

Delft University of Technology

A Decision Tree Induction Algorithm for Efficient Rule Evaluation Using Shannon’s
Expansion

Herrera-Semenets, Vitali; Bustio-Martínez, Lázaro; Hernández-León, Raudel; van den Berg, Jan

DOI
10.1007/978-3-031-47765-2_18
Publication date
2023
Document Version
Final published version
Published in
Advances in Computational Intelligence - 22nd Mexican International Conference on Artificial Intelligence,
MICAI 2023, Proceedings

Citation (APA)
Herrera-Semenets, V., Bustio-Martínez, L., Hernández-León, R., & van den Berg, J. (2023). A Decision
Tree Induction Algorithm for Efficient Rule Evaluation Using Shannon’s Expansion. In H. Calvo, L. Martínez-
Villaseñor, & H. Ponce (Eds.), Advances in Computational Intelligence - 22nd Mexican International
Conference on Artificial Intelligence, MICAI 2023, Proceedings: 22nd Mexican International Conference on
Artificial Intelligence, MICAI 2023 (Part I ed., pp. 241-252). (Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 14391 LNAI).
Springer. https://doi.org/10.1007/978-3-031-47765-2_18
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-031-47765-2_18
https://doi.org/10.1007/978-3-031-47765-2_18

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

A Decision Tree Induction Algorithm
for Efficient Rule Evaluation Using

Shannon’s Expansion

Vitali Herrera-Semenets1 , Lázaro Bustio-Martínez2(B) ,
Raudel Hernández-León1, and Jan van den Berg3

1 Advanced Technologies Application Center (CENATAV), La Habana, Cuba
{vherrera,rleon}@cenatav.co.cu

2 Department of Engineering Studies for Innovation, Iberoamerican University,
Mexico City, Mexico

lazaro.bustio@ibero.mx
3 Intelligent Systems Department, Delft University of Technology, Delft, The

Netherlands
j.vandenberg@tudelft.nl

Abstract. Decision trees are one of the most popular structures for
decision-making and the representation of a set of rules. However, when
a rule set is represented as a decision tree, some quirks in its structure
may negatively affect its performance. For example, duplicate sub-trees
and rule filters, that need to be evaluated more than once, could nega-
tively affect the efficiency. This paper presents a novel algorithm based
on Shannon’s expansion, which guarantees that the same rule filter is
not evaluated more than once, even if repeated in other rules. This fact
increases efficiency during the evaluation process using the induced deci-
sion tree. Experiments demonstrated the viability of the proposed algo-
rithm in processing-intensive scenarios, such as in intrusion detection
and data stream analysis.

Keywords: Decision Tree · Rule-Based Systems · Data Processing

1 Introduction

Rules are principles or regulations defined to guide actions or behaviors. An
advantage of using rules is that it is possible to represent human knowledge
naturally. This advantage could be why rule-based systems share roots with
cognitive science and artificial intelligence (AI) [14]. Rule-based applications are
extensively used in firewall systems [7], clinical decision support systems [10], and
intrusion detection systems [6]. In these situations, immediate action is usually
required after the reception of new data or, in other words, these systems require
(near) real-time data processing [5].

A rule consists of two parts: the premise α and the conclusion β. The premise
can be composed of some so-called filters and the conclusion can be represented
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Calvo et al. (Eds.): MICAI 2023, LNAI 14391, pp. 241–252, 2024.
https://doi.org/10.1007/978-3-031-47765-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47765-2_18&domain=pdf
http://orcid.org/0000-0001-7094-2835
http://orcid.org/0000-0002-0273-0520
https://doi.org/10.1007/978-3-031-47765-2_18

242 V. Herrera-Semenets et al.

by a label [8]. A single filter Xi can be represented as fi ⊕ v, where fi is a
conditional feature, v is a value from the domain of fi, and ⊕ is a relational
operator from the set of relations {<,≤,=, �=, >,≥,∈}. A premise can be formed
from one or more filters by joining them with logical operators. A rule like that
is usually denoted as α → β, and it is applicable if its premise is satisfied.

Efficiently evaluating multiple rules on a real-time data stream could be
solved using a parallel or sequential approach, replicating the data flow or not.
This could be more or less efficient depending on the hardware resources available
for the task. However, the rule set may contain overlapping rules [12], or simply
rules that share the same filters, which means that the same filter must be
evaluated several times.

