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4  ISSC 2022 Committee I.1: Environment 

1. INTRODUCTION AND METOCEAN FORCING
Environment Committee of ISSC, by its Mandate, deals with the Metocean environments. “In 
offshore and coastal engineering, metocean refers to the syllabic abbreviation of meteorology 
and (physical) oceanography” (Wikipedia). Metocean research covers dynamics of the ocean-
interface environments: the air-sea surface, atmospheric boundary layer, upper ocean, the sea 
bed within the wavelength proximity (~100 m for wind-generated waves), and coastal areas. 
Metocean disciplines broadly comprise maritime engineering, marine meteorology, wave 
forecast, operational oceanography, oceanic climate, sediment transport, coastal morphology, 
and specialised technological disciplines for in-situ and remote sensing observations. Metocean 
applications incorporate offshore, coastal and Arctic engineering; navigation, shipping and 
naval architecture; marine search and rescue; environmental instrumentation, among others. 
Often, both for design and operational purposes the ISSC community is interested in Metocean 
Extremes which include extreme conditions (such as extreme tropical or extra-tropical 
cyclones), extreme events (such as rogue waves) and extreme environments (such as Marginal 
Ice Zone, MIZ). Certain Metocean conditions appear extreme, depending on applications (e.g. 
swell seas are benign for recreational sailing, but can be dangerous for dredging operations and 
are extreme for vessels transporting liquids). 

This report builds on the work of the previous Technical Committees in charge of Environment. 

The goal continues to be to review scientific and technological developments in the Metocean 
field from the last report, and to provide context of the developments, in order to give a 
balanced, accurate and up to date picture about the natural environment as well as data and 
models which can be used to accurately simulate it. The content of this report also reflects the 
interests and subject areas of the Committee membership, in accordance with the ISSC I.1 
mandate. The Committee has continued cooperation with the Environment Committee of ITTC 
and with ISSC Committee V.6 Ocean Space Utilization. 

The Committee consisted of members from academia, research organizations, research 
laboratories and classification societies. The Committee formally met as a group in person two 
times before the COVID onset: in Glasgow, Scotland on the 9th of June 2019, before the 38th 
International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2019) and in 
Melbourne, Australia on the 10th of November 2019, following the 15th International 
Workshop on Wave Hindcasting and Forecasting. It’s also held a number of regular 
teleconferences: two before the face-to-face meetings and seven after, once international travel 
was stopped by the pandemic. 

Additionally, Committee members met on an ad-hoc basis during their international travels in 
2019. With the wide range of subject areas that this report must cover, and the limited space, 
this Committee report does not purport to be exhaustive; however, the Committee believes that 
the reader will be presented a fair and balanced view of the subjects covered, and we 
recommend this report for the consideration of the ISSC 2022 Congress. 

The report consists of 11 Sections: two of which include the Introduction and Conclusions, and 
nine are the main content. The opening Section 1 outlines and defines Metocean Forcings 
which can affect the offshore design and operations and are the subject of this Review Chapter. 
The review of publications starts from progress in Analytical Theory in 2018-2021, Section 2. 
It covers the basic framework of experimental, numerical, remote sensing and all the other 
methods and approaches in Metocean science and engineering. Numerical Modelling (Section 
3) is one of the most rapidly developing research and application environments over the past
two decades, it allows us to extend the theory when analytical solutions are not possible, and
to complement (or even replace) some of the experimental approaches of the past. Computer
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simulations will always need verification, validation and calibration of their outcomes through 
experiments and observations, particularly in engineering applications and offshore Metocean 
science. Therefore, Section 4 (Measurements and Observations) is the largest in the Chapter. 
Section 5 is effectively a modern extension of the measurement section – it is dedicated to 
Remote Sensing. Over the last four decades, the remote sensing has both become a powerful 
instrumental tool for field observations and remains an active area of engineering research in 
its own right as we see through growing developments of new capabilities in this space.  

While the first five chapters are broadly dedicated to direct outcomes of Metocean research, 
the rest of the chapters focus more on analysis and indirect outputs. With mounting amounts 
of collected data: numerical, experimental, remote sensing, - Section 6 discusses advances in 
Data Analysis, and Section 7 in Statistics, its Theory and Analysis. Section 8, on Wave-
Coupled Phenomena, reflects one of the most rapidly developing areas in Metocean science, 
particularly important in our era of numerical modelling. It accommodates various topics of 
interactions between small-scale phenomena (waves) and large-scale processes in the air-sea 
environments: wave breaking, wave-current and wave-ice interactions, wave influences in the 
Atmospheric Boundary Layer (ABL) and in the upper ocean, and complex wave-coupled 
modelling in the full combined air-sea-ice-wave system. Most essential for offshore 
engineering, is modelling and understanding of Extreme Events and Conditions, which are the 
subject of Section 9. Last, but not the least, Section 10 discusses Wind-Wave Climate which is 
connected to the global climate change. This connection is threaded throughout other sections 
of the chapter and is of utmost significance in offshore Metocean design and planning.  

2. ANALYTICAL THEORY  
This chapter focuses on three main areas with regards to recent advances in analytical theories; 
these include advances in deepwater theories, advances in shallow water theories and advances 
in modelling of oceans waves in interaction with other phenomena. These are presented next, 
respectively.  

2.1 Advances in non-linear wave theories 
2.1.1 The merits of non-linear wave theories 
Nonlinear partial differential equations (PDEs) are known to be useful tools in various real life, 
including shallow water, modelling.  

One recent study which can be implemented to solve various nonlinear space-time fractional 
differential equations was carried out by Ali & Nuruddeen (2017) who used two methods 
including the Kudryashov method (exponential function) and the modified extended “tanh” 
expansion method (trigonometric and hyperbolic functions) with the Riccati differential 
equation, to analytically investigate and create various solutions for the Benney-Luke Equation 
(BLE), a conformal space-time fractional equation). The BLE featured in the study includes 
fractional derivatives in both the spatial and the temporal variables. Various solutions including 
the singular periodic wave's shapes, kink-type solution shapes were constructed in this study 
and singular soliton solution shapes obtained for the problem. Using graphical illustrations, the 
authors found that the applied methods are capable of producing exact solutions which were 
found in previous studies.  

In another study, Osborne (2018) applied Multiperiodic Fourier Series (MFS) as solutions for 
integrable nonlinear ocean wave equations in one or two dimensions with two equations, both 
the Korteweg-de Vries (KdV) and nonlinear Schodinger equations are illustrated. The author 
highlights that “multiperiodic Fourier series have the advantage that the coherent structures of 
soliton physics are encoded in the formulation so that solitons, breathers, vortices, etc. are 
contained in the temporal evolution of the nonlinear power spectrum and phases”.  
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The focus of Osborne (2018) is on constructing analytical results for a nonlinear wave equation. 
The method is used to compute both the physical properties of the nonlinear wave equations 
(for example, Stokes waves) and results for nonlinear stochastic properties including the 
correlation and coherence functions as well as the power spectra. As the Baker-Mumford 
theorem has been applied to construct the multiperiodic functions, the author suggests that the 
singularities can be included to approximately solve equations with “blow-ups”, using MFS. 
Noting the assumption of one- or two-dimensional wave equations used in this study, another 
study is discussed in section 2.3 which highlights the fact that this assumption, applied to most 
current wave models, significantly alters the wave process, especially when interacting with 
other phenomena.  

An interesting phenomenon when studying ocean waves is the interaction between long and 
short waves. Pan et al. (2018) investigated the effects of the divergent terms (i.e. the product 
of short wave modal wavenumber and long wave amplitude being >>1) which appear in high-
order expansions analysis of such interactions, using mode decomposition. The aim of the study 
was to observe how the divergent terms influence the convergence of the expansion. In this 
study, products are not calculated in the physical domain; instead, model convolution is used 
for all operations in the spectral domain. Moreover, only after the analytical cancellations as 
discussed above, the results are stored. Although this approach introduces extra computational 
complexity because of the modal convolution and generalising it is complicated, it may in 
principle keep the dimension-reduction property and side-step the numerical ill-conditioning. 
The application of the Dirichlet-Neumann operator and mathematical induction, support (in 
theory) that the results are obtainable in a general case. 

On the interaction of long waves, Kurt et al. (2019) have used both the sub-equation and 
residual power series methods to obtain new exact and approximate solutions of the generalised 
Hirota-Satsuma coupled KdV system of equations model. This has been carried out by first 
finding an approximate solution as a series of travelling wave (which are progressive waves 
that almost keep shape while traveling in a specific direction) solutions. Subsequently, these 
results are handled by taking the fractional derivatives in the conformable sense. Finally, the 
exact solutions are checked through substitution into the corresponding system using a 
symbolic computational software package. The study concludes that both the methods were 
applied easily and effectively, and the results point to their reliability; therefore, they can be 
applied to determine the dynamics of various fractional PDEs. 

2.1.2 Wave theories and deep water 
With regards to recent advances in deep water wave modelling approaches, in 2017, 
Dyachenko et al. (2017) proposed and analysed a new compact form of the Hamiltonian 
equation to model gravity-based ocean waves at the surface of deep water. The method, which 
gives a spatial wave equation, is most suitable for modelling artificial waves created in a 
controlled laboratory environment (i.e. with the use of wavemakers). The proposed method can 
be applied to define pre-breaking waves. In addition, similar to the Korteweg-de Vries equation 
which is generalised to the Kadomtsev-Petviashvili equation, these wave models can be 
generalised to almost 2D waves. The authors highlight the simplicity of the method as one of 
its advantages.  

In another study, Demiray & Bulut (2017) investigated the below Generalised Gardner 
Equation (GGE) to find new exact solutions:  

 𝑢𝑡 + (𝑝 + 𝑞𝑢𝑛 + 𝑟𝑢2𝑛)𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0, 𝑛 ≥ 0 . (2.1) 

To do so the Extended Trial Equation Method (ETEM) was used to find the exact solutions of 
GGE (e.g. soliton, rational, Jacobi elliptic and hyperbolic function). These solutions highlight 
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various aspects of the solutions to the Nonlinear Evaluation Equations (NLEEs). Subsequently, 
real and imaginary values of some of those exact solutions have been drawn in 2D and 3D 
graphics for some parameters. The research illustrates that ETEM can be applied as a powerful 
mathematical tool to obtain various analytical solutions of GGE and can be extended to other 
NLEEs in theory of solitons’ domain.  

Looking more specifically into deep ocean rogue waves, Dematteis et al. (2018) investigated 
the appearance of rogue waves and propose a method to identify ocean states that could occur 
before a rogue wave. To do so, the Modified NonLinear Schrodinger (MNLS) equation is 
applied in 1D. The assumption is that the random initial conditions are normally distributed, 
and a spectrum approximating a unidirectional sea state has been used. The available 
information from the spectrum combined with the MNLS dynamics allows the ocean surface 
elevation to be reliably estimated and predicted.  

Dematteis et al. (2018) conclude that rogue waves occur when unlikely pockets of wave 
configurations introduce large disturbances in the surface height. It is interesting that sea states 
that precursor rogue waves and these pockets include wave patterns which are of regular height, 
but very specific in shape which can be identified explicitly. Identifying these specific wave 
patterns could lead to the early detection of rogue waves. Combining Monte Carlo sampling 
with large deviations theory simplifies the calculations of potential rogue wave precursors to 
an optimisation problem which is solvable efficiently. 

2.2 Investigating shallow water equations  
A preliminary study was conducted by Henry & Thomas (2017) to predict the regular and 2D 
surface waves following the recovery of pressure at the sea bed. They included in their model, 
the presence of a steady current which may comprise an arbitrary velocity distribution. This is 
as a result of their literature review which highlighted that previously existing methods which 
use pressure recovery in the presence of current mainly assume currents to be either constant 
or with constant vorticity; in those cases the wavefield becomes irrotational. 

Using the Moderate Current Approximation (MCA), Henry & Thomas (2017) describe the sea 
bed pressure relationship with surface elevation in shallow waters and discuss the effect of the 
pressure function on the seabed on the free-surface profile elevation. They present a general 
pressure-stream function relation for regular waves interacting with an arbitrary profiled 
current and identify the importance of a change in velocity. Their results point to a good 
approximation for various current profiles, however they acknowledge that the accuracy of 
their model is dependent on the velocity of the current that is inputted. They conclude that their 
method could be applied to both near shore and offshore environments. 

Francius & Kharif (2017) extended the Rienecker & Fenton (1981)’s method and applied it to 
numerically model and investigate the normal-mode perturbations of a 2D finite-amplitude 
gravity wave propagating on a linear shear current. The assumption is that the current is of 
constant vorticity. Their approach allows the waves to be modelled accurately with or without 
critical layers and pressure anomalies. Using this linear stability analysis, which was carried 
out both in deep and shallow waters, and extends the scope and results of 
previous simulations, it is possible to extend a weakly nonlinear (Schrödinger equation) 
analytical result (from past literature) to higher values of the wave steepness and fully nonlinear 
waves.  

The results of Francius & Kharif (2017) research also led to the discovery of new 
instability bands (in addition to modulation instabilities). These instabilities correspond to 
quartet and quintet instabilities, not sideband disturbances. It was observed that the growth rate 
of the quartet instabilities will increase with a rise in the shear in opposite shear currents. This 
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is the opposite effect for most unstable sideband instabilities whose growth rate would reduce 
with increased shear.  

2.3 Waves interacting with other phenomena  
Although the interaction of waves with other phenomena (current, ice, etc.) does not changes 
the non-linearity, it certainly adds extra turbulence and complexity to the system which needs 
to be included in the model. Next recent advances in such models are reviewed. 

2.3.1 Wave- ice interaction 
With the significant effect of climate change on the melting of polar ice, increase in the Fluid-
Ice-Structure Interaction (FISI) scenarios is inevitable. This, combined with the opening of 
Arctic routes, calls for more attention to the topic of FISI. 

Huang et al. (2019) investigated the ocean wave interaction with large sheet of ice which due 
to their size proportions (can be several kilometres) would have a dominant hydroelastic 
response as opposed to a rigid body motion. The interaction was modelled using a combination 
of methods: CFD to simulate the hydroelastic interaction between ocean wave and ice, Navier-
Stokes equations simulating the fluid domain and the St. Venant Kirchhoff solid model to 
include a simulation of ice deformation. These were complimented with a fluid-structure 
coupling scheme. Their approach, when compared to experimental results was shown to be 
able to capture previously left out phenomena such as predicting “overwash”. 

Kellner et al. (2019) used machine learning to predict ice behaviour. Ice material models often 
limit the accuracy of ice related simulations. The reasons for this are manifold, e.g. complex 
ice properties. One issue is linking experimental data to ice material modelling, where the aim 
is to identify patterns in the data that can be used by the models. Commonly given transition 
strain rates for freshwater and saltwater ice are 10-4 s-1 and 10-3 s-1, respectively, at -10°C. One 
of the major challenges is the definition of ductile to brittle failure transition. A comprehensive 
(publicly available) database has been setup with experimental data gathered from literature. 
The database is analysed with correlation analysis, principal component analysis and Decision 
Trees (DT). 

Results illustrate that the transition strain rate for freshwater ice given by the DT is one 
magnitude higher than the literature values (103.05). A possible reason for this deviation is that 
the DT strain rate is based on a dataset which lumps together the results of different 
experimental setups and conditions. Another unexpected result is that the DT transition strain 
rates for saltwater and freshwater ice are almost identical. However, for the saltwater ice DT, 
the transition strain rate only applies to temperatures lower than -9.95° C. Hence it cannot be 
seen as a general transition strain rate in a strict sense. As such, a direct comparison to literature 
values or the freshwater transition strain rate is less meaningful. 

2.3.2 Wave-current interaction 
Wave-current interaction is a complex phenomenon and as discussed by Babanin et al. (2017), 
probably least developed of all wave-other-phenomena interactions when it comes to 
mathematical modelling accuracy. Babanin et al. (2017)’s review of various approaches in 
modelling this interaction stresses that most currently applied theories and mathematical 
models used to model the three-dimensional oceans, are two-dimensional; although maybe 
more straight forward, this is understandably not an accurate representation of the waves and 
significantly alters the wave processes. When developing wave models, especially when 
considering any interaction with currents, both linear and nonlinear effects of currents on waves 
must be included for an accurate representation.  
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One main concern is the “non-existence” of nonlinear effects in the aforementioned models. 
So, although linear effects are assumed to be included, although not usually verified, the 
nonlinear effects including, interactions with currents with horizontal or vertical velocity 
gradients and energy and momentum exchanges between wave and the current and so on are 
either left out intentionally or are simply “unknown”. Moreover, through Stokes drift and more 
importantly radiation stress caused by the loss of momentum in breaking waves, ocean waves 
can significantly affect the currents on the water surface. These affects, again, are 
predominantly non-existent in current ocean circulation models. Babanin et al. (2017) argue 
that due to their significant effect on currents behaviour, wave models must be reintroduced 
through coupling with circulation models, but they advise caution. This is directed mainly 
towards currently available wave forecast models which produce “approximate” rather than 
“accurate” fluxes for input and dissipation. This approximation is enough to predict, reasonably 
well, the resulting wave growth and height, however, and especially in finite depths, where 
wave breaking is significant, it is crucial to take into account the effects of waves on currents 
which are known and accounted for in coastal circulation.  

Babanin et al. (2017) add that in addition to the above, the inclusion of the interaction between 
turbulence and wave-current is becoming more popular; although comparatively small in 
energy magnitude, they point that this interaction may be important in terms of additional and 
missing feedback in the atmospheric boundary layer, where waves and currents are generated 
by airflow. They conclude that all these complex dynamics, some not totally understood and 
modelled, point to a research field worthy of further investigation to benefit engineers and 
scientists in various disciplines. 

3. NUMERICAL MODELLING  
3.1 Waves 
3.1.1 Phase resolving models 
Phase-resolving modelling of sea waves can be based on different techniques, such as 
analytical models, models based on (non-linear) potential flow, or computational fluid 
dynamics (CFD). Recent analytical work include Alberello et al. (2016) and Johannessen 
(2020), who developed analytical methods to derive the second-order kinematics underneath 
measured wave elevations. These methods can be applied to measurements in a wave basin or 
in the field, but it cannot deal with breaking waves. Non-linear potential flow wave modelling 
can yield good results as long as waves do not break, and viscosity plays a small role. Recent 
work on non-linear potential flow codes includes Ducrozet et al. (2020), who used a higher-
order spectral method for backwards wave propagation towards a wave generator, and Bitner-
Gregersen & Gramstad (2019), who used a higher-order spectral method to compare linear, 
second-order and third-order spatial and temporal wave statistics. Codes based on this approach 
are increasingly used in combination with fully non-linear CFD, for instance to initialize the 
wave domain or to perform wave propagation up to a certain critical wave crest for wave-
structure interaction (see e.g. Li et al. (2021c)).  

There have been significant advances in fully non-linear CFD modelling of non-linear waves 
during recent years. These advances have been mostly related to particle-based Smoothed 
Particle Hydrodynamics (SPH) and grid-based Eulerian Navier-Stokes (NS) methods. Many 
CFD studies have focused on the detailed modelling of steep or breaking wave events, for 
application for instance in wave impact studies on maritime structures. Examples include Ge 
et al. (2018) for slamming loads on a sailing ship with NS method OpenFOAM, Bandringa & 
Helder (2018) for breaking wave impacts on a floating platform with NS method ComFLOW, 
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Bandringa et al. (2020) for green water loads on a sailing ship with ComFLOW, and Kawamura 
et al. (2016) for green water impacts on a sailing ship with SPH. 

Validation of individual steep and breaking wave modelling in CFD can be done by comparing 
the wave elevation and kinematics to particle image velocimetry (PIV) measurements. This 
type of validation was performed by Düz et al. (2017, 2020) for Navier-Stokes volume-of-fluid 
CFD method ComFLOW (stand-alone or coupled with non-hydrostatic potential flow tool 
SWASH), and by Alberello & Iafrati (2019) for a coupling of higher-order spectral method 
HOSM with a Navier-Stokes solver. These papers show good wave elevation and kinematics 
results for steep waves and breakers that do not include an air pocket, even with single-phase 
volume-of-fluid methods. However, the vertical water particle velocities at the tip of the wave 
crest were lower in the numerical simulations than the experiments in all three publications. 
Tomaselli & Christensen (2017) overturning breaking wave results with a two-phase CFD 
solver that can account for air entrainments. They showed that including the air bubble resulted 
in a significantly different impact loading on a cylinder. 

