed the statistical tools DOE and 

ANOVA to quantify the total uncertainty in time-averaged velocities and the 

contribution of the design and nuisance factors to the total uncertainty. 

Following Sciacchitano (2019) and Bhattacharya et al (2016), among others, 

three design factors, namely camera aperture (f#), inter-frame time 

separation (∆t) and interrogation window size (DI), assigned with A, B, C, 

respectively, and one blocking factor of stereoscopic camera angle (𝛼) were 

selected for the analysis. Two measurement levels were considered for each 

factor, which are reported in table 6.5. Following the 2N rule, N being the 

number of design factors, a total of 16 measurements were performed (23 = 

8 in each block). 

Three LaVision Imager sCMOS cameras were used to perform the 

measurements with two different stereoscopic angles (i.e. in two blocks). 

The cameras 1 and 2 formed the stereoscopic angle (𝛼12) of 44° and were 

considered to be the block I, whereas the cameras 1 and 3 formed the 

stereoscopic angle (𝛼13) of 54° and were considered to be the block II. It is 

to be noted that stereoscopic angles larger than 60° are often employed in 

stereo-PIV measurements. However, in the present experiments, the camera 

angles were limited by limitations on the optical access. The cameras were 
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mounted with objective lenses of 135 mm focal length and Scheimpflug 

adapter. The field of view (FOV) obtained was 260 mm × 220 mm and the 

values of magnification factors averaged over the entire FOV for the cameras 

1, 2 and 3 were 0.067, 0.073 and 0.069, respectively. The flow was seeded by 

an aerosol seeding generator, which produces DEHS droplets of 1 μm 

median diameter. The particles were illuminated by a Quantel Evergreen 

200 laser (Nd:YAG, pulse energy of 200 mJ per pulse, wavelength of 532 nm) 

forming a sheet of 4 mm thickness. The images were recorded and processed 

using the LaVision Davis10 software. The data set at each run consisted of 

2000 double-frame images and a total of 8 runs per block (stereoscopic 

camera angle) were performed in a random order. The geometric 

stereoscopic calibration via the pinhole model (Prasad, 2000) was followed 

by the self-calibration based on particle images (Wieneke 2005). The 

processing was done using Gaussian interrogation windows of 64 × 64 

pixels with 50% overlap for the initial passes and 16 × 16 pixels or 32 × 32 

pixels with 50% overlap for the final passes. 

Table 6.5. Factors and their levels in the stereoscopic PIV measurements at the 

outlet of the ducted Boundary Layer Ingesting (BLI) propulsor 

Factor Parameter Levels 

A f# 4, 5.6 

B ∆t 16, 20 μs 

C DI 16 × 16, 32 × 32 pixels 

Block 𝛼 44, 54 degrees 

 

6.4.2. Results 

The estimated time-averaged stream-wise velocity component u and in-

plane (Y-Z plane) velocity vectors are shown in figure 6.9.   
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Figure 6.9. Time-averaged contour plots of the stream-wise velocity u and vector 

plots of the in-plane (Y-Z plane) velocity of the stereoscopic PIV measurements 

The wake region can be seen in the centre of the measurement domain, 

whereas the outer region represents potential flow with stream-wise 

velocity of 60 m/s. The flow is retarded at the periphery of the propulsor and 

the discontinuities in the mean stream-wise velocity field due to the stator 

ring can be seen at the periphery. Moreover, the in-plane velocity vectors are 

shown in figure 6.9 illustrating the magnitude and direction of Y and Z-

velocity components v and w, respectively. The counter-clockwise rotation 

of the flow in the wake of the propulsor can be easily seen due to the 

direction of the vectors, where the magnitudes of v and w velocity 

components are larger than those in the outer potential flow region. The 

contour plot of the total uncertainty (Uu) of the mean stream-wise velocity 

component u is shown in figure 6.10. The total uncertainty of the mean 

velocity closely resembles the fluctuations root-mean-square, as was also 

observed in the experimental assessment with NACA0012 airfoil. Moreover, 

the outer edge of the propulsor slipstream exhibits larger total uncertainty 

due to high velocity gradients in this region. 
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Figure 6.10. Total uncertainty in time-averaged stream-wise velocity u calculated by 

the proposed methodology 

To explain the contribution of the individual factors to the total uncertainty, 

three points in three different flow regions were chosen based on the 

amount of flow fluctuations and velocity gradients, as marked in figure 6.11. 

 

Figure 6.11. RMS of velocity fluctuations in stream-wise velocity normalized by 

freestream velocity  
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The points I, II and III correspond to the potential flow region, shear layer 

and jet region, respectively. The mean stream-wise velocity (u) components 

at these points are 59.20 m/s, 64.17 m/s and 59.75 m/s, respectively and the 

corresponding total uncertainties are 0.37 m/s, 1.60 m/s and 0.51 m/s. It is 

clear that the total uncertainty increases with increase in the velocity 

gradient and the flow fluctuations, which agrees with the observation in the 

contour plot of total uncertainty in figure 6.10. The ANOVA results at the 

three selected points can be seen in table 6.6.  

Table 6.6. Analysis of Variances (ANOVA) results in the uncertainty quantification 

of time-averaged stream-wise velocity in the BLI propulsor experiment, where A, B, 

C and Block correspond to the factors: camera aperture f#, inter-frame time 

separation ∆t, interrogation window size DI and stereoscopic camera angle 𝛼, 

respectively [The critical value Fc = 5.3 for 1 degree of freedom of numerator and 8 

degrees of freedom of denominator at 95% confidence level (Montgomery 2013)] 

Source DoF 

Point I Point II Point III 

SS MS F0 UX  SS MS F0 UX  SS MS F0 UX  

A (f#) 1 0.00 0.00 0.60 0.02 1.25 1.25 0.46 0.29 0.17 0.17 0.48 0.11 

B (∆t) 1 0.00 0.00 0.01 0.00 8.77 8.77 3.23 0.76 0.24 0.24 0.69 0.13 

C (DI) 1 0.00 0.00 0.05 0.00 0.01 0.01 0.00 0.02 0.00 0.00 0.01 0.01 

AB 1 0.01 0.01 1.40 0.02 0.55 0.55 0.20 0.19 0.02 0.02 0.07 0.04 

AC 1 0.00 0.00 0.04 0.00 0.01 0.01 0.00 0.02 0.06 0.06 0.16 0.06 

BC 1 0.00 0.00 0.21 0.01 0.10 0.10 0.04 0.08 0.25 0.25 0.72 0.13 

Block 1 1.95 1.95 301.65 0.36 5.86 5.86 2.16 0.63 0.39 0.39 1.14 0.16 

ε 8 0.05 0.01 - 0.06 21.73 2.72 - 1.20 2.76 0.34 - 0.43 

Total 15 2.01 0.13 - 0.37 38.27 2.55 - 1.60 3.89 0.26 - 0.51 
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(a) Point I (potential flow region) 

 

(b) Point II (shear layer) 

 

(c) Point III (wake region) 