Having a data structure that allows evaluating all the rules simultaneously
while evaluating each filter only once would be very useful and can be applied
in many common-life situations. For example, decision trees are one of the most
popular data structures for decision-making and representing a set of rules. How-
ever, when a rule set is represented as a decision tree, duplicate sub-trees are
usually kept in the obtained structure, which could affect spatial efficiency and
evaluation time [8].

The main goal of this research paper is to propose a new decision tree induc-
tion algorithm for rules evaluation without omitting any filters. The proposed
algorithm follows the theoretical principles of Shannon’s expansion [13], which
allows to obtain a more concise rule representation, and avoids duplicate sub-
trees while the same filter is evaluated only once. This is very valuable in such
cases where evaluating rules in (near) real-time is required, for example in intru-
sion detection and data streams processing tasks.

The remainder of this paper is structured as follows. First, the background
about the motivation underlying this research, decision tree induction, and Shan-
non’s expansion is described in Sect. 2. Second, the proposed strategy is presented
in Sect. 3. Third, in Sect. 4, the experimental results using different settings are
presented and discussed. Finally, the conclusions and future work are outlined
in Sect. 5.

2 Background

When a decision tree is induced from a predefined rules set (which is not modi-
fied frequently), the temporary cost is not essential. However, in scenarios where
data stream processing in (near) real-time is required, or where the time taken to
add a new rule may have negative implications from a financial or business point
of view, the temporary cost of inducing the decision tree acquires greater impor-
tance [2]. In addition, once the data used to create the decision tree changes
significantly, restructuring the decision tree becomes a necessary task. However,
it is difficult to manipulate or restructure decision trees. This is because a deci-
sion tree is a representation of procedural knowledge, which imposes an order of
evaluation on the attributes [1]. One way to deal with this situation is to induce
the decision tree again. This process could be performed on-demand without any
noticeable delay if the amount of rules is small [1].

A Decision Tree Induction Algorithm Using Shannon’s Expansion 243

Fig. 1. Example of an induced decision tree.

There are two approaches widely addressed in the literature for decision tree
induction [4]. In the most commonly used approach, the decision tree is induced
from a data set [11]. In the other approach, the decision tree is induced from a
rule set [1].

The primary goal of this paper differs from the latter approach. The intention
here is to induce a decision tree that allows evaluating the same rules used for
its induction without omitting any of the filters that make up each rule. In such
a way, all rules of the rule set are applied when an instance is processed.

A decision tree is used to specify a decision procedure, where the proper
sequence of filters can be evaluated [8]. The tree is traversed top-down, i.e.,
from the root node to a leaf node, evaluating the appropriate filter at each node.
Depending on the result (which can be true “1” or false “0”), the corresponding
branch is selected, and the next filter to which the branch leads is evaluated.
The final decision is determined after reaching a leaf node. This idea has been
described in several works [8]. Figure 1 shows the induced decision tree to deter-
mine the truth-value of the following premise: (X1 ⇔ X2) ∧ (X3 ⇔ X4).

As it can be seen in Fig. 1, two paths lead to two neighboring leaves labeled
with 0. The paths leading to them are identical, regardless of the last edges; in
fact, one is labeled with 0 and the other with 1. However, regardless of the value
taken by X4, the decision is the same β = 0. Therefore, it makes no sense to
keep two separate branches leading to the same conclusion (see both sub-trees
framed in red), so they can be merged and removed. This allows the final decision
label to move up and the tree to be simplified. From a logical point of view, the
process that allows a reduction is based on the application of backward dual
resolution [8]. Such a process is applied recursively, from bottom to top, until no
further reduction is possible. It is valid to highlight that only neighboring nodes
can be merged and reduced, and only if they have the same decision value.
Although the backward dual resolution is applied, two equal sub-trees are still
present (see both sub-trees framed in blue in Fig. 1). This means that the tree
obtained can be reduced even more. The literature describes a process to break
down a Boolean function by Shannon’s expansion [13], which can be helpful for
handling the previous situation.

244 V. Herrera-Semenets et al.

Fig. 2. Example of Shannon’s expansion.

Fig. 3. Representation of the premise (X1 ⇔ X2)∧(X3 ⇔ X4) applying the Shannon’s
expansion.

