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ABSTRACT 
Afective aggression is a form of aggression characterized by im-
pulsive reactions driven by strong negative emotions. Despite the 
extensive research in the area of automatic emotion recognition, 
afective aggression is a phenomenon that has received less atten-
tion. This study investigates the use of head motion as a potential 
indicator of afective aggression and negative afect. It provides an 
analysis of head movement patterns associated with various levels 
of aggression, valence, arousal and dominance, and compares be-
haviors and recognition performance under speaking and listening 
conditions. The study was conducted on the Negative Afect and 
Aggression database - a multimodal corpus of dyadic interactions 
between aggression regulation training actors and non-actors, an-
notated for levels of aggression, valence, arousal, and dominance. 
Results demonstrate that head motion features can serve as promis-
ing indicators of afect during both speaking and listening. Valence 
and arousal prediction achieved better performance during speak-
ing, while aggression and dominance were better predicted during 
listening. Signifcant increases in the magnitude of pitch angular ac-
celeration were associated with escalation along all four annotated 
dimensions. Interestingly, higher escalation was accompanied by a 
signifcant increase in the total number of movements during speak-
ing, but a signifcant decrease of the number of movements was 
observed as escalation increased along listening intervals. These 
fndings are particularly relevant as head motion can be used solely 
or potentially as a supplementary modality when other modalities 
such as speech or facial expressions are unavailable or altered. 
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1 INTRODUCTION 
The past decades have witnessed signifcant progress in the area of 
automatic afect recognition, with various modalities such as facial 
expressions, speech, and bodily gestures being used as expressive 
signals [51]. While studies targeting recognizing emotions modelled 
as either discrete or continuous were initially most prominent [69], 
interest has grown in identifying behaviors and states related to 
medical conditions, such as depression [18], anxiety [56], and pain 
[20]. However, one category of behaviors that has received rela-
tively little attention thus far, and which is related to afective states 
and social interaction, is those associated with afective aggression. 

Human aggression is any behavior directed toward another indi-
vidual that is carried out with the immediate intent to cause harm 
[6]. Aggression has numerous negative consequences to victims, 
witnesses, as well as to perpetrators, including the risk of emo-
tional, behavioral and mental-health problems. In terms of form 
and function, two types of aggression are being distinguished in 
literature, namely afective (reactive) and instrumental (proactive) 
aggression. While instrumental aggression is represented by pur-
poseful and planned actions to achieve a goal and is associated 
with covert behaviors, afective aggression results from impulsivity 
and negative emotions in reaction to a threat or provocation, as in 
the case of a heated argument, and is associated with high sympa-
thetic activation and overt behavior [16][11]. Recognizing levels of 
(imminent) aggression has important applications, including the 
development of mental health therapies for aggression-related dis-
orders, self-management, surveillance, and improving human-agent 
interaction. 

While head motion has traditionally been considered a nuisance 
and fltered out [50] in afect recognition, there is growing evidence 
that it can provide valuable information for recognizing a persons’s 
afective states [1][2][24][57][65][66] and personality traits [46]. 
Head motion analysis brings several advantages, being more ro-
bust than other signals. As opposed to facial expressions, which 
can be altered by speech or viewing angle, and speech, which is 
only available when people are speaking, head motion is an avail-
able signal both during speaking and listening. The analysis of 
head motion is furthermore appealing in the case of Virtual Re-
ality (VR)-related applications [66] since head-mounted displays 
contain sensors that track head movement (gyroscopes) and can 
seamlessly be incorporated in analysis. In particular, in the context 
of aggression, VR-enabled aggression regulation training solutions 
are emerging with the promise of allowing subjects to develop 
skills in a safe and controlled environment, without exposure to 
real threats, as for example treating forensic psychiatric inpatients 
[22] and training clinicians exposed to aggression to de-escalate 
[48].
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This paper investigates whether afective aggression, hereinafter 
referred to as aggression, as well as negative afective states, repre-
sented as levels of valence, arousal, and dominance, can be predicted 
based on head motion. Furthermore, the paper provides an analysis 
of head movement patterns associated with levels of aggression 
and negative afect while a person is either speaking or listening, 
as well as prediction performance under these two conditions. The 
latter is motivated by the fact that movements of the head encom-
pass both afect [30] and discourse [47] related information, which 
can lead to diferences in head motion patterns and recognition 
performance during speaking and listening behaviors. The exper-
iments are performed on the NAA dataset of negative afect and 
aggression [45], a corpus of improvised face-to-face interactions 
between actors specialized in aggression regulation training and 
non-actor participants. 

The next section provides an overview of related work on aggres-
sion recognition and head-motion-based afective states prediction. 
Then, the NAA dataset is described in section 3. The paper continues 
with the feature extraction procedure in section 4 and methodology 
in section 5, followed by results and discussion in section 6 and 
fnally conclusions. 

2 RELATED WORK 
This section begins with an overview of studies related to the auto-
matic recognition of aggression and negative afective states based 
on multiple modalities and then zooms in on studies on afect recog-
nition using head motion. 

