

Delft University of Technology

Autopilot framework with INDI RPM control, real-time actuator feedback, and stability
control on companion computer through MATLAB generated functions

Mancinelli, A.; van der Horst, E.; Remes, B.D.W.; Smeur, E.J.J.

Publication date
2023
Document Version
Final published version
Published in
14th annual international micro air vehicle conference and competition

Citation (APA)
Mancinelli, A., van der Horst, E., Remes, B. D. W., & Smeur, E. J. J. (2023). Autopilot framework with INDI
RPM control, real-time actuator feedback, and stability control on companion computer through MATLAB
generated functions. In D. Moormann (Ed.), 14th annual international micro air vehicle conference and
competition (pp. 109-116). Article IMAV2023-13
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2023-13 14th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

Autopilot framework with INDI RPM control, real-time
actuator feedback, and stability control on companion

computer through MATLAB generated functions
Alessandro Mancinelli*, Erik Van Der Horst†, Bart D.W. Remes‡and Ewoud J.J. Smeur§

Delft University Of Technology, Kluyverweg 1, Delft, NL

ABSTRACT

This paper presents a modular autopilot frame-
work for Unmanned Aerial Vehicles (UAVs) that
addresses the limitations of modern flight con-
trollers. The framework utilizes separate and
external subsystems for actuator control and
the resolution of the Control Allocation prob-
lem. The actuator subsystem, implemented on
a Teensy 4.0 microcontroller, incorporates an
Incremental Dynamic Inversion Control (INDI)
RPM controller, enabling direct control of mo-
tor RPM and facilitating the implementation of
dynamic inversion-based control laws. The pri-
mary flight computer, a Cube Orange, coordi-
nates the system, while an OrangePi 5 single-
board computer serves as a companion computer.
Real flight results demonstrate the effectiveness
of the framework, highlighting its potential for
robust and efficient UAV control.

1 INTRODUCTION

Unmanned Aerial Vehicles (UAVs), are aircraft designed
to operate without a human pilot on board. UAVs have
captivated a vast audience and found profound significance
through their unmatched versatility, accessibility, and diverse
range of applications across industries. From breathtaking
aerial photography and aerial manipulation to efficient deliv-
ery and logistics.

In recent years, with growing interest from both indus-
try and research communities, the field of Unmanned Aerial
Vehicles (UAVs) has witnessed rapid advancements. The in-
tegration of a large number of actuators in UAVs has increas-
ingly become prevalent, as exemplified by notable studies
such as [1, 2, 3, 4]. The inclusion of an increasing num-
ber of actuators in UAVs serves a crucial role in achieving
propulsion redundancy and enhancing overall performance.
A prime example illustrating this is the dual-axis tilt rotor
quad-plane depicted in Figure 1, where a total of 14 actua-

*a.mancinelli@tudelft.nl
†e.vanderhorst@tudelft.nl
‡b.d.w.remes@tudelft.nl
§e.j.j.smeur@tudelft.nl

Figure 1: A picture of the dual-axis tilting rotor quad-plane
developed at the TUDelft MAVLab.

tors, specifically 4 motors and 10 servomotors, are utilized to
independently control the vehicle’s 6 degrees of freedom.

Managing a significant number of actuators presents a
complex challenge for modern commercial flight controllers,
such as The Cube1 , Pixhawk 6c2 , Pixracer3 or the Lisa M4.
These flight controllers offer limited Pulse-Width Modula-
tion (PWM) actuator outputs, which are sometimes further
restricted due to the shared PWM lines with auxiliary periph-
erals and sensors. Consequently, the integration of an exter-
nal subsystem becomes indispensable to effectively handle
the growing quantity of actuators in modern UAVs. More-
over, this external flight system must possess the capability
to monitor the state of the actuators in real-time. The sig-
nificance of precise real-time estimation of the actuator state
becomes particularly evident in contemporary UAV design,
where the Incremental Nonlinear Dynamic Inversion (INDI)
control method is widely used[5, 6]. This advanced control
method heavily relies on accurate actuator state estimation to
ensure optimal performance. Traditionally, given the lack of
actuator state feedback, the estimation of the actuator state is
obtained by feeding the desired actuator input into an actuator
model. The actuator model must be identified through labori-
ous tests, which can introduce inaccuracies and consequently
impact the quality of the estimation.