Shannon’s expansion theorem states that every Boolean function of many
variables f(X1,X2, ...,Xi,Xn) can be decomposed as the sum of two terms, one
with a particular variable Xi set to 0, and one with it set to 1. This can be seen
in Eq. 1, where for Xi = 1 takes place Xif and for Xi = 0 takes place Xif .

f(X1, X2, ..., Xn) = Xif(Xi, ..., Xi−1, 0, Xi+1, ..., Xn) + Xif(Xi, ..., Xi−1, 1, Xi+1, ..., Xn) (1)

For example, given a function f(X1,X2,X3) = X1×X2+X1×X3+X2×X3,
its expansion in terms of X1 is shown in Fig. 2.

If the example depicted in Fig. 2 is used for a decision tree induction, a rule
could represent a Boolean function, where each variable Xj is a filter. In this
sense, the operators × and + are represented by the logical operators ∧ and ∨
respectively. Therefore, once Xi is evaluated, there are two paths to follow: one
path for the case where it is met (Xi = 1) or the other path for when it is not met
(Xi = 0). Whatever the way forward, Xi is no longer evaluated. In theory, using
Shannon’s expansion allows inducing a decision tree where all the filters of the
rules are evaluated optimally. This means that for every possible path that can be
traversed from the root node to the leaf nodes, it is guaranteed that the filters
are evaluated only once, even if the same filter is present several times. Also,
Shannon’s expansion allows each subtree to be explicitly displayed only once
since the repeated occurrences are merged. As shown in Fig. 3, it is possible to
obtain a more concise representation of the premise (X1 ⇔ X2) ∧ (X3 ⇔ X4).

As can be seen in Fig. 3, the number of leaf nodes (highlighted with the label
L) and filter evaluation nodes (highlighted with the label Xi) is considerably
reduced regarding the representations obtained in Fig. 1. The following section

A Decision Tree Induction Algorithm Using Shannon’s Expansion 245

Algorithm 1: Shannon’s expansion-based decision tree induction
Input: R: Rule list
Output: DT : Decision tree

1 DT ← New_Decision_Tree()
2 currentNode ← 0
3 foreach r in R do
4 tmpRule.Disjunction_List ← Create_Disjunction_List(r)
5 DT [currentNode].Rules.Add(tmpRule)

6 end
7 Set_Root_Node(DT [currentNode])
8 while DT.amountNodes ! = currentNode do
9 if DT [currentNode].Rules ! = empty then

10 result_0 ← Shannon(DT [currentNode].Rules, 0, DT [currentNode].F ilter)
11 next_0 ← Search(DT , result_0, 0, currentNode)
12 DT [currentNode].next_by_zero ← next_0

13 result_1 ← Shannon(DT [currentNode].Rules, 1, DT [currentNode].F ilter)
14 next_1 ← Search(DT , result_1, 1, currentNode)
15 DT [currentNode].next_by_one ← next_1

16 DT [currentNode].Rules ← empty

17 end
18 else
19 DT [currentNode].next_by_zero ← 0
20 DT [currentNode].next_by_one ← 0

21 end
22 currentNode + +

23 end
24 return DT

describes the decision tree induction algorithm proposed in this work based on
Shannon’s expansion principle.

3 Proposal

This paper proposed a novel algorithm based on Shannon’s expansion theorem.
The proposed algorithm receives a list of rules R, which is used to induce the
decision tree DT . As shown in lines 1–2 of Algorithm 1, the first step is to
initialize DT and place the currentNode position in the root node. Then each
premise is represented as a list of disjunctions, where each disjunction will con-
tain the filters that compose it (see lines 3–6 of Algorithm 1) [8]. For example,
the premise α = (X1 ∨ X2) ∧ X3 is represented by a list of two disjunctions:
(1) X1, X2 and (2) X3. In this context, the variable Xi is called filter.

Each node in DT stores a list of rules with their respective disjunctions
that need to be evaluated. Also, each node has a list with the rule(s) IDs that
are satisfied and those IDs that are no longer satisfied at that moment. Note
that this is a different feature regarding the examples analyzed in the previous
section, where the final decision is determined after reaching a leaf node. In line
7 of Algorithm 1, the position of the current node is declared as the root node.
Moreover, in this step, the first filter of the first rule is selected to be evaluated
at the root.