2.1 Automatic Recognition of Aggression and 
Negative Afect 

Aggressive behaviors are categorized into two sub-types: instru-
mental aggression (proactive) and afective aggression (reactive). 
Instrumental aggression is considered "cold-blooded" as it is mo-
tivated by well-calculated intentions of harm and associated with 
low emotional arousal. Conversely, afective aggression is linked to 
strong negative emotions and a lack of impulse control and is there-
fore considered "hot-blooded" [16][5]. Its manifestations include 
various verbal and non-verbal behaviors and interactions, which 
can be picked up by behavior recognition systems. 

Numerous studies investigated automatic violence detection in 
the feld of computer vision [54], focused on recognizing actions 
depicting violence such as throwing and kicking based on video or 
kinematic (3-D) and electromyographic performance data [64], or 
extracted aggression from audio-visual inputs [68]. It is important to 
note that while focusing on aggression, the interaction in this study 
are more subtle and do not include violence, which is generally 
regarded as an extreme form of physical aggression [3]. 

While the distinct topic of (afective) aggression was less ex-
plored by the research community compared to emotion recogni-
tion in general, studies on negative afective states and problematic 
interactions are related to our work. The speech modality was 
leveraged to automatically recognize escalating negative interac-
tions [40], to recognize manifestations of anger in call centers [55], 
and to detect frustration elicited by playing a game [61]. Several 
characteristics of problematic interactions were identifed, such as 
decreasing inter-personal space [17], and the use of gestures with 

specifc meaning and movement modulation [41]. An interesting 
fnding related to speech was that aggression [44] and conficts in 
political debates [35] were associated with a high degree of over-
lapping speech. Furthermore, including speech overlap as a feature 
proved to be one of the most discriminative features in these cases. 

2.2 The Role of Head Motion in Afect 
Recognition 

While it may not be the most prominent signal one would perceive 
in non-verbal communication, head motion is a very rich signal. 
On the one hand, it conveys discourse-related information [47]. 
While stillness tends to occur during pauses and while listening, it 
marks the structure of the ongoing discourse and is used to regulate 
interaction [26]. On the other hand, head motion communicates a 
variety of feelings, thoughts, and emotions. For instance, a bowed 
head connotes submission and inferiority emotions, such as shame, 
shyness, regret, guilt, and embarrassment [4]. If the chin is lifted it 
connotes dominance, superiority emotions (even arrogance), joy, 
and contentment, while a lowered chin indicates a negative or 
aggressive attitude [53]. Clinical patients with depression were 
found to move their head less and slower and postured it more 
downwards compared to healthy controls or the same subjects after 
successful treatment [2]. People in pain were associated with head 
movements and postures that tend to be oriented downwards or 
towards the pain site and involve a high movement range and faster 
movement of the head in painful situations [65]. 

Concerning automatic analysis and recognition of human af-
fective states, research showed the signifcance of head motion 
alone in conveying afect [1] [2][24][57][65]. In particular, Adams 
et al. [1] and Samanta & Guha [57] found that head motion carries 
complementary information to conversational facial expressions. 
The combination of features was also used to categorize mental 
states or a subset of communicative labels [21][63][25], whereas 
Silva & Bianchi-Berthouze [59] combined them with body posture 
features to classify emotional expressions. Other research used 
the results of automatic head-tracking and analysis in face-to-face 
interaction, i.e., between an avatar and an adult human [13], and 
between distressed couples [28]. Hammal et al. [29][30] analyzed 
head movements during positive and negative afective states of 
infants interacting with their mothers, while Madan et al. [46] used 
head features for personality trait recognition. 

Diferent techniques were used for data acquisition in automatic 
emotion recognition based on head pose and motion. For example, 
Gunes & Pantic [24] used the magnitude and direction of 2D head 
motion and head gestures, such as nods and shakes, to predict 
emotions in a continuous dimensional space. Other studies used 
video data and computer vision techniques to estimate 3D directions 
of head poses automatically [49]. While other studies approach head 
motion of individual persons, Tan et al. focused on estimating joint 
head orientation of interacting group members as a cue to social 
attention [62]. 

In terms of diferences between negative and positive afect, Ham-
mal et al. [29][30] showed that angular velocity and acceleration 
of pitch, yaw, and roll were higher for negative than for positive 
afect in infants; whereas in [28], they showed that pitch angular 
displacement was higher during confict than during neutral states. 
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Sitting individual exposed to visual emotional stimuli were found 
to lean more forward and moved more when watching positive 
stimuli than when watching negative stimuli [9]. 

While several eforts focused on using head motion for recog-
nizing negative afective states, e.g., anger, fear, pain, stress, and 
depression, [1][2][23][59][65], to the best of our knowledge this 
is the frst attempt to use head motion to predict aggression. An-
other distinct feature of this work is that we distinguish between 
speaking and listening conditions. 