The ability to achieve reliable real-time measurements of
the actuator state yields substantial advantages that extend be-
yond enhanced control performance. It assumes a pivotal role
in promptly detecting actuator faults, facilitating the design

1https://www.cubepilot.com/#/cube/features
2https://docs.px4.io/main/en/flight controller/pixhawk6c.html
3https://docs.px4.io/main/en/flight controller/pixracer.html
4https://wiki.paparazziuav.org/wiki/Lisa/M v2.0

SEPTEMBER 11-15, 2023, AACHEN, GERMANY 109

ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2023-13 14th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

and implementation of effective fault-tolerant control strate-
gies. By possessing a dependable estimation of the actuator
state, UAV systems can swiftly identify deviations or anoma-
lies in actuator behavior, enabling timely interventions.

Furthermore, a notable constraint of commercial flight
controllers lies in their limited computational power. Typi-
cally, these flight controllers utilize ARM Cortex M-family
processors, which are specifically optimized for embedded
applications. However, when compared to ARM A-family
processors found in Single Board Computers (SBCs) like the
Raspberry Pi [7], their computational power falls short. Em-
bracing more powerful processors presents a promising op-
portunity to significantly enhance the computational capabil-
ities of commercial flight controllers, enabling the execution
of complex algorithms to support the UAV control and oper-
ations.

One potential way to improve the computational power
of commercial flight controllers is through the adoption of an
external companion computer, as demonstrated by previous
works such as [8, 9, 10]. In particular, in our previous work
[11], we utilized a Raspberry Pi 4B to solve the non-linear
control allocation problem for the dual-axis tilting rotor quad-
plane. This approach has proven to be highly successful and
reliable.

In this paper, we present a modular autopilot framework
that utilizes separate subsystems to address the aforemen-
tioned limitations of modern flight control. The primary flight
computer employed is a Cube Orange, which runs the popu-
lar Paparazzi UAV autopilot software [12]. The main task of
the primary flight computer is to estimate the vehicle states,
run the autopilot routines and coordinate all the other sub-
modules. As a companion computer sub-module, an Or-
angePi 55 SBC was utilized, featuring a Rockchip RK3588S
octa-core 64-bit processor. A notable feature of the OrangePi
5 SBC is its ability to run a Linux operating system, enabling
the compilation and execution of functions developed in the
MATLAB environment using the MATLAB C-coder tool-
box6. For the actuator control and real-time feedback sub-
system, a Teensy 4.07 micro-controller was employed. The
primary flight computer communicates with all the subsys-
tems through custom modules developed in Paparazzi UAV ,
utilizing UART communication.

The paper is structured as follows: Section 2 presents
the Modular Autopilot framework, which encompasses the
Paparazzi UAV autopilot running on the primary flight com-
puter. It also explores the information flow among all the sub-
systems and the primary flight computer. Section 3 provides
a detailed analysis of the actuator control and real-time feed-
back subsystem, providing insights into its functionality and
performance. Within this section, an INDI RPM controller
is also presented. Section 4 focuses on the companion com-

5http://www.orangepi.org/
6https://nl.mathworks.com/help/coder/index.html
7https://www.pjrc.com/store/teensy40.html

puter sub-module and explores its setup for running MAT-
LAB functions. Section 5 discusses and showcases real flight
results obtained from the implemented framework. Finally,
Section 6 draws conclusions based on the presented findings
and discussions.

2 AUTOPILOT STRUCTURE

This section presents the Autopilot structure, covering
both hardware and software aspects. Special attention is
given to the working principles of Paparazzi UAV, the soft-
ware running on the primary flight computer. The Paparazzi
UAV flight software, running on the primary flight computer,
is made available to the reader8.

2.1 Main Autopilot Hardware Structure
The overall Autopilot structure is illustrated in Figure 2.

It can be observed that the AP structure consists of several
parts. The main part is the Primary flight computer, where
the estimation, stability, guidance, and navigation routines are
implemented and executed. To achieve accurate estimation
of flight states and position, the primary flight computer in-
terfaces with multiple sensors, located both internally within
the Orange Cube module and externally.