The aforementioned studies focus on very short time traces and the modelling of a single 
extreme wave crest. Lande & Johannessen (2018) presented a comparison between two 
different CFD codes (ComFLOW and open-source BASILISK) for the propagation of steep 
and breaking short-crested waves, which is associated with larger three-dimensional domains. 
Generally, the results show that propagation of these highly nonlinear irregular waves are quite 
reproducible. An overview of wave reproduction techniques in CFD, both based on events and 
for longer time traces, is provided by van Essen et al. (2020). Three-hour wave-only 
simulations with CFD are also used in Bunnik & de Ridder (2018) to derive loads on wind 
turbines. Baquet et al. (2017) and Baquet et al. (2019) directly include the structure models in 
the CFD domain for long durations, with good results. The quality of the CFD modelling results 
still depends on the choices made in the wave input, grid and time step settings. Rapuc et al. 
(2018) presented guidelines on wave modelling with grid-based CFD methods and Pákozdi et 
al. (2016) provided a procedure for the reproduction of extreme wave events from a basin in 
CFD. 

While the CFD-based techniques have advanced in modelling detailed wave and loading 
events, they still remain computationally expensive. Non-linear potential flow methods are 
faster, but cannot be reliably applied to modelling of wave breaking and stability. Therefore, 
coupling tools with different levels of fidelity seems a promising approach for long-term wave 
impact assessment. Coupling can be performed either directly or in incremental steps during 
design. The latter idea is the background of the wave screening approaches in Bunnik et al. 
(2018), Bunnik et al. (2019), Stansberg (2020) and van Essen et al. (2021), which use a quick 
(weakly non-)linear tool to identify critical events. Before a low-fidelity linear or non-linear 
potential flow wave method is used to identify wave events, they have to be translated to inflow 
conditions for a CFD calculation or an experiment. This procedure is not straightforward. For 
stationary structures at zero speed, Johannessen & Lande (2018) propose a solution where 
linear wave events are substituted with a similar fully non-linear event from a database. Also 
Pákozdi et al. (2019) describe a new fully non-linear potential flow tool, which works within a 
framework that can also be applied to perform two-phase Navier-Stokes CFD calculations, 
allowing more efficient modelling on various fidelity levels. Bouscasse et al. (2020) present 
guidelines for the coupling of wave and CFD solvers. 

3.1.2 Spectral models 
The scientific community has developed a series of phase-averaged spectral models called 
Third Generation wave models such as WAM (WAve Model: WAMDI Group, 1988), 
WAVEWATCH III (WW3: Tolman (2009); Tolman et al. (2002)) and SWAN model 
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(Simulating Waves Nearshore: Booij et al. (1999) and Ris et al. (1999)) which are being widely 
applied for global as well as regional ocean state forecasts up to the nearshore zone. An overall 
review of the present situation and challenges in wind waves modelling is presented in Cavaleri 
et al. (2018), in particular of the inner and coastal seas. The theories of many physical processes 
are still unclear. For the nearshore processes, Beyramzade & Siadatmousavi (2017) 
implemented two viscoelastic models in SWAN and assess their performances for field 
applications. A new parameterization to improve the performance of SWAN in simulating 
significant wave heights (SWH) in coastal waters was introduced in Lin & Sheng (2017). To 
investigate wave damping due to porous seabeds in nearshore areas, the wave dissipation 
coefficient for submerged porous media was incorporated into the WWM model Hsu et al. 
(2018). Yevnin & Toledo (2018) derived an analytical source term for the bottom reflection of 
oblique incident waves in the spectral wave models, proved to be in excellent agreement with 
the mild-slope equation for different slopes, wave periods and attack angles. To parameterize 
the dissipative effects of small, unresolved coastal features in computational mesh, Mentaschi 
et al. (2018) developed an open-source library for the estimation of the transparency 
coefficients, which has been implemented in WW3. Notably, in WW3, the well recalibrated 
and verified observation-based source terms were updated to ST6 for parameterizations of wind 
input, wave breaking, and swell dissipation terms Liu et al. (2019d). 

Generally, the present day third-generation wave models are capable of predicting the waves 
reasonably well, but their accuracies can be improved with specific local seas. Umesh et al. 
(2017) made a series inter-comparison of regional wave hindcast in the northwest coastal 
domain of India. They concluded that the JONSWAP model could not describe the high-
frequency tail (Umesh & Swain (2018); Umesh et al. (2018)). The model coupling 
methodology was used in nearshore wave transformation for the NACCS using STWAVE and 
provided overall good nearshore wave estimates (Bryant & Jensen (2017)). Liu et al. (2017) 
intercompared the performance of WW3 and University of Miami Wave Model (UMWM) 
under hurricane condition, and concluded that UMWM shows less accuracy than WW3 in 
specification of bulk wave parameters. A coastal wave forecast system based on SWAN for the 
East Coast of Korea waters was developed and validated in Caires et al. (2018). Campos et al. 
(2018b) investigated three types of surface-wind product calibration and their impact to nine 
wave hindcasts constructed using WW3 in the South Atlantic Ocean. Chen et al. (2018a) 
provided a framework for coupling Finite-Volume Community Ocean Model (FVCOM) and 
the SWAN using Model Coupling Toolkit. Dora & Kumar (2018) revealed that the 
NCEP/CFSR wind is comparatively reasonable in simulation of nearshore waves using the 
SWAN model nested by WW3 at an island sheltered coast Karwar. A high-resolution SWAN 
wind wave hindcast model was implemented and calibrated for the Sea of Marmara in 
Kutupoğlu et al. (2018). Chen et al. (2018b) emphasized the importance of spatial resolutions 
in wave simulations in the open ocean using WW3 and SWAN. Mahmoudof et al. (2018) 
mentioned the importance of breaker index in SWAN during wind wave modelling in very 
shallow water at the Southern Coast of the Caspian Sea. Perrie et al. (2018) made a comparison 
between different wave model systems, they suggested that the performance of WW3-ST4m 
was the overall best. For the West Mediterranean basin, SWAN was implemented and 
evaluated with high spatial resolution and accuracy in the northern and southern parts in 
Amarouche et al. (2019). Typhoon waves in the shallow waters around the Zhoushan Islands 
were simulated using WW3 in Sheng et al. (2019). 

Wave models are widely used in the wave hindcast studies, for the purpose of long-term study 
of wave climate and wave energy distribution. Lavidas & Venugopal (2018) made an overall 
review of the spectral models’ status in the process of wave power assessments at the European 
coastline regions and the Black Sea. In the context of wave climate study, a thirty-seven year 
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wave hindcast (1979-2015) in Chesapeake Bay was generated by SWAN and applied to 
extreme value analysis for specific return periods (Niroomandi et al. (2018)). Li et al. (2018d) 
presented a long-term trend of SWH in China’s coastal seas based on both satellite 
measurements and numerical hindcasts by WW3. The possible local changes in the wave 
climate for the coastal waters off eastern Canada were analysed based on simulations of the 
waves from a WW3 in Wang et al. (2018e). Long-Term characterization of sea conditions in 
the East China Sea was presented using SWH and wind speed hindcast in Zheng et al. (2018). 
A global high-resolution ocean wave model was improved by assimilating the satellite 
altimeter SWH in Yu et al. (2018b). For the assessment of wave power in specific seas, SWAN 
was applied to reflect the spatial distribution of the wave power in the Iberian coastal 
environment in Rusu (2018). An assessment of wave power resource for Portugal continental 
coast was presented, using thirty three years (1979-2012) of wave hindcast based on SWAN 
nested WW3 system in Silva et al. (2018). 

3.2 Ice 
Numerical modelling of sea ice often has problems where ice failure has a major role. This is 
one major factor making the modelling challenging. Scientific questions related to sea ice span 
across scales and, roughly, modelling is currently performed fairly independently on 
geophysical scale and on engineering scale. The geophysical scale modelling, often related to 
sea ice dynamics, is performed on scales 104…106 m. Common work on this scale focuses on 
understanding the ice growth, melting, and motion of ice on the scale of polar ice pack, studies 
using coupled climate system models, and research on the effects of climate change on sea ice. 
The engineering scale simulations, usually performed on ice-structure interaction, are 
performed either on the scales of 100…102 m or 10-2…100 m. First is the scale for modelling 
ice-structure interaction processes and latter for material modelling or modelling of individual 
ice-structure contacts, respectively. 

3.2.1 Geophysical scale 
Geophysical scale models often use continuum models and central questions appear to have 
been related to the rheological models with an ability to describe fine scale ice features and 
sub-grid scale phenomena. This goal is important for, not only increasing the predictive power 
of large-scale sea ice dynamics models, but allowing the use of large-scale models for 
operational forecasting or with predicting ice behaviour close to coastal areas (Holt et al. 
(2017)). From the aspect of sea ice dynamics, ice deformation events are highly localized 
spatially and temporally, and techniques for catching these events with high enough resolution 
are needed (Rampal et al. (2019)). Central parameter for large-scale models is the strength of 
ice; compressive strength in this scale is commonly related to ice ridging. Roberts et al. (2019) 
describe a model, which describes the ridge microporosity and energetics of ridging in a form 
that can be used in earth system models. 

Further, Weiss & Dansereau (2017), Hutter et al. (2018) and Dansereau et al. (2021) present, 
describe and at least partly validate rheological models with increased capabilities to describe 
strong discontinuities in the ice cover. The need for even higher resolution in modelling sea ice 
appears to have been widely recognized by the ice dynamics community in Blockley et al. 
(2020); Hunke et al. (2020) limits for the applicability of the currently used continuum models 
has been recently questioned. Discrete element method (DEM) is considered as one technique 
to be used for such work as it allows modelling of individual ice features, such as ice floes, and 
their interaction. Some large-scale models relying on DEM already exist with more 
developments in the near future. 
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3.2.2 Engineering scale 
In engineering scale ice mechanics, DEM is readily a commonly used simulation technique 
and is been used in a variety of applications as described by a recent review by Tuhkuri & 
Polojärvi (2018). In addition to traditional DEM, modelling by using event based dynamics, 
have also recently emerged as an alternative in van den Berg et al. (2018). Recent work on 
numerical simulations on intact ice has focused on mechanics of ice loading processes. Ranta 
et al. (2018a) and Ranta & Polojärvi (2019) studied the mechanisms that limit ice loads on 
inclined structures and were able to derive simplified buckling and local crushing models, 
respectively, which predicted the maximum load values with fair accuracy. Bridges et al. 
(2019) used DEM together with laboratory scale experiments to study how ice properties 
affected ice loading process and ice encroachment, the tendency of ice advancing on top of a 
structure, on shallow water offshore structures. Lemström et al. (2020) focused on DEM 
modelling of a similar ice loading scenario. 

Some of the recent studies have also focused on assessing the scatter in the ice load, that is, the 
aim has been to gain insight on the sensitivity of the ice loading process (Ranta et al. (2018b), 
van den Berg et al. (2020)). A common way to perform this type of studies is to vary the 
boundary or initial conditions, and ice feature configurations and repeat loading processes. 
Simulations are an ideal platform to use in such studies, since they allow full control on ice 
parameters and a large number of repeated numerical experiments. 

Often ice engineering problems, such as ship-ice and ice-slender structure interaction, require 
three-dimensional modelling of the failure process of intact ice sheets. Doing this in sound 
physically based simulations is not straightforward, but effective techniques are starting to be 
developed Lilja et al. (2019a, 2019b, 2021). There are also linear elastic fracture mechanics-
based approaches for modelling ice failure. Such approaches can increase the efficiency of the 
simulation ice failure and have been successfully used by van den Berg at al. (2019), even if 
the applicability of using linear elastic fracture mechanics in connection with ice has been 
questioned by some authors. Hasegawa et al. (2019) introduced a fairly simple three-
dimensional model for deformable and failing ice floes, but the approach presented would 
allow modelling larger ice sheets as well. 

Instead of modelling intact ice, there have been several recent efforts on studying ice resistance 
on ships when a ship travels through an ice floe field or an ice ridge. Models with capability to 
describe interaction of individual ice features are well suited for such studies. Van den Berg et 
al. (2019) and Yang et al. (2021a) studied the effect of floe geometry on the total ice resistance 
of a ship. The two studies yielded similar results, as it was found that the ice resistance 
decreased when the floes became more round. Model by van den Berg et al. (2019) was two 
dimensional, but allowed floes to fail. Yang et al. (2021a) suggest that three-dimensional 
modelling is needed, since the rafting of the floes has a role in the process. Polojärvi et al. 
(2021) also studied ship passage through a floe field by using three-dimensional DEM (Fig. 1), 
but instead of ice resistance, focused on ice loads and compared the results to full-scale 
measurements. Further, approaches for studying the same problem when accounting for 
hydrodynamics as well, has been described by Mucha (2019), Yang et al. (2020) and Huang et 
al. (2020). Gong et al. (2019a, 2019b) investigated ice rubble resistance on a ship and found 
that the ridge resistance is proportional to length of an ice ridge, that is, the extent of the ice 
ridge into the direction of ship motion. This finding could affect the techniques used for route 
planning in ice. Work that includes all features – three-dimensional simulations accounting for 
ice failure and hydrodynamics in lengthy loading process – does not exist yet. 

Recent work in modelling ice using finite element method (FEM) has been focusing on 
engineering scale ice simulations on material modelling and failure. O’Connor et al. (2020) 
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introduced a numerical implementation of a micromechanics based viscoelastic material model 
for saline ice. Such models are of importance in studies, where the energy dissipation due to 
ice deformation is needed to be accounted for. Such studies could include accurate models for 
wave-ice interaction or even larger scale ice models making notions on pre-failure behaviour 
ice. Kolari (2017) introduced a wing-crack based damage model to study the failure of quasi-
brittle materials, and further Kolari (2019) showed, that it can be successfully applied to 
modelling the failure of ice samples under bi-axial compressive stress. Integrating detailed 
material and failure models to ice-structure interaction simulations could increase their 
accuracy and reliability, yet the computational efficiency may become a restricting factor for 
such developments. One step towards increased efficiency is the approach by Gribanov et al. 
(2018a, 2018b), where ice failure is modelled using cohesive elements and parallel computing 
based on graphics processing units. 

 

Figure 3.1: Three-dimensional discrete element simulation snapshots from (a) the front and 
(b) the side of a ship advancing through an idealized ice floe field (Polojärvi et al. (2021)). 

4. MEASUREMENTS AND OBSERVATIONS  
4.1 Waves  
4.1.1 Laboratory measurements  
Instrumentation and approach 
Measurement and calibration of wave elevation in wave basins is important for a correct 
representation of specified wave conditions. Tukker et al. (2019) investigated the accuracy of 
resistance-type wave measurement probes, and concluded that such instruments are not fully 
linear. Corrections to conventional linear calibration are proposed in order to obtain the correct 
wave elevations, and some possible improvements to the probes are suggested. More general, 
Collins et al. (2018) presented qualitative metrics to evaluate the quality of wave fields in 
basins, and Huang & Zhang (2018) presented acceptance criteria for experimental wave crest 
distributions. Iterative wave calibration procedures are common practice for position-
controlled wave generators. Reich et al. (2018) present an assessment of a similar procedure 
for force-controlled wave generators. The metric proposed by Perlin & Bustamante (2016) can 
be used to compare the similarity of two wave records, both in phase and amplitude.  
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Some new approaches in laboratory scale observation techniques have also been developed. 
Most of these are based on image processing. An innovative image-processing method 
developed to track the free surface elevation by submerged air bubbles is presented by Vargas 
et al. (2020). Douglas et al. (2020) showed that wave run-up characteristics can also be 
measured from image-processing results. Van Meerkerk et al. (2020) used an “scanning stereo-
PLIF” measurement system consisting of a stereo-camera set-up to measure time-dependent 
two-dimensional free-surface elevations over a domain length of 100 mm. This was successful 
down to amplitudes of 0.2 mm. Watanabe et al. (2019) reconstructed 3D wave fields using a 
stereo-camera system, and successfully used these results to validate a non-linear method to 
derive the wave field in a larger domain. Bakker et al. (2021) discusses a particle image 
velocimetry (PIV) system based on pulsed LED light for measurement of the kinematics in 
wave impacts, as less complicated alternative to conventional laser-based PIV. Han et al. 
(2018b) evaluated the uncertainty of PIV measurements in the wake of a ship. The results of 
this study in a semi steady flow will be different than for PIV measurements in waves, but the 
principles of the uncertainty assessment can be used as reference. Finally, Jacobi (2020) 
presents a method to derive amongst other things pressure fields from velocity data measured 
with PIV.  

The development of numerical methods such as CFD increases the quality requirements for 
laboratory measurements. The knowledge about the kinematics underneath waves for instance 
becomes more and more important, as numerical methods show their importance for wave 
impacts on marine structures. Johannessen (2020) developed an analytical method to derive the 
2nd order kinematics underneath measured wave elevations. Such a method can be applied to 
measurements in a wave basin or in the field, but it cannot deal with breaking waves. Detailed 
PIV measurements of steep and breaking wave crests were presented by Alberello & Iafrati 
(2019), Düz et al. (2017, 2020); some examples are shown in the Figure 4.1. These publications 
also show comparisons with the wave kinematics in CFD, which shows that it can provide quite 
good results. Shallow-water kinematics of waves moving over a bar were measured using high-
resolution optical instrumentation by van der A et al. (2017).  

 
Figure 4.1: PIV images of a spilling (left) and plunging (right) breaking wave  

(Düz et al. (2020); Copyright © 2020 ASME). 

When generating waves in basin, it is important to be aware of the basin limitations, and 
possible unwanted wave effects. Van Essen et al. (2020) presents an overview of what is 
important when experimental wave modelling is reproduced numerically or vice versa. This 
requires consideration of non-linear wave effects and (unwanted) basin effects. Reflections and 
basin sloshing modes on shallow water (Pákozdi et al. (2019)) have to be considered when 
model test results are used in design. It was shown by (van Essen & Lafeber (2017)) that small 
3D residual currents with strengths around 1-2 cm/s may occur in seakeeping or ocean basins 
under the influence of repeated wave generation (Figure 4.2). These decay very slowly, and 
they can influence sensitive measurements such as added resistance of ships in waves or current 
loads on structures. These small currents and details of wave breaking may reduce the 
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repeatability of wave fields in basins; an evaluation of the resulting variability of the wave field 
is presented by van Essen (2019). Wave generators always introduce unwanted spurious waves, 
due to the difference between their shape and real-world wave kinematics profiles. Such effects 
are usually minimized at the wave generator using classical 2nd order wave theory developed 
in the 1960s. Khait & Shemer (2019) present an improvement of this wave generator correction 
theory based on fully non-linear wave models instead of 2nd order theory. All of these basin 
effects have to be considered when a deterministic wave event needs to be generated at a target 
location in a basin. This requires non-linear backward translation of the event to the wave 
generator, in order to determine the required wave generation motions. Many methods apply 
an iterative procedure to do this: for example Niu et al. (2020) presents an iterative method to 
generate a deterministic extreme wave event in a basin, based on 2nd order wave generation 
theory. Ducrozet et al. (2020) describes a non-iterative ‘time reversal’ method to do this, which 
they validated for steep and highly non-linear wave events.  