Figure 6.12. Contribution of systematic uncertainties to the total uncertainty in 
time-averaged stream-wise velocity at the three points marked in the figure 6.11, 
due to main and interaction effects of the factors- A (camera aperture f#), B (inter-
frame time separation ∆t), C (interrogation window size DI) and block of 
stereoscopic camera angle 𝛼 
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Moreover, the pie charts in figure 6.12 show the contributions of the main 

and interaction effects of the factors in the total uncertainty. It is clear from 

table 6.6 that the blocking factor - stereoscopic camera angle - is the most 

significant factor (F0 = 301.65, higher than Fc = 5.3 with 95% confidence 

level) at the point I, as was also discussed by Prasad (2000) for stereoscopic 

PIV measurements. It is therefore important to select it optimally to 

minimize the related errors. The factor ∆t directly affects the out-of-plane 

displacement of the particles and it has relatively high contribution (23%) 

to the total uncertainty of the time-averaged velocity at the point II as shown 

in figure 6.12(b). However, its effect is not statistically significant for the 

stream-wise velocity component at 95% confidence level. It is to be noted 

that, high contribution of a factor to the total uncertainty does not guarantee 

the factor to be statistically significant at a certain confidence level. The 

statistical significance of a factor is estimated by comparing its mean square 

(MSfactor) with the error mean square MSε computing the F0 value (shown in 

table 1) as: F0 = MSfactor / MSε. The F0 value is then compared to the critical 

value Fc. Even for the same value of the MSfactor, the factor is statistically 

significant if MSfactor ≥ Fc MSε, and statistically insignificant if MSfactor < Fc MSε. 

Therefore, the percentage contribution of a factor alone does not reveal its 

statistical significance. Nevertheless, the analysis for Y and Z velocity 

components shows that the factor ∆t is significant in the regions of low flow 

fluctuations (the results are not shown for conciseness). In that case, the 

factor ∆t influences the magnitude of the peak-locking error and, as 

observed by Legrand et al. (2012), the regions of low flow fluctuations are 

those where the mean velocity is affected by peak-locking errors the most.  

The pie chart from figure 6.12(a) shows that, for the point I i.e. the flow 

region of low flow fluctuations, the blocking factor (i.e. the stereoscopic 

camera angle) contributes the most (97%) to the total uncertainty in the 

time-averaged stream-wise velocity. However, for the flow regions of high 

flow fluctuations i.e. the points II and III, the random error (due to the factors 

not directly considered in the analysis) has the biggest contribution of 57% 

and 71% to the total uncertainty in the mean stream-wise velocity, as shown 

in figure 6.12(b) and 6.12(c), respectively. This is due to the flow 

fluctuations in these regions being high which makes it difficult to segregate 
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the contribution of individual systematic uncertainties. It is evident that in 

regions where the flow fluctuations are large, the random uncertainty of the 

mean velocity is also large due to the limited number of samples and 

therefore the limited statistical convergence. In these regions, the random 

errors dominate over the systematic error sources, as shown in figure 6.12 

for points II and III. In contrast, in regions of low flow fluctuations (e.g. point 

I of figure 6.12), the systematic error sources are expected to dominate. 

6.5. Conclusions 

A PIV uncertainty quantification (UQ) approach is proposed based on a 

statistical tool called Design of Experiments (DOE). The basic principle of the 

approach is to measure a statistical quantity, ideally constant in time, for the 

different levels of experimental factors and to compute total variance and 

individual variances arising from the different levels of each of the factors. 

The proposed methodology is assessed for planar PIV measurements of the 

flow over a NACA0012 airfoil at 15 degrees angle of attack to quantify the 

uncertainty of the time-averaged velocity and Reynolds stress. Four design 

factors, namely camera aperture (f#), inter-frame time separation (∆t), 

interrogation window size (DI), laser sheet thickness (∆z), and a blocking 

factor of seeding density are considered for the analysis. It is found that the 

uncertainty of the mean velocity quantified by the DOE approach is 

significantly larger than random uncertainty estimated for one individual 

measurement from data statistics, which is ascribed to the capability of the 

DOE approach to account also for the systematic uncertainties. Additionally, 

the effect of the seeding density (block) has large contribution to the total 

uncertainty in the time-averaged stream-wise velocity everywhere in the 

flow domain. On the contrary, the factors ∆t and ∆z show significant 

contributions to the total uncertainty in the flow regions of low fluctuations 

and high fluctuations, respectively. In the case of Reynolds normal stress, it 

is found that the interrogation window size DI and seeding density are the 

major contributors to the total uncertainty. The proposed methodology is 

also applied to the investigation by stereoscopic PIV of the flow at the outlet 

of a ducted Boundary Layer Ingesting (BLI) propulsor. The total 
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uncertainties in time-averaged stream-wise velocities are computed along 

with the analysis of the effects of the experimental factors, namely camera 

aperture, inter-frame time separation, interrogation window size and 

stereoscopic camera angle. It is clear from the results that the stereoscopic 

camera angle has very significant contribution to the total uncertainty. 

Additionally, ∆t is found to affect the total uncertainty in the flow regions of 

high fluctuations. The present work thus provides the ability to segregate 

the systematic uncertainties due to the experimental factors considered for 

the analysis. Knowing these constituent uncertainties, it will be possible to 

optimize the experiment in order to reduce the total uncertainty. The 

proposed methodology has been successfully used for planar (both 2C and 

3C) PIV measurements. However, the approach is general and can be applied 

universally, irrespective of the kind of PIV setup for uncertainty 

quantification in any of the measured quantities. 
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Chapter 7 

Elimination of Background Reflections by 

Anisotropic Diffusion 

Abstract 

A novel approach is introduced that allows the elimination of undesired 

laser light reflections from PIV images. The approach relies upon anisotropic 

diffusion of the light intensity, which is used to generate a background image 

to be subtracted from the original image. The intensity is diffused only along 

the edges and not across the edges, thus allowing to preserve in the 

background image the shape of boundaries as laser light reflections on solid 

surfaces. Due to its ability of producing a background image from a single 

snapshot, opposed to most methods that make use of intensity information 

in time, the technique is particularly suitable for elimination of reflections in 

PIV images of unsteady models, such as transiting objects, propellers, 

flapping and pitching wings. The technique is assessed on an experimental 

test case which considers the flow in front of a propeller, where the laser 

light reflections on the model’s surface preclude accurate determination of 

the flow velocity. Comparison of the anisotropic diffusion approach with 

conventional techniques for suppression of light reflections show the 

advantages of the former method especially when reflections need to be 

removed from individual images. 
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7.1. Introduction 

PIV images are often affected by unwanted light reflections occurring when 

the laser light impinges on a solid surface. The intensity of those reflections 

can be one order of magnitude larger than that of the particle images, 

causing a high auto-correlation peak in the correlation function. Such peak 

can be much higher than the particle images displacement cross-correlation 

peak, thus precluding accurate determination of the flow velocity in 

proximity of a solid surface. 

Several approaches have been devised to avoid laser light reflections when 

conducting the measurements. Whenever possible, it is good practice to 

cover the model with mat black paint, so that most of the laser light 

impinging on a surface is absorbed instead of being reflected (Gui et al., 

2001). Fluorescent paint (e.g. rhodamine) can be applied to the model 

surface in order to change the wavelength of the reflected light from green 

to red (Depardon et al., 2005). A bandpass filter mounted on the camera lens 

allows to reject the red light from the surface, thus retaining only the green 

light scattered from the particles. However, in many cases the model cannot 

be painted, either because of the presence of wall tapping for pressure 

measurements, or in order not to alter the surface roughness and 

consequently the boundary layer properties. For flat surfaces, Kähler et al. 