The internal sensors of the Orange Cube module in-
clude an Invensense ICM42688, an Invensense ICM20948,
an Invensense MS5611 I2C barometer, and an AK099916
magnetometer. All the internal sensors are mounted on a
temperature-controlled, vibration-isolated board.

For state estimation purposes, the primary flight computer
utilizes also the following external sensors:

• UBLOX ZED-F9P RTK GPS connected through a Se-
rial connection.

• Angle of Attack sensor employing a Megatron
MAB12A magnetic encoder connected through PWM
input.

• Sideslip angle sensor employing a Megatron MAB12A
magnetic encoder connected through PWM input.

• External Drotek RM3100 magnetometer connected
through the I2C bus.

• 4525DO Airspeed sensor employing a differential
MS5611 barometer connected through the I2C bus.

• TFMini lidar with a maximum range of 15 meters, con-
nected through the I2C bus.

All the sensor readings, except for the Sideslip and Angle of
Attack readings are fused together using an Extended Kalman
Filter based on the Estimation and Control Library (ECL)
from PX49, running on the Paparazzi UAV flight software.

8https://github.com/alessandro-mancinelli/Modular AP PPZ.git
9https://docs.px4.io/main/en/advanced config/tuning the ecl ekf.html

SEPTEMBER 11-15, 2023, AACHEN, GERMANY 110

ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2023-13 14th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

Teensy 4.0

Actuator control and
real-time feedback

Primary flight computer

CubePilot Cube Orange+

3

Orangepi 5

Companion computer
UART 1

ESCs

KISS ESC 32A

DSHOT 600
Serial RPM telemetry

Serial servos

Feetech STS3032

Half duplex Serial

PWM servos

TURNIGY TG9d
UART 2

PWM

Orangepi 5

Companion computer

TBS Crossfire Micro Receiver

RC input

PPM

UBLOX ZED-F9P

RTK GPS

UART 3

HERELINK HD Air Unit

TELEMETRY

UART 4

EXTERNAL
PERIPHERALS

I2C

AoA sensor

Megatron MAB12A
magnetic encoder

Sideslip angle
sensor

Megatron MAB12A
magnetic encoder

PWM

External
Magnetometer

DROTEK RM3100

Airspeed
sensor

4525DO

Lidar

TF Mini

Figure 2: Hardware components and their intercommunication.

Regarding the Remote Control (RC) communication with
the safety pilot of the UAV, an RC input source is established
using a TBS Crossfire Micro receiver connected through a
PPM signal. Additionally, a Herelink HD Air unit connected
through UART is utilized to establish communication with
the Ground Control Station.

A serial communication is utilized for the communication
between the Primary Flight Computer and both the Actuator
control and the real-time feedback subsystem, and the Com-
panion computer subsystem. In our specific case, the com-
panion computer is responsible for solving the control alloca-
tion problem in real-time. Since the solution needs to be com-
municated to all the actuators, this requires a fast and reliable
communication channel. To minimize overhead, we imple-
mented a UART communication protocol with one starting
byte and one checksum byte. The baud rate chosen for the
Serial communication is 1.5 megabaud.

2.2 Paparazzi UAV flight software

Paparazzi UAV is a versatile and highly customizable
flight software that offers users a wide range of options for
configuring their aircraft. At the core of the Paparazzi soft-
ware is the airframe XML file, which serves as the central
configuration hub for selecting and setting up all the nec-
essary components and modules required for a successful
flight. This modular approach empowers users to customize

their aircraft according to specific requirements by choosing
the appropriate sensors, actuators, and other peripherals. A
comprehensive overview of the information flow in Paparazzi
UAV is available on the wiki 10.

One of the key strengths of Paparazzi UAV is its support
for custom modules, which facilitate communication and col-
laboration among different components. These modules can
interact with each other using external global variables or,
in a more structured manner, through an intermediary rou-
tine known as the Application Binary Interface (ABI) routine.
This enables seamless integration and coordination between
various functionalities, enhancing the overall capabilities and
adaptability of the system.