3 THE DATASET OF NEGATIVE AFFECT AND 
AGGRESSION 

The experiments were performed on the NAA Dataset of Negative 
Afect and Aggression [45]. The dataset was collected in the con-
text of a project investigating the efectiveness of Virtual Reality 
(VR) aggression prevention therapy in the case of inpatients in 
psychiatric forensic clinics [22]. The dataset consists of dyadic face-
to-face interactions (role-plays) between professional aggression 
regulation training actors and non-actors. These role-plays were 
designed by psychologists and psychiatrists and are similar to the 
ones practiced in therapy. To ensure realism, the only instruction 
the participants received were short role descriptions, including 
the context (involving a degree of urgency), their role (e.g., bus 
driver), and their goal (e.g., do not let the passenger travel without 
paying). Since no scripts were used, the interactions emerged as 
the participants reacted to one another, and could, therefore best 
be described as improvisations. Besides the degree of urgency in 
the specifed scenarios, the actors played an important role in ma-
nipulating the emotional content of the database. Being profcient 
in giving aggression management training in forensic clinics and 
in showing and eliciting emotions, they were instructed to vary the 
degree of aggression for diferent scenarios. 

As it can be considered that the actors had the role of an emo-
tional stimulus (they were displaying various levels of aggression 
towards the non-actors), previous work performed a validation 
study to check whether the interactions resulted in the emotional 
arousal of non-actors [42]. The analysis found the relationship 
between how the heart rate variability (as an indication of sympa-
thetic activation) of non-actors varied in response to the varying 
aggression levels portrayed by the actors. While the study makes 
no claims about specifc experienced emotions, the results indicate 
that the behavior of the actors was indeed able to stimulate the 
non-actors. 

In total, 16 subjects participated in the recordings: 4 actors (3 
male, 1 female) and 12 non-actors (3 male, 9 female). Three diferent 
scenarios were played multiple times according to the following pro-
tocol. Each actor played every scenario thrice, each with a diferent 
aggression level evolution (escalate, de-escalate, keep aggression 
high) and with a diferent non-actor. Each non-actor participated 
in each of the three scenarios once, every time with a diferent 
actor, and every time with a diferent aggression level variation. 
The scheme led to 36 recorded interactions of approximately 3 min-
utes each. Multiple sensors were used for recordings, including 
microphones, cameras, MS Kinect, physiological sensors, as well as 
gyroscopes for tracking head motion, the latter being used in this 
study. 

Table 1: Inter-rater agreement (Weighted Krippendorf’s al-
pha with quadratic weights [37]) of label annotation for dif-
ferent conditions as reported in [45]. 

A NA A-S NA-S A-L NA-L S L 

Agg 
V 
A 
D 

.79 

.77 

.71 

.62 

.45 

.62 

.38 

.50 

.81 

.77 

.72 

.65 

.48 

.62 

.40 

.51 

.74 

.75 

.67 

.52 

.30 

.62 

.30 

.42 

.79 

.72 

.68 

.58 

.71 

.67 

.60 

.46 

Note: Agg = aggression; V = valence; A = arousal; D = dominance; 
A = actor; NA = non-actor; A-S = actors, speaking condition; NA-S 
= non-actors, speaking non-actors; A-L = actors, listening 
condition; NA-L = non-actors, listening condition; S = all speech 
segments; and L = all listening segments. 

The recordings were manually segmented into utterances based 
on turn-taking and by splitting longer utterances at pauses, which 
resulted in 2420 utterances (duration � = 2.56� , �� = 1.7). Each di-
mension was annotated by 3 raters. Degrees of Aggression, Arousal, 
and Dominance were annotated on a 5-point scale. As an excep-
tion, Valence was annotated on a 9-point scale to ensure a 5-point 
granularity for negative Valence. The annotation was performed 
in turn per dimension and per participant in interaction, meaning 
that for every utterance there is a label for the actor and a label for 
the non-actor. 

For this study, the annotation was reduced to a 3-point scale, 
corresponding to low, medium, and high levels of each annotated 
dimension, as some of the classes were very little represented. The 
label mapping procedure has a high impact on the experiments, 
and the procedure presented has been empirically chosen based 
on initial experimentation and class balance considerations. Some 
classes (and these difer per annotated dimension) are little repre-
sented. Examining the confusion matrices between annotators we 
observed that most confusions were between neighbouring classes. 
As part of the re-labelling procedure we experimented with multi-
ple options for combining neighbouring classes together to obtain 
a better representation of each class. These options maintain the 
categories of low, medium and high, even though the cutting points 
might vary. Full experiments (just as the ones described in the pa-
per) were performed with the other setups as well, and hereby we 
present results of the best performing relabeling procedure. 

For Aggression, the two lowest levels were merged into a new 
class 1 (low aggression), the middle class became the new class 2 
(medium aggression), and the two highest levels were merged into 
a new class 3 (high aggression). In the case of Valence, the two most 
negative levels were merged into a new class 3 (very negative), the 
next two levels were merged into a new class 2 (moderate negative), 
and the remaining levels were merged into a new class 1 (non-
negative valence). For Arousal, the lowest level was considered as 
a new class 1 (low arousal), the next two increasing levels were 
merged into a new class 2 (medium arousal) and the two highest 
levels were merged into a new class 3 (high arousal). For Dominance, 
the lowest two levels were clustered into a new class 1 (submissive), 
the middle level formed a new class 2 (moderate dominance), and the 
two highest levels were merged into a new class 3 (very dominant). 
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The inter-rater agreement was computed for the whole dataset, 
but also separately for actors, non-actors, and segments when the 
participants were speaking and listening, as shown in Table 1. The 
values presented in the table are diferent from the ones reported in 
[45], where Krippendorf’s alpha with linear weights was utilized as 
measurement. Given that by observing confusion matrices between 
raters, confusion between the neighboring classes was noticed, 
herein we report agreement using weighted Krippendorf’s alpha 
with quadratic weights. This method is suitable for ordinal data as 
it penalizes confusions between distant levels more and between 
neighboring levels less [7]. The agreement for rating the actors 
is consistently higher than for the non-actors for each annotated 
dimension. The main reason for this discrepancy might be that the 
behavior of the actors was much more overt (e.g., ample gesturing, 
loud voice), while most non-actors had a much subtler behavior. 
In addition, the results show that the inter-rater agreement was 
higher for segments that include speech and lower for segments 
that include silence (listening) for both actors and non-actors. This 
fnding indicates that non-verbal behavior is harder to interpret 
when observing participants who are listening. The distinctions 
between speaking and listening behavior are explored in this paper 
in terms of its infuence on aggression/afect recognition from head 
motion and speech. 