(2006) report that tangential model illumination allows a dramatic 

suppression of undesired wall reflections. Nevertheless, in presence of more 

complex model geometries where the model surface presents a curvature, 

tangential illumination cannot be achieved on the entire surface, but only at 

one specific location of the surface. The influence of the imaging angle was 

investigated by Lin and Perlin (1998). The authors report that, for 

measurements in water flows with free surface, tilting the camera to the air-

water Brewster angle has the effect of removing most of the reflections from 

the water free surface. More recently, Kähler (2009) investigated the effect 

of the model material and surface treatment on the intensity of light 

reflections; the author found that aluminum models with highly polished 

surface has the minimum diffusive reflectivity among the tested materials 

(steel, carbon fiber reinforced plastic, glass, PMMA).  
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Despite the efforts above, in many cases laser light reflections are still 

present in the PIV recordings and need to be treated in the pre-processing 

phase (image restoration). The objective of image restoration is to remove 

the unwanted background from the images while keeping the particle 

images signal. In some cases, the background removal is simply achieved by 

recording a background image without tracer particles, and then removing 

it from the PIV recordings. Even if the background image has not been 

acquired, in stationary problems (no moving interfaces or pulse-to-pulse 

light intensity variation) it is possible to generate such background image by 

image statistics, computing the minimum or the average of the light intensity 

at each pixel location (Adrian and Westerweel, 2011). However, it is well 

known that the subtraction of time-average intensity may lead to removal of 

particle images from the recordings, especially in the low-velocity regions 

where the particles displacement is the minimum. For slowly moving light 

reflections or light intensity variations at frequency much lower than the 

acquisition frequency, subtraction of a time-varying background, generated 

by sliding-average or sliding-minimum light intensity over a short kernel, 

can be employed. Theunissen et al. (2008) assessed by Monte Carlo 

simulations different pre-processing techniques for background reflection 

removal. The authors report that a combination of local minimum intensity 

subtraction and equalization of mean intensity is effective in removing 

reflections that are constant in time. Alternatively, Sciacchitano and Scarano 

(2014) proposed the use of a temporal high-pass filter to remove unsteady 

background reflections while retaining the particle image intensity. The 

approach is based on the decomposition of the signal in the frequency 

domain and the removal of the low-frequency content, representative of the 

unwanted light reflections. The underlying assumption of the approach is 

that the contribution of the reflection (low-frequency) is well separated in 

the frequency domain from the contribution of the particle images (high-

frequency), meaning that the reflection must reside for a few time instants 

in a pixel location. Recently, Mendez et al. (2017) proposed a POD-based 

background removal, which can in principle eliminate reflections also on 

moving surfaces, provided that a sufficiently large ensemble of images is 

available for convergence of the POD modes. However, even this approach 
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requires that the reflection resides for several recordings in the same pixel 

locations, which is often not the case in presence of towed or moving models, 

flapping or rotating wings. In the latter cases, background removal cannot 

rely upon image statistics, but must be conducted on individual raw images. 

Most approaches rely on the consideration that the particle images have 

shorter length scale (typically 1 to 5 pixels) than the background reflection, 

which may cover tens of pixels. Hence, the contribution of the particle 

images can be isolated from that of the background by applying a spatial 

high-pass filter, where the filter kernel should have a linear size at least as 

large as the particle image diameter. Several filters have been proposed in 

the past, including the top-hat sliding-average filter, the Gaussian filter, the 

median filter (Adrian and Westerweel, 2011) and the min/max filter 

(Westerweel, 1993). Nevertheless, the use of an isotropic filter, which has 

the same effects in all directions, typically yields low performance in 

proximity of sharp reflections, causing reduction of the signal level. 

Honkanen and Nobach (2005) proposed a simple background extraction 

approach for double-frame PIV images, where the second frame of the image 

pair is subtracted from the first frame. The idea is that everything that stays 

stationary in the image pair, namely the background, is removed from the 

first image. However, this approach may lead to particles cancellation in 

cases of high source density or in regions where the flow velocity is the 

lowest. Another approach proposed by Deen et al. (2010) to eliminate 

moving reflections relies upon the combination of several image processing 

techniques, such as intensity normalization, background subtraction and 

masking. The approach was successfully employed by the authors to remove 

the undesired correlation peak due to non-stationary bubbles in a two-phase 

flow. However, the requirement to use several techniques makes this 

approach computationally expensive for most practical applications. Mejia-

Alvarez and Christensen (2013) modified the algorithm proposed by 

Honkanen and Nobach (2005) by computing the normalized local intensity 

with respect to the difference between sliding median and minimum 

intensities. Although this algorithm is able to suppress the residual 

background reflections which are not eliminated by Honkanen and Nobach’s 

approach, its performances have been demonstrated only for diffused 
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reflections due to an irregular rough wall, and not in presence of sharp 

reflections occurring e.g. when the laser sheet impinges on a solid surface.  

The discussion above shows that an effective methodology for the removal 

of the unwanted laser light reflections from individual PIV images, thus 

without making use of image statistics, is currently missing. Such an 

approach would find its application in PIV measurements where the laser 

light reflection is unsteady e.g. due to the presence of transiting objects, 

propellers, flapping or pitching wings.   

In the image processing community, approaches for edge detection based on 

anisotropic diffusion have been widely used in the last three decades since 

the seminal paper of Perona and Malik (1990). The idea is to compute a 

sliding-average of the intensity of an image on an anisotropic kernel which 

accounts for the intensity gradient. The approach has been successfully 

employed to enhance edges with respect to background noise. Further 

improvements to the technique have been proposed by Chao and Tsai 

(2006) for restoration of astronomical images. In their case, the image of the 

Henize 70 nebula was obscured by sparking stars. The approach was 

employed to segregate the stars, which had low length scale of the order of 

a few pixels, from the nebula characterized by large length scale and low 

intensity gradient. In PIV images, the light reflections are sharp and usually 

have higher intensity levels than the particle images, as opposed to the case 

of the nebula images. Hence, in this chapter, we further develop the 

approach of Perona and Malik (1990) and Chao and Tsai (2006) for isolating 

the contribution of the particle images from that of unwanted light 

reflections. 

7.2. Proposed methodology 

To explain the technique, consider a raw image IR(x,y) where both unwanted 

laser light reflections and tracer particle images are present. A background 

image IBG(x,y), ideally containing only the unwanted laser light reflections 

and no tracer particle image, is often computed via sliding-average of the 

intensity of IR (Adrian and Westerweel, 2011). The latter operation is 
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typically conducted by convolution of IR with a kernel G, which is usually top-

hat or Gaussian. As pointed out by Koenderink (1984) and Hummel (1987), 

IBG can be also interpreted as the solution I(x,y,t) of the diffusion equation: 

𝜕𝐼

𝜕𝑡
= 𝛥𝐼 =

𝜕2𝐼

𝜕𝑥2
+

𝜕2𝐼

𝜕𝑦2
 

                                           (7.1) 

with the initial condition I(x,y,t=0)= IR(x,y). Notice that in equation (7.1) 

the intensity is diffused isotropically, with no preferential direction (i.e. 

diffusion occurs at the same speed in all directions). Also, equation (7.1) 

treats in the same way particle images, which cover only a few pixels, and 

reflections, which typically affect several pixels. When equation (7.1) is 

applied to typical PIV images with reflections [figure 7.1(a)], a clear 

smoothing of the unwanted laser light reflection is noticed [figure 7.1(b)]. 