2.2.1 The ABI publisher publish/subscribe middle-ware

ABI is a custom publish/subscribe middleware that facilitates
the exchange of data between software components. Within
the Paparazzi UAV software, two different modules can ex-
change information through ABI. Once the ABI message
structure is defined, each module can utilize the ABI routine
as either a publisher or a subscriber of information. The role
of a publisher is to update the content of the ABI node with
new information to be broadcasted in the autopilot. One or

10https://wiki.paparazziuav.org/wiki/DevGuide/DesignOverview

SEPTEMBER 11-15, 2023, AACHEN, GERMANY 111

ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2023-13 14th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

more modules can then subscribe to that ABI node. An in-
teresting aspect is that the subscriber node is notified when-
ever the ABI message contains fresh data and automatically
triggers a function to post-process the data. In the design of
the Modular Autopilot framework, we extensively utilized the
ABI middleware. Specifically, we associated an ABI message
with both the Actuator Control and Real-time Feedback sub-
system and the Companion Computer subsystem, enabling
interaction between our control module and these subsys-
tems.

2.2.2 Custom Teensy actuators Paparazzi module

The custom module called serial act t4, developed within
the Paparazzi UAV software, serves as the software back-
end running on the Primary Flight Computer. Its pur-
pose is to enable communication between the Actuator
Control and Real-time Feedback subsystem running on the
Teensy 4.0 and the Primary Flight Computer. The mes-
sages exchanged through the Serial UART channel between
the Teensy 4.0 and the Primary Flight Computer are de-
fined in the ca am7.h file, which is located in the ”Mod-
ular AP PPZ/sw/airborne/modules/sensors” path. It should
be noted that the ”Modular AP PPZ” refers to the Pa-
parazzi repository available at the TUDelft github page8.
In the serial act t4.h file, two structures are defined: se-
rial act t4 data in and serial act t4 data out, representing the
inbound and outbound messages, respectively. In our case,
we have decided to include a rolling message with lower pri-
ority in the main message struct. Whenever a message is sent,
one element of a float array with a length of 255 is also trans-
mitted. Consequently, the update rate of the float array is
approximately 0.4% of the refresh rate of the main message.

This module is associated with a publishable ABI mes-
sage named ”SERIAL ACT T4 OUT”. Users can publish to
this message from any location within the Paparazzi software,
allowing the outbound message structure to be sent over the
hardware serial interface to the Teensy.

Similarly, an ABI broadcast message called ”SE-
RIAL ACT T4 IN” is triggered whenever a new inbound
message structure is received from the Teensy. This broad-
cast message can also be accessed from any location within
the Paparazzi software.

To gain a comprehensive understanding of how to sub-
scribe to or publish an ABI message, readers are encouraged
to consult the Paparazzi UAV ABI documentation11

2.2.3 Custom Orangepi PPZ module

Similarly to the implementation of the serial act t4 mod-
ule, a custom module called ca am7 module was devel-
oped within the Paparazzi UAV software as a back-end

11https://paparazzi-uav.readthedocs.io/en/stable/developer guide/abi.html

ID:8ID:7ID:6ID:5

ID:4ID:3ID:2ID:1

+ +

150 Ω

150 Ω

ESC 1

150 Ω
150 Ω

ESC 2ESC 3

150 Ω

150 Ω

ESC 4

SERIAL BUS SERVOS FEETECH STS3012

TG9d PWM SERVOS

KISS
ESC32A

CUBEPILOT
ORANGE

Figure 3: Electrical schematic of the actuator control and
real-time feedback subsystem. The 150 Ω resistors are uti-
lized to safeguard the bus from potential transmission con-
flicts.

running on the Primary flight computer to enable com-
munication with the OrangePi 5. The inbound and out-
bound message structures exchanged with the OrangePi
are defined in the ca am7.h file, located in the ”Modu-
lar AP PPZ/sw/airborne/modules/sensors” path. Just like the
serial act t4 module, we also included a rolling message with
lower priority in the main message struct.

The ABI broadcast message containing the inbound data
structure from the OrangePi is named ”AM7 IN”, while the
publishable ABI message for the outbound data transmission
is named ”AM7 OUT”.