Another important issue to be aware of during wave experiments is scale effects. A detailed 
study of all aspects to consider in sloshing waves in an LNG tank was presented by Bogaert 
(2018). This included a study of the surface instabilities, air inclusions and shape of the 
incoming waves. This is important for the scaling of wave impacts on LNG tank walls, but also 
for that of undisturbed waves. Van Essen et al. (2020) also discusses scale effects in steep and 
nearly breaking wave crests in a model basin, focusing on the incoming waves of the tests 
presented in Scharnke (2019). This study showed that scale effects and the effect of air pressure 
in steep and breaking waves are small, as long as there are no air inclusions or surface 
instabilities. Babanin & Palenque (2021) announced the start of a field measurement campaign 
on the effects of air pressure and fetch on wind-wave interaction models, at high-altitude Lake 
Titikaka. The outcomes of this study may also be relevant to understand scale effects in air 
pressure above propagating waves in laboratory testing. 

 
Figure 4.2: Visualised current patterns at the edge of a seakeeping basin after oblique wave 

generation ((van Essen & Lafeber (2017); Copyright © 2017 ASME). 

Wave flumes 
A new wavemaker was proposed to reduce the reflection effects of waves in hydraulic wave 
flumes (Mahjouri et al. (2020)). Various physical model tests are reported being carried out in 
wave flumes including the wave overtopping discharge quantification experiments (Williams 
et al. (2019)), particle tracking velocimetry experiments (Calvert et al. (2019)), Stokes’ wave 
theory validation experiments (Windt et al. (2021)) and the wave breaking kinematics 
experiments (Craciunescu & Christou (2020), Liang et al. (2020), Xu et al. (2020b)). 

Wave tanks 
A wave tank is a laboratory setup for observing the behaviour of surface waves from large 
beach morphology investigations to complex harbour and breakwater models. In recent years, 
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many research works have been conducted in wave tanks. Wang et al. (2019c) explored seabed 
instability and the law for pore pressure response under wave actions under the scale basin of 
the Yellow River Delta. Xu et al. (2019) experimentally investigate the generating results of 
space-time focusing waves based on different wave spectra, they found that the focusing time 
strongly relates to the energy of the highest-frequency wave component of the wave spectrum. 
The generation of tsunami waves are investigated in Lima et al. (2019). The propagation of 
waves under different reef fringed coasts is investigated in Yao et al. (2019, 2020). 

McAllister et al. (2019) studied the generation of rogue waves such as the Draupner wave in 
laboratory conditions. They concluded that waves with a very large steepness and height can 
occur in crossing seas with angles between 60 and 120 degrees. The result at 120 deg is shown 
in Figure 4.3. These results are supported by Dong et al. (2019), who showed that non-linear 
energy transfer during wave-wave interactions is very sensitive to the crossing angle of two 
interacting wave groups and that the severity of wave breaking increases with increasing 
crossing angle. 

 
Figure 4.3: Images of the free surface taken at intervals of 100 ms in the wave basin (0.6 s at 
field scale), showing the most successful reconstruction of the Draupner wave for a crossing 
angle of 120 deg. Breaking is observed in front of an upward projected jet, which does not 

limit wave crest height under these crossing-sea conditions. McAllister et al. (2019);  
Open Access Article under Creative Commons Attribution licence;  

© 2018 Cambridge University Press. 

Plans for some new wave basins were developed within the mandate period. The “atmosphere” 
or “multi-phase wave lab”, a wave basin inside an autoclave, was built in the Netherlands 
(Novaković et al. (2020)). It can be used to model sloshing wave impacts, where pressure, 
temperature, current and gas composition can be varied. In Belgium, a shallow-water towing 
tank and a “coastal and ocean basin” are under construction (Geerts et al. (2018), Troch et al. 
(2018)). The latter basin will have the ability to generate waves in combination with currents 
and wind in different directions in shallow and intermediate water depths. ITTC (2017) also 
lists a new seakeeping and manoeuvring basin in India and a new towing tank with wave 
generation facilities in China. 
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Wind-wave flumes 
Air-sea momentum transfer was investigated in a 15-m-long wind-wave tank by Curcic & Haus 
(2020); they found an overestimate of 10-m wind speed and an underestimate of the drag 
coefficient in surface flux parameterization in operational weather prediction model. 

Wave-ice tanks 
Water wave attenuation by grease ice is a key mechanism for the polar regions, as waves in ice 
influence many phenomena such as ice drift, ice breaking and ice formation. Ocean wave 
forecasts in the ice-covered seas also require reliable modelling of ice effect on wave 
propagation.  

Experiments in wave-ice tanks are a profound means to investigate experimentally wave ice 
interaction. Aalto University and the Hamburg Ship Model Basin (HSVA) are two ice testing 
facilities for model test experiments with a wave maker. Additionally, smaller wave-ice flumes 
exist such as at the University of Melbourne (SIWWI). 

In scaled experiments using artificial model ice, the model ice that was designed for ship-ice 
interaction, might cause scale effects due to the relatively low stiffness (von Bock und Polach 
et al. (2019)). This stiffness does not scale correctly. In order to overcome this problem von 
Bock und Polach et al. (2020) proposed a new method by increasing the strength of the ice, 
which also increases the stiffness while at the same time the thickness is reduced to scale the 
critical bending moment and stiffness correctly, while accepting a reduced thickness. 

Dimensional data and curve fittings face challenges when applying them to scenarios with 
altered conditions (Yu et al. (2019). On such basis Yu et al. (2019) introduced three 
dimensionless numbers reflecting the relative significance of effects due to ice inertia, effective 
elasticity and viscosity. Those can be used to identify the dynamic similarity between different 
scales.  

Parra et al. (2020) conducted experiments at SIWWI with identical waves in level ice, ice floes 
and grease ice. The comparison showed that ice floes attenuated waves the least and level ice 
the most. The experiments have not been at scale and scaling methods are not yet established. 
An alternative to experiments with aqueous ice is presented in Sree et al. (2020) using a 
viscoelastic material, a blended mixture of white oil and Polydimethylsiloxane (PDMS). The 
experiments and the variation of material properties underlined the significance of the 
modelling of the viscoelasticity of ice for the wave attenuation. Experiments at Aalto Ice Tank 
with a wave spectrum of (Passerotti et al. (2020)) showed a frequency dependent wave 
attenuation in the form of f³ which agrees with full-scale observations (Meylan et al. (2018)). 
A different set of experiments conducted at HSVA indicated the increase damping for shorter 
waves in ice (Hartmann et al., (2020)). 

In a small-scale wave tank experiment, PIV combined with an array of ultrasonic probes were 
used to measure wave elevation by Cheng et al. (2019), Rabault et al. (2019). These 
publications examine a single-period wave propagating through an array of ice floes using both 
physical measurement and a theoretical approach. Laboratory observations of wave energy 
attenuation in fragmented sea ice cover composed of interacting, colliding floes are quantified 
by Herman et al. (2019). Dependence of the attenuation and dispersion of surface waves in a 
variety of ice covers in wave frequency and ice conditions are also investigated and 
demonstrated by Yiew et al. (2019). 

Wave-current and towing tanks 
It is important to investigate the effects of current on wind waves, called the Doppler shift, at 
both normal and extremely high wind speeds. Takagaki et al. (2020) used three different types 
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of wind-wave tanks along with a fan and pump to demonstrate the effect of the Doppler shift 
of wind waves and currents in laboratories. They found that at normal wind speeds, the 
significant waves are accelerated by the surface current. A weakly nonlinear model is more 
suitable for small-amplitude waves and strongly nonlinear and even breaking waves, which are 
typical for extreme wind conditions (over 30m/s) (Takagaki et al. (2020)). 
In 4.1.1.3 some experiments to study the occurrence of rogue waves in wave basins were 
described. Toffoli et al. (2019) experimentally and numerically studied another rogue wave 
theory: that rogue waves can be generated in waves in opposing current. It was shown in two 
different basins that weakly non-linear waves can thus rapidly change to strongly non-linear 
waves, increasing the probability of rogue waves. Liao et al. (2018) also studied rogue wave 
occurrence in waves opposing a current. They showed that the breathers (strongly non-linear 
wave solutions focused on space and oscillating in time) can also evolve in opposing currents.  
4.1.2 Field observations 
Buoys and platforms 
The majority of existing in-situ wave measurements are done using moored buoys. Buoys can 
be spherical, discus, spar, or boat-shaped hull. The most popular and widely used method 
measures buoy motion and converts the buoy motion into wave motion based on the 
hydrodynamic characteristics of the buoy. As shown in Figure 4.4, changes are being made to 
the super-structure configuration of NDBC buoys with the advent of the smaller hulls, 
improved battery packs, less power required and new compact sensor packages (Ardhuin et al. 
(2019b)). Recently, a low-cost, real-time, solar-powered wave measurement buoy named 
Spotter was developed. Overall, Spotter-derived bulk statistical parameters were within 10% 
of respective quantities derived from a Datawell buoy (Raghukumar et al. (2019)). 

 
Figure 4.4: Schematics of existing and planned super-structures of NDBC moored buoys 

measuring waves (credit Eric Gay, NDBC; Ardhuin et al. (2019b). (A) is the standard design 
of 3-m discus buoys. (B) is the new SCOOP design with a 2.1 m diameter that is replacing 

many buoys. (C) is the schematic for the Mark 4 Datawell waverider with a 0.9 m hull 
diameter and (D) is the schematic of a Spotter buoy made by Spoondrift. Used with 

permission from Frontiers in Marine Science. 
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The Lagrangian motions of wave buoys applied to measure waves in the field may affect their 
measurements. This was evaluated using model experiments with a Lagrangian and Eulerian 
measurement next to each other in McAllister & van den Bremer (2019, 2020), see Figure 4.5. 
Based on these measurements, it was concluded that the motion of a wave-following buoy 
should not significantly affect the measured wave crest statistics or spectral parameters, and 
that discrepancies observed for in-situ buoy data are most likely a result of filtering. This was 
confirmed by van Essen et al. (2018), who showed that filters applied in a typical Datawell 
buoy roughly remove the frequency content below 1s and above 20s period. Thomson et al. 
(2015) compared the measurements of a clean buoy and one with biofouling side by side, 
concluding that only the high-frequency response of the buoy was affected by the fouling. 
Average parameters such as significant wave height, peak period and direction were not 
affected. 

 
Figure 4.5: Comparison of total measured Eulerian (black lines) and Lagrangian (red dashed 
lines) free surface elevation for three different wave groups in McAllister & van den Bremer 

(2019). © American Meteorological Society. Used with permission. 

Waves measured using a directional wave buoy at a location with 15 m water depth in the near-
shore waters of the Gulf of Mannar during a 1-year period were reported in Amrutha & Kumar 
(2017). The annual average value (0.84 m) of the SWH in this area was comparable to that 
along the coastal waters of the Indian subcontinent. A dense network of buoys along the 
Brazilian coast, equipped with several meteorological and oceanographic sensors were reported 
in Pereira et al. (2017). In Collins et al. (2018), two deep-sea moorings were deployed 780 km 
off the coast of southern Taiwan for 4-5 months. Directional wave spectra, wind speed and 
direction, and momentum fluxes were recorded on two Extreme Air-Sea Interaction buoys 
during the close passage of several tropical cyclones . Dally (2018) conducted a cross-shelf 
wave transformation experiment off the Atlantic coast of north Florida for 53 days using two 
ADCPs. The data was used to test the ability of the SWAN (Gen2) nearshore wave 
transformation model. In Barbariol et al. (2019) a wave buoy was deployed in the Southern 
Ocean (south of New Zealand) for 170 days. This moored buoy transmitted spectral and time 
domain observations, including measurements during a storm with a particularly large 
individual wave of 19.4 m crest-to-trough height. After the 170 days, the buoy broke free of its 
mooring and started drifting, still transmitting the essential data. 

Some local platform observations of winds, surface currents, and ocean waves are also 
reported, e.g. at the Southern Ocean (Babanin et al. (2019), Derkani et al. (2021), Young 
(2019)), the Northwestern Mediterranean Sea (Lorente et al. (2021)), the northeastern coast of 
the Persian Gulf (Heidarzadeh et al. (2019)), the Black Sea (Yurovsky et al. (2019)), a coastal 
station 4 km offshore L’Estartit in the Mediterranean Sea (Salat et al. (2019)), in Lake Erie 
(Valipour et al. (2019) and in a lagoon of the South China Sea focusing on typhoon 
characteristics (Cai et al. (2020)). 
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Under the requirement of reducing instrument costs, other in-situ observing techniques 
including the High-Frequency radar system (Saviano et al. (2019)), the Stereographic analysis 
of digital images system (Molfetta et al. (2020)), and the anti-typhoon riser system ((Jin et al. 
(2021)) are also used to estimate the parameters of sea states. 

Rogue waves are hard to predict. Most studies therefore use laboratory modelling or 
simulations to study them (see e.g. 4.1.1.3). Häfner еt al. (2021b) use a different approach: they 
applied machine learning methods to the large Free Ocean Wave Dataset (FOWD, (Häfner et 
al. (2021a)) in order to detect rogue waves. This database includes data from 158 buoys along 
the US coast and other areas, among which 1.5 billion individual wave crests, of which around 
100,000 are considered rogue by the 2Hs definition. Based on this study, it was concluded that 
traditionally applied indicators for rogue wave occurrence (e.g. surface elevation kurtosis, 
steepness and Benjamin-Feir index) are weak predictors for real-world rogue waves. Instead, 
crest-trough correlation seems the dominating parameter in all studied conditions, water depths 
and locations. For rogue crests it was concluded that skewness, steepness and Ursell number 
are the strongest predictors, in line with second-order theory. 

Drifters and ARGO fleet 
Today, various system and devices are involved in monitoring global oceans to provide in-situ 
data in real-time or near real-time atmospheric, physical, and ocean measurements. The 
systems include, but not limited to, various buoys, drifters, gliders, sailing drones, aerial 
drones, and ocean observing satellites. While permanent buoy deployments can be a substantial 
challenge, drifting buoys, wave gliders and other moving platforms can prove feasible and 
valuable solution in this challenge for a combined international effort. The present state of 
global observations of surface winds, currents, and wave is reviewed in Rosa et al. (2021), 
Villas Bôas et al. (2019).  

The most famous program is the Global Climate Observing System (GOOS), which consists 
of six main programs: Argo, the Data Buoy Cooperation Group, OceanSITES, the Global 
Ocean Ship-based Hydrographic Investigation Program, the Global Sea Level Observing 
System, and the Ship Observation Team (Davidson et al. (2019)). Wave gliders are a novel 
approach in keeping the unmanned observation platforms in the ocean with the help of wave-
power. Lagrangian drifting floats are employed extensively for the measurement of ocean’s 
currents especially near the surface. The Global Drifter Program (GDP) that was initiated by 
GOOS is covering the ocean with the help of 1250 drifter buoys, which were accomplished in 
September 2005 (Iqbal et al. (2019)). In Figure 4.6, the status in March 2018 of the elements 
of the GOOS, as tracked by the Joint Technical Commission on Marine Meteorology, is 
presented. The dots representing platform locations are sized to be visible, but the actual 
coverage of the ocean remains sparse. 
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Figure 4.6: Main in site observation elements of the Global Ocean Observation System 

(Weller et al. (2019). Used with permission from Frontiers in Marine Science. 

The drifter’s global array is critical in fulfilling the desire for a thorough data set of real-time 
observations on global scale. In addition, these drifters are involved in the recording of both 
winds and the ocean’s surface salinities The major contribution of the Argo’s program is 
considered to be the observation of the seasonal to decadal climate variability in the ocean. 

Gliders 
The data from assimilating gliders is commonly used in short-term field observation 
experiment observations. In Northern South China Sea, glider observations are used to improve 
real-time marine forecasting skills (Peng et al. (2019)). 

Measurements from sailing ships 
Wave measurements from sailing ships can either be performed using ship radar (see 5.1), or 
using “ship as a wave buoy” (SAWB) techniques. In SAWB, the measured onboard ship 
motions, accelerations or stresses are used to derive the prevailing (directional) wave 
conditions. Of course this has some limitations connected to the ship response functions; for 
wave periods at which the ship does not or hardly move the wave elevation cannot be derived. 
This is similar to the limitations of wave buoys (see 4.1.2.1), but the latter are designed 
specifically to minimize issues in common wave periods. Ships are generally not, and the 
measurement quality for wave period ranges will depend on the ship dimensions and shape. 
An overview of available SAWB techniques is provided by Nielsen (2017), which also includes 
a discussion of such limitations. Another limitation is that ships generally avoid very bad 
weather, so the performance in extreme wave conditions requires additional validation.  

SAWB measurements are usually done using the global ship motions derived from acceleration 
sensors. Nielsen & Dietz (2020) showed that it is possible to derive good directional wave 
spectra (compared to hindcast data) based on motion measurements at a containership, but that 
this estimate is sensitive for measurement errors in the advance speed of the vessel. Nielsen et 
al. (2019) shows how the estimated wave spectrum can be improved using a network of 
multiple sailing ships in the same area, attributing weights to the wave spectra obtained from 
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the motions of each of them. Chen et al. (2020b) used measured hull bending stresses instead 
of accelerations to derive the directional wave spectrum around two containerships and 
compared that to hindcast data and wave radar measurements. This approach was successful in 
the estimation of wave height and relative direction, but not of wave period. This is not 
surprising, as response functions of global ship bending moments are high for a relatively 
narrow range of periods. Mas-Soler et al. (2018) derived the wave spectrum around a model-
scale semi-submersible based on its motions, with a focus on more extreme wave conditions. 
This worked well for the experimental conditions, using a method to estimate viscous damping 
in the ship motions. The aforementioned studies used first principles response functions to 
derive the wave spectrum. When the prevailing wave conditions around a ship are known (e.g. 
from a nearby buoy or platform, from hindcast data or from model experiments), data driven 
techniques can also be used to connect ship motions to wave conditions. This was done using 
regression methods by Thompson et al. (2019), who successfully derived wave heights from 
ship motions. The machine learning methods used by Düz et al. (2021); Mak & Düz (2019a, 
2019b) successfully derived relative wave directions from the motions. Scholcz & Mak (2020) 
used deep learning to estimate the full directional wave spectrum. This was successful for the 
peak wave directions, but less for the peak wave period and height. SAWB techniques are also 
discussed in II.2 Dynamic Response. 

After post-processing, ship navigation radar measurements (see Chapter 6.1) can also be used 
in combination with wave propagation and ship motion theory to predict ship motions in real 
time, for instance the next few minutes (Alford et al. (2015), Connell et al. (2015), Naaijen 
(2018); Naaijen et al. (2018)). This can be used in operation to identify a quiet period for lifting 
or the need to reduce speed. Complicated steps in this procedure are the derivation of wave 
height from the radar images and correct (non-linear) directional wave propagation from the 
edges of the radar image to the ship. The method from Watanabe et al. (2019), see also 4.1.1.1, 
can in theory also be used to reconstruct the wave field based on ship radar measurements 
instead of stereo camera images of the wave field. 

Wave statistics based on hindcast databases along ship tracks 
The current standard wave scatter diagrams in e.g. IACS (2001) were based on visual 
observations of several decades ago. Great progress has been made in wave modelling and 
global numerical hindcast wave datasets since then. Studies to investigate the possibility to 
improve the IACS wave standard based on global hindcast wave datasets have been carried 
out, e.g. by (Austefjord (2019), de Hauteclocque et al. (2020), Sasmal et al. (2019)). In these 
studies, several global hindcast wave datasets such as ERA5/ECMWF, IOWAGA/IFREMER 
regarding the North Atlantic Area were validated against measurements. Hindcast data were 
also compared with buoy and altimeter data in Ribal & Young (2019) and a comparison of 
hindcast databases and buoy measurements for the Southern North Sea was presented by van 
Essen & Peters (2017). These studies confirm that overall, global hindcast wave datasets give 
quite consistent results and agree fairly well with local measurements (although in specific 
coastal areas there may be significant differences). Application of these datasets to derive the 
wave scatter diagram for the wave standard of ship design seems possible today. On the other 
hand, local hindcast wave statistics and those actually encountered by sailing merchant ships 
are likely to be different. Considering that the wave statistics actually encountered are more 
important for design and operation of ships from a safety point of view, some studies on the 
wave statistics encountered by merchant ships in their voyages have been conducted recently 
in Austefjord (2019), Miratsu et al. (2019, 2020), Oka et al. (2018), Oka et al. (2019a), Oka et 
al. (2019b). In these studies, the wave statistics encountered by ships navigating at the North 
Atlantic Area were firstly estimated by different hindcast wave datasets, through matching the 
Automatic Identification System (AIS) tracks of merchant ships in different time periods. It 
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was confirmed that the actually encountered significant wave heights are several meters smaller 
than those purely based on the hindcast data. However, the available number of years of AIS 
data is very limited, so there is a challenge to combine the AIS and hindcast wave datasets in a 
25-year long time period (which is considered as the design lifetime for various types of 
merchant ships). 