4 FEATURE EXTRACTION 
Head motion data was recorded using gyroscopes (Chrum, based 
on CH-Robotics UM-6 IMU) attached to the head of each partici-
pant using a head band. The raw data were segmented following 
the utterance-based segmentation. Therefore, each segment corre-
sponds to an aggression, valence, arousal, and dominance level. 

Figure 1: Head orientation angles: pitch, yaw, and roll 

At the beginning of each scenario, the participants were facing 
each other for calibration. Head rotations around the three axes 
known as pitch (i.e., looking up- or downward), yaw (i.e., looking 
to the left- or right), and roll (i.e., tilting clockwise or anticlockwise) 
(see Figure 1) were used as a basis for feature extraction. This results 
in features being extracted over 6 directions of movement. 

Inspired by previous studies [2][57][28][29][65], we used the fol-
lowing procedure for feature extraction from the raw head tracker 
data. First, we considered an interval of -5 to 5 degrees of pitch, 
yaw, and roll as looking forward (keeping into account the initial 
calibration). For measuring changes in head movement within a 
segment, we converted the head angles to angular displacement, an-
gular velocity, and angular acceleration. The angular displacements 
of pitch, yaw, and roll were computed by subtracting the overall 
mean head angle from each observed head angle, whereas angular 
velocity and angular acceleration were computed as the derivative 

of angular displacement and angular velocity, respectively. Further, 
to measure the magnitude of variation of angular displacement, 
angular velocity and angular acceleration, the root mean square 
(RMS) of these variables was computed. 

For each consecutive segment and each actor and non-actor data, 
117 features were computed separately (corresponding codes are 
available online [43]). These are: 

(a) The maximum, minimum, mean, variance, standard devia-
tion, range, and RMS values of angular displacement, angular 
velocity, and angular acceleration quantities (7 x 9 features); 

(b) The maximum, minimum, range, mean, and average dura-
tion values of: looking left, right, up, and down, and tilting 
clockwise and anticlockwise (4 x 6 features); Besides looking 
forward, the head can move to these six directions. 

(c) The average duration of the time intervals when the head 
moved from looking forward to the other directions (6 fea-
tures) and, conversely, from the other directions to looking 
forward (6 features); 

(d) The average duration of the time intervals that the subject 
was looking forward, within a segment (1 feature); 

(e) The ratio of movements in each of the six directions (the 
number of movements in each direction divided by the total 
number of movements) within a segment (6 features); 

(f) The number of the head movements from looking forward 
to the six directions (6 features) and the sum of the number 
of these movements (later referred to as total movements) (1 
feature); 

(g) The number of looking direction changes to the opposite 
side (i.e., zero-crossing rates or Z-cross e.g., left to right) and 
the total number of these changes (4 features) . 

5 METHODOLOGY 
The experiment explores the recognition performance of Aggres-
sion, Valence, Arousal, and Dominance while the participants were 
either only speaking or only listening. Furthermore, trends of the 
most important features in the recognition process were analyzed. 
The corresponding codes and analysis results are available as sup-
plementary material [43]. 

5.1 Data Partitioning 
For this experiment, samples from all participants (actors and non-
actors) were separated into two categories: speaking and listen-
ing. They were used to develop two models: (a) a Speaking model, 
trained on data where the participants were speaking (3146 sam-
ples), and (b) a Listening model, trained on data where the partici-
pants were listening (1688 samples). It is interesting to note that 
the data contains a high amount of overlapping speech (1458 sam-
ples) [44], which means that both the actor and the non-actor were 
speaking simultaneously during those segments. The overlapping 
speech segments were included in the Speaking model: for each 
overlapping speech segment, the head features of the actor were 
mapped on the label of the actor for that segment, and similarly for 
the non-actor. These segments were excluded from the Listening 
model. 
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Figure 2: The number of samples per class for the four anno-
tated dimensions used for the Listening (Lst) and Speaking 
(Sp) models 

5.2 Classifcation 
To ensure person independence, the experiments were performed 
using a leave-one-subject-out (LOSO) cross-validation. The clas-
sifcation was performed using fve diferent classifers: Logistic 
Regression (LR) [12], Support Vector Machine [10], Random For-
est (RF) [14], Balanced Random Forest (BRF) [14], and Conditional 
Random Fields (CRF) [39]. For the last classifer, the classifcation 
experiments were performed using the standard implementations 
from the Sklearn-crfsuite package, while the others were from 
the Scikit-learn package. 