3 ACTUATOR CONTROL AND REAL-TIME FEEDBACK
SUBSYSTEM

In this section, we present the code of the Actuator con-
trol and real-time feedback subsystem running on the Teensy
4.0. We also provide a brief overview of the protocol used
to control both the serial servos, PWM servos, and the ESCs.
The source code for generating the binary file for the Teensy
4.0 is available in the Teensy actuators PPZ GitHub reposi-
tory12. The software is developed using the Arduino IDE and
the Teensyduino add-on7. The electrical scheme of the actu-
ator control and real-time feedback subsystem is depicted in
Figure 3.

3.1 Serial bus servos control
In the current configuration, the Teensy 4.0 microcon-

troller controls a total of 8 Feetech STS3012 serial servos.
12https://github.com/tudelft/Teensy actuators PPZ.git

SEPTEMBER 11-15, 2023, AACHEN, GERMANY 112

ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2023-13 14th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

Header ID number Data Length Command Parameter Checksum
0x55 0x55 ID Packet Length Cmd code Prm 1... Prm N Checksum

Table 1: Command packet frame for the communication between the Teensy 4.0 and the Feetech STS3012 servos.

These 8 servos are controlled using two separate buses, with
each bus connected to 4 servos. The protocol used to com-
municate with the serial servos is a single-wire half-duplex
serial protocol. It involves standardized packet transmission
between a master device (the Teensy 4.0) and slave devices
(the STS3012 servos). An overview of the packet frame is
provided in Table 1.

The master device sends an instruction packet on the bus,
addressing a specific servo ID. All devices on the bus receive
the packet, but the servos discard it if their ID does not match.
Only the servo with the matched ID executes the instruction
and then sends a confirmation packet.

The servo ID is a value ranging from 0 to 253, which
means that a maximum theoretical number of 254 servos per
bus is supported. However, since the bus is shared among all
servos and the bus bandwidth is limited to 1 Mega baudrate,
increasing the number of servos will limit the refresh rate of
the instructions that can be sent to each servo.

Furthermore, it should be noted that if we want to both
command a servo position and obtain servo position feed-
back, two instruction packets have to be sent to the servo.
The first instruction contains the desired servo position, to
which the servo will respond with an ack packet. Then, we
need to send another instruction requesting the servo’s cur-
rent angular position, to which the servo will respond with
a packet containing its current position. This can be ex-
tended to include additional information such as load, ten-
sion, or angular speed. For a detailed explanation of all the
possible commands for the serial servos, the reader can refer
to the Documentation/Serial servo protocol.pdf document in
the Teensy actuators PPZ GitHub repository12.

We observed that typically each servo takes 20 to 50 mi-
croseconds to respond to a Teensy request. Due to this re-
sponse time and our requirement for high-speed position con-
trol and feedback from the servos, we decided to use two sep-
arate buses to control the 8 servos. This approach allowed
us to achieve a refresh rate of 350 Hz for both the angular
position control and angular position feedback of each servo,
while providing enough time to avoid bus conflicts. As an ad-
ditional safety feature, we also added a 150 Ω resistor to the
serial line. This resistor helps limit the maximum current flow
on the Teensy serial pin to 22 mA in the event of conflicts on
the serial line. Without the resistor, the current flow on the
Teensy serial pin in the case of a conflict would exceed the
maximum limit of 25 mA tolerated by the microcontroller,
potentially resulting in chip damage.

3.2 PWM servos control
On top of controlling Serial bus servos, the

Teensy actuators PPZ software running on the Teensy
4.0 can also control conventional PWM servos. In our
current setup, we have utilized two PWM TGYd micro
servos, which are assigned to the ailerons of the airframe.
These servos, due to their communication technology, do
not feature any feedback regarding their angular position.
Therefore, an estimation of the servo position is carried out
on the Teensy board. The estimation is based on a first-order
transfer function that incorporates the command and the
user-provided first-order dynamics characteristics of the
servo. These parameters can be identified through a step
response test using external equipment, such as an IMU
mounted on the servo arm, as demonstrated in [3].

The routine responsible for PWM servo control
and estimation is implemented in the writeEstimateP-
wmServos() function, which can be found in the
servo esc control w feedback T4 PPZ.ino file in the
Teensy actuators PPZ GitHub repository12.