As a consequence, the solution of equation (7.1) is not a good estimate of the 

true background image. 

Following Perona and Malik (1990), equation (7.1) can be rewritten into the 

anisotropic diffusion equation, so that diffusion occurs along the edges and 

not across the edges: 

𝜕𝐼

𝜕𝑡
= 𝛻 ⋅ [𝑐(𝑥, 𝑦, 𝑡)𝛻𝐼] = 𝑐(𝑥, 𝑦, 𝑡)𝛥𝐼 + 𝛻𝑐 ⋅ 𝛻𝐼 

                    (7.2) 

Perona and Malik (1990) proposed to choose the diffusion coefficient c as a 

function of the magnitude of the intensity gradient: 

𝑐(𝑥, 𝑦, 𝑡) = 𝑔[𝛻𝐼(𝑥, 𝑦, 𝑡)] 

             (7.3) 

being g a suitable monotonic function. The authors used the following 

expression for g:  

𝑔(𝑥, 𝑦, 𝑡) =
1

1 + (
|𝛻𝐼|

𝐾 )
2 

                      (7.4) 
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where K is a positive constant termed as threshold parameter.  

     

             (a)             (b) 

    

             (c)              (d) 

Figure 7.1. Comparison of different approaches for retrieving the background image. 

(a) raw image of a cavity flow measurement (Iannetta et al. 2016); (b) background 

image by isotropic diffusion (sliding-average intensity); (c) background image by 

Perona and Malik (1990) approach; (d) background image by the proposed 

approach. The following parameter values are used for the evaluation of the 

background image: K = 10 and tf  = 300, tf being the number of iterations. 

When g is chosen as a monotonically decreasing function, little diffusion 

occurs in the direction of high intensity gradient, e.g. at the interface 

between the laser reflection and the fluid region. Conversely, the diffusion 

mainly occurs in the direction of low intensity gradients, i.e. along the light 
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reflection. The approach proposed by Perona and Malik (1990) is very 

effective in avoiding smoothing of the edges, but it considers only the 

magnitude of the intensity gradient, and not the local intensity. As a 

consequence, it does not cause diffusion of small intense particle images, 

which remain in the estimated background image [figure 7.1(c)].  

Modifications to equation (7.4) have been proposed by Chao and Tsai (2006, 

2010) to account not only for the intensity gradient, but also to the local 

intensity variance. In the present work, the diffusion coefficient is computed 

also as a function of the local normalized intensity In to enable the distinction 

between reflections, which cover several pixels in an image, and pointwise 

bright spots such as the particle images. In is evaluated as the local intensity 

normalized with respect to the local mean of the intensities [computed with 

respect to 12 neighbors in a diamond shaped kernel; the neighbors are 

defined by D8  distance = 1 and D4 distance = 2, as described in Gonzalez and 

Woods (2002)]:   

𝑐(𝑥, 𝑦, 𝑡) = 𝑔[𝛻𝐼(𝑥, 𝑦, 𝑡), 𝐼𝑛] 

            (7.5) 

𝑔(𝑥, 𝑦, 𝑡) =
1

1 + (
|𝛻𝐼|

𝐾 ⋅ 𝐼𝑛
)

2 

                                  (7.6) 

The particle images are typically characterized by large values of the 

normalized local intensity In compared to the magnitude of the intensity 

gradient |∇I|, whereas the reflections feature small values of In with respect 

to the corresponding |∇I|. It is to be noted that the normalized local intensity 

In  and the magnitude of the intensity gradient |∇I| can be compared directly 

since |∇I| is defined in the discretized form as the difference between the 

intensities of the neighboring pixels. Thus, the diffusion coefficient is large 

for the particle images and small for the reflections, as shown in figure 7.2. 

This choice enables high diffusion for the particle images, and as a result, the 

particle images are not present anymore in the background image [figure 

7.1(d)]. 
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Figure 7.2. Plot of the diffusion coefficient function given by equation (7.6) 

7.2.1. Numerical implementation 

Following Perona and Malik (1990), equation (7.2) is discretized as follows: 

𝐼𝑖,𝑗
𝑡+1 = 𝐼𝑖,𝑗

𝑡 + 𝜆[𝑐𝑁𝛻𝑁𝐼 + 𝑐𝑆𝛻𝑆𝐼 + 𝑐𝐸𝛻𝐸𝐼 + 𝑐𝑊𝛻𝑊𝐼]𝑖,𝑗
𝑡  

  (7.7) 

where (i, j) are the pixels locations along y and x directions, respectively, 0 

≤ λ ≤ 0.25 for numerical stability, the subscript N, S, E and W represent 

North, South, East and West, and ∇ indicates the nearest-neighbor 

differences: 

𝛻𝑁𝐼 = 𝐼𝑖−1,𝑗 − 𝐼𝑖,𝑗 

𝛻𝑆𝐼 = 𝐼𝑖+1,𝑗 − 𝐼𝑖,𝑗  

𝛻𝐸𝐼 = 𝐼𝑖,𝑗+1 − 𝐼𝑖,𝑗 

𝛻𝑊𝐼 = 𝐼𝑖,𝑗−1 − 𝐼𝑖,𝑗  

                        (7.8) 

In this work, λ = 0.2 is used in all analyses. The diffusion coefficients are 

updated at each time instant as a function of the local intensity gradient and 

normalized intensity level: 
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𝑐𝑁 = 𝑔(𝛻𝑁𝐼, 𝐼𝑛) 

𝑐𝑆 = 𝑔(𝛻𝑆𝐼, 𝐼𝑛) 

𝑐𝐸 = 𝑔(𝛻𝐸𝐼, 𝐼𝑛) 

𝑐𝑊 = 𝑔(𝛻𝑊𝐼, 𝐼𝑛) 

                      (7.9) 

7.2.2. Selection of threshold parameter and number of iterations  

To solve the anisotropic diffusion equation (7.2), the value of two relevant 

parameters must be selected: the threshold parameter K and the number of 

iterations tf. A parametric study is conducted to determine which 

combination of K and tf is the most effective for background removal in PIV 

images. 

First, the effect of threshold parameter is studied by considering different 

values of K for the same number of iterations. Background and pre-

processed images of a typical PIV raw image are illustrated in figure 7.3 for 

tf = 300 iterations and K equal to 5, 10 and 50, respectively. It is observed 

that for small values of the threshold parameter (K = 5), the particle images 

are not diffused sufficiently and therefore are still present in the background 

image (first column in figure 7.3). Conversely, a large value of K (K = 50 in 

the example), causes diffusion of the sharp reflection along with the particle 

images. Hence, the reflection is not eliminated sufficiently in the pre-

processed image obtained by subtracting the background image from the 

original raw image (last column in figure 7.3). The results can be explained 

based on the definition of the diffusion coefficient [equation (7.6)], where 

the large value of K makes the diffusion coefficient approach unity. In the 

latter case, the diffusion process becomes isotropic as expressed in equation 

(7.1). It is observed that an intermediate value of K (K = 10) yields better 

results than those for K = 5 and K = 50, by diffusing the particles sufficiently 

and by retaining the sharp reflection in the background image (middle 

column in figure 7.3). The results in figure 7.3, thus, suggest to use an 

intermediate value (K = 10) for the threshold parameter in the proposed 

anisotropic diffusion approach. 
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Figure 7.3. Comparison of raw image (top row), background images obtained using 