Regarding this challenge, Sasmal et al. (2021b) proposes a statistical model representing storm 
avoidance by merchant ships and apply it to a newly computed 25-year wave hindcast 
“TodaiWW3-NK” (Sasmal et al. (2021a)) in the North Atlantic Ocean. The statistical model 
links the storm intensity based on the wave hindcast data with the distance of the ship from the 
storm center which is derived from the 2 years and 11 months of ship position records based 
on AIS. By the proposed statistical model, the 25-year wave statistics encountered by merchant 
ships in the North Atlantic Ocean is derived. The consequence analysis (quantitative 
evaluation) based on both the 25-year wave statistics (wave scatter diagram) encountered by 
merchant ships mentioned above and the 25-year wave statistics in natural is conducted by 
Miratsu et al. (2021) regarding different ship motions and wave loads. It is confirmed that there 
is a difference which is around 0.85 between the 25 year long-term prediction values of the 
ship motions and wave loads evaluated by the 25-year wave statistics (wave scatter diagram) 
encountered by merchant ships and those evaluated by the 25-year wave statistics in natural. 
Furthermore, it is indicted in Sasmal et al. (2021b) that this storm avoidance model can be 
further improved to consider local environmental conditions, as the ship may change its route 
depending on the locally determined wave height, wave period, relative wave direction, wind 
speed, and so forth. 

4.2 Winds  
Ocean surface wind measurements are an important component of the global observing system 
and are routinely assimilated in numerical weather prediction models. Long-term, continuous 
in-situ observations of wind speed are distributed in various locations around the world, e.g. 
over the North Atlantic (Lux et al. (2018)), Dome C, East Antarctica (Genthon et al. (2021)), 
the south of Sri Lanka (Luo et al. (2018)), Hong Kong (Shu et al. (2020)), Shenzhen (Luo et 
al. (2020)). Most observations are based on Airborne wind lidar and aerial vehicles (Shimura 
et al. (2018)). The main usage of in-situ data is to investigate the wind power potential and 
wind loads of wind turbines, or to provides validation of the satellite observations (Borderies 
et al. (2019), Li et al. (2018b), Mukhtar et al. (2020), Tian et al. (2019), Yan et al. (2020)). 

Over the open ocean, satellite retrievals play a crucial role since they are able to provide near 
global coverage in a relatively short space of time. Full wind vector information (i.e. speed and 
direction) can be inferred from “active” microwave radar instruments known as scatterometers. 
Various satellite missions have been developed for the observing purpose. A new generation 
of L-band sensors, such as ESA's Soil Moisture Ocean Salinity mission, have the capability to 
provide information on the ocean-surface wind speed under high wind and rain conditions 
(Cotton et al. (2018)). The BuFeng-1A/B twin satellites were part of the first Chinese global 
navigation satellite system reflectometry (GNSS-R) satellite mission (Jing et al., 2019).  

Satellite-derived wind speed for open oceans to mesoscale model-simulated wind speed for 
coastal waters can be used to verify the Weather Research and Forecast (WRF) modelled wind 
speed (Takeyama et al. (2020), Xu et al. (2020a)). Satellite-derived data products are widely 
used to evaluate the wind energy resources (Guo et al. (2021a), Shu & Jesson (2021), Uchida 
(2018)). 

Wind loads can be very important for offshore structures during typhoons. For this reason, Xie 
et al. (2019) analysed the relationships between the wind gust factor, mean wind speed and 
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turbulence intensity based on long-term wind observations at a platform in the South China 
Sea. 

4.3 Currents 
Ocean currents are often considered to consist of the following components: (i) the geostrophic 
currents; (ii) tidal currents; (iii) wind-driven Ekman currents; (iv) wave-induced Stokes drift; 
and (v) small scale features (e.g. eddies, fronts and filaments).  

In-situ measurements of ocean current velocity are very limited and sparse. Though the 
traditional ship-based hydrographical surveys may have a good spatial and temporal resolution, 
they are usually only available in very limited regions and periods. There are only two ways to 
provide real-time in-situ velocity measurements of ocean current globally. The first approach 
is to inverse the near-surface ocean current in the upper 15 m or so through the trajectories of 
the surface drifters. There are about 1,500 drifting buoys deployed worldwide, implying the 
effective resolution of global ocean surface current observations is roughly 400–500 km on 
average. The resolution barely meets the research needs for large-scale processes. The second 
approach is to derive the ocean geostrophic velocity in the upper 2000 m from the temperature 
and salinity profiles obtained by Array for Real-time Geostrophic Oceanography floats (Argo 
floats). Currently, there are about 4,000 Argo floats deployed worldwide with an effective 
resolution of 200-300 km (see 4.1.2), and obviously, the spatial resolution is insufficient to 
capture small-scale ocean dynamics. In-situ observations have the disadvantage that they only 
cover a fraction of the ocean surface, and are normally not used directly for trajectory 
calculations.  

A more effective way to directly observe ocean surface current is through satellite remote 
sensing technology (see also Chapter 5). Sea Surface Height (SSH) measured by satellite radar 
altimeters can be used to derive the surface geostrophic current, while Doppler shift of central 
frequency measured by synthetic aperture radar (SAR) can be used to retrieve the surface 
current speed. It is known that ocean fronts, vortices and filaments at scales below 10 km are 
important, but measurements of ocean surface dynamics at these scales are rare. The increasing 
capabilities of numerical methods require validation at smaller scales too. This led to the 
SEASTAR initiative, which is a satellite mission concept that will address this observational 
gap with synoptic two-dimensional imaging of total ocean surface current vectors and wind 
vectors at 1 km resolution (Gommenginger et al. (2019)). Directional wave spectra will also be 
derived. However, there are many challenges regarding the remote sensing observations. Due 
to the constraints of the satellite altimetry, the measured SSH can only be used to derive 
balanced motions, usually the geostrophic component of the realistic ocean surface current. For 
satellite upgrade programs, only geostrophic current and tidal velocity can be derived from the 
altimetry measured SSH (Qiu et al. (2020)). On the other hand, the SSH-derived geostrophic 
current is not accurate to describe the equatorial currents, due to the invalidity of geostrophic 
approximation in the equatorial region. Using surface drifters is a possible way to remedy the 
current observations in equatorial regions. In addition, other ageostrophic components, 
including the Ekman current and the tidal current, cannot be effectively obtained by the present 
observational methods (Ardhuin et al. (2019a)). Present observational methods are unable to 
achieve coastal and island/reef current measurements from SSH on a global scale, because the 
coastal dynamic processes are complicated and generally geostrophic-unbalanced 
(Gommenginger et al. (2019)). Acoustic tomography systems can be used to fill in the blanks 
(Chen et al. (2021)). The deficiency of satellite altimetry in the coastal region is also a problem. 
Although some satellites or remote sensings, such as SAR (Yang et al. (2021b)) and shore-
based high-frequency radar (Aoki & Kataoka (2018)), can obtain scalar current in the coastal 
waters, they are too sparse or limited, and facing a high level of financial and human resource 
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investment to have global real-time coverage (Capodici et al. (2019)). Finally, current satellite 
altimetry is unable to describe ocean water motions in non-equilibrium states, such as 
submesoscale processes. High-resolution satellite imagery has shown that mesoscale processes 
are accompanied by very strong submesoscale processes that have a very fast-changing 
structure at a time scale of days. Such dynamic processes dominate over 50% of the heat flux 
(Su et al. (2018)) in the upper ocean and 20–50% of the primary production, but cannot be 
directly observed by current satellite remote sensing. 

4.4 Ice 
4.4.1 Laboratory measurements 
Gharamti et al. (2021b) performed fracture experiments on rectangular edge notched, warm, 
fresh water ice specimens, largest of which had side length of 36 m. The specimen dimension 
covered a size range of 1:39, largest for ice tested under laboratory conditions. Complex size 
and rate effects were observed: There was a size effect at low rates but no size effect at high 
rates, and a rate effect for the larger test sizes but only weak or no rate effect for the smallest 
test size. Another study focusing on ice failure, this time under compressive loading due to ice-
to-ice contact, was performed by Prasanna (2020). The study demonstrated that the ice 
specimens can go through shear-like failure in ice-structure interaction process, and gives 
means for more accurate discrete element modelling of ice. 

Cyclic loading experiments on ice have been performed for tens of years, yet there has been 
also a considerable amount of recent work on the topic, likely due to wave-ice interaction 
having gained an increasing amount of interest during recent years. Laboratory-scale 
experiments by Wei et al. (2020a) showed that ice specimens (average specimen 
temperature -2.5°C) floating in water dissipate more energy during compressive cyclic loading 
than dry specimens tested in the same ambient temperature (specimen temperature -10°C). The 
study did not answer why the change occurred in detail, but highlighted the need to account for 
the test conditions. Iliescu et al. (2017), Murdza et al. (2020), Murdza et al. (2021a), Murdza 
et al. (2021b) used cyclic loading tests to study fatigue behaviour of both saline and freshwater 
ice. The experiments were performed on laboratory grown and natural ice specimens. 
Surprisingly, the authors found that their ice specimens strengthened as a result of cyclic 
loading. During the above-mentioned campaign Gharamti et al. (2021a) applied cyclic loading 
on their ice specimens. The ice response was overall elastic-viscoplastic and no significant 
viscoelasticity or major recovery was detected. Latter features are often reported in literature 
on ice. See also section 5.1.1.5 on combined wave-ice laboratory measurements. 

4.4.2 Field observations 
A vast number of new observations on Arctic ice pack was collected during the largest 
multidisciplinary Arctic expedition to date, the MOSAiC (Multidisciplinary drifting 
Observatory for the Study of Arctic Climate) in winter 2019-2020 (Krumpen et al. (2020)). 
The goal was to gain insight to quantify relevant processes impacting the sea ice mass and 
energy budget. The expedition had participation from several groups globally with results and 
analysis currently going on and published during upcoming years (Linow & Dierking (2017), 
Oikkonen et al. (2017), Suominen et al. (2017a, 2017b), Hutter et al. (2018), Hutter et al. 
(2019), Wang et al. (2021d). 

5. REMOTE SENSING  
In this Chapter, the state of the art review of remote sensing technology in ocean environment 
monitoring is provided. There are several ways to monitor the ocean environment and this 
document provides the recent technology using radars and Synthetic Aperture Radars (SARs) 
from ship, onshore, aircraft, and satellite. Ocean remote sensing with SAR was reviewed in 
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various applications including oceanic surface and wave characteristics, sea surface wind, and 
bathymetry and so on (Yang et al. (2018)). Raizer (2019) provided an in-depth review of the 
fundamentals of ocean optics with various technologies including optical, satellite, data 
analysis and fusion with multi sensor concepts. 

5.1 Ship radars  
Shipborne high frequency surface wave radar (SHFSWR) has been widely applied to monitor 
ocean environments such as wave, current and wind for many years. Although it has high 
maneuverability, the challenges to use the shipborne radar are motion-induced 
oscillation/peaks and complicated ship motion on radar Doppler spectra. To overcome these 
problems, several studies have been proposed. Gangeskar (2018) developed an image process 
algorithm and hardware to provide ocean surface current measurement from a fixed site or 
moving site such as ships using X-Band Radar. The image processing data were validated 
against in situ data from a fixed platform in the North Sea and from a moving ship in the Barents 
Sea. Both measurements showed encouraging results and future work was discussed. Xie et al. 
(2017) and Xie et al. (2018) used the mathematical model of the wind direction based on first 
order cross section for SHFWR and a method for unambiguous wind direction with a single 
antenna. The results were compared with experimental results of the real data collected in 
Taiwan Strait and showed the good agreement. Zhao et al. (2020a) studied ocean surface wind 
direction field estimation using compact shipborne HF radar with single angle of view. A 
direction-finding algorithm incorporating the Doppler shifts were used and compared with the 
experimental results.  

Yao et al. (2018) studied first-order shipborne SHFWR cross section with oscillation motion 
model based on the ship seakeeping theory for single frequency waves. Simulation results show 
that the horizontal oscillation motion can induce more peaks in the Doppler spectrum and 
suggested a motion compensation method to suppress the effect of the platform motion. Gill et 
al. (2018) provided a method for motion compensation for HFSWR on a floating platform. 
Four different deconvolution methods for the radar cross-section data were discussed and an 
iterative Tikhonov regularisation deconvolution technique was suggested. A yaw 
compensation algorithm for anchored floating HF radar and the vessel’s vertical motion for 
significant wave height estimation using linear wave theory were studied by Yi et al. (2021b) 
and Xie et al. (2019) respectively. 

Zhao et al. (2019) used a sea clutter suppression method using Cross-Loop/Monopoly (CLM) 
array combined with a multiple signal classification (MUSIC) algorithm to retrieve the target 
DOA (direction-of-arrival) for shipborne HF radar. The results compared with experimental 
data showed the improved suppression performance. McCann & Bell (2018) proposed a simple 
calibration method for accurate geographic registration of ship-borne radar imagery. 

5.2 Coastal radars 
There are several research works regarding improvement of the ocean current, wind and wave 
field measurements using coastal HF radars. Wyatt (2018) provided an insight of HF radar 
capabilities to measure wave, currents and tidal power. Wyatt et al. (2018) used two WERA 
HF radars to measure surface velocity and compared with field measurements. The study 
examined several different quality-control procedures and filters to improve data quality. The 
evaluation of the surface current measurements were performed by many researchers. Lu et al. 
(2018) developed a new algorithm of dispersion relation model extraction for current retrieval 
using X band radar and it provided better accuracy and stability than those from the traditional 
algorithm. Dzvonkovskaya et al. (2018) used a shored based HF radar system to measure 
tsunami-induced surface current velocity in real time while tsunami waves are crossing the 
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shelf edge and moving in shallow water. Wei et al. (2020b) used two OSMAR071 HF radars 
and four moored ADCPs to evaluate the surface currents in the Taiwan Strait under different 
sea states and showed best performance at sea state 4. Best practices for HF radars operation 
and maintenance were discussed by Mantovani et al. (2020). Ermoshkin et al. (2019) used 
coherent X-band and Ka-band panoramic digital radars to measure surface current and wind 
waves. They proposed a method using Doppler velocities and estimation of the fluctuation 
sensitivity.  

Li et al. (2018c) explained a hybrid sky-surface wave radar system which was first introduced 
in 2007 to extract the ocean surface current. The advantage of this system is to monitor large-
area sea states. The challenge is an ionospheric model which can be changed. The system can 
use multi receivers of the distributed radar systems (shore-based or shipborne) which can 
improve the results. Zhang et al. (2021b) proposed a method to suppress nonhomogeneous sea 
clutter in high frequency hybrid sky-surface wave radar to improve the measurement accuracy.  

Many examples of wave field monitoring (including significant wave heights) and their 
evaluation were studied. Qiu et al. (2017) proposed a new modulation transfer function to 
improve both range and azimuth dependency for coastal wave fields and validated with in-situ 
buoy data in terms of retrieval accuracies of peak and mean wave periods. Tian et al. (2018) 
used a compact HF radar with a small antenna for wave height field measurement based on the 
first order Doppler spectra. The results estimated were compared with the buoy measurements 
and provided the validity of the method. Dicopoulos et al. (2018) used the data from CODAR 
SeaSonde and improved the wave measurements including wave height. Navarro et al. (2019) 
proposed a shadowing mitigation method based on filtering and interpolation to estimate the 
sea state parameters including significant wave height with high accuracy in shallow waters 
using X-band coastal marine radar. Chen et al. (2019c) studied the difference between shore-
based coherent microwave radar and HF radar. Both radars are effective for near shore wave 
height monitoring in near real time with comparison of measured data from the wave buoy. 
Some differences between those radar in terms of the principle of wave measurements and 
coverage/spatial resolution of them were discussed.  

Dao et al. (2019) evaluated HF radar for ocean surface wave fields under winter monsoon. Two 
different radar systems (LERA and CODAR) were used. They provided a comparison of the 
wave height evolution and discussed the uncertainties under the winter monsoon conditions. 
Zeng et al. (2019) studied the wave-current interaction for better wave prediction. They 
provided detailed analysis and application of wave-current interaction by using the effect of 
current on HF radar first order spectral power. Silva et al. (2020) proposed a nonlinear method 
for the extraction of the directional ocean wave spectrum from bistatic HFSWR based on 
bistatic cross-section formulation. Zinchenko et al. (2021) presented sea surface reconstruction 
from X-band marine radar images using a phase-resolved method for wave elevation map and 
its spectral component. The comparison between the reconstructed and true wave 
elevation/wave spectra showed good improvement/agreement, respectively. Wu et al. (2018) 
studied ocean environmental parameters including wind speeds and wave parameters using 
ERA-Interim reanalysis data in China Offshore Seas in different sea conditions. Zhao et al. 
(2020b) used a compact multi-frequency HF radar using a circular array (MHF-C) to estimate 
wind direction. 

5.3 Airborne radars 
Jansen et al. (I2018) introduced the development of X-band airborne multichannel SAR 
(MSAR) to monitor ocean environment. They proposed a new efficient channel-balancing 
algorithm to provide a consistent performance in various ocean conditions. Huang et al. 
(2018b) developed a multi rotor UAV-RTK GNSS (Unmanned aerial vehicle – real time 
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kinematic Global Navigation Satellite System) with a robotic lidar and AHRS (altitude and 
heading reference system) to measure wave and tide in coastal areas. They provided 
comparable results from in-situ measurements. Sutherland et al. (2018) study airborne lidar to 
measure the surface wave field in the marginal ice zone (MIZ) in the Beaufort Sea in Oct 2015. 
The results were compared with buoy data and showed good agreement.  

Nadai (2019) showed the application of airborne synthetic aperture radar (SAR) to analyse the 
dependence of ocean wind direction on ocean surface backscattering. The normalized radar 
cross section (NRCS) of ocean surface backscattering from SAR depends on the wind speed 
and direction relative to the radar. The proposed airborne SAR assessed the wind 
direction/speed dependence of the NRCS. The wind direction showed a good agreement with 
airborne scatterometers but showed the large dependence on a NRCS model. Zhao et al. (2021) 
provided sea spike suppression method for airborne X-band SAR data since the sea spikes can 
cause significant interference to high-resolution SAR images. The method is based on an 
optimum polarization ratio in the SAR images and the detailed process was explained. Sun et 
al. (2021) evaluated airborne IRA (Interferometric Radar Altimeter) using wave-induced sea 
surface elevation (SSE) and its spectrum. A mean filtering algorithm was used to suppress the 
random phase noise. The results showed the dependency of the size of the filter window on 
sea-state conditions. Sletten et al. (2021) proposed to measure ocean surface current using an 
ultrahigh frequency synthetic aperture radar (UHF SAR) using aircraft. For the analysis, a wave 
dispersion method was used and compared with standard ATI-SAR processing. Both methods 
proved capable in measuring the surface velocity front, but the change in velocity, as measured 
by the two methods, showed significant difference. 