3.3 Control of the ESCs
The KISS ESC 32A in our system are controlled us-

ing Digital Shot (DShot) commands at a speed of 600 bit/s.
The DShot protocol has become widely adopted as a digital
communication protocol specifically designed for controlling
ESCs. It offers several advantages over conventional UART
communication.

One notable advantage of the Dshot protocol over the
UART protocol lies in how zeros and ones are identified in
the communication. In DShot, the differentiation between
zeros and ones is based on the duration of the high state volt-
age, rather than relying on traditional binary representation
through voltage levels. This utilization of timing information
allows for more precise encoding of data.

The DShot packet frame consists of a total of 16 bits. The
initial 11 bits are dedicated to identifying the throttle com-
mand. A value of all zeros indicates that the motor is dis-
armed, while values 1-47 are reserved for special purposes.
Consequently, the throttle command can range from 0 to
2000. Following the 11-bit throttle command, one bit is allo-
cated for telemetry request, and an additional 4 bits contain
the cyclic redundancy check (CRC) for message integrity.

When the telemetry bit is enabled, the ESC outputs a
telemetry packet through a dedicated serial line operating at
a baud rate of 115200. The telemetry packet comprises 10
bytes of information, including temperature, voltage, current,
and RPM data from the ESC. For a more detailed explanation

SEPTEMBER 11-15, 2023, AACHEN, GERMANY 113

ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2023-13 14th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

+- ++

ESC

Figure 4: Scheme of the RPM INDI controller.

of the telemetry protocol, the reader can refer to the Docu-
mentation/KISS ESC telemetry protocol.pdf file available in
the GitHub repository12.

Due to the limited baud rate of this serial line, we decided
to employ a refresh rate of 500 Hz for both DShot throttle
commands and telemetry transmission. Keeping within this
limit ensures reliable and timely telemetry updates from the
ESCs.

3.3.1 Motor RPM control

The high-speed command and telemetry capabilities of the
ESCs have allowed for the design and implementation of an
RPM controller for the motors. The ability to reliably control
the motor’s RPM is a crucial feature for modern controllers
that rely on model inversion to compute the actuator solution.
By directly setting the actuator RPM, the need to accurately
model external factors such as battery discharge or propeller
inflow is eliminated. This simplifies the control process and
enhances the overall performance of the system.

The INDI RPM controller scheme used to control the mo-
tor RPM is illustrated in Figure 4, where ωm is the RPM value
measured by the ESC and ωd is the desired RPM. The trans-
fer functionHτ (z) represents a low-pass filter in the discrete-
time domain with a time constant of τ :

Hτ (z) =
τ

z − (1− τ) , (1)

where z denotes the discrete-time step delay operator.
Through experimentation, we determined that this filter

with a time constant of τf = 0.1131 effectively filters out the
noise present in the ESC readings. With the ESC telemetry
frequency of 500 Hz, this corresponds to a first order low-
pass filter with a cutoff frequency of 60 rad/s in the Laplace
domain.

Another filter of the form of Equation 1 with parameter τd
represents the first-order dynamics of the motor system, while
Nd in Figure 4 represents the discrete-time steps of delay in-
troduced by the ESC for processing the DShot command. To
determine these parameters, we analyzed the step response
for various DShot commands. The analysis of the system re-
sponse, as shown in Figure 5, yielded an estimated value of

0 1 2 3 4 5 6 7 8 9

Time [s]

0

100

200

300

400

500

600

700

800

900

1000

1100

E
S

C
 D

S
h
o
t
c
o
m

m
a
n
d

4500

5000

5500

6000

6500

7000

7500

M
o
to

r
R

P
M

Dshot command

ESC RPM telemetry

Estimated RPM with H
d

(z)

Figure 5: Identification of the motor dynamics.

0.039 for τd and 3 for Nd. It is important to note that these
values are specific to the tested set of propellers and to an
RPM control loop update rate of 500 Hz, matching the ESC
telemetry refresh rate.

The gain KDShot
RPM , on the other hand, represents the in-

verse of the control effectiveness, in this case the mapping
from RPM to DShot commands. We opted for a constant gain
of KDShot

RPM = 0.096, which corresponds to the ratio between
the maximum RPM and the maximum DShot command.

To illustrate the performance of the INDI RPM controller,
a step response from an initial RPM of 5000 to a desired RPM
of 10000 is depicted in Figure 6.