the proposed anisotropic diffusion approach after 300 iterations (middle row) and 

the pre-processed images for different values of threshold parameter (K = 5, 10, 50; 

bottom row) 
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To investigate the effect of the number of iterations, different values of tf are 

considered, keeping the threshold parameter constant (K = 10). The 

background and pre-processed images are shown in figure 7.4 for the three 

cases of tf equal to 10, 300 and 1000.  
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tf = 10 
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Figure 7.4. Comparison of background and pre-processed images obtained using the 

proposed anisotropic diffusion approach with K = 10 after different number of 

iterations (tf = 10, 300, 1000) 
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It is observed that for small number of iterations (tf = 10), the particle 

images are not diffused completely in the background image (first column in 

figure 7.4), yielding a pre-processed image where the signal is strongly 

attenuated. Conversely, for large number of iterations (tf  = 1000), the 

reflection is diffused in the background image (last column in figure 7.4), and 

therefore remains partly present in the pre-processed image. When tf = 300 

iterations are employed, the reflection remains sharp in the background 

image, whereas the particle images are diffused, yielding better background 

removal without loss of signal from the tracer particles (middle column in 

figure 7.4). Based on the above, the combination (K, tf) = (10, 300) is more 

suitable than the other combinations in removing the background of the 

sharp reflections.  

The effect of the number of iterations on the intensity levels of particle 

images and reflections is further illustrated in figure 7.5 for different values 

of K.  Two windows of 10×10 pixels are considered representative of the 

reflections region and of the particle images region, respectively, as 

illustrated in figure 7.5 (left). After each iteration of the anisotropic diffusion 

algorithm, the intensity in each of the two windows is computed and plotted 

in figure 7.5 (right). The intensity of the reflection is calculated as the mean 

intensity in window 1, whereas the particles’ intensity is calculated as the 

maximum intensity in the window 2, since the maximum intensity level 

represents the particle image peak intensity. Figure 7.5 (right) shows that 

the rate of diffusion is high for K = 50, causing the reflection to diffuse along 

with the particle images, which is not desirable. Instead, for K = 5 the 

diffusion is very slow and it takes more iterations to attenuate the particle 

images intensity compared to the other two values of K. Thus, K = 10 is found 

to be a good choice for the threshold parameter. The plots for K = 10 show 

that the particles are removed sufficiently after about 300 iterations; further 

increasing the number of iterations does not produce any improvement in 

the background image. In contrast, the reflection intensity reduces slightly 

with increasing number of iterations. Hence, a larger number of iterations 

has the effect of causing diffusion of the laser light reflections, returning an 

output image that is not representative of the actual background. For this 

reason, the number of 300 iterations in combination with a threshold 
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parameter K = 10 is considered a good choice to generate the background 

image. It is to be noted that the values are not the optimum values although 

they are shown to be effective. The reader is advised to plot curves as those 

of figure 7.5-right for a pair of PIV images to find out the suitable values of K 

and tf. Then the same values could be used for pre-processing all the images 

of a set. A rule of thumb is to select the value of K such that it provides high 

slope for the curve of the particles intensities and low slope for that of the 

reflections intensities; the number of iterations is selected as the minimum 

value of tf  for which the particles intensities are below a certain threshold 

(e.g. 5 counts).  

     

Figure 7.5. Plot of the intensity levels of particle images and reflection in the 

background image versus the number of iterations in the proposed anisotropic 

diffusion approach with different values of K (the areas where the reflections and 

particle images intensities are analyzed are the red squares 1 and 2 in the figure on 

the left, respectively) 

It should be noticed that the algorithm is not very sensitive to the choice of 

the processing parameters K and tf, in the sense that a variation of these 

parameters by 10-20% would in practice yield the same background image. 

The computational time is proportional to tf and is comparable to that of 

other standard filters. 



7. Elimination of Background Reflections by Anisotropic Diffusion 

139 

7.3. Experimental assessment 

The performance of the proposed anisotropic diffusion approach is assessed 

via PIV images acquired for the investigation of the propeller blade vortex 

interaction (Yang, 2017 and Yang et al., 2016). This particular experimental 

test case is chosen due to the presence of sharp and unsteady reflections of 

the propeller blade in the images. The experimental setup is shown in figure 

7.6; the tests are carried out in the Open-Jet Facility (OJF) at Delft University 

of Technology. The propeller has eight blades with 0.304 m diameter and a 

blade angle of 41° is set up at ¾ of the blade radius to reproduce take-off 

conditions. A truncated two-dimensional DU96-W-180 airfoil is used as 

vortex generator (span of 1 m and chord length of 0.25 m) and is placed at 

3.2 chord lengths upstream the propeller. Stereoscopic PIV measurements 

are performed in an upstream plane (positioned at X/R = -0.20) 

perpendicular to the propeller axis as shown in figure 7.6 (right). Two 

LaVision Imager Pro LX 16M cameras (CCD sensor of 4870×3246 pixels, 12 

bit resolution, 7.4 m pixel pitch) and a Quantel Evergreen 200 laser (dual 

pulsed Nd:YAG laser, 200 mJ energy per pulse) are used for the 

measurements. The flow is seeded with micron-sized water-glycol particles 

produced by a SAFEX Twin Fog Double Power smoke generator. The detailed 

description of the experimental setup can be found in Yang (2017).  

  

Figure 7.6. Experimental setup of the propeller blade vortex interaction (left) and 

top view of PIV setup in the upstream plane perpendicular to the propeller axis 

(right). Figure reproduced from Yang (2017) 
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Figure 7.7 shows a raw image pair and the corresponding displacement field 

(from a single camera) obtained in this experiment. As it can be seen in 

figure 7.7-left, the raw images are affected by strong laser light reflections, 

especially at the leading edge of the propeller blade. Since the propeller is 

spinning at 2,500 rpm, the propeller tip moves of about 2 mm between the 

two image frames. Notice that the measurement plane is located about 12 

mm upstream of the blade leading edge; as a consequence, the fluid 

displacement in the measurement plane differs from the blade displacement. 

The cross-correlation analysis on the raw images returns a displacement 

field (figure 7.7-right) that is highly affected by the laser light reflections. 

The flow displacement in front of the propeller blade is highly over-

estimated due to the presence of the blade reflection, which moves between 

the two frames. 

                              

Figure 7.7. Raw image pair (left; red: first recording and green: second recording) 

and corresponding displacement field (right). The interrogation windows where the 

cross-correlation analysis is conducted are shown in the raw image pair 
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It should be noticed that, since the PIV acquisition was not synchronized 

with the rotation of the propeller blade, the position of the latter varies 

among different recordings (see figure 7.8). As a consequence, standard 

background removal approaches based on the statistical analysis of the 

sequence of images (e.g. subtraction of the time-average or time-minimum 

intensity) fail in removing the background reflection. Furthermore, even 

more advanced approaches based on image statistics such as the POD filter 

(Mendez et al., 2017) are not effective in this specific case, due to the limited 

number of recordings (250) per set of images, which causes the POD modes 

not to reach statistical convergence. 