Before classifcation using LR, SVM, RF, and BRF, to mitigate 
the efects caused by data being unevenly distributed over the 
three degrees of aggression, valence, arousal, and dominance, as 
shown in Figure 2, statistical minority oversampling (SMOTE) with 
Tomek Links [8] was applied. This method generates new artifcial 
samples of the minority class by adding noise to the data. Based on 
the initial label distribution of the training set per fold, statistical 
oversampling was applied for the two least represented classes, with 
a pre-computed parameter to even out the distributions. SMOTE-
Tomek Links was applied only on the training set for each fold. 
Before classifcation, the features were normalized by scaling them 
into the range of 0 to 1. 

In contrast to the other classifers explored, CRF is the only ap-
proach that takes into account the temporal dimension: past states 
will infuence the current state. Hence, segments were considered 
in the order in which they appeared in the recordings, and the 
temporal sequences were considered per participant in the inter-
action. However, it was not assumed that the observations (i.e., 
segments) were conditionally independent given the hidden states. 
Therefore, given a sequence of segments, � = {�1, �2, ..., �� } where 

each �� is a feature vector, CRF was applied to specify the condi-
tional probability � (� |� ) of a label sequence, � = {�1, �2, ..., �� }
and by using contextual information from previous labels, to predict 
the sequence. As a note: since CRF does not sufer from label bias 
problems and does global probability normalization, no statistical 
oversampling and normalization before classifcation using this 
method was applied. 

5.3 Data Analysis 
Recognition results are reported as unweighted average accuracy 
(UA), given the data imbalance. To check whether the diferences 
between diferent conditions are signifcant, the pairwise compar-
ison of recognition rates between the two models was calculated 
using a paired-samples t-test. 

Besides comparing the overall results of diferent methods and 
conditions, we were interested in the discriminative value of indi-
vidual features. The impact of features on prediction was assessed 
using permutation importance from the rfpimp v.1.3.7 package. 
This method measures feature importance by observing the efect 
of randomly shufing each feature on model accuracy [52]. The 
importance of a feature is measured by calculating the increase in 
the model’s prediction error after permuting the feature. A feature 
is ’important’ if shufing its values increases the model error be-
cause the model relied on the feature for the prediction. A feature 
is ’unimportant’ if shufing its values leaves the model error un-
changed because, in this case, the model ignored the feature for the 
prediction. 

Furthermore, trends of specifc features given changes in levels 
of Aggression, Valence, Arousal, and Dominance are explored. The 
tests were performed using the Kruskal-Wallis method since some 
continuous feature data were not normally distributed (results the 
Shapiro-Wilk tests can be found in the supplementary materials 
[43]). Kruskal-Wallis is a non-parametric method for comparing 
two or more independent samples of equal or diferent sample 
sizes [38]. This analysis provided reference data for further analysis 
between two levels of annotated dimension data. If the variance 
test statistic was signifcant (� < .05), then Dunn’s non-parametric 
post-hoc tests were conducted to compare all of the combinations 
[19]. These tests were conducted using R-package FSA v. 0.8.25. 
Given space limitation, the feature importance and trends are only 
specifed for the ten most important features. 

6 RESULTS AND DISCUSSION 
Table 2 presents the recognition rates for Listening (left) and Speak-
ing (right) in terms of unweighted average accuracies. For the given 
three class problems, a Dummy Classifer that generates predictions 
uniformly at random for the current 3 class problem with unbal-
anced data achieved unweighted accuracies of 30-33% on the tasks. 
In terms of performance per task, Aggression and Arousal were 
recognized with higher accuracies (>80%) than Valence and Domi-
nance. While all fve classifers performed higher than chance for 
all four task, the CRF classifer performed best for all annotated di-
mensions (except for Dominance during Speaking), followed by the 
tree-based classifers. This may indicate the importance of taking 
the temporal aspect of the interactions into account. 
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Table 2: Average recognition rates (Unweighted Accuracy %) using Head features while Listening and Speaking. 

Listening Speaking 
Classifer Agg Val Ar Dom Agg Val Ar Dom 

Logistic Regression 58.51 42.12 46.82 49.91 59.91 43.91 50.27 47.77 
Support Vector Machine 66.05 48.06 54.90 51.00 68.98 53.27* 66.59* 45.79 
Random Forest 77.42 59.58 76.26 61.51* 73.11 63.56 76.53 48.28 
Balanced Random Forest 78.30 60.43 75.88 64.30* 74.77 63.96 76.74 49.05 
Conditional Random Fields 85.54* 64.11 81.73 69.90* 79.02 67.42 77.23 48.48 

Note: ∗ signifcantly higher accuracy among the Listening and Speaking conditions, � < .05. 

Analyzing the diferences in performance between the Listening 
and Speaking conditions, it can be noticed (Table 2), with little ex-
ception, a consistent trend of higher recognition rates for Speaking 
in the case of Valence and Arousal (signifcant for SVM). In contrast, 
Aggression and Dominance were better predicted during Listening, 
with signifcant diferences for CRF in the case of Aggression and 
RF, BRF, and CRF for Dominance. 