Then, the loop that recursively builds the decision tree begins (see lines 8–23
of Algorithm 1). In this loop, if there are rules to be inserted in the current node,

246 V. Herrera-Semenets et al.

Fig. 4. Decision tree induction using Shannon’s expansion.

the Shannon’s expansion is applied (see lines 9–17 of Algorithm 1). The lines
10–12 of Algorithm 1 are performed for the case where the filter evaluated in the
current node is equal to zero. In line 10, the Shannon’s expansion is carried out,
and in line 11 of Algorithm 1 it is searched if there is any node that evaluates the
same rules resulting from the expansion. The search result is set as the next node
to scroll through zero (see line 12 of Algorithm 1). In the next three lines, the
same three previous steps are executed, but this time for the case where the filter
evaluated in the current node is equal to one (see lines 13–15 of Algorithm 1).

Let us further illuminate this step by giving an example using an example:
the premise (X1 ⇔ X2)∧ (X3 ⇔ X4), introduced in the previous section, is used
here. After having the tree induced by edge 0 of the root node, it is ready to
perform its induction by edge 1 of the root node (see Fig. 4(a)). After applying
the Shannon’s expansion for the case in which the filter X2 is fulfilled, a structure
is obtained that stores the filters that remain to be evaluated (X3 and X4) and
the rule (s) IDs that are met and those that are not met. Then, it is sought if
there is any node in the decision tree that meets the result of the Shannon’s
expansion. As it can be seen in Fig. 4(b), the subtree with root node X3 meets
the search criteria; therefore, a new node is not created, but edge 1 of node X2

is redirected towards the found node X3. The same happens with edge 0 of X2,
which is redirected to the leaf node L1.

In line 16 of Algorithm 1, after expanding the tree by 0 and by 1, the list
of rules of the current node is emptied. If the current node is a leaf node, the
next positions to move through 0 and 1 are defined as zero (see lines 18–21 of
Algorithm 1). Line 22 increases the currentNode pointer to the next node in
the list. Once all nodes are visited, a decision tree is returned (see line 24 of
Algorithm 1).

Algorithm 2 describes how Shannon’s expansion performs. For this, each rule
is checked (see lines 2–13 of Algorithm 2); verifying whether its disjunctions are

A Decision Tree Induction Algorithm Using Shannon’s Expansion 247

Algorithm 2: Shannon
Input: R: Rule list, result_Type: Expanded by 1 or 0, currentFilter: Filter evaluated on

the current node
Output: result: Shannon’s expansion result

1 result ← New_Result()
2 foreach r in R do
3 tmpRule ← New_Rule()
4 foreach disj in r.Disj_List do
5 tmpDisj ← New_Disjunction()
6 Searching_Filter(tmpDisj, currentFilter, disj.F ilter_List, result_Type)
7 if len(tmpDisj.F ilter_List > 0) then tmpRule.Disj_List.Add(tmpDisj)
8 else if result_Type == 0 then tmpRule.Disj_List ← empty, break
9 end

10 if len(tmpRule.Disj_List > 0) then result.Rules.Add(tmpRule)
11 else if result_Type == 1 then result.rules_in_one.Add(r.ID)
12 else result.rules_in_zero.Add(r.ID)

13 end
14 return result

checked (see lines 4–9 of Algorithm 2); and verifying for each disjunction whether
the filters are checked (see line 6 of Algorithm 2).

If the expansion is performed for the scenario in which the current node’s
filter is satisfied (result_Type = 1), and if any of the filters within a disjunction
matches the current node’s filter (currentF ilter), the disjunction is replaced by a
new one devoid of filters, and the execution exits the Searching_Filter function.
This occurs because, with a single filter match, the entire disjunction is satisfied.
In cases where the filters are not identical or the current node’s filter is not met
(result_Type = 0), the examined filter is added to the temporary disjunction
(tmpDisj).

After checking all filters, if at least one filter was added to tmpDisj, then
tmpDisj is added to the list of disjunctions tmpRule.Disj_List that holds the
temporary rule tmpRule (see line 7 of Algorithm 2). If no filter was added to
tmpDisj and it is expanded for the case in which the current node filter is not
satisfied, the list tmpRule.Disj_List is emptied, and the disjunctions are no
longer checked (see line 8 of Algorithm 2). In line 10 of Algorithm 2, if at least
one disjunction was added to tmpRule.Disj_List, then, tmpRule is added to
the list of rules result.Rules of the expansion result. If no disjunction was added
to tmpRule.Disj_List and it is expanded for the case in which the current node
filter is satisfied, then, the identifier of the checked rule is added to the list of
rules result.rules_in_one that are satisfied (see line 11 of Algorithm 2). If no
disjunction was added, but it is expanded for the case in which the current node
filter is not met, then the identifier of the checked rule is added to the list of rules
result.rules_in_zero that are not satisfied (see line 12 of Algorithm 2). In line
14, after checking all the rules, the result of the Shannon’s expansion containing
the rules to be evaluated, the identifiers of the rules that were satisfied and those
that were not, is returned.