      

Figure 7.8. Examples of instantaneous PIV recordings showing the blades 

reflections, phase angle 𝛹 = 6.0° (left) and 𝛹 = 34.5° (right). Figure reproduced 

from Yang (2017) 

When image pre-processing is performed, the relative intensity of the 

particle images with respect to the laser reflection can be highly enhanced. 

Figure 7.9 shows a comparison among the image pre-processing by sliding-

average subtraction, median filter subtraction, median-based-normalization 

subtraction and the proposed anisotropic diffusion approach. In the first 

method, the background image (figure 7.9- first row- first column) is built as 

sliding-average (viz. isotropic diffusion) of the image intensity in a kernel of 

3×3 pixels in 30 iterations. A Gaussian weighting is applied to the intensity 

within the kernel. In the second method, a median filter of kernel of 5×5 

pixels is applied to the raw image to generate the background image (figure 

7.9- second row- first column), which is then subtracted from the raw image 

to get the pre-processed image (figure 7.9- second row- second column). The 

next method is based on Mejia-Alvarez and Christensen’s (2013) approach, 
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where normalization is performed with respect to the local median and 

minimum intensities in a kernel of 9×9 pixels. The two frames are then 

subtracted from each other to eliminate the background and further 

normalization is applied with respect to local maximum and minimum 

intensities. Finally, the intensity values are stretched according to the global 

maximum and minimum intensities in the original raw images. The 

background and pre-processed images obtained with this median-based-

normalization algorithm are shown in figure 7.9 in the third row, first and 

second columns, respectively. As it can be seen in figure 7.9 (rows- 1, 2, 3), 

these three methods (viz. pre-processing by sliding-average subtraction, 

median filter subtraction and median-based-normalization subtraction) 

yield background images where the particle image intensity is highly 

reduced. However, also the light reflection on the propeller blade is diffused 

with respect to the raw images. As a consequence, when the pre-processed 

images are evaluated from the difference between raw images and 

background, they still feature laser light reflections which yield erroneous 

vectors in the displacement field (figure 7.9- rows- 1, 2, 3- last column). 

Instead, when the background image is built with the proposed anisotropic 

diffusion approach, the particle image intensity is strongly diffused, whereas 

no significant diffusion occurs on the light reflections on the propeller blade 

(figure 7.9- last row- first column). As a result, the background image by 

anisotropic diffusion is much more representative of the true background. 

In the pre-processed image, the intensity of the laser light reflections on the 

propeller blade becomes lower than that of the particle images (figure 7.9- 

last row- second column). Hence, the computed displacement field does not 

feature any erroneous vector associated with unwanted laser light 

reflections on the solid surface (figure 7.9- last row- last column). 

For a quantitative assessment of the performance of the anisotropic 

diffusion filter, the cross-correlation analysis is conducted in two 

interrogation windows of 65×65 pixels, shown in figure 7.7 (left). The 

interrogation window 1 is located in front of the blade and features strong 

laser light reflections, whereas interrogation window 2 is in a region free of 

any unwanted reflections. The results of the cross-correlation analysis are 

illustrated in figures 7.10 and 7.11 and the corresponding pixel 



7. Elimination of Background Reflections by Anisotropic Diffusion 

143 

displacements and cross-correlation signal-to-noise ratios (SNR) are 

reported in table 7.1. 

 
Background image Pre-processed 

image 
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Figure 7.9. Comparison among image pre-processing by sliding average subtraction 

(kernel of 3×3 pixels and 30 iterations), median filter subtraction (kernel of 5×5 

pixels), median-based-normalization subtraction (kernel of 9×9 pixels) and the 

proposed anisotropic diffusion approach (diamond shaped kernel, K = 10 and 300 

iterations). Background images (first column; red: first recording and green: second 

recording), pre-processed images (second column) and corresponding 

displacement fields (third column). 
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Table 7.1. Particle image displacement and correlation signal-to-noise ratio (SNR) 

in the two interrogation windows for different image pre-processing methods. 

Image 

Interrogation 
Window 1 

Interrogation 
Window 2 

∆x 
[pix] 

∆y 
[pix] 

SNR 
∆x 

[pix] 
∆y 

[pix] 
SNR 

Original 16.0 -0.6 0.1 0.9 3.9 9.3 

Sliding average subtraction 16.1 -2.1 0.2 0.9 3.8 7.2 

Median filter subtraction 16.1 -2.2 0.9 0.9 3.8 7.1 

Median-based-normalization 
subtraction 

6.2 4.3 1.5 1.0 3.7 3.0 

Anisotropic diffusion 
subtraction 

6.3 4.4 4.0 0.9 3.9 7.9 

In interrogation window 1, the strong reflection on the propeller blade 

yields a high peak in the cross-correlation functions obtained from raw 

images and pre-processing by sliding-average subtraction or median filter 

subtraction [figure 7.10(a), (b), (c)]. The position of the peak corresponds 

to the displacement of the propeller blade between frame 1 and frame 2. As 

mentioned before, such displacement is not the same as the fluid 

displacement, because the plane of the propeller does not coincide with the 

measurement plane. Such peak is much larger than the true particle 

displacement peak (which can be seen around ∆x = 6 pix, ∆y = 4 pix) 

yielding a correlation signal-to-noise ratio (SNR) smaller than one. As a 

consequence, an erroneous displacement vector is estimated. Conversely, in 

the case of pre-processing by median-based-normalization or anisotropic 

diffusion, the correlation peak due to the blade movement is much 

attenuated or not even visible [figure 7.10(d) and (e)]. Hence, the particle 

images displacement peak is correctly identified, yielding a valid vector 

estimation. However, the comparison of the correlation SNR’s from table 7.1 
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shows that the particles signal is attenuated more with the median-based-

normalization algorithm (SNR = 1.5) than with the anisotropic diffusion 

approach (SNR = 4.0). 

 

(a) 

         

 (b)            (c)    (d)            (e) 

Figure 7.10. Comparison among cross-correlation functions in the interrogation 

window 1 (with light reflections). (a) raw images; (b) image pre-processing by 

subtraction of sliding average intensity; (c) image pre-processing by subtraction of 

background by median filter; (d) image pre-processing by subtraction of 

background by median-based-normalization; (e) image pre-processing by 

subtraction of background by anisotropic diffusion. The black cross indicates the 

center of the cross-correlation window. For sake of clarity, figures (b) to (e) only 

show the smaller region represented by the red square in figure (a). 
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(a) 

          

 (b)            (c)    (d)            (e) 

Figure 7.11. Comparison among cross-correlation functions in the interrogation 

window 2 (without light reflections). (a) raw images; (b) image pre-processing by 

subtraction of sliding average intensity; (c) image pre-processing by subtraction of 

background by median filter; (d) image pre-processing by subtraction of 

background by median-based-normalization; (e) image pre-processing by 

subtraction of background by anisotropic diffusion. The black cross indicates the 

center of the cross-correlation window. For sake of clarity, figures (b) to (e) only 

show the smaller region represented by the red square in figure (a). 

When the cross-correlation analysis is conducted in a region free of any 

reflections (viz. interrogation window 2), all pre-processing methods 

correctly identify the displacement peak (figure 7.11), leading to a 

displacement estimate accurate within 0.1 pixels. However, it is noticed that 
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the image pre-processing with the median-based-normalization algorithm 

strongly attenuates the particles signal, returning a relatively low SNR which 

results in slightly inaccurate displacement measurements. On the contrary, 

the SNR obtained with the anisotropic diffusion filter is approximately the 

same as that achieved with the raw images, which indicates that the 

approach has no detrimental effect in regions where no reflections are 

present. 