Tables 3, 4, 5, and 6 present the ten most important features for 
Aggression, Valence, Arousal, and Dominance, respectively, ranked 
according to their permutation importance, together with the re-
sults of the one-way analysis of variance performed per dimension 
and speaking / listening condition and post-hoc analysis. Features 
derived from pitch (moving head up and down) are the most fre-
quent in the feature importance table, accounting for 45% of the 
occurrences. Head yaw (looking to the left and right) related fea-
tures account for 36% of occurrences, while roll (tilting head to 
the sides) is the least frequently represented, accounting for 9% of 
occurrences. 

Several interesting trends are observed when analyzing the top 
ten most important head features and how they vary with increas-
ing levels of the considered afective dimensions. The number of 
total movements and RMS of pitch angular acceleration were among 
the top predictors for all four dimensions and both for the Speaking 
and Listening conditions. While RMS acceleration of pitch consis-
tently increased for all 4 dimensions accompanying escalation, both 
during speaking and listening, a diferent trend is observed for the 
number of total movements. Interestingly, increases in Aggression, 
negative Valence, Arousal, and Dominance were associated with 
a signifcant increase in total movements during Speaking, while 
a signifcant decrease in total movements was observed during 
Listening while all four dimensions were escalated. 

For the Speaking condition, pitch angular acceleration signif-
cantly increased with the escalation levels of the four dimensions. 
A similar increasing trend was observed for the pitch angular veloc-
ity of the four dimensions, except for the lowest levels of Arousal. 
Further, signifcant increases were noted for several yaw-related fea-
tures in Aggression, Valence, and Arousal and for roll in Aggression 
and Dominance. 

For the Listening condition, although the variance of measure-
ments based on pitch was lower than for Speaking, signifcant 
increases in angular acceleration and angular velocity were still 
reported in all dimensions as the levels escalated. This occurred 
from medium to high Arousal, between low and medium Aggres-
sion and Dominance, and from medium to high negative Valence. A 

similar trend was depicted by angular velocity and angular acceler-
ation based on yaw and roll for Valence, Arousal, and Dominance. 
For Aggression, the angular displacement and velocity of yaw sig-
nifcantly decreased from medium to high Aggression, while roll 
angular acceleration signifcantly increased in lower Aggression. 
Measurements of several individual movements revealed signifcant 
decreases. For example, the average duration of looking forward 
to looking down between low and medium Dominance, the ratio 
of looking to the right for high Aggression, the average duration 
from looking forward to looking left for high negative Valence, 
and the average duration of changing from looking forward to 
tilting-clockwise between medium and high Arousal. 

The analysis suggests that during speaking humans increase 
their head movements as aggression and negative afect are escalat-
ing, especially in the case of movements related to pitch and yaw. It 
seems that for these higher levels of escalation, the speakers move 
their heads, i.e., nod, bow, and shake, more often and more rapidly 
to reinforce their verbal messages, which is at the same time a 
display of their emotional states. This result supports a study inves-
tigating emotionally contrastive speech tasks that found increased 
head velocity under stress conditions [23]. Correspondingly, Hadar 
et al. [26] found a signifcant positive correlation between head 
movement amplitude and peak speech loudness, which was driven 
mostly by fast, high-intensity movements and loud sounds. 

In the case of listening, the analysis of variance indicated that 
the higher the levels of escalation, the less movement there is, al-
though the angular velocity and acceleration based on pitch and 
yaw are still increasing side-by-side with the levels of the annotated 
dimensions. This fnding is in accordance with Hadar et al. [27], 
who found relatively little movement during listening turns. On 
the other hand, Yngve [67] and Duncan [32] regarded head mo-
tion while listening as backchannels. This may explain the increase 
of the angular velocity and acceleration on diferent levels of the 
four annotated dimensions (albeit having lower levels than during 
Speaking). Backchannels are considered the listeners’ spontaneous 
expression when they desire to interject. They include those times 
when the listener is turning the head from side to side indicating dis-
agreement [36], lifting the chin up to show dominance-superiority 
emotions [53], and increasing the pace of the movement to signal 
the lack of patience [53]. Moving one’s head during listening may 
also be used to signal the desire to assume the role of speaker. Ac-
cording to Harrigan [31], listeners provide cues by increasing the 
head and gaze shifting as a nonverbal means of requesting a turn. 
Then, they will begin their turn by briefy looking away or averting 
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Table 3: One-way analysis of variance for Aggression levels during Listening and Speaking 

Listening Speaking 

No Feature 
Var 
�2 

Post-hoc Analysis 
� (1-2) � (2-3) � (1-3) 

Var 
No Feature �2 

Post-hoc Analysis 
� (1-2) � (2-3) � (1-3) 