5.4 Satellite observations  
Remote sensing using satellites would be the most effective way to monitor the ocean 
environment in terms of the coverage and high resolution. Many researches have been trying 
to improve wave field monitoring. Jiang et al. (2018) re-analysed/corrected altimeter sensor 
interim geophysical dataset records (SIGDR) from China’s first ocean dynamic environment 
satellite Haiyang-2A to improve significant wave heights measurements. Ren et al. (2019) used 
spaceborne SAR and RAR (Real Aperture Radar) as the joint retrieval method to provide 
directional ocean wave spectra. SAR works on medium incident angles (20°-50°) but RAR 
measures at low incident angles (0° to 10°). Each Radar also has its own limitation of retrieval 
and this study proposed a joint method to derive the full wave spectra at small scale. Various 
data sources were also used to validate the method and most of the retrieved parameters showed 
comparable results. Hauser et al. (2021) provided a new space borne system namely the China 
France Oceanography Satellite (CFOSAT) for measuring ocean surface parameters and the 
paper provides the ocean wave assessment by comparing in-situ observation. The Surface 
Waves Investigation and Monitoring (SWIM) Ku-band Radar was on-board to measure the 
spectral properties of surface ocean waves. The paper shows that SWIM can provide the 
spectral properties in the wavelength range from 70 to 500m and other information such as 
wave parameters which are complementary to other observations. Wan et al. (2020) studies 
were based on 2 RADARSAT-2 SAR SLC (Single Look Complex) data and the cross-spectrum 
method, the distributions of significant wave heights and mean wave periods of ocean waves 
were inverted and the distributions of the wave power density were calculated. The results were 
compared with buoys and wave models in nearshore water and showed the effectiveness of the 
SAR. Wang et al. (2019d) used Gaofen-3’s quad-polarized wave model SAR images with cross 
spectral technique to evaluate the ocean wave spectra. The results were compared with buoy 
data to prove the feasibility and suggested operational implementation. Wang et al. (2018d) 
showed the capability of compact polarized SAR (RadarSat-2) to retrieve ocean wave field 
parameters. Ortiz & Lorenzzetti (2018) developed a new method to assess deep water 
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multimodal wave systems using polarimetric SAR image. Dinardo et al. (2021) used a new 
waveform by Doppler beam integration in the range direction of so called Range Integrated 
Power (RIP), to develop a new retracker (SAMOSA2) from the Sentinel-3 SAR. The study 
validated the performance improvement in terms of altimetric parameters such as sea surface 
height and significant wave heights in the North East Atlantic. 

To improve the data accuracy, a machine learning technique has been widely used for the 
analysis. Collins et al. (2019) studied the effect of polarization and incident angle on the 
significant wave height from SAR data (RADARSAT2) using neural network methods. Quach 
et al. (2020) used a dataset over 750,000 collocations from the Sentinel-1 SAR and radar 
altimetry and trained a DNN regression model to predict significant wave heights. The deep 
learning method reduced the error by half. Tapoglou et al. (2021) applied a machine learning 
technique for satellite-based sea state prediction using 240 Sentinel-1 satellite images. They 
used the Artificial Neural Network (ANN) combined with a Monte Carlo simulation to simulate 
the significant wave height. It provided not only comparable performance but also high 
resolution spatial distribution of significant wave heights. For internal solitary wave 
monitoring, Kozlov & Zubkova (2019) used the high resolution spaceborne SAR (Envisat) to 
observe internal solitary waves in the Arctic Ocean. Zhang et al. (2020) used the spaceborne 
compact polarimetric (CP) SAR to classify ocean internal solitary waves (ISWs). They used 
140 fully polarized satellite images and proved that some CP features contain enough 
information to find and identify ISWs. 

Several wind speed/direction measurement studies, using satellite images, were also 
performed. Abdalla et al. (2018) evaluated the significant wave height and wind speed from 
CryoSat-2 SAR. A detailed method was addressed and results were compared with ECMWF 
Integrated Forecasting System (IFS) output as well as in-situ and Jason-2 observations. Young 
& Donelan (2018) used 30 years of altimeter and radiometer measurements of wind speed and 
wave height from a satellite database and provided detailed descriptions of global wind and 
wave climate to compare with each other and ERA–I model reanalysis data. Wang et al. 
(2018c) examined wind retrieval using NRCS from Gaofen-3 (China’s first C-band full 
polarization synthetic aperture radar imaging satellite). Li et al. (2021d) measured the ocean 
surface current field (velocity and direction) using the same radar and showed the good 
agreement with ocean model data. Fan et al. (2018) used C-band dual-polarization 
RADARSAT-2 and Sentinel-1A SAR image to retrieve wind direction of a tropical Cyclone. 
This study provided the difference in VV and VH polarization and compared the results with 
various other sources. It suggested that VH-polarization showed better precision of the wind 
speed retrieval. Migliaccio et al. (2019) used a Sentinel-1 SAR data to study speckle 
dependence on ocean surface wind field. Hutchings & Long (2019) used a RapidScat which is 
a dual pencil-beam Ku-band scatterometer on the ISS. They produced RapidScat wind 
estimates on an ultrahigh resolution and showed the improvements. Ozbahceci (2020) studied 
extreme value statistics of wind speed and wave height based on combined radar altimeter data 
from different satellite missions. Nilsen et al. (2019) proposed a novel approach to Bayesian 
ocean wind retrieval from the SAR data. Gao et al. (2020) showed the possibility to retrieve 
Tropical Cyclone (TC) ocean surface wind speed from Sentinel-1 Satellites SAR images. Some 
limitations/improvements including prior input of wind direction and saturation of NRCS were 
discussed. Yi et al. (2021a) studied ocean diurnal wind variation measured by remote sensing 
satellites including CYGNSS and compared with ECMWF EFA5 data, which showed a 
consistent results. Pascual et al. (2021) studied the sensitivity of Cyclone GNSS data to wind 
direction using the kurtosis of the delayed-Doppler map (DDM) samples and guided potential 
wind direction estimation from CYGNSS data in the future. Guo et al. (2021b) proposed a new 
method to retrieve wind speed from GNSS-R by using delay-Doppler map (DDM) observables 
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based on particle swarm optimization (PSO). Zhou et al. (2021) used Sentinel-1 SAR images 
to retrieve sea surface wind speed from textures and tested for hurricane conditions and its 
room mean-square differences was 1.28 m/s. 

Ice monitoring and tracking research using satellites has been performed. Komarov & Buehner 
(2018) developed adaptive probability thresholding in automated detection of ice and open 
water from RADARSAT-2 dual polarization HH-HV image. A set of verification tests showed 
a decrease in the fraction of misclassified ice and open water sample from 0.35% to 0.09%, 
while the fraction of correctly classified ice and water samples decreased 72.2% to 65.4%. 
Ding et al. (2020) studied the phase differences from the polarimetric SAR measurements from 
RADARSAT-2 satellite, which could provide the phase information for ice segmentation from 
the open water. Their work was validated with in-situ ice observation for new frazil ice in the 
marginal ice zone. They also proposed the operational implementation of automatic 
unsupervised methods for sea ice detection and classification in the marginal ice zone. Sun & 
Li (2021) provided an effective denoising algorithm for Sentinel-1 extra wide mode HV 
polarized images to monitor sea ice in MIZ. Barbat et al. (2021) developed an iceberg tracking 
method using machine learning techniques and provided a case study with Weddell Sea 
region’s Advanced SAR (ASAR) data. Xue et al. (2021) introduced the first C-Band SAR small 
satellite (HISEA-1) for ocean remote sensing. It has a spatial resolution of 1 m/ a width of 100 
km and it can detect sea ice, ocean wind/wave and rises. The paper showed the potential 
applications due to the low cost/high resolution but it was still in the commissioning stage, 
which required more calibration.  

6. DATA ANALYSIS  
This chapter is dedicated to the analysis of environmental data in more detail, following a 
deeper statistical investigation to extract information from large multi-dimensional datasets. 
As a fast-growing field, many interesting studies have been published recently and the amount 
of tools nowadays is impressive. The chapter starts with a fundamental step that is often 
overlooked, related to quality control – extremely important to ensure reliable results at any 
type of analysis and modelling. The next part describes the assessments of wind and wave data 
from satellites, reanalysis, and forecast models, quantifying errors and uncertainties of 
environmental data. The final and largest part describes the machine learning and big data 
developments, with numerous studies in the last few years. 

6.1 Quality Control of observations 
The main quality control methods and guidelines for meteorological and oceanographic data 
processing are provided by the World Meteorological Organization (WMO), the National Data 
Buoy Center (NDBC) and Integrated Ocean Observing System (IOOS). The handbooks and 
manuals, WMO (2018), NDBC (2009) and IOOS (2019) provide the procedures and control 
checks to be followed, which is further complemented by specific studies described as follows. 

In Lucio-Eceiza et al. (2018a) a quality control (QC) process has been developed and 
implemented on an observational database of surface wind speed and direction in north-eastern 
North America. The database combines the observations of three different institutions spanning 
from 1953 to 2010. The QC is focused on data management issues: data transcription and 
collection; differences in measurement units and recording times; detection of sequences of 
duplicated data; unification of calm and true north criteria for wind direction; and detection of 
physically unrealistic data measurements. The QC presented in the paper is structured in six 
phases: 1) compilation (duplication of data or data not in chronological order); 2) duplication 
errors; 3) physical consistency in the ranges of recorded values; 4) temporal consistency, 
regarding abnormally high/low variability in the time series; 5) detection of long-term biases; 
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and 6) removal of isolated records. The first three phases are analysed in PART I of the paper 
while Phase from 4 to 6 in PART II (see paragraph below). Phase 1 had the higher impact on 
data while phase 2 and 3 had a lower impact. Around 0.1% of wind speed and wind direction 
records have been identified as erroneous and deleted. 

Lucio-Eceiza et al. (2018b) is the second part of the previous described article. The paper 
focuses on the detection of measurement errors and deals with low-variability errors, like the 
occurrence of unrealistically long calms, and high-variability problems, like rapid changes in 
wind speed; some types of biases in wind speed and wind direction are also considered. The 
most pervasive error type in terms of affected sites and erased data corresponds to unrealistic 
low wind speeds (89% of sites affected with 0.35% records removed). The amount of detected 
and corrected/removed records in Part II (9%) is approximately two orders of magnitude higher 
than that of Part I. 

Cosoli et al. (2018) describes a quality-control procedure and its impact on data collected by 
the High-Frequency Ocean Radar (HFR) network in Australia with the commercial phased-
array (WERA) HFR type. The proposed iterative procedure was specially designed to remove 
anomalous observations associated with strong signal-to-noise ratio (SNR) peaks caused by the 
50 Hz sources. The procedure iteratively fits a polynomial along the radial beam (1-D case) or 
a surface (2-D case) to the SNR associated with the radial velocity. Observations that exceed a 
detection threshold were then identified and flagged. The paper suggests that a fine-tuning of 
the thresholds is beneficial to improving the overall quality of the HFR data set. Tests 
performed across several mooring locations also suggested that a single threshold for SNR 
value may not be adequate for the entire domain and that this threshold may vary over time as 
a result of varying environmental factors, external noise, interference sources, or other 
problems. Another quality control applied to radar data is Lipa et al. (2019) who describe a 
method for radial velocity maps derived from radar echo voltage cross spectra measured by 
broad-beam high frequency radars, showing examples of its application to broad-beam radars 
operating at four sites. 

Cerlini et al. (2020) analysed hourly temperature time series from 2010 to 2017 in Italy 
applying basic and extended quality control procedures following World Meteorological 
Organization (WMO) standards. The spatio-temporal method used to reconstruct the data was 
a linear interpolation for 1hr gaps and the empirical orthogonal function (EOF) algorithm for 
gaps ≥ 2 hr. The introduction of a complete and homogeneous data set of hourly reanalysis 
ERA5/ECMWF allowed for the reconstruction of the longest gaps with statistical and physical 
consistency. 

6.2 Error metrics and assessments 
The limitations and errors of environmental databases must be known before using it in any 
ocean engineering application. A valuable description of error metrics and statistical tools for 
the assessments can be found in Mentaschi et al. (2013), Willmott & Matsuura (2005), and 
Jolliff et al. (2009). Recently, the reanalysis that has received the most attention is the ECMWF 
ERA5 global reanalysis (Hersbach et al. (2020)), with many papers evaluating the product. 
ERA5 is based on the Integrated Forecasting System (IFS) Cy41r2 which was operational in 
2016 and benefits from a decade of developments in model physics, core dynamics and data 
assimilation. The ERA5 high-resolution atmospheric and oceanic global data from 1950 
onwards, is publicly available and has overperformed its predecessors. 
Parsons et al. (2018) shows that wind fields of ERA5 compare well against altimeter and buoy 
data. When examining individual events, authors found deficiencies, in particular with extreme 
tropical and extra-tropical cyclones. Studying the application to wind power modelling, 
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Olauson (2018) showed that ERA5 performs better than a previous reanalysis MERRA-2 in all 
analysed aspects; correlations are higher, mean absolute and root mean square errors are in 
average around 20% lower and distributions are more similar to those for measurements. 
Jourdier (2020) confirmed the high skills of ERA5 wind products but they draw attention to 
the occasional underestimated winds in some locations. In the Southern Antarctic Peninsula, 
Tetzner et al. (2019) performed a validation of ERA5 compared to in-situ observations from 
13 automatic weather stations (AWS), reporting a significant improvement of ERA5 over 
ERA-Interim in terms of temperature and surface winds. The authors argued that the slight 
underestimation in the wind speed can be attributed to interplay of topographic factors and the 
effect of local wind regimes. In terms of wind gusts, Minola et al. (2020) compared ERA5 with 
hourly near-surface wind speed and gust observations across Sweden for 2013–2017. They 
concluded that ERA5 shows closer agreement than the previous ERA-Interim reanalysis with 
regard to both mean wind speed and gust measurements, although significant discrepancies are 
still found for inland and mountainous regions.  
Regarding cyclonic events, Bian et al. (2021) describes that ERA5 reanalysis can resolve 
stronger tropical cyclone winds, which leads to more valid outer size samples, especially for 
the radii of 12 and 15 m/s winds, and for the cases with outer sizes of <300 km - being the 
distribution characteristics of the outer size in the ERA5 reanalysis closer to the observation. 
Gramcianinov et al. (2020) analysed and compared ERA5 and NCEP/CFSR data from 1979 to 
2019 with 1-hourly outputs, regarding their ability to reproduce storm tracks and the main 
characteristics of cyclones at middle and high latitudes in the Atlantic Ocean. Their results 
show that ERA5 has 3.7% more cyclones than CFSR, which can be related to the finer 
resolution; however, CFSR presents stronger cyclonic winds than ERA5. 
A few studies addressed the quality of wave products of ERA5. Bruno et al. (2020) analysed 
the performance of ERA5 in a swell dominated region in the Western Arabian Sea. The authors 
concluded that ERA5 wave model overestimates the swell wave heights, whereas the wind 
waves’ height prediction is highly influenced by the wave developing conditions. Shi et al. 
(2021) evaluated the accuracy of ERA5 wave reanalysis in China using six buoys. They 
reported that the difference between the significant wave height of ERA 5 and the buoys varies 
from -0.35 m to 0.30 m for the three shallow water locations, and for the three deep locations, 
the variation ranges from -0.09 m to 0.09 m – with ERA5 containing positive biases which 
suggests an overall overestimation for all locations. However, during the tropical cyclone 
period, Shi et al. (2021) found a large underestimation (32%) of the maximum significant wave 
height in the ERA5 dataset, concluding that ERA5 data cannot be directly used for design 
applications without site-specific validation. In order to overcome these limitations in the 
ERA5 wave products, Law-Chune et al. (2021) developed a new global reanalysis, 
WAVERYS, including assimilation of altimeter wave data and directional wave spectra 
provided by Sentinel-1, adding also wave-current interactions by using the ocean reanalysis 
GLORYS. The results indicate that scatter index of SWH from the WAVERYS is improved 
by about 9% with respect to the ERA5 wave dataset, having additional good accuracy of swell 
propagation thanks to the assimilation of directional wave spectra.  
In summary, various uncertainties exist in hindcasts due to the inabilities of numerical models 
to resolve all the complicated atmosphere-sea interactions, and the lack of certain ground truth 
observations. Abdolali et al. (2021) conducted a comprehensive analysis of an atmospheric 
model performance in hindcast mode (Hurricane Weather and Research Forecasting model 
HWRF) and its 40 ensembles during severe events, evaluating the model accuracy and 
uncertainty for hurricane track parameters, and wind speed collected along satellite altimeter 
tracks and at stationary source point observations. The study on Hurricane Irma reveals that 
wind and wave observations during this extreme event are within ensemble spreads, while both 
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atmospheric and wave models have wide spreads over areas with landmass, maximum 
uncertainty in the atmospheric model is at hurricane eye in contrast to the wave model. 
Moving from reanalysis to forecast assessments, Campos et al. (2018c) performed a validation 
of surface winds and waves from the NCEP ensemble forecast system by using 29 Metocean 
buoys. They found the largest errors in NCEP/GWES, beyond forecast day 3, are associated 
with winds above 14 m/s and waves above 5 m. Extreme percentiles after the day-8 forecast 
reach 30% of underestimation for both 10-m wind and significant wave height. The comparison 
of probabilistic and deterministic wave forecasts shows an improvement of predictability on 
the scatter component of the errors, where the error for surface winds drops from 5 m/s in the 
deterministic runs, associated with extreme events at longer forecast ranges, to values around 
3 m/s using the ensemble prediction. As a result, GWES waves are better predicted, with a 
reduction in error from 2 m to less than 1.5 m for significant wave height. These results are 
confirmed by another assessment of the NCEP ensemble forecasts of Campos et al. (2020b) 
using altimeter data covering the whole globe. They concluded that it is essential to use 
ensemble forecast products to obtain reliable wind and wave forecasts beyond 7 days of 
forecast range at mid- and high latitudes. 
Recent assessments of satellite data can be found in Ribal & Young (2019) and Ribal & Young 
(2020), regarding altimeter and scatterometer data respectively. Ribal & Young (2019) shows 
the wind and wave evaluation of 13 altimeters, namely GEOSAT, ERS-1, TOPEX, ERS-2, 
GFO, JASON-1, ENVISAT, JASON-2, CRYOSAT-2, HY-2A, SARAL, JASON-3 and 
SENTINEL-3A, against National Oceanographic Data Center (NODC) buoy data. Great value 
is added through the Quantile-Quantile comparisons between altimeter and buoy data as well 
as between altimeters. Ribal & Young (2020) evaluated the wind speed from seven different 
scatterometers, namely ERS-1, ERS-2, QuikSCAT, MetOp-A, OceanSat-2, MetOp-B, and 
Rapid Scatterometer (RapidScat) also against National Data Buoy Center (NDBC). Besides the 
assessments, both studies applied quality-control and performed a calibration of the satellite 
data, which resulted in a high-quality database, well organized and publicly available. 

6.3 Data mining and Machine Learning applied to ocean modelling  
Data mining methods and neural network models have become very popular due to their 
relatively low computational cost, and great ability to improve environmental analyses and 
forecasts by using large datasets of observations. Moreover, these tools are useful to pre- and 
post-process traditional numerical models, as well as extracting information from multiple data 
sources.  

In Mahmoodi & Ghassemi (2018), three typical outlier detection algorithms: Box-plot (BP), 
Local Distance-based Outlier Factor (LDOF), and Local Outlier Factor (LOF) methods are 
used to detect outliers in significant wave height (Hs) records. The historical wave data are 
taken from National Data Buoy Center (NDBC). Each method presented different results that 
are highly dependent on the parameters used. It has been concluded that the LOF and Box plot 
were of low and high sensitivity in outlier detection in studied data sets. The voting method 
was used to obtain better outlier identification that achieved higher performances than the other 
methods in outlier detection. 

In Portilla-Yandún et al. (2019) two different methods are used to mine large wave spectra 
databases: Spectral Partitions Statistics (SPS) and Self-Organizing Maps (SOM). The aim of 
the paper is to improve the characterization of the directional wave climate at a site, providing 
a more complete and consistent description than that obtained from traditional statistical 
methods based on integral spectral parameters (e.g., Hs, Tm, θm). The methods are applied to 
a 37-year long (1979–2015) model dataset of directional wave spectra at a study site in the 
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western Mediterranean Sea. The statistics given by SPS and SOM methods are consistent with 
the statistics based on integral parameters but more informative as they operate in the 
frequency-direction domain. In the long-term statistics SOS and SOM identify more complex 
wave systems than the standard integral parameters helping in quantifying cross-sea conditions. 
The SOM as the advantage of providing the spectral shape but SOM is not indicated to 
represent extremes.  