Algorithm 3 describes how to search for a node that meets the result of the
Shannon’s expansion. The search is performed in a range from the position of the

248 V. Herrera-Semenets et al.

Algorithm 3: Search
Input: DT : Decision tree, result: Shannon’s expansion result, result_Type: Expanded by 1

or 0, currentNode: Current node position
Output: N : Node

1 N ← 0
2 foreach N in range(currentNode, DT.amountNodes) do
3 if result.Rules == DT [N].Rules then
4 if result_Type == 1 then
5 if result.rules_in_one == DT [N].rules_in_one then return N
6 end
7 else if result.rules_in_zero == DT [N].rules_in_zero then return N

8 end
9 end

10 DT.Append(New_Node())
11 filter ← result.Rules[0].Disjunction_List[0].GetF ilter(0)
12 DT [DT.amountNodes].F ilter ← filter
13 DT [DT.amountNodes].Rules ← result.Rules
14 if resultT ype == 1 then DT [DT.amountNodes].rules_in_one ← result.rules_in_one
15 else DT [DT.amountNodes].rules_in_zero ← result.rules_in_zero
16 DT.amountNodes + +
17 return N + 1

current node to the last node in the list. This decision avoids finding a previously
created node that could create a contradiction during the decision tree induction.

For example, Fig. 5(a) shows the decision tree induced by the zero edge of the
root node using two rules: (1) X1 ∨ (X2 ∧ X3) → 1 and (2) X1 ∧ X4 ∧ X3 → 2.
The six nodes depicted in Fig. 5(a) occupy the first six positions in the list of
nodes that make up the decision tree (see Fig 5(c)). When the edge one of the
root begins to be built, a node is generated with the filter X4, in which the rule
1 is already satisfied, therefore after this node, it would only be necessary to
evaluate the filter X3 of rule 2 (see Fig. 5(b)). If the search for X3 is performed
from the beginning of the list of nodes, in position 3, there is a node that fulfills
the search (see Fig. 5(c)). Therefore, an edge from X4 to X3 is created, which
generates a contradiction in the decision tree, since the rule 1 is satisfied in the
node that evaluates the filter X4, and if it continues along the created edge, it
can reach the leaf node L2 where rule 1 is not satisfied.

To avoid the contradictions described in Fig. 5(b), the search is carried out
from the current position of the node forward (see lines 2–9 of Algorithm 3). If
the rules of the Shannon’s expansion result are equal to those of the node being
compared, then it is checked if the node contains the same rules identifiers as
the Shannon result, taking into account whether the expansion was performed
for the case in which the filter is met or not (see lines 3–8 of Algorithm 3). If a
node that satisfies these conditions is found, it is returned (see lines 5 and 7 of
Algorithm 3).

If no node was found in the search process described before, then a new
node is created, and the filter to be evaluated is assigned (see lines 10–12 of
Algorithm 3). In line 13, the rules that remain to be evaluated from Shannon’s
expansion result are added to the new node. If the rules were expanded by 1
(this is the case in which the node filter is satisfied), the rules’ identifiers that

A Decision Tree Induction Algorithm Using Shannon’s Expansion 249

Fig. 5. Example of contradiction in a decision tree.

were satisfied in the Shannon’s expansion result are added to the new node (see
line 14 of Algorithm 3). If the rules were expanded by 0 (this is the case in
which the node filter is not satisfied), the rules’ identifiers that were not satisfied
in the Shannon’s expansion result are added to the new node (see line 15 of
Algorithm 3). Then, the number of nodes in the decision tree is increased, and
the position of the new node is returned (see lines 16 and 17 of Algorithm 3).