1 Total movements 132.46* 5.65* 10.64* 4.85* 1 RMS acc. pitch 493.33* -15.16* -19.35* -3.43* 
2 Ratio total look-up 8.18* -2.84* -0.02 1.92 2 Total movements 79.47* -7.76* -6.09* 1.33 
3 Var velocity yaw 6.66* -0.34 2.50* 2.27* 3 Var acc. pitch 499.99* -15.18* -19.53* -3.56* 
4 Range displacem. yaw 46.06* 1.47 6.75* 4.52* 4 Range velocity pitch 452.38* -15.26* -17.99* -2.25* 
5 Mean acc. roll 12.25* -3.26* -1.65 0.88 5 Ratio total look-right 2.94 -0.67 -1.69 -0.83 
6 Var acc. pitch 16.78* -3.71* -2.17* 0.76 6 Total Z-Cross yaw 85.96* -7.05* -7.51* -0.39 
7 Range velocity pitch 10.37* -3.18* 0.09 2.24* 7 Ratio total look-down 140.04* -8.76* -9.79* -0.86 
8 RMS acc. pitch 19.25* -3.79* -2.66* 0.41 8 Var velocity yaw 38.48* -5.04* -4.70* 0.26 
9 Ratio total look-right 8.04* -0.32 2.76* 2.47* 9 Max acc. pitch 464.96* -14.58* -18.88* -3.52* 
10 Max acc. pitch 7.12* -2.66* -0.55 1.36 10 Mean acc. roll 144.25* -8.83* -9.99* -0.96 

Note: ∗ signifcant � < .05, � � = 2; Var = Analysis of Variance; RMS = root mean square 

Table 4: One-way analysis of variance for Valence levels during Listening and Speaking 

Listening Speaking 

No Feature 
Var 
�2 

Post-hoc Analysis 
� (1-2) � (2-3) � (1-3) 

Var 
No Feature �2 

Post-hoc Analysis 
� (1-2) � (2-3) � (1-3) 

1 Total movements 42.06* 1.73 4.22* 5.93* 1 RMS acc. pitch 315.98* -2.60* -7.90* -17.03* 
2 Mean dur. fwd. to left 19.21* -1.15 0.75 4.35* 2 Mean acc. pitch 286.57* -2.47* -7.51* -16.22* 
3 Mean acc. pitch 23.24* 0.32 -1.75 -4.81* 3 Total movements 29.54* -1.50 -3.04* -4.95* 
4 RMS acc. pitch 26.06* 0.16 -2.02 -5.07* 4 Mean dur. fwd.-right. 22.92* 0.86 -0.63 -4.78* 
5 Mean velocity pitch 11.55* 0.26 -1.20 -3.39* 5 Var acc. pitch 315.71* -2.57* -7.87* -17.03* 
6 Var acc. pitch 23.59* 0.02 -2.04 -4.81* 6 Var acc. yaw 39.41* -3.00* -4.55* -5.03* 
7 Min displ. yaw 22.36* -0.99 -2.85* -4.43* 7 Mean dur. look-fwd 13.35* 1.64 2.57* 3.00* 
8 RMS velocity pitch 13.48* 0.08 -1.48 -3.64* 8 Mean acc. yaw 45.88* -3.06* -4.78* -5.54* 
9 Var velocity pitch 12.97* -0.01 -1.53 -3.56* 9 Min acc. yaw 0.07 -0.23 -0.26 -0.10 
10 Min acc. yaw 17.15* -0.04 -1.79 -4.09* 10 Min durat. look-down 36.18* 0.25 2.09 5.91* 

Note: ∗ signifcant � < .05, � � = 2; Var = Analysis of Variance; RMS = root mean square 

Table 5: One-way analysis of variance for Arousal levels during Listening and Speaking 

Listening Speaking 

No Feature 
Var 
�2 

Post-hoc Analysis 
� (1-2) � (2-3) � (1-3) 

Var 
No Feature �2 

Post-hoc Analysis 
� (1-2) � (2-3) � (1-3) 

1 Total movements 89.36* 2.43* 6.84* 8.81* 1 Total movements 108.75* -0.42 -3.85* -10.29* 
2 Mean dur. fwd-tilt-CW 74.33* 1.77 5.91* 8.19* 2 RMS acc. pitch 467.00* -2.96* -9.89* -20.90* 
3 Min velocity roll 78.72* -0.08 -4.69* -8.81* 3 Var acc. pitch 469.38* -2.90* -9.85* -20.97* 
4 Mean velocity pitch 37.71* -2.74* -5.21* -5.16* 4 SD acc. pitch 469.38* -2.90* -9.85* -20.97* 
5 Var velocity pitch 28.52* -1.85 -4.19* -4.77* 5 Mean acc. yaw 122.47* -0.86 -4.47* -10.85* 
6 Mean acc. pitch 48.07* -2.66* -5.61* -6.07* 6 Ratio total look-right 13.46* 1.64 0.46 -3.45* 
7 RMS acc. pitch 45.81* -2.23* -5.24* -6.10* 7 Mean acc. pitch 425.27* -2.87* -9.48* -19.93* 
8 Mean acc. yaw 21.73* -0.18 -2.58* -4.61* 8 Min velocity pitch 72.45* 0.08 -2.75* -8.46* 
9 RMS velocity pitch 34.00* -2.21* -4.70* -5.12* 9 Ratio total look-down 147.91* -1.25 -5.19* -11.86* 
10 Min displ. yaw 19.87* -2.14* -3.86* -3.65* 10 Mean velocity pitch 325.41* -2.67* -8.43* -17.39* 