7.4. Conclusions 

A novel approach is proposed to suppress undesired light reflections from 

PIV images. The approach relies upon generating a background image by 

anisotropic diffusion of the intensity distribution of the raw image. The 

principle is that, by means of anisotropic diffusion, the image intensity is 

diffused only along the edges and not across the edges, maintaining sharp 

reflections in the background image. The latter is then subtracted from the 

original image, yielding a pre-processed image where no reflection is 

present and only the contribution of the particle images is retained. Contrary 

to most approaches for background removal that require the analysis of an 

image sequence (e.g. subtraction of time-average or time-minimum image 

intensity, POD filter, high-pass filter in the frequency domain), the proposed 

approach is applicable to individual images, and is therefore suitable for all 

the cases where the reflection is unsteady, or when a short image sequence 

has been acquired, yielding lack of convergence in the statistical analysis.  

A parametric study has been conducted to evaluate the effect of two key 

parameters of the approach, namely the threshold parameter K and the 

number of iterations tf. The threshold parameter K governs the rate of 

diffusion: high values of K yield isotropic diffusion, typically over-smoothing 

the reflections; conversely, low values of K slow down the diffusion process. 

The number of iterations tf determines the number of neighboring pixels 

involved in the diffusion process. It is found that values of K = 10 and tf = 

300 are effective for the PIV images used in this work. Readers are advised 

to perform the parametric study for a pair of images to determine the 

suitable values of K and tf.  
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The proposed approach is applied to real PIV images acquired for the study 

of the blade vortex interaction, characterized by sharp and unsteady 

reflections of the propeller blades. Due to the unsteady character of the 

reflections, background removal approaches based on the statistical analysis 

of the entire sequence of images are not effective. The results of the 

anisotropic diffusion background removal are compared with the 

conventional pre-processing methods of isotropic diffusion (sliding-

average) filter, median filter subtraction and median-based-normalization 

filter. The comparison shows that the proposed approach is effective in 

removing the unsteady reflections, allowing the estimation of the particles 

displacement even in close proximity of the reflection region. In regions of 

the image not affected by reflections, the use of the anisotropic diffusion 

filter retains approximately the same image quality as in the raw images. 

In the present chapter the performances of the method have been 

demonstrated for the case of sharp reflections, occurring e.g. when the laser 

light impinges on a solid surface. In presence of diffused reflections, the 

anisotropic diffusion coefficient assumes approximately the same value in 

all directions, and the anisotropic filter behaves in practice as isotropic filter 

(sliding-average). 
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Chapter 8 

Conclusions and Outlook 

Abstract 

The present chapter highlights the major results from the various chapters 

of the thesis. The principles of the proposed methodologies and approaches 

are also briefly stated here. The concluding remarks based on the findings in 

each of the works are presented. Finally, the outlook on these conclusions is 

also provided.   

8.1. Survey on PIV errors and uncertainty quantification 

In the chapter 4, we performed a survey to determine how PIV users and 

researchers worldwide perceive the PIV error sources and the current 

approaches for uncertainty quantification. A questionnaire consisting of 11 

questions has been formulated and sent to 475 researchers from both 

academia and industry. The total number of responses was 103, resulting in 

a response rate of 22%. The responses were analyzed quantitatively in pie 

charts, bar graphs and bubble plots, whereas the descriptive answers 

supported the analysis of the charts. Overall, it is found that the PIV 

community struggles more with the error sources associated with 

measurement setup and image acquisition, such as background image 

reflections, seeding density and its distribution, image calibration. 

Conversely, the image analysis step is perceived as easy and accurate, 

possibly because much work in the last three decades has been dedicated to 

optimizing image interrogation algorithms to maximize the accuracy of the 

resulting velocity fields. Further detailed analysis was performed by 

separating the responses of two groups of PIV users, namely users who 

employ planar (2D2C and 2D3C) measurement setups and users who 

perform tomographic 3D3C (PIV and PTV/LPT) measurements. It is found 
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that the errors due to background image reflections, seeding and image 

noise are considered to be significant by both the groups. However, the 

errors due to the laser and camera misalignment and out-of-plane motion of 

particles are more common for the planar setup users. Contrary, the errors 

related to the calibration procedure are more problematic for the 

tomographic setup users.    

The PIV users are aware of the importance of uncertainty quantification 

(UQ). However, only 49% of the respondents always quantify the 

uncertainty of their PIV measurements. PIV users can choose among a wide 

range of UQ algorithms, some of which are also implemented in commercial 

software, thus making them easy to use. Nevertheless, given the wide variety 

of UQ approaches used, it is clear that no approach can be currently 

considered as the standard tool for PIV-UQ. Furthermore, the analysis of the 

two groups of PIV users employing either planar or tomographic setups 

shows that the standard UQ approaches are limited to be used in the 

tomographic measurements for uncertainty quantification. The need of a 

universally accepted PIV-UQ approach which can deal with random as well 

as systematic errors has been emerged from this analysis. 

8.2. Multi-∆t approach for peak-locking uncertainty 

quantification 

A novel approach is proposed in the chapter 5 for the quantification of the 

peak-locking systematic uncertainty in PIV, which in turn also corrects the 

measured particle image displacement (and velocity) and Reynolds stress 

for peak-locking errors. The approach is based on the assumption that local 

flow statistics are constant in time, according to which the particle image 

displacement should vary linearly with the time separation (Δt) between 

two frames. However, in presence of peak locking, the measured particle 

image displacement is a non-linear function of Δt as the measurement error 

in the displacement varies non-linearly with sub-pixel particle image 

displacement. Similarly, in presence of peak locking the Reynolds stress may 

vary significantly depending on the selected Δt. Hence, in the present 
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approach, it is proposed to acquire the measurements at various Δt’s and 

perform a least-squares regression of the measured quantities 

(displacements and Reynolds stresses). The displacement (and velocity) 

and Reynolds stress from regression represent more accurate estimates of 

the “true” values and thus used to quantify systematic errors and 

uncertainty due to peak locking in the measured displacement (and velocity) 

and Reynolds stresses, respectively. Guidelines for the selection of the ∆t’s 

are also provided. The methodology is assessed for planar PIV 

measurements of the flow over a NACA0012 airfoil at 10 degrees angle of 

attack. The uncertainties in the measured velocity and Reynolds stresses are 

reduced by 50 to 80% and 35 to 75%, respectively, after correcting by the 

regression analysis. Relative coverage indices close to one are obtained for 

the mean velocity uncertainty and Reynolds stress uncertainty in both the 

potential and turbulent regions of the flow, indicating the ability of the 

methodology to quantify the uncertainty associated with peak-locking 

errors. 