3.4 Communication with the Primary Flight Computer

For communication with the serial act t4 module in Pa-
parazzi UAV presented in Section 2.2.2, the Teensy also uti-
lizes UART communication using the same inbound and out-
bound structures defined in the serial act t4 data in and se-
rial act t4 data out data structures. These data structures can
be found in the Definitions.h file in the Teensy actuators PPZ

SEPTEMBER 11-15, 2023, AACHEN, GERMANY 114

ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2023-13 14th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time [s]

4000

5000

6000

7000

8000

9000

10000

11000

M
o
to

r
R

P
M

Desired RPM value

Motor RPM evolution with INDI control

Figure 6: RPM step response using the INDI RPM controller.

GitHub repository12.
It is crucial to ensure that the structures defined in the Pa-

parazzi module and in the Teensy firmware are identical. Any
inconsistencies between the structures will result in improper
communication between the hardware modules.

4 COMPANION COMPUTER SUBSYSTEM

As mentioned in the introduction, the utilization of ARM-
A family processors in conjunction with the embedded ARM-
M family processor significantly enhances the computational
capabilities of any robotic platform. In our specific imple-
mentation, we employed an OrangePi 5 to tackle the complex
Nonlinear Control Allocation problem for the dual-axis tilt-
ing rotor quad-plane.

The communication with the custom ca am 7 module
running on the Primary Flight Computer through UART is
implemented on a separate thread on the OrangePi 5. Un-
like the Teensy 4.0, which has a single-core processor, the
OrangePi 5 features an Octa-Core processor. This enables us
to distribute the serial communication routine and the control
routine across different threads running on different cores.

The software developed for this purpose is available in the
GitHub repository OrangePi PPZ13. The software is struc-
tured around the am7x.h and am7x.c files. The am7x.h file
contains the inbound and outbound data structures for se-
rial communication with the Primary Flight Computer. As
mentioned in the previous section, it is crucial for these data
structures to match those implemented in the Paparazzi UAV
ca am 7 module, as presented in Section 2.2.3.

13https://github.com/tudelft/OrangePi PPZ

The am7x.c file implements UART communication
within one thread and executes the MATLAB-generated func-
tion (or any other C function useful for the autopilot) on a sep-
arate thread. In our case, we execute a C-function automati-
cally generated by the MATLAB C-coder toolbox. For infor-
mation on generating a C function from a MATLAB function,
please refer to the MATLAB documentation6.

All the MATLAB-generated files are located in the MAT-
LAB generated files folder of the OrangePi PPZ repository13

and can be invoked from the am7x.c file.

5 FLIGHT TEST RESULTS

To demonstrate the efficacy of the proposed Autopilot
framework, we conducted tests using the dual-axis tilting ro-
tor quad-plane depicted in Figure 1. During the flight, the
companion computer subsystem computed the actuator solu-
tion, which was then transmitted to the actuator control and
real-time feedback subsystem. Figure 8 presents a photo-
graph of the Autopilot hardware, while Figure 7 illustrates
the observed evolution of the actuators command and state
during the flight test.

6 CONCLUSION

In this paper, we introduced a cutting-edge modular Au-
topilot framework designed to handle a multitude of actua-
tors while providing real-time, high-frequency feedback on
their state. We presented comprehensive software and hard-
ware details necessary for implementing the framework on a
wide range of UAVs using the Paparazzi UAV platform. We
have also developed an INDI RPM controller leveraging the
high-frequency feedback, enabling precise control of motor
RPM. Furthermore, the modular Autopilot includes a com-
panion computer subsystem, capable of efficiently solving
complex real-time tasks to support the Primary Flight Com-
puter. The effectiveness of the Autopilot functionalities was
then demonstrated through a successful flight test of a dual-
axis tilting rotor quad-plane equipped with the system.

ACKNOWLEDGEMENTS

The work was carried out within the Unmanned Valley
Project. The authors would like to thank the ”Europees Fonds
voor Regionale Ontwikkeling(EFRO)” who is founding the
Unmanned Valley project under grant code KvW-00168 for
the South-Holland region.