Note: ∗ signifcant � < .05, � � = 2; Var = Analysis of Variance; CW = clockwise; RMS = root mean square 

their gaze, which may include head shifting [33][34]. Nevertheless, the communicative cues during listening could also be recognized 
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Table 6: One-way analysis of variance for Dominance levels during Listening and Speaking 

Listening Speaking 

No Feature 
Var 
�2 

Post-hoc Analysis 
� (1-2) � (2-3) � (1-3) 

Var 
No Feature �2 

Post-hoc Analysis 
� (1-2) � (2-3) � (1-3) 

1 Total movements 97.08* 8.48* 6.13* 2.60* 1 RMS acc. pitch 446.71* -13.35* -20.47* -10.85* 
2 Mean dur. fwd.-down 119.41* 9.93* 5.88* 1.78 2 Mean acc. pitch 416.13* -13.22* -19.64* -10.10* 
3 Min displ. pitch 6.38* -1.84 -1.97 -1.18 3 Var acc. pitch 441.58* -13.04* -20.42* -11.04* 
4 Mean acc. pitch 48.68* -5.97* -4.40* -1.92 4 SD acc. pitch 441.58* -13.04* -20.42* -11.04* 
5 Mean acc. roll 32.22* -5.43* -2.38* -0.16 5 SD velocity pitch 355.24* -12.51* -18.04* -8.99* 
6 Mean acc. yaw 27.11* -5.20* -0.98 1.11 6 Min velocity pitch 59.02* -5.37* -7.23* -3.33* 
7 Max acc. pitch 14.05* -3.29* -2.23* -0.86 7 Ratio total look-down 107.82* -6.12* -10.18* -5.80* 
8 RMS acc. pitch 44.08* -5.74* -4.09* -1.70 8 Total movements 22.66* -2.03* -4.76* -3.36* 
9 Var acc. pitch 36.48* -5.26* -3.66* -1.48 9 Mean acc. roll 127.40* -8.30* -10.42* -4.36* 
10 RMS velocity pitch 26.93* -4.77* -2.69* -0.73 10 RMS velocity pitch 339.16* -12.50* -17.51* -8.44* 

Note: ∗ signifcant � < .05, � � = 2; Var = Analysis of Variance; RMS=root mean square 

as signals for aggression and negative afective states. In the case of 
Dominance, the changes in angular velocity and acceleration occur 
signifcantly from the low to medium level. 

6.1 Limitations 
This study was performed on improvised interactions between 
professional aggression regulation training actors and non-actors 
and may sufer from well known artefacts resulting from the use 
of actors, see for example [15], [58]. Data streamed from head-
attached sensors was analyzed and interpreted as head motion, 
without taking into account infuences from moving one’s whole 
body. This can be seen on one hand as a strength, i.e., a single head-
worn sensor was sufcient to recognize the considered afective 
dimensions, but on the other hand, it is important to keep in mind 
when interpreting the head motion patterns results. Furthermore, 
the study is context specifc, meaning that we look for aggression 
and negative afect in applications where we expect variations 
of these behaviors. Head motion can however be infuenced by 
positive afect and by doing specifc activities. Furthermore, the 
kind and magnitude of head motion can be person specifc and 
also infuenced by gender, culture, and personality, which we have 
not taken into consideration in this study. Lastly, results should be 
regarded while taking into consideration that we map simple head 
motion features to a high-level interpretation of behavior extracted 
from multimodal data, with varying inter-rater agreements. 

7 CONCLUSION AND FUTURE WORK 
This study focused on recognizing aggression and negative afect 
measured as levels of valence, arousal and dominance using head 
motion features. We demonstrated that while encapsulating both 
discourse and emotional information, head motion can be used to 
recognize afect and aggression during both listening and speaking. 
This is important as head motion can potentially be useful when 
other frequently used modalities might be unavailable or altered, 
e.g speech missing when listening, facial expression occluded or 
altered by speech. Among the tested classifcation approaches, the 
best results were achieved when taking the temporal aspect of the 
interactions into account, using the CRF classifer. Moreover, all 

classifcation tasks achieved higher than chance accuracies, both 
for the speaking and listening conditions. Aggression and Domi-
nance were better predicted on segments where the subjects were 
listening, whereas Valence and Arousal were better predicted on 
segments where subjects were speaking. 

In terms of feature importance and feature trends, the total num-
ber of head movements and RMS acceleration for pitch were among 
the most predictive features for all tasks. The magnitude of variation 
in pitch angular acceleration signifcantly increased with escalation 
of the considered dimensions for both speaking and listening. The 
total number of head movements signifcantly increased with the 
escalation for speaking, but signifcantly decreased with escalation 
for listening. 

Head motion can be in principle easily incorporated in VR-
related applications that use head-mounted displays, resulting in 
additional non-intrusive data collection especially required when 
other modalities such as facial expressions are difcult to capture. 
While research indicates that people use natural non-verbal be-
havior when interacting with realistic embodied avatars [60], the 
fndings of this study are limited to face-to-face interactions, and 
further research is needed to explore behavior in VR. Other consid-
ered directions for future work include exploring head motion in 
combination with other modalities available on the NAA database. 
As overlapping speech was one of the best predictors of conficts 
we are also considering joint analysis of the conversation partners. 
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