8.3. Design of Experiments (DOE) for PIV uncertainty 

quantification 

A PIV uncertainty quantification (UQ) approach is proposed in the chapter 6 

based on a statistical tool called Design of Experiments (DOE). The basic 

principle of the approach is to measure a statistical quantity, ideally constant 

in time, for the different levels of experimental factors and to compute total 

variance and individual variances arising from the different levels of each of 

the factors. The statistical analysis is performed using Analysis of Variances 

(ANOVA). The proposed methodology is assessed for planar PIV 

measurements of the flow over a NACA0012 airfoil at 15 degrees angle of 

attack to quantify the uncertainty of the time-averaged velocity and 

Reynolds stress. Four design factors, namely camera aperture (f#), inter-

frame time separation (∆t), interrogation window size (DI), laser sheet 

thickness (∆z), and one blocking factor of seeding density are considered for 

the analysis. The design factors and the blocking factor are set at two 

different levels (low and high) each, resulting in a total of 32 measurements 
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(24 = 16 in each block, following the 2N rule, N being the number of design 

factors) that are performed in a random order. The analysis leads to the 

estimation of total uncertainty in the time-averaged velocity and Reynolds 

stress as well as constituent systematic uncertainties due to the design and 

blocking factors. It is found that the uncertainty of the mean velocity 

quantified by the DOE approach is significantly larger than that estimated 

for one individual measurement, which is ascribed to the capability of the 

DOE approach to account also for the systematic uncertainties. Additionally, 

the effect of the seeding density (block) has large contribution to the total 

uncertainty in the time-averaged stream-wise velocity everywhere in the 

flow domain. On the contrary, the factors ∆t and ∆z show significant 

contributions to the total uncertainty in the flow regions of low fluctuations 

and high fluctuations, respectively. In the case of Reynolds normal stress, it 

is found that the interrogation window size DI and seeding density are the 

major contributors to the total uncertainty. The proposed methodology is 

also applied to the investigation by stereoscopic PIV of the flow at the outlet 

of a ducted Boundary Layer Ingesting (BLI) propulsor. The total 

uncertainties in time-averaged stream-wise velocities are computed along 

with the analysis of the effects of the experimental factors, namely camera 

aperture, inter-frame time separation, interrogation window size and 

stereoscopic camera angle. It is clear from the results that the stereoscopic 

camera angle has very significant contribution to the total uncertainty. 

Additionally, ∆t is found to affect the total uncertainty in the flow regions of 

high fluctuations. The present work is thus able to segregate the systematic 

uncertainties due to the experimental factors considered for the analysis. 

Knowing these constituent uncertainties, it will be possible to optimize the 

experiment in order to reduce the total uncertainty. The proposed 

methodology has been successfully used for planar (both 2C and 3C) PIV 

measurements, but has the potential to be extended for three-dimensional 

flow measurements by tomographic PIV and Lagrangian Particle Tracking. 
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8.4. Elimination of background reflections by anisotropic 

diffusion 

A novel approach is proposed to suppress undesired light reflections from 

PIV images. The approach relies upon generating a background image by 

anisotropic diffusion of the intensity distribution of the raw image. The 

principle is that, by means of anisotropic diffusion, the image intensity is 

diffused only along the edges and not across the edges, maintaining sharp 

reflections in the background image. The latter is then subtracted from the 

original image, yielding a pre-processed image where no reflection is 

present and only the contribution of the particle images is retained. Contrary 

to most approaches for background removal that require the analysis of an 

image sequence (e.g. subtraction of time-average or time-minimum image 

intensity, POD filter, high-pass filter in the frequency domain), the proposed 

approach is applicable to individual images, and is therefore suitable for all 

the cases where the reflection is unsteady, or when a short image sequence 

has been acquired, yielding lack of convergence in the statistical analysis.  

A parametric study has been conducted to evaluate the effect of two key 

parameters of the approach, namely the threshold parameter K and the 

number of iterations tf. The threshold parameter K governs the rate of 

diffusion: high values of K yield isotropic diffusion, typically over-smoothing 

the reflections; conversely, low values of K slow down the diffusion process. 

The number of iterations tf determines the number of neighboring pixels 

involved in the diffusion process. It is found that values of K = 10 and tf = 

300 are effective for the PIV images used in this work. Readers are advised 

to perform the parametric study for a pair of images to determine the 

suitable values of K and tf.  

The proposed approach is applied to real PIV images acquired for the study 

of the blade vortex interaction, characterized by sharp and unsteady 

reflections of the propeller blades. Due to the unsteady character of the 

reflections, background removal approaches based on the statistical analysis 

of the entire sequence of images are not effective. The results of the 

anisotropic diffusion background removal are compared with the 
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conventional pre-processing methods of isotropic diffusion (sliding-

average) filter, median filter subtraction and median-based-normalization 

filter. The comparison shows that the proposed approach is effective in 

removing the unsteady reflections, allowing the estimation of the particles 

displacement even in close proximity of the reflection region. In regions of 

the image not affected by reflections, the use of the anisotropic diffusion 

filter retains approximately the same image quality as in the raw images. 

In the chapter 7, the performances of the method have been demonstrated 

for the case of sharp reflections, occurring e.g. when the laser light impinges 

on a solid surface. In presence of diffused reflections, the anisotropic 

diffusion coefficient assumes approximately the same value in all directions, 

and the anisotropic filter behaves in practice as an isotropic filter (sliding-

average). 

8.5. Outlook 

The survey on PIV error sources and UQ was a successful attempt to collect 

the thoughts of the PIV users and researchers on the PIV technique. We 

believe that the outcomes will create awareness in the PIV community and 

foster further developments for uncertainty quantification of planar and 

three-dimensional PIV data.  

The multi-Δt  approach, applicable to statistical flow properties such as time-

averaged velocity and Reynolds stresses, relies on image recordings with 

multiple time separations Δt  and a least-squares regression of the measured 

quantities. The application of this approach was shown for the planar PIV 

measurements in the present work. However, its application is not restricted 

to 2D-2C measurement system and has the potential to be extended to 

stereoscopic (2D-3C) measurements. 

Since the PIV measurements are affected not only by peak-locking errors but 

also other systematic errors, an UQ approach which can consider multiple 

error sources is necessary. Therefore, a comprehensive framework based on 

a statistical tool called Design of Experiments (DOE) was introduced which 

allows to quantify the total uncertainty as well as the systematic 
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uncertainties arising from various sources. The methodology was applied 

for planar and stereoscopic PIV measurements in the present work. 

However, the methodology is general in nature and can be used for any type 

of experimental setup (e.g. planar PIV, stereoscopic PIV, tomographic 

PIV/PTV or LPT, micro-PIV, etc.), any flow regime (e.g. high speed flow, 

multi-phase flow, etc.) and any flow property of interest (e.g. velocity, 

vorticity or pressure). Moreover, the proposed PIV-UQ approach is 

comprehensive as the uncertainties arising from both random (unknown 

factors) and systematic (known factors) error sources are estimated.  

The anisotropic diffusion approach was successfully used for planar PIV 

images to eliminate unsteady background reflections in the present work. 

The approach can also be useful in stereoscopic PIV measurements for 

reflections removal. In case of volumetric measurements, the background 

reflections are not as prominent because the laser light is more diffused to 

achieve volume illumination. The anisotropic diffusion approach can still be 

used for diffused reflections. However, its behavior is expected to resamble 

that of an isotropic diffusion filter. 

The prosed approaches in the present work are not only useful in academic 

and research PIV experiments but also in the industrial PIV measurements 

(e.g. automotive, aerospace, wind energy, among others). The 

comprehensive framework for PIV-UQ based on DOE will complement the 

measured data with the uncertainty values, thus making the measured data 

more trustworthy and suitable for validation of numerical simulations. 
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