4 Experimental Results

The experimental results are focused on evaluating the spatial and time effi-
ciency of the proposed algorithm, given by the number of resulting nodes in
the decision tree and the estimated time to build it respectively. Considering
the example presented in Sect. 2, where it is shown that the use of the Shan-
non expansion allows the construction of more compact decision trees than the
double-backward resolution method, it is evident that the proposed algorithm
offers greater efficiency in this regard. Taking this into account, it would not be
fair to make comparisons with the double-backward resolution method, which is
why it was not included in the experiments.

The experiments were performed on a PC equipped with an Intel Quad-Core
at 2.5GHz CPU and 4 GB of RAM. The performance of the proposed algorithm
was evaluated using 25 different rules.

As can be seen in Table 1, while the number of rules and filters increases, the
spatial and time efficiency of the algorithm is negatively affected. Notice that
every possible path from the root node to any leaf node must evaluate all the
filters of the processed rules. Therefore, if the number of rules and filters grows,

250 V. Herrera-Semenets et al.

Table 1. Efficiency achieved by the proposed algorithm using different amounts of
rules.

Number of rules Number of filters Number of nodes Time (s)

5 10 21 0.001
10 29 597 0.01
15 39 1 562 2
20 58 17 892 143
25 68 33 225 370

then also grows the number of paths needed for evaluating all the rules. This
directly affects the number of nodes that are generated and the time needed for
inducing the decision tree. However, this process can be conducted offline, so
once it is finished, the decision tree can be replaced.

The following experiment consists of evaluating the advantage offered, in
terms of time efficiency, by using the decision tree induced by the proposed
algorithm over the rules set used to induce it. In this sense, we proceed to
identify a data set composed by a high number of instances that allows us to
highlight the differences in processing times.

The KDD’99 data set was used for this experiment [3]. Such data set provides
connection records (instances) generated by a simulation of a military network.
The training collection contains 4 898 431 instances and was used to evaluate
the rule sets and the induced decision trees.

As it can be seen in Table 2, five sets of rules were created for this experiment.
Note in Table 2 that some rules share equal filters, and the more rules there
are in the set, the greater the number of equal filters. This fact can affect the
performance when the rules are evaluated individually since the same filters must
be processed more than once.

The results achieved show that the induced decision tree turns out to be
more efficient concerning the processing time expressed in Table 2 than the rules
set. Therefore, there is a fundamental advantage of representing rules set as a
decision tree using the proposed algorithm. When a rules set is evaluated, if
there are equal filters in different rules, they are evaluated several times (for
each rule). In contrast, when any path is traversed from the root to a leaf node
of the decision tree, all the rules are evaluated without repeating a single filter,
which makes the evaluation process more efficient. This fact is very appreciated
in situations where processing data in (near) real-time is required.

The improvement achieved in terms of time efficiency, at first glance, it may
seem insignificant. However, in some scenarios (such as intrusion detection or
data stream evaluation) the volume of information generated in one second can
be considerably large. For example, a 1 Gb/s Ethernet interface can deliver
anywhere between 81 274 and 1 488 096 packets/s. In perspective, a 10 Gb/s
Ethernet interface can deliver 10 times more packets, that is, between 812 740
and 14 880 960 packets/s [9]. Therefore, the improvement in efficiency offered

A Decision Tree Induction Algorithm Using Shannon’s Expansion 251

Table 2. Time taken to process the KDD’99 training collection with different rule sets
and decision trees.

Number of rules Number of equal filters Evaluation strategy Time (s)

5 1 Decision tree 72
Rules set 73

10 6 Decision tree 108
Rules set 115

15 9 Decision tree 129
Rules set 143

20 15 Decision tree 148
Rules set 166

25 21 Decision tree 163
Rules set 189

by the induced decision tree could be fundamental in scenarios that require data
processing in (near) real-time.

For processing high-speed data streams, a parallel or distributed approach to
evaluating the decision tree could be considered. Note that even if the decision
tree is parallelized, it would still be more efficient than parallelizing the rules
set, since for each process there would be a decision tree that evaluates all the
rules optimally. While when parallelizing the rules set, each process would have
a rule, therefore to classify an instance it would have to iterate over each process
until all the rules were evaluated.

It is valid to notice that no experiments were conducted to estimate the
classification accuracy since the decision tree evaluates exactly the same rules
used to induce it. Therefore, the results in terms of classification accuracy are
the same using the decision tree or the rules set.