Wei (2018) studied different data mining models namely k-nearest neighbors (kNN), linear 
regressions (LR), model trees (M5), multilayer perceptron (MLP) neural network, and support 
vector regression (SVR) algorithms to setup a forecasting model for the wave height at shore 
during typhoons. The data used for testing and training were data in typhoons occurred during 
2002-2011 and 2012-2013 recorded by the Londong buoy off the northeast coast of Taiwan. 
For the purpose of forecasting the conclusions of the paper are that MLP and SVR result are 
the optimal ones compared with other models when averaging the RMSE measures of the four 
model cases. In addition, regarding wave heights classification M5 provide the superior 
outcomes at small wavelet level compared with other models, MLP has the optimum outcomes 
at the large wavelet and small/moderate wave levels compared with other models, and SVR 
provides the optimal outcomes at the long wave and high/very high wave levels of all models. 

In Wang et al. (2019b) a method combining wavelet neural network (WNN), classifying 
threshold and two detecting strategies was presented for detecting anomalies in ocean fixed-
point observing time series. Two types of marine observing time series from a buoy, deployed 
at the National Ocean Test Site of China, were selected to evaluate the method: surface salinity 
(SS) and surface current speed (SCP). WNN were used to simulate the non-anomalous 
behaviours based on the normal variations in ocean observing series, and two detecting 
strategies (i.e. observation strategy and prediction strategy) were designed to find new 
unknown anomalies. The classifying threshold was determined by the estimated distribution of 
historical residuals. The WNN developed in the paper can work in an unsupervised setting and 
it has been found that it is more tolerant to noise and more sensitive to anomalies with temporal 
dependencies than traditional methods.  

The topic of abnormal data mining in ocean Argo buoy monitoring data was studied by Jiang 
et al. (2019). Dense regions were established in K-MEDOIDS clustering algorithm with the 
help of density accessibility of density clustering. Based on dynamic layer number, a new 
calculation method of domain radius and density was proposed, and the initial clustering center 
was selected with both, considering density and similarity. At the same time, an anomaly 
detection algorithm was proposed, which the criterion to judge marine anomaly data is based 
on the result of clustering combined with point sets in dense regions. The paper states that the 
new improved algorithm avoids the disadvantages of sensitive initial clustering center and high 
update iteration times of central point. 

The existence of multiple numerical wave forecasts leads to the question of which one should 
be used in practical ocean engineering applications, which was investigated by Campos et al. 
(2021) through decision algorithms. They developed random forest (RF) post-processing 
models to identify the best wave forecast between two National Centers for Environmental 
Protection (NCEP) products (deterministic and ensemble). The supervised learning classifier 
was trained using National Data Buoy Center (NDBC) buoy data and the RF model accuracies 
were analysed as a function of the forecast time. A careful feature selection was performed by 
evaluating the impact of the wind and wave variables (inputs) on the RF accuracy. The results 
showed that the RF models were able to select the best forecast at certain forecast ranges using 
input information of significant wave height, wave direction and period, and ensemble spread. 
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The challenges and limitations of such RF predictions for longer forecast ranges are discussed 
in order to support future studies in this area. 

The stacked auto-encoder is a neural network approach in machine learning for feature 
extraction. It attempts to model high-level abstractions and to reduce data dimensions by using 
multiple processing layers. Therefore, combining the concept of a dynamic data-driven system 
with a stacked auto-encoder neural network will help to obtain the dynamic data correlation or 
relationship between the prediction results and actual data in a dynamic environment. The study 
presented by Lin et al. (2018) applied the concept of a dynamic data-driven system to obtain 
the correlations between the prediction goals and number of different combination results. 
Association analysis, sequence analysis, and stacked auto-encoder neural network were 
successfully employed to design a dynamic data-driven system based on deep learning. 
Additionally a rich discussion and recommendation on environmental data selection for the 
training of machine learning models that predicts wind patterns is provided by Goulart & 
Camargo (2021). 

Ellenson et al. (2020) used a machine learning algorithm, the bagged regression tree, to detect 
error patterns within 24-h forecasts of significant wave height time series. The input to the 
machine learning algorithm were bulk parameter outputs of the numerical wave model 
WAVEWATCHIII and wind information from the Global Forecast System (GFS/NCEP) at 
buoy locations along the California-Oregon border in the United States. The outputs of the 
algorithm are predictions of hourly deviations between numerical model output and buoy 
observations of significant wave height. When these deviations were applied as corrections to 
the forecasts, the performance was improved, confirming that the error pattern was successfully 
detected by the machine learning algorithm. As a descriptive tool, the algorithm delineated 
regions of similar error within the context of model phase space (Hs and Tm). For Hs greater 
than the 95th percentile value (5.4 m), the algorithm detected differences in model phase space 
associated with mean error patterns. 

The next papers describe studies that proposed long short-term memory (LSTM) networks for 
the quick prediction of significant wave heights. Fan et al. (2020) emphasised that LSTM leads 
to higher accuracy than conventional neural networks. They developed LSTM models for 1-h 
and 6-h predictions at ten stations using the wind speed of the past 4 h and the wave height and 
wind direction of the past 1 h as input parameters. The LSTM prediction results were obtained 
and compared against results from a back propagation neural network, extreme learning 
machine, support vector machine, residual network, and random forest algorithm. Their results 
showed the powerful ability of LSTM to perform short and long-term predictions. The 
simulating waves nearshore-LSTM (SWAN-LSTM) model was proposed by them to make a 
single-point prediction, and it outperformed the standard SWAN model with an improvement 
in accuracy of over 65%. Similarly, Alqushaibi et al. (2021) proposed an enhanced weight-
optimized neural network based on Sine Cosine Algorithm (SCA) to accurately predict wave 
height. Three neural network models named Long Short-Term Memory (LSTM), Vanilla 
Recurrent Neural Network (VRNN), and Gated Recurrent Network (GRU) were developed and 
improved – validated against metocean datasets. The original LSTM, VRNN, and GRU are 
implemented and used as benchmarking models. The results show that the optimized models 
outperform the original three benchmarking models in terms of MSE, RMSE and MAE.  

Hu et al. (2021) applied novel ML methods based on XGBoost and a Long Short-Term Memory 
(LSTM) recurrent neural network to predict wave height and period at Lake Erie. They trained 
and validated the ML models with buoy data sets from 1994 to 2015, and then used the trained 
models to predict significant wave height (Hs) and peak period (Tp) for 2016 and 2017. The 
XGBoost model yielded the best overall performance, with Mean Absolute Percentage Error 
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(MAPE) values of 15.6%–22.9% in Hs and 8.3%–13.4% in Tp. The LSTM model yielded 
MAPE values of 23.4%–30.8% in Hs and 9.1%–13.6% in Tp. An unstructured grid of WW3 
model applied to Lake Erie resulted in MAPE values of 15.3%–21.0% in Hs and 12.5%–19.3% 
in Tp; however, WW3 underestimated both parameters during strong wind events, with relative 
biases of -11.76% to -14.15% in Hs and -15.59% to -19.68% in Tp. The XGBoost and LSTM 
models improve on these predictions with relative biases of -2.56% to -10.61% in Hs and -
8.08% to -10.13% in Tp. Besides the improved performance, the ML models run significantly 
faster than the numerical wave model WW3, which reinforces the promising operational 
applications of machine learning algorithms.  

Zhang et al. (2021c) investigated the possibility of using machine learning to correct numerical 
forecasts of wave height series by incorporating predictions into a long short-term memory 
model (LSTM). The LSTM takes a combined wave height representation, which is formed 
from a current wave height measurement and a subsequent Simulating Waves Nearshore 
(SWAN) numerical prediction, as the input and generates the corrected numerical prediction 
as the output. The correction is achieved by two modules in cascade, i.e., the LSTM module 
and the Gaussian approximation module. The LSTM module characterizes the correlation 
between measurement and numerical prediction. The Gaussian approximation module models 
the conditional probabilistic distribution of the wave height given the learned LSTM. 
Experimental results confirmed that LSTM effectively improves the accuracy of wave height 
prediction from SWAN, for the prediction time varying from 3 to 72 h. 

The machine learning approaches are being widely used for the prediction of wave heights, as 
described above. However, these approaches involve batch learning algorithms that are not 
well-equipped to address the demands of a continuously changing data stream. In Kumar et al. 
(2017) they conduct a study to predict the daily wave heights in different geographical regions 
using sequential learning algorithms, namely the Minimal Resource Allocation Network 
(MRAN) and the Growing and Pruning Radial Basis Function (GAP-RBF) network. They 
compare the performance of MRAN and GAP-RBF with Support Vector Regression (SVR) 
and Extreme Learning Machine (ELM). The performance study results show that the MRAN 
and GAP-RBF outperform the SVR and ELM with minimal network resources, in the daily 
wave height prediction. Neural networks can approximate any complex nonlinear process 
without a priori knowledge of the underlying physics and sequential learning algorithms do not 
need re-training and are capable of learning as data arrives, concluding that Minimal Resource 
Allocation Network (MRAN) can predict the significant wave heights more accurately than the 
other networks. 

In Oh & Suh (2018), a hybrid model is developed by combining the empirical orthogonal 
function analysis and wavelet analysis with the neural network (abbreviated as EOFWNN 
model). The past wave height data at multiple locations and the past and future meteorological 
data in the surrounding area including the wave stations, are used as input data. The model then 
forecasts the wave heights at the locations for various lead times. The developed model is 
employed to forecast the wave heights at eight wave observation stations in the coastal waters 
around the East/Japan Sea. The EOFWNN model is proven to be a promising tool for 
forecasting wave heights at multiple locations, where the past wave height data and the past 
and future meteorological data in the surrounding area are available. 

A data-driven warning model based on an artificial neural network (ANN) is proposed in 
Doong et al. (2018) to predict the possibility of Costal Freak Waves occurrence. Seven 
parameters (significant wave height, peak period, wind speed, wave groupiness factor, 
Benjamin Feir Index (BFI), kurtosis, and wind-wave direction misalignment) collected prior to 
the occurrence of the CFW are used to develop the model. The buoy data associated with 40 
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known CFW events are used for model training, and the data associated with 23 events are 
used for validation. The accuracy rate (ACR) exceeds 90% and the recall rate (RCR) exceeds 
87%, demonstrating the accuracy of the proposed model. This warning model has been 
implemented in operational runs since 2016. 

Law et al. (2020) presents a framework on the use of data-driven models based on Artificial 
Neural Network (ANN) in predicting the spatial–temporal evolution of wave fields in real-time 
from a given wave field record upstream. A short-term deterministic or phase-resolved wave 
prediction in real-time has been demonstrated using both linear wave theory (LWT) and 
Artificial Neural Network (ANN) model. Time domain forecast of free surface elevation and 
individual waves. They choose a wave environment south of Albany, Western Australia, which 
is known to be swell-dominated, and simulate many realisations of long-crested random waves 
using Higher Order Spectral Method (HOSM) for each sea-state sampled from the scatter 
diagrams of that particular location. 

In Berbić et al. (2017), real-time prediction of significant wave heights for the following 0.5-
5.5 h is provided, using information from 3 or more time points. In the first stage, predictions 
are made by varying the quantity of significant wave heights from previous time points and 
various ways of using data are discussed. Afterwards, in the best model, according to the 
criteria of practicality and accuracy, the influence of wind is taken into account. Predictions 
are made using two machine learning methods — artificial neural networks (ANN) and support 
vector machine (SVM). The models were built using the built-in functions of software Weka, 
developed by Waikato University, New Zealand. 

Artificial neural networks (ANNs) applied to nonlinear wave ensemble averaging are 
developed and studied for Gulf of Mexico simulations in Campos et al. (2019a), as a follow-
up study started in Campos (2017) using machine learning models applied to single points. 
Campos et al. (2019) proposed an approach that expands the conservative arithmetic ensemble 
mean (EM) from the NCEP Global Wave Ensemble Forecast System (GWES) to a nonlinear 
mapping that better captures the differences among the ensemble members and reduces the 
systematic and scatter errors of the forecasts. The ANNs have the 20 members of the GWES 
as input, and outputs were trained using observations from six buoys. The variables selected 
for the study were the 10-m wind speed (U10), Hs, and Tp for the year of 2016. ANNs were 
built with one hidden layer using a hyperbolic tangent basis function. Several architectures with 
12 different combinations of neurons, eight different filtering windows (time domain), and 100 
seeds for the random initialization were studied and constructed for specific forecast days from 
0 to 10. The results show that a small number of neurons are sufficient to reduce the bias, while 
35–50 neurons produce the greatest reduction in both the scatter and systematic errors. The 
main advantage of the methodology using ANNs is not on short-range forecasts but at longer 
forecast ranges beyond 4 days. The nonlinear ensemble averaging using ANNs was able to 
improve the correlation coefficient on forecast day 10 from 0.39 to 0.61 for U10, from 0.50 to 
0.76 for Hs, and from 0.38 to 0.63 for Tp, representing a gain of five forecast days when 
compared to the EM currently implemented.  

Next, a nonlinear ensemble averaging in global scale was developed by Campos et al. (2020a) 
using neural networks applied to one year (2017) of Global Ocean Wave Ensemble forecast 
System (GWES) data provided by NCEP. Post-processing algorithms were developed based 
on multilayer perceptron neural networks (NN) trained with altimeter data to improve the 
global forecast skill, from nowcast to forecast ranges up to 10 days, including significant wave 
height (Hs) and wind speed (U10). The NN models were constructed using six variables 
sourced from 21 ensemble members, plus latitude, sin/cos of longitude, sin/cos of time, forecast 
lead time, and GWES cycle. The sensitivity NN tests considered 26 different numbers of 
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neurons, 10 seeds for initial conditions, and 3 equally-divided datasets; for a total of 780 NN 
experiments. Assessments using 2,507,099 paired satellite/GWES fields showed that a simple 
NN model with few neurons was able to reduce the systematic errors for short-range forecasts, 
while a NN with more neurons is required to minimize the scatter error at longer forecast 
ranges. The bias of the widely used EM of GWES that varies from -10% to 10% for Hs 
compared to altimeters can be reduced to values within 5%. The RMSE of day-10 forecasts 
from the NN simulations indicated a gain of two days in predictability when compared to the 
EM, at global scale, using a reasonably simple post-processing model with low computational 
cost. 

The intense increase in offshore operational activities warrants periodical and accurate 
prediction of the wave characteristics. Usually, complex numerical models that require high 
computational power are used in this prediction. To overcome these challenges of these 
numerical models, Kumar et al. (2018b) proposed the use of an ensemble of Extreme Learning 
Machine (Ens-ELM) to predict the daily wave height. They exploit the randomness of 
initialization in ELM to obtain better generalization performance by constructing an Ensemble 
of ELM, with the parameters of each ELM initialized in distinct regions of the input space. For 
each sample in the data set, the output of the ELM with the least mean square for each sample 
in the data set is reported as its output. The authors study the performance of the Ens-ELM to 
predict the daily wave height in 10 stations of varying terrains from Gulf of Mexico, Brazil and 
Korean region. The Ens-ELM network is trained using the past wave data and the measured 
atmospheric conditions obtained in these stations between Jan 1, 2011 and Dec 31, 2014 and 
is tested with data in these stations between Jan 1, 2015 and Aug 30, 2015. In this study, the 
performance of Ens-ELM is evaluated in comparison with ELM, Online Sequential ELM (OS-
ELM), and Support Vector Regression (SVR). The study shows that the Ens-ELM out performs 
ELM, OS-ELM and SVR in the daily wave height prediction.  

In James et al. (2018) a machine learning framework is developed to estimate ocean-wave 
conditions. By supervised training of machine learning models on many thousands of iterations 
of a physics-based wave model, accurate representations of significant wave heights and period 
can be used to predict ocean conditions. A model of Monterey Bay was used as the example 
test site; it was forced by measured wave conditions, ocean-current nowcasts, and reported 
winds. These input data along with model outputs of spatially variable wave heights and 
characteristic period were aggregated into supervised learning training and test data sets, which 
were supplied to machine learning models. James et al. (2018) showed that these machine 
learning models replicated wave heights from the physics-based model with a root-mean-
squared error of 9 cm and correctly identify over 90% of the characteristic periods for the test-
data sets. Impressively, transforming model inputs to outputs through matrix operations 
requires only a fraction (< 1/1000th) of the computation time compared to forecasting with the 
physics-based model. 

In addition to the wave modelling studies described above, Kumar et al. (2019) developed a 
model output statistics (MOS) guidance model by using the neural network technique for a 
bias-corrected rainfall forecast. The model was developed over the Indian window (0-40°N and 
60-100°E) by using the observed and global forecast system (GFS) T-1534 model output (up 
to 5 days) at a 0.125°×0.125° regular grid during the summer monsoon (June–September) 2016. 
The skill of the developed MOS model forecast against the observed 0.125°×0.125° grid 
rainfall data is obtained for the summer monsoon (June–September) 2017. The skill of the 
MOS model rainfall forecast is found to show good improvement over the T-1534 model’s 
direct forecast over the Indian window. In general, the T-1534 model’s direct forecast shows 
high skill, but the forecast obtained by using the MOS model shows better skill than the direct 
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model’s forecast, although a major improvement is seen for the Day 1 forecast at the national 
level. 

Making deductions and expectations about climate has been a challenge all through mankind’s 
history. Challenges with exact meteorological directions assist to foresee and handle problems 
well in time. Different strategies have been investigated using various machine learning 
techniques in reported forecasting systems. Current research investigates climate as a major 
challenge for machine information mining and deduction. Accordingly, in Saba et al. (2017) a 
hybrid neural model (MLP and RBF) was developed to enhance the accuracy of weather 
forecasting. The proposed hybrid model ensures precise forecasting due to the specialty of 
climate anticipating frameworks. The study concentrates on the data representing Saudi Arabia 
weather forecasting. The main input features employed to train individual and hybrid neural 
networks included average dew point, minimum temperature, maximum temperature, mean 
temperature, average relative moistness, precipitation, normal wind speed, high wind speed 
and average cloudiness. The output layer was composed of two neurons to represent rainy and 
dry weathers; and trial and error approach was adopted to select an appropriate number of 
inputs to the hybrid neural network. Saba et al. (2017) demonstrated that MLP forecasting 
results are better than RBF, however, the proposed simplified hybrid neural model comes out 
with better forecasting accuracy as compared to both individual networks. Additionally, results 
are better than reported in the state of art, using a simple neural structure that reduces training 
time and complexity.  

Cui & Fearn (2018) investigated the use of convolutional neural networks (CNN) for near 
infrared (NIR) calibration. They proposed a unified CNN structure that can be used for general 
multivariate regression purpose. The comparison between the CNN method and the partial least 
squares regression (PLSR) method was done on three different NIR datasets of spectra and lab 
reference values. Datasets are from different sources and contain 6998, 1000 and 415 training 
and 618, 597 and 108 validation samples, respectively. Their results indicated that compared 
to the PLSR models, the CNN models are more accurate and less noisy. The convolutional 
layer in the CNN model can automatically find the suitable spectral preprocessing filter on the 
dataset, which significantly saves efforts in training the model. 

6.4 Big data and machine learning applied to wind modelling 
Numerous methods have been proposed to improve wind-speed forecasting in recent decades. 
These methods can be categorized into three types: physical approaches, statistical approaches 
and artificial-intelligence models. Statistical methods usually involve the auto-regressive 
integrated moving-average model (ARIMA), quantile-regression model (QR), and Kalman-
filter model and achieve more accurate short-term wind-speed predictions than physical models 
(not long-term). However, the fluctuating and intermittent characteristics of wind-speed 
sequences require more complicated functions to capture the non-linear relationships rather 
than assuming a linear correlation structure.  