REFERENCES

[1] C.DeWagter, B.Remes, E.Smeur, F.VanTienen, and
R.Ruijsink. The nederdrone: A hybrid lift, hybrid en-
ergy hydrogen uav. International Journal of Hydrogen
Energy, Volume 46, Issue 29, 2021.

[2] Ali Bin Junaid, Alejandro Diaz De Cerio Sanchez,
Javier Betancor Bosch, Nikolaos Vitzilaios, and Yahya
Zweiri. Design and implementation of a dual-axis tilting
quadcopter. Robotics, 7(4), 2018.

SEPTEMBER 11-15, 2023, AACHEN, GERMANY 115

ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2023-13 14th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

Cmd from OrangePi

ESC telemetry

0 1 2 3 4 5 6 7 8 9

Time [s]

-120

-100

-80

-60

-40

-20

0

20

40

S
e

ri
a

l
b

u
s
 s

e
rv

o
s
 [

d
e

g
]

Serial Servo 1 cmd from OrangePi

Serial servo 1 telemetry

Serial Servo 2 cmd from OrangePi

Serial servo 2 telemetry

0 1 2 3 4 5 6 7 8 9

Time [s]

3000

4000

5000

6000

7000

8000

9000

M
o

to
r

1
 R

P
M

0 1 2 3 4 5 6 7 8 9

Time [s]

-20

-15

-10

-5

0

5

10

15

P
W

M
 A

ile
ro

n
 s

e
rv

o
 [

d
e

g
]

Aileron cmd from OrangePi

PWM Servo angular estimation with model

Figure 7: Actuators evolution during a portion of the dual-axis tilting rotor quadplane flight test.

Figure 8: A picture of the Autopilot hardware mounted on the
dual-axis tilting rotor quad-plane.

[3] A. Mancinelli, E.J.J. Smeur, B. Remes, and G.D. Croon.
Dual-axis tilting rotor quad-plane design, simulation,
flight and performance comparison with a conventional
quad-plane design. International Conference on Un-
manned Aircraft Systems (ICUAS), 2022.

[4] Christos Papachristos, Kostas Alexis, and Anthony
Tzes. Efficient force exertion for aerial robotic manip-
ulation: Exploiting the thrust-vectoring authority of a
tri-tiltrotor uav. 2014 IEEE International Conference
on Robotics and Automation (ICRA), pages 4500–4505,
2014.

[5] E.J.J. Smeur, G.C.H.E. de Croon, and Q. Chu. Cascaded
incremental nonlinear dynamic inversion for mav distur-

bance rejection. Control Engineering Practice, 73:79–
90, 2018.

[6] Gabriele Di Francesco, Massimiliano Mattei, and
Egidio D’Amato. Incremental nonlinear dynamic in-
version and control allocation for a tilt rotor uav. AIAA
Guidance, Navigation, and Control Conference, 2014.

[7] Gareth Halfacree Eben Upton. Raspberry Pi User
Guide. Wiley, 2016.

[8] J. Yang, A.G. Thomas, S. Singh, S. Baldi, and X. Wang.
A semi-physical platform for guidance and formations
of fixed-wing unmanned aerial vehicles. MDPI sensors,
2020.

[9] Gustavo Gargioni, Marco Peterson, J. B. Persons, Kevin
Schroeder, and Jonathan Black. A full distributed mul-
tipurpose autonomous flight system using 3d position
tracking and ros. 2019 International Conference on Un-
manned Aircraft Systems (ICUAS), pages 1458–1466,
2019.

[10] Hannah Mohr. Uav implementation of distributed robust
target location in unknown environments. 2020 IEEE
Aerospace Conference, pages 1–10, 2020.

[11] Alessandro Mancinelli, Bart D. W. Remes, Guido C. H.
E. De Croon, and Ewoud J. J. Smeur. Real-time non-
linear control allocation framework for vehicles with
highly nonlinear effectors subject to saturation. Jour-
nal of Intelligent & Robotic Systems, 2023.

[12] B. Gati. Open source autopilot for academic research -
the paparazzi system. 2013 American Control Confer-
ence, 2013.

SEPTEMBER 11-15, 2023, AACHEN, GERMANY 116

	Papers
	Autopilot framework with INDI RPM control, real-time actuator feedback, and stability control on com