5 Conclusions

The algorithm proposed in this research allows inducing a decision tree from
rules set where all the filters of the rules are evaluated optimally. In other words,
the induced decision tree allows that by any path traveled from the root node
to some leaf node, each rule filter is evaluated only once, even if it is repeated
in more than one rule. This aspect allows for improving the efficiency of the
evaluation process, which makes it feasible to use it in scenarios that require
data stream processing in real-time or very close to it.

The experiments conducted show that when the number of nodes and filters
increases, the spatial and time efficiency of the decision tree building process
is negatively affected. As future work, it is intended to address this issue with
an incremental proposal. Another aspect to address in future work is the use

252 V. Herrera-Semenets et al.

of multiple decision trees to boost up the speed of the evaluation process by
applying parallel or distributed programming paradigms.

Acknowledgement. This research was supported by the Universidad Iberoamericana
(Ibero) and the Institute of Applied Research and Technology (InIAT) by the project
“Detection of phishing attacks in electronic messages using Artificial Intelligence tech-
niques.”

References

1. Abdelhalim, A., Traore, I., Nakkabi, Y.: Creating decision trees from rules using
rbdt-1. Comput. Intell. 32(2), 216–239 (2016)

2. Ahmim, A., Maglaras, L., Ferrag, M.A., Derdour, M., Janicke, H.: A novel hierar-
chical intrusion detection system based on decision tree and rules-based models. In:
2019 15th International Conference on Distributed Computing in Sensor Systems
(DCOSS), pp. 228–233. IEEE (2019)

3. Al-Daweri, M.S., et al.: An analysis of the kdd99 and unsw-nb15 datasets for the
intrusion detection system. Symmetry 12(10), 1666 (2020)

4. Charbuty, B., Abdulazeez, A.: Classification based on decision tree algorithm for
machine learning. J. Appl. Sci. Technol. Trends 2(01), 20–28 (2021)

5. Herrera-Semenets, V., Pérez-García, O.A., Gago-Alonso, A., Hernández-León, R.:
Classification rule-based models for malicious activity detection. Intell. Data Anal.
21(5), 1141–1154 (2017)

6. Herrera-Semenets, V., Pérez-García, O.A., Hernández-León, R., van den Berg, J.,
Doerr, C.: A data reduction strategy and its application on scan and backscatter
detection using rule-based classifiers. Exp. Syst. Appl. 95, 272–279 (2018)

7. Jaïdi, F.: A novel concept of firewall-filtering service based on rules trust-risk
assessment. In: Madureira, A.M., Abraham, A., Gandhi, N., Silva, C., Antunes,
M. (eds.) Proceedings of the Tenth International Conference on Soft Computing
and Pattern Recognition (SoCPaR 2018), pp. 298–307. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-17065-3_30

8. Ligêza, A.: Logical Foundations for Rule-Based Systems. Springer, Heidelberg
(2006)

9. Schudel, G.: Bandwidth, packets per second, and other network performance met-
rics. Abgerufen am 10, 2010 (2010)

10. Soufi, M.D., Samad-Soltani, T., Vahdati, S.S., Rezaei-Hachesu, P.: Decision sup-
port system for triage management: a hybrid approach using rule-based reasoning
and fuzzy logic. Int. J. Med. Informatics 114, 35–44 (2018)

11. Yates, D., Islam, M.Z., Gao, J.: SPAARC: a fast decision tree algorithm. In: Islam,
R., et al. (eds.) AusDM 2018. CCIS, vol. 996, pp. 43–55. Springer, Singapore (2019).
https://doi.org/10.1007/978-981-13-6661-1_4

12. Zhang, G., Gionis, A.: Diverse rule sets. In: Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD20), pp.
1532–1541. Association for Computing Machinery, New York (2020)

13. Zhang, J., Yang, G., Hung, W.N., Zhang, Y., Wu, J.: An efficient NPN Boolean
matching algorithm based on structural signature and Shannon expansion. Clust.
Comput. 22(3), 7491–7506 (2019)

14. Zhao, J., Wu, M., Zhou, L., Wang, X., Jia, J.: Cognitive psychology-based artificial
intelligence review. Front. Neurosci. 16, 1024316 (2022)

https://doi.org/10.1007/978-3-030-17065-3_30
https://doi.org/10.1007/978-981-13-6661-1_4

	A Decision Tree Induction Algorithm for Efficient Rule Evaluation Using Shannon's Expansion
	1 Introduction
	2 Background
	3 Proposal
	4 Experimental Results
	5 Conclusions
	References