Precise and reliable wind-speed prediction is vital for wind-farm operational planning. 
However, wind speed series usually have complex features, such as non-linearity and volatility, 
which makes the wind energy forecasting highly difficult. Aimed at this challenge, Qu et al. 
(2019) proposes a forecasting architecture based on a new hybrid decomposition technique 
(HDT) and an improved flower-pollination algorithm (FPA)-back propagation (BP) neural 
network prediction algorithm. The proposed HDT combines the complete ensemble empirical 
mode decomposition adaptive noise (CEEMDAN) and the empirical wavelet transform 
(EWT), which is unique, since the EWT is specifically employed to further decompose the high 
frequency intrinsic mode functions (IMFs) generated by CEEMDAN to reduce prediction 
complexity. And then an improved BPNN with the flower-pollination algorithm is applied to 
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forecast all of the decomposed IMFs and modes. To investigate the forecasting ability of the 
proposed model, the wind speed data collected from two different wind farms in Shandong, 
China were used for multi-step ahead forecasting. The experimental results show that the 
proposed model performs remarkably better than all of the other considered models in one-step 
to five-step wind speed forecasting, which indicates that the proposed model is highly suitable 
for non-stationary multi-step wind speed forecasting.  

In Ma et al. (2019) they compared different AI algorithms for wind speed forecast, including: 
back-propagation neural network (BPNN), support vector machine (SVM), bagging, 
AdaBoost, random forest (RF), long short-term memory (LSTM), seasonal autoregressive 
integrated moving average (SARIMA), SVM with ensemble empirical mode decomposition 
(EEMD-SVM), and NCL-NN with wavelet denoising (WAT-NCL) models. They proposed a 
hybrid model that uses the wavelet analysis technique (WAT) for denoising, a negative 
correlation learning neural network (NCL-NN) ensemble, and an ensemble structure optimized 
using particle-swarm optimization (PSO). The approach was called WAT-NCL-PSO. The 
wavelet analysis technique (WAT) has become an effective tool for signal denoising in data 
preprocessing in many areas, because the topicality of wavelet analysis is good in terms of time 
series and frequency. Another valuable similar contribution can be found in Qu et al. (2017). 

Multi-layer perceptron neural networks (MLP-NN) are widely utilized in forecasting 
applications but optimal training of these networks is still a challenge. A comprehensive 
assessment of MLP training approaches comprising of three stages was performed in Samet et 
al. (2019). First, the prediction performance was evaluated using twelve training algorithms. 
Next, optimization algorithms are utilized to enhance the best obtained network parameters 
obtained from the first step and the performance of eight optimization algorithms is evaluated. 
Finally, a novel modification is used to improve the performance of the optimization 
algorithms. Wavelet transformation is used to extract the features which will be fed to the MLP-
NN as input data. The impact of utilizing Wavelet Transformation (WT) is studied, which is 
applied to case study time series in order to smooth out the intermittent nature of wind speed 
data and study the effect of WT on prediction precision. The twelve classic training algorithms: 
Basic Gradient Descent (BGD), Gradient Descent with Momentum (GDM), Fletcher-Reeves 
Conjugate Gradient (FRCG), Polak-Ribie’re Conjugate Gradient (PRCG), Powell-Beale 
Conjugate Gradient (PBCG), Scaled Conjugate Gradient (SCG), Adaptive Learning Rate 
(ALR), Resilient Backpropagation Algorithm (Rprop), Broyden-Fletcher-Goldfarb-Shanno 
(BFGS), One Step Secant (OSS), Levenberg-Marquardt (LM), Bayesian Regularization (BR). 
Then the MLP-NN is further optimized around 10% of the most accurate results obtained in 
the previous step: Differential Evolution (DE), Genetic Algorithm (GA), Firefly Algorithm 
(FA), Particle Swarm Optimization (PSO), Imperial Competition Algorithm (ICA), Artificial 
Bee Colony (ABC), Bat Algorithm (BA), Cuckoo Optimization Algorithm (COA).  

In Begam & Deepa (2019), an optimized nonlinear neural network architectural model 
integrated with a modified firefly algorithm and particle swarm optimization is proposed to 
perform multistep wind-speed forecasting for specific target sites. Factors that influence wind 
speed include temperature, atmospheric pressure, humidity, moisture in the air, rainfall and so 
on. Neural network models are used in forecasting applications due to their stability, 
adaptability, ability to handle large quantities of data, nonlinearity and generalizability. Their 
reason for developing an optimized nonlinear neural network model is that individual models 
each have their own advantages and limitations, leading to lower accuracy in forecasting and 
sometimes to instability. The developed novel nonlinear neural network model proposed by 
Begam & Deepa (2019) is based on a new, modified version of the firefly and particle swarm 
optimization algorithms. The new optimization algorithm was hybridized to obtain optimal 
weight and bias values for individual neural networks. They concluded that the developed 
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model for wind-speed time series data for the considered target sites shows better performance 
than the other models considered for comparison.  

A hybrid method of short-term wind speed forecast was proposed in Yu et al. (2018a) by the 
wavelet packet decomposition, density-based spatial clustering of applications with noise, and 
the Elman neural network (WPD-DBSCAN-ENN). First, the WPD was applied to decompose 
a raw wind speed series into several subseries. The gradient boosted regression trees (GBRT) 
algorithm was then applied to determine the structure of the ENNs for each sub-wind series. 
The training dataset was then clustered by the DBSCAN to select the representative data for 
the ENNs. A key parameter in the DBSCAN was chosen through a new method. The wind 
speed forecast was simulated by the ENNs leading to successful results showed by Yu et al. 
2018. They finally argued that autoregressive integrated moving average model (ARIMA) is a 
popular statistical method but it cannot handle nonlinear problems.  

To improve the wind speed prediction accuracy, Wavelet Transform (WT) is widely employed 
to disaggregate an original wind speed series into several sub series before forecasting. 
Nevertheless, the highest frequency sub series usually has a great disturbance on the final 
prediction. Yu et al. (2017a) applied a Singular Spectrum Analysis (SSA) to make further 
processing on the highest frequency sub series, instead of making no modification on or getting 
rid of it, and therefore increase the forecast accuracy. So a hybrid decomposition technology 
called Improved WT (IWT) was proposed by the authors. Meanwhile, a new hybrid model 
IWT-ENN combined with IWT and Elman Neural Network (ENN) was also designed. The 
procedure of IWT was systematically investigated. Their experimental results show that: (1) 
the performance of the hybrid model IWT-ENN has a great improvement compared to that of 
others including the persistence method, ENN, Auto-Regressive (AR) model, Back 
Propagation Neural Network (BPNN) and Empirical Mode decomposition (EMD)-ENN; (2) 
compared to the two general strategies where the highest frequency sub series is without 
retreatment or eliminated, the new proposed hybrid model IWT-ENN has the best prediction 
performance.  

Since the wind speed signal is stochastic and intermittent, it is difficult to achieve their 
satisfactory prediction. In Liu et al. (2018), a novel hybrid deep-learning wind speed prediction 
model, which combines the empirical wavelet transformation and two kinds of recurrent neural 
network, is proposed. In the new model, the empirical wavelet transformation is adopted to 
decompose the raw wind speed data into several sub-layers. The long short-term memory 
neural network, a deep learning algorithm based method, is utilized to predict the low-
frequency wind speed sub-layers. The Elman neural network, a mainstream recurrent neural 
network, is built to predict the high-frequency sub-layers. In the executed forecasting 
experiments, eleven different forecasting models are included to validate the real prediction 
performance of the proposed model. The experimental results indicate that the proposed model 
has satisfactory performance in the high-precision wind speed prediction. Wang & Wu (2016) 
also argue that the decomposition algorithms can effectively improve the prediction 
performance of the built models through decomposing the intermittent raw wind time series 
into several more stationary sub-layers. Among the decomposition algorithms, the WD 
(Wavelet Decomposition), the WPD (Wavelet Packet Decomposition), the EMD (Empirical 
Mode Decomposition), the EEMD (Ensemble Empirical Mode Decomposition) and the 
FEEMD (Fast Ensemble Empirical Mode Decomposition) are widely recognized and used in 
the wind speed prediction.  

In Xiao et al. (2017), a novel combination wind speed prediction model is proposed based on 
the EWT, LSTM network and Elman neural network. The model is composed of three steps 
as: (a) the EWT is adopted to decompose the raw wind speed data into several sub-layers; (b) 
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the LSTM network is employed to predict the low-frequency sub-layer, while the Elman neural 
network is employed to predict the high-frequency sub-layers; (c) the prediction results of each 
sub-layer are summarized to obtain the final results for the original wind speed data. According 
to Hu et al. (2017), the EWT can effectively identify and extract a finite number of intrinsic 
modes of a wind speed time series. The major steps of the EWT algorithm can be described as: 
(a) extending the signal; (b) executing the Fourier transform; (c) extracting the boundaries; (d) 
building the filter bank; (e) extracting the sub-bands.  

The majority of previous studies tended to emphasize the structural improvement of individual 
forecasting models without considering the validity of data preprocessing. This can result in 
poor forecasting accuracy due to their failure to fully capture the effective information of the 
wind speed data. A new approach is proposed by Wang et al. (2019a), which successfully 
combines a data preprocessing technique with a linear combination method. Further, a new 
neural network framework is employed to determine the required combination weights to 
ensure improved prediction performance, thereby overcoming the drawback of the low 
accuracy of individual prediction models. Based on the above statement, this paper presents a 
novel combination prediction model that synthesizes the data preprocessing technique, 
dynamic weight generation framework, and several forecasting algorithms, namely support 
vector machine (SVM), extreme learning machine (ELM), bat algorithm-back propagation 
(BA-BP), and Elman ANN (EANN). In more detail, according to the decomposition and 
integration framework, the raw wind speed sequences are first decomposed into several 
components by the VMD algorithm; then, these sequences are reconstructed into a new time 
series, thereby ensuring that the original sequences no longer contain a high-frequency noise 
signal. Next, the processed wind speed data is used as input to each model for forecasting. 
Then, a dynamic weight combination approach, called the in-sample training-validation pair-
based neural network weighting (IPN) (Wang et al. (2018a)) is employed to yield the relative 
optimal combination weights. Following this, the individual model weights are predicted using 
an RBF neural network; and finally a linear weighted approach is adopted to obtain the 
prediction results.  

In order to enhance the accuracy of short-term wind speed prediction, a hybrid model based on 
VMD-WT and PCA-BP-RBF neural network is proposed in Zhang et al. (2019b). In data pre-
processing period, the non-stationary wind speed sequence is decomposed into a number of 
relatively stationary intrinsic mode functions (IMF) by variational mode decomposition 
(VMD); then WT algorithm is used to perform secondary denoising on each IMF. At the same 
time, several factors affecting wind speed are introduced, from which the input features that 
participated in the prediction are selected by PCA-BP method. Next, the RBF neural network 
is utilized to predict each IMF. Finally, all IMF prediction results are aggregated to obtain the 
final wind speed value. Combining the data of Spanish and Chinese wind farms, the experiment 
results show that: (1) compared with EMD, VMD-WT can better solve the problems of modal 
aliasing and endpoint effect, which can make the periodic characteristics of each IMF more 
obvious, then promote the forecasting performance; (2) using PCA-BP method to filter the 
model input data, the redundant and irrelevant information is eliminated, the complexity of the 
model is reduced, and the predictive performance of RBF model is improved; (3) compared 
with other traditional models, the hybrid model proposed by Zhang et al. (2019b) has greatly 
improved the accuracy in short-term wind speed forecasting. 

Many existing studies consider the spatio-temporal correlation of wind speed but ignore the 
influence of meteorological factors on wind speed with changes in time and space. Therefore, 
to obtain a reliable and accurate forecasting result, a novel multifactor spatio-temporal 
correlation model for wind speed forecasting is proposed in (Chen et al., 2019b) by combining 
a convolutional neural network and a long short-term memory neural network. The 
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convolutional neural network is used to extract the spatial feature relationship between the 
meteorological factors at various sites. The long short-term memory neural network is used to 
extract the temporal feature relationship between the historical time points. Meanwhile, a new 
data reconstruction method based on a three-dimensional matrix is developed to represent the 
proposed multifactor spatio-temporal correlation model.  

In Zhao et al. (2020a) a novel data-driven method to perform short-term combination forecasts 
of average wind speed and wind turbulent standard deviation is presented. Actual data from 
China wind farm is utilized to execute the case experiments. According to atmospheric 
boundary layer theory and correlation analysis of the two prediction targets, their time-delay 
items are combined as the model input features. One-dimensional convolutional neural network 
is innovatively applied for this work to excavate the timing coupled information in data. 
Inspired by Pauta criterion, adaptive parameter named as “turbulent standard deviation 
multiplicator” is defined, which is the specific value of predicted average wind speed error and 
wind turbulent standard deviation. It is decided as the medium to extend the study to 
probabilistic framework. Based on its quantile analysis, the statistical significance of the 
parameter is verified and the prediction results can be integrated to achieve 4 h ahead 
probabilistic wind speed forecasts.  

In Li et al. (2019a) an innovative framework for multi-step wind speed prediction using Wind 
Speed and Turbulence Intensity-based Recursive Neural Network is developed. In this study, 
real-time turbulence intensity is measured from wind speed, and multi-resolution features of 
wind speed and turbulence intensity are deployed as input for the prediction model. Ensemble 
recursive neural network is designed to execute prediction on multiple prediction intervals 
ranging from 10 min to 12 h with two different integrating strategies. Experimental results 
indicate that: (1) The proposed model dramatically outperforms conventional machine learning 
models on multi-step wind speed prediction; (2) The reliable wind speed prediction requires 
that the maximum time-resolution of turbulence intensity should be longer than prediction 
interval; (3) Turbulence intensity features involved prediction will achieves higher accuracy 
than the approaches that apply signal processing on raw wind speed, especially on middle long-
term prediction. Therefore, this innovative scheme for multi-step wind speed prediction can be 
of immense utility to apply data-driven methods for accurate long-term wind speed prediction. 
According to Li et al. (2019a), wind speed prediction mainly comprises two categories: data-
driven model based prediction and physical model based prediction. With aspect to physical 
model based prediction, Weather Research and Forecasting (WRF) and Numerical Weather 
Prediction (NWP) are the most popular technics tackling middle term and long-term wind 
speed prediction in large scale of area and spatial resolution.  

Based on a review over the last 5 years’ publications, ANN, deep learning methods and hybrid 
models are most frequently used in wind speed prediction. In order to alleviate the level of 
uncertainty in raw wind speed series, signal processing methods such as empirical mode 
decomposition/ensemble empirical mode decomposition (EMD/EEMD), variational mode 
decomposition (VMD), and wavelet analysis thrived. These new approaches decompose 
original time series into subseries of different patterns of frequencies which then can be 
analysed separately.  

In Wang et al. (2017a) a novel deep learning based ensemble approach is proposed for 
probabilistic wind power forecasting. In this approach, an advanced point forecasting method 
is originally proposed based on wavelet transform and convolutional neural network. Wavelet 
transform is used to decompose the raw wind power data into different frequencies. The 
nonlinear features in each frequency that are used to improve the forecast accuracy are later 
effectively learned by the convolutional neural network. The uncertainties in wind power data, 
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i.e., the model misspecification and data noise, are separately identified thereafter. 
Consequently, the probabilistic distribution of wind power data can be statistically formulated. 
The proposed ensemble approach has been extensively assessed using real wind farm data from 
China, and the results demonstrate that the uncertainties in wind power data can be better 
learned using the proposed approach and that a competitive performance is obtained.  

Overlooked in the literature is the influence of atmospheric turbulence and stability 
measurements in improving model predictions. It has been well-established through 
observations and physical models that these effects can have considerable influence on wind 
farm power production; yet consideration of these effects in statistical models is almost entirely 
absent from the literature. In Optis & Perr-Sauer (2019), the impact of atmospheric turbulence 
and stability inputs on statistical model predictions of wind farm power output in analysed. 
Hourly observations from a wind farm in the Pacific Northwest United States located in very 
complex terrain are used. Five common learning algorithms and nine atmospheric variables are 
considered, representing some measure of turbulence or stability. They found a considerable 
improvement in hourly power predictions when some measure of turbulence or stability is 
included in the model. In particular, turbulent kinetic energy was found to be the most 
important variable apart from wind speed and more important than wind direction, pressure, 
and temperature. By contrast, the choice of learning algorithm is shown to be relatively less 
important in improving predictions. Based on this work, Optis & Perr-Sauer (2019) recommend 
that turbulence and stability variables become standard inputs into statistical models of wind 
farm power production. The authors argue that, as statistical models require historical training 
data, such models also have the advantage of continuous improvement as more historical 
training data becomes available. It is therefore surprising that statistical models used for wind 
power forecasting, as reviewed in the literature, rarely consider turbulence or stability measures 
as inputs. Rather, models always make use of wind speeds, often wind directions, and 
sometimes temperature, air pressure, and humidity. The key question for the authors is whether 
adding turbulence or stability features can improve model predictions, and if so, how the 
magnitude of those improvements compares to model performance across the different learning 
algorithms. 

7. STATISTICS, THEORY AND ANALYSIS  
Probabilistic modelling and statistical analysis of environmental conditions is important. It will 
give a necessary input to structural reliability assessments and risk analysis of ships and other 
marine structures and provides a means to identify design conditions the structures are expected 
to withstand. In this section of the report, recent developments in statistical modelling of 
relevant met-ocean variables describing the environment at sea will be reviewed and presented. 
This includes a review of statistical modelling applied to such data, for example wave 
parameters, but also some theoretical and methodological developments from other fields of 
applications will be reviewed. This section of the report is divided into different sup-sections 
addressing various aspects of statistical modelling of the environment, such as long-term and 
short-term statistics, extreme value analysis, non-stationary analysis and covariate effects, 
multivariate analysis and joint distributions, machine learning applications and spatial 
statistics. This distinction into sub-topics may be somewhat arbitrary, and some papers address 
several of these topics, e.g. non-stationary, multivariate extreme value statistics for spatial data, 
but it is believed to be useful to still keep separate subsections for the main aspects.  

7.1 Long-term and short-term statistics 
Information about the statistics of relevant metocean variables is of great importance for the 
design of ships and other marine structures. Typically, the ocean environment can be described 
by long-term statistics of relevant sea state variables, for example significant wave height (HS), 
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or by short-term statistics of wave parameters conditional on the sea state, for example 
individual wave heights within a stationary sea state. A common assumption is then that the 
ocean environment can be described as a piecewise stationary process, with stationary sea 
states of duration a few hours. Then, if the interest is in the long-term distribution of some wave 
parameter, say individual wave height, this can be found by combining the long-term 
distribution of the sea state, say X, and the short-term distribution of the wave parameters of 
interest, say Y and integrating over all sea states 

 f𝐘(𝐲) = ∫ f𝒀|𝑿(𝒚|𝒙) 𝐟𝐗(𝒙)𝑑𝒙.  (7.1) 

Often, the long-term distribution of sea state variables may be discretized in the form of a 
scatter diagram, in which case the integral above translates to a sum. However, this implicitly 
neglects the serial correlation at various scales, and how to combine short-term distributions of 
individual waves with long-term distributions of sea states remains an active area of research.  

In this section, various developments in modelling either the long-term distribution of sea state 
variables, short-term distribution of wave parameters or the combination of these to form long-
term distribution of wave parameters will be reviewed. It should be noted that some statistical 
models have been well established in the industry to describe sea state and individual wave 
variables, e.g. a Weibull (often in its translated 3-parameter form) for significant wave height 
or a Rayleigh distribution (linear waves), Tayfun distribution or Forristall distribution (non-
linear waves) for individual wave heights. Particular attention is given to developments related 
to shallow and intermediate water wave statistics, since this has historically not been given as 
much attention and it may be questionable how well standard statistical models describe such 
data. Note that the sea state variables and the wave variables may be multivariate, but 
multivariate modelling will be covered in subsection 7.4.  

The translated 3-parameter Weibull distribution is often assumed to model significant wave 
height. However, a recent study suggests that another 3-parameter Weibull distribution, the 
exponentiated Weibull distribution with an additional shape parameter may fit the data better, 
especially if fitted by weighted least squares methods that emphasize the data in the tail of the 
distribution more in the model fitting Haselsteiner & Thoben (2020). Several candidate models 
for the probabilistic description of significant wave height are examined in Soukissian (2021), 
and compared to a model not previously applied to ocean data, i.e., the extended generalized 
inverse Gaussian distribution. According to the reported results, the proposed new distribution 
outperforms the other model candidates included in the study, for several, but not all datasets 
that were applied.  

Typically, a statistical distribution is fitted to measurement data, but due to the often-limited 
availability of long-term in-situ measurements, statistical models are often fitted to wind-wave 
hindcast data. However, an approach to integrate model data and measured data in statistical 
modelling of significant wave height is proposed in Dentale et al. (2018), where model data are 
used as indicators and buoy data from nearby locations are used for bias correction and 
uncertainty evaluation.  

It is acknowledged that some wave conditions are more hazardous to marine structures than 
others, for example waves with high steepness and waves from crossing sea states or 
unexpectedly severe wave conditions due to rapid development of the conditions. Hence, long-
term statistics of potentially hazardous sea states are addressed in Teich et al. (2018), limited 
to crossing sea states, unusually steep waves and rapidly developing sea states, as opposed to 
modelling all sea states. Specifically, an enhancement factor defined to describe rapidly 
developing seas, wave steepness and directional spreading are analysed. The distributions of 
these variables are reported in terms of box-plots and scatter diagrams for selected locations 
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and seasons, but there is no parametric modelling of the distributions. The statistics associated 
with steep waves and steep sea states are also addressed in Myrhaug (2018), where spectral 
wave steepness is modelled as a lognormal distribution conditioned on significant wave height.  

A rather different approach for modelling wave heights is proposed in Wang et al. (2017b), 
based on fractals and fractal theory. The methodology is extended in Liu et al. (2019b). They 
find that records of significant wave height exhibit weak fractality and suggest that their 
proposed method can be used to estimate design wave conditions for long return periods.  

Long-term distributions of individual wave or crest heights require combining the short-term 
distribution of wave or crest heights in a sea state with the long-term distribution of sea states. 
Three different ways of estimating long-term distributions of individual wave and crest heights 
are discussed in Mackay & Johanning (2018c), assuming independent individual waves, 
independent highest wave height in a sea state and independent highest wave height in a storm, 
respectively. They found that methods that ignore the serial correlation of sea states tend to be 
biased and that storm-based approaches are more accurate. A generalized equivalent storm 
model for the long-term statistics of individual wave heights and crests is proposed in Mackay 
& Johanning (2018b). Methods to estimate the probability of extreme individual wave heights 
are also proposed in Mackay & Johanning (2018a) based on peaks-over-threshold analysis on 
random maxima in different sea states and based on the distribution of significant wave heights 
and wave model runs are also presented in Bulgakov et al. (2018). 

A novel approach to combine the long-term statistics of sea states and the short term conditional 
distributions of extreme structural response is proposed in Gramstad et al. (2020). It applies a 
sequential sampling technique and a Gaussian process emulator for the response in order to 
achieve long-term extreme structural response assessment, accounting for both long-term and 
short-term variability.  

The statistical properties of individual wave heights and crests with a particular focus on rogue 
waves are investigated in Gramstad et al. (2018a). The occurrence of rogue waves in measured 
data is compared to that predicted from statistical distributions such as Rayleigh, Forristall and 
Tayfun (for crests), and it was concluded that wave and crest heights generally follow the 
Forristall distributions relatively well. The exception is data from buoy measurements, which 
are known to underestimate wave crests. The physical constraints for exceeding probabilities 
of deep water rogue waves were studied in Mendes et al. (2021). Statistics of rogue waves in 
crossing sea states were also investigated in Gramstad et al. (2018b) and it is shown that the 
maximum crest elevation in such situations depends on the crossing angle, with an effect that 
is opposite to the nonlinear effects. Extreme waves in crossing sea states are also discussed in 
Brennan et al. (2018). The study in Støle-Hentschel et al. (2019) suggest that the extreme wave 
statistics in a mixed sea, composed of a wind-sea component and a following swell could 
appear to be milder than the extreme wave statistics of the wind sea alone. However, analysis 
of the two sea states separately reveals that the extreme wave statistics of wind sea can be 
nearly unaffected by the presence of a following swell. Statistics of extreme waves in single 
and mixed sea states were also studied in Wang et al. (2021c), and the shape and height of 
extreme wind waves are analysed in Alvise et al. (2017), based on space-time extremes.  

The short-term distribution of individual wave periods in combined seas is investigated in 
Huang & Dong (2019), where parametric mixture distributions are suggested. The mixture 
models are compared with theoretical and parametric models for a number of different types 
of mixed sea states, including in-situ measured data and simulated data exhibiting two-peaked 
spectra. The paper suggests that the mixture distribution models yield improved modelling of 
the individual wave periods in combined seas.  
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The statistics of trough depths are perhaps less studied compared to wave crests. However, 
Wang (2018a) proposes to model individual trough depths in a sea state by way of a 
transformed Rayleigh distribution. They show that this gives a better fit to the data than the 
standard Rayleigh distribution that does not account for nonlinear effects. Wave trough 
exceedance probabilities in nonlinear seas are also studied in Wang (2018b) based on 
asymptotic expansions of the up-crossing rates and a transformation relating the non-Gaussian 
sea surface process with a Gaussian process.  

Rogue waves have received much attention lately, and a statistical theory for rogue waves, 
based on large deviation theory is proposed in Dematteis et al. (2019). It allows for estimation 
of the far tail of the probability density function for the surface elevation and hence to estimate 
extreme event probabilities. Moreover, the method describes the precursors of rogue waves 
enabling early detection and prediction of the likelihood of extreme events within a given time 
window (Dematteis et al. (2018)). 

7.1.1 Shallow water statistics 
There has recently been much interest in the statistics of shallow water waves, and it is an open 
question to what extent statistical models used to describe deep ocean waves apply to waves in 
shallower waters. A recent study based on deep waters measurements presented in Kvingedal 
et al. (2018) suggests that the Forristall distributions for individual wave and crest heights 
generally fits the deep-water data well, but that it is less accurate in steeper sea states 
corresponding to high wind speeds. It is suggested that more research should be carried out at 
more shallow water depths. Results from a new laboratory study, based on data generated in 
different experimental facilities, are reported in Karmpadakis et al. (2019), where possible 
departures from commonly applied statistical distributions for crest heights due to different sea 
state steepness and water depths are investigated. They found that nonlinear effects beyond 
second order are important in intermediate water depths. However, the dissipative effects of 
wave breaking which increases with increased steepness reduces the nonlinear effects and the 
relative importance of wave breaking increases as the water depth reduces. Notwithstanding, 
they report that nonlinear amplifications of the crest height are largest in the shallower effective 
water depth. They conclude that systematic departures from the commonly applied Forristall 
model are evident and that an important challenge for future work is to derive a simple crest 
height distribution that incorporates such nonlinear effects.  

Statistical analysis of data from large scale experiments of unidirectional waves propagating 
over a variable bottom profile presented in Zhang et al. (2019a) indicates that whereas the 
Rayleigh distribution performs well for individual waves in deep waters, it underpredicts the 
probability of large waves in shallower waters. A number of statistical distributions were fitted 
to the shallow water data, and it was suggested that the generalized Boccotti distribution 
(Alkhalidi & Tayfun (2013)) performs best for the shallow water data, particularly for large 
waves with 𝐻 >  𝐻𝑆.  

The fact that the steepness and asymmetries of extreme waves increase with shallower water 
depths is also found by Chen et al. (2018c), which proposes an empirical parametrization of 
wave steepness and asymmetries in nearshore environments.  

The effect of variations in bottom topography on the distribution of wave heights is investigated 
in Bolles et al. (2019), suggesting that this may qualitatively influence the wave statistics. They 
found that abrupt depth changes can lead to random Gaussian seas becoming close to a gamma 
distribution a short distance downstream. This may give more frequent extreme waves, since 
the gamma distribution generally has heavier tails than the normal distribution. Statistical 
transitions from near Gaussian sea to highly skewed statistics in shallow water waves with an 
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abrupt depth change are also studied in Majda et al. (2019) and Majda & Qi (2019) where 
statistical dynamical models are proposed to explain and predict such effects. 

The study presented in Malliouri et al. (2019) aims at obtaining a more accurate description of 
the long-term wave climate in shallow waters by combining short- and long-term statistics in 
deep waters. First, the joint long-term statistics of wave height and period in deep waters are 
found by combining the conditional short-term joint distribution of these parameters with the 
long-term joint distribution of the sea state’s significant wave height and mean zero-crossing 
wave period. Then, the joint distribution in shallow waters is estimated by considering the wave 
transformation of each individual wave as the waves propagate from the open sea towards 
shallower waters. They find that wave statistics in shallower water differ from those in deeper 
water, but ends up with the same parametric family for intermediate waters as in deep water 
for the long-term distribution of sea states, i.e. Weibull or Gamma distributions for the 
significant wave height and conditional lognormal for mean zero-crossing period. However, 
the distributional parameters change.  

7.2 Extreme value analysis and extreme wave statistics 
Often in marine engineering applications it is the extremes of the environmental conditions that 
are of most interest, and extreme value analysis is often needed in order to extrapolate the tail 
of a statistical distribution to describe events occurring with a frequency that is small compared 
to the length of observations. Hence, statistical extreme value analysis is a useful tool that, even 
though it is well established in the industry, still has a number of unsolved challenges and 
remains an area of active research. In this sub-section, a review of recent developments in 
extreme value modelling will be presented, with a particular focus on applications to ocean 
climate variables. A recent review of some approaches to statistical modelling of extreme ocean 
environments are presented in Vanem et al. (2019a), see also Jonathan & Ewans (2013).  

There are obviously large uncertainties in extreme value estimation, both aleatory and 
epistemic and the reliability of extreme value estimates is of great concern. Hence, in Samayam 
et al. (2017) a statistical approach for assessing the reliability of return value estimates from a 
particular extreme value estimation method is proposed, based on a variability criterion. The 
variations in return value estimates of ocean waves are also addressed in Naseef & Kumar 
(2017), where estimates from different methods and for both measured buoy data and 
reanalysis data are compared. They found, inter alia, that the influence of a single storm in the 
data can give a large difference in the extreme value estimates compared to the differences due 
to varying lengths of data. The effect of parameter estimation method and the available sample 
size for extreme value analysis of metocean conditions are also studied in Soukissian & Tsalis 
(2018). The uncertainty of extreme value estimates of ocean waves from different sources is 
also discussed Wada & Waseda (2018), and a Bayesian approach to account for these various 
sources of uncertainty is proposed in Jones et al. (2018) In fact, this paper suggests that 
Bayesian uncertainty analysis should be the preferred framework for estimation of uncertainty, 
and they propose a framework consisting of a statistical emulator that should try to predict 
hindcast simulator output and a statistical discrepancy model to predict the differences between 
hindcast output and the true wave environment.  

Traditionally, there are three main approaches to univariate extreme value analysis, sometimes 
referred to as the initial distribution approach, where a probability distribution is fitted to all 
the available data and extreme quantiles are estimated based on this distribution; the peaks over 
threshold (POT) approach, where a distribution is fitted directly to the tail using only data that 
are above a certain threshold; and the block maxima (BM) approach, where a distribution is 
fitted for the tail using only block maxima, see e.g. Vanem (2015b), Orimolade et al. (2016), 
Takbash et al. (2019). The choice of approach is typically a traditional bias-variance tradeoff, 
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and extreme value methods such as POT and BM will typically be less biased for the tail 
behaviour but will have much larger variance due to the reduced sample size. The effect of a 
difference in sampling between the BM and POT methods is investigated in Shao et al. (2018), 
suggesting that annual maxima may be too few to yield reasonable extrapolation but that the 
POT method can be reasonable when the threshold is suitable. However, threshold selection 
remains a challenging task in POT modelling, where the choice of threshold may significantly 
influence the results. The differences in extreme wave height estimation in practical 
engineering practice, by following various guidelines and industry practices, are investigated 
in Katalinic & Parunov (2020). 

From theory, it is known that the peaks over a sufficiently high threshold follow, 
asymptotically, the generalized Pareto distribution (see e.g Coles (2001)). The exponential 
distribution is a special case of the generalized Pareto distribution with one less degree of 
freedom. The appropriateness of the generalized Pareto distribution for modelling significant 
wave height data above a threshold is addressed in Teixeira et al. (2018), suggesting that it is 
more appropriate than for example a 2-parameter Weibull distribution or the exponential 
distribution. However, it is stressed that the results are highly sensitive to the choice of 
threshold, and a new threshold selection methodology is suggested based on the second order 
derivatives of the cumulative density function. The idea is that the point of the probability 
density function with maximum curvature represents a shift from the bulk of the data to the 
tail. The Weibull-Pareto distribution is proposed for modelling extreme wave heights above a 
threshold in Chen et al. (2019a). 

A new fitting method for estimating the parameters of the generalized Pareto distribution for 
exceedances over thresholds are presented in (Chen et al. (2019b), based on transformations of 
order statistics, namely the weighted nonlinear least squares method. Simulation studies and 
real data analyses indicate that this method compares well with other methods for parameter 
estimation of the generalized Pareto distribution. Extreme value estimation based on small 
samples of low quality is addressed in Wada et al. (2016), proposing a practical approach based 
on Bayesian inference with the group likelihood rather than the standard likelihood and 
assuming near-uniform priors on the parameters. The group likelihood incorporates data 
uncertainty due to for example measurement errors. The effect of return value estimates from 
peaks over threshold analysis according to how parameter uncertainty is handled is discussed 
in Jonathan et al. (2021), illustrating that there are notable differences.  

Threshold selection in peaks-over-threshold modelling remains an active area of research, even 
though there are several well established approaches to determine a suitable threshold. Some 
of these require manual interpretation and for example graphical inspection of various plots 
and leave room for subjectivity. Moreover, manual inspection means that threshold selection 
cannot be included in automated scripting of extreme value analysis. In order to remedy this, a 
novel automated threshold selection method is proposed in Liang et al. (2019), based on the 
characteristics of extrapolated significant wave height. The method investigates the differences 
in extrapolated return significant wave heights for neighboring thresholds to identify a stable 
threshold range. The highest threshold within the stable threshold range is then automatically 
selected as a suitable threshold. A comparison with some established threshold selection 
methods is presented, indicating reasonable agreement in resulting return value estimates. See 
also Shao et al. (2020) for a proposed automated method for extracting IID (independent and 
identically distributed) samples from time series for subsequent extreme value analysis.  

One obvious drawback of the peaks-over-threshold approach is that it is wasteful. All data 
below the selected threshold is disregarded, even though they may contain useful information. 
In order to alleviate this problem, an approach applying multiple thresholds in parameter esti-
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mation is proposed in Sun & Samorodnitsky (2019). These multiple levels are introduced as a 
means to incorporate more observations to reduce the variance of parameter estimates. In 
Northrop et al. (2017) a Bayesian cross-validation scheme is proposed to address the bias-
variance trade-off in threshold selection by comparing thresholds based on extreme level 
predictive ability. They use Bayesian model averaging to combine inferences from many 
thresholds in order to reduce the sensitivity of the choice of a single threshold and to incorporate 
the uncertainty in the threshold choice. The approach is applied to data of significant wave 
height. 

A new four-parameter extreme value distribution is proposed in Yousof et al. (2018), which is 
a generalization of the Frechet distribution for block maxima. There also exist other approaches 
to extreme value analysis, and some methods that have been applied to ocean waves include 
the equivalent storm approach (Laface et al. (2018)) and the average conditional exceedance 
rate (ACER) approach. A k-th order Markov model for extremes is proposed in Winter & Tawn 
(2017), which can account for temporal dependencies. 

7.3 Multivariate analysis and joint distributions 
Ships and other marine structures are typically affected by several environmental variables, 
and the joint effect of these on the environmental loads needs to be concidered. Failure to 
accurately account for the dependence between the variables may lead to overly conservative 
or non-conservative assessment of the structural reliability. Hence, multivariate statistical 
models for the joint behaviour of selected variables will give more accurate descriptions of 
environmental loads and responses and are important for improved design and operation of 
ships and other marine structures. Typically, assuming either independent or fully dependent 
variables may give wrong results even if the marginal, univariate models are appropriate Ross 
et al. (2020). However, it is increasingly challenging to find good distribution models with 
increasing number of variables, and even in the bivariate case, joint statistical modelling 
remains challenging. Thus, there has recently been considerable attention and research on 
multivariate analysis and joint statistical models for sea-state variables relevant for ship design 
and a brief review will be presented in this sub-section of the report. The evolution of joint 
probability methods used for coastal engineering applications is described Hames et al. (2019), 
including recent developments in multivariate statistical approaches such as joint exceedance 
curves and response based methods.  

Examples of sea state variables that are often modelled jointly are significant wave height, 
mean wave period and mean wave direction. However, models that also include other variables 
such as wind speed and direction and sea level are also sometimes needed. More recently, joint 
distribution of waves and currents has been studied, although the availability of current data is 
still scarce and makes it difficult to establish good models for these variables (Bruserud & 
Haver (2017), Bruserud & Haver (2019)). 

There are different ways of establishing a multivariate statistical model and three common 
approaches are to assume a parametric multivariate distribution, the so-called conditional 
modelling approach and the copula-based approach, see e.g. Vanem (2016). Non-parametric 
approaches are also sometimes used (Han et al. (2018a)), but these will have difficulties in 
extrapolation and cannot be expected to model the extremes accurately. With the former 
approach there exist some multivariate distributions that are often used, such as the multivariate 
normal or log-normal distributions, and the model parameters can then be fitted to the data. 
Typically, this involves estimation of the covariance matrix as well as location parameters and 
variable transformations can be applied to fit a multivariate normal distribution to non-
Gaussian data (see e.g. Lucas & Guedes Soares (2015)). However, this approach is somewhat 
restrictive and not too frequently used in practice. An approach to multivariate modelling based 
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on multivariate probability distribution class is proposed in Faridafshin & Naess (2017), 
conditioned on log-concavity of the joint probability density function (Samworth (2018)). 
Although the numerical example given in Faridafshin & Naess (2017) is not for an 
environmental variable vector, it is assumed that this approach could also be used to model 
joint environmental variables, and the method is versatile enough to cover many multivariate 
probability models and it facilitates fitting a model to data with limited amounts of data. 

The joint distribution of several variables can also be modelled by a hierarchical model as a 
product of marginal and conditional distributions (Bitner-Gregersen (2015)). Hence, a 
multivariate model for variables 𝑋1, 𝑋2, . . . , 𝑋𝑛 can be modelled in the following form 

 𝑓(𝑋1, 𝑋2, . . . , 𝑋𝑛)  =  𝑓1(𝑋1) 𝑓2|1(𝑋2|𝑋1) ⋯ 𝑓𝑛|1,...,𝑛−1(𝑋𝑛|𝑋1, 𝑋2, . . . , 𝑋𝑛−1).  (7.1) 

Estimation of the model then involves estimating the marginal model for the primary variable 
and the various conditional models for the remaining variables. Sometimes, conditional inde-
pendence between some of the variables can simplify the modelling, but it remains challenging 
to define the conditional models for all relevant variables. A new set of marginal and con-
ditional distribution models for metocean variables is suggested in Horn et al. (2018), including 
conditional models for wind sea and swell variables as well as wind and water levels. They 
assume a sparse dependency table, where many of the variables can be modelled as independent 
from many of the other variables. They report a reasonable fit to the data. A conditional model 
was also assumed for modelling the joint distribution of significant wave height and current 
speed in Bruserud et al. (2018). The joint distribution of significant wave height and spectral 
peak period is modelled by a conditional model in Choi et al. (2019), where a hybrid Lonowe 
distribution is used for the marginal significant wave height and a conditional lognormal distri-
bution for wave period. A conditional model based on Weibull-lognormal and lognormal dis-
tributions are used to model significant wave height and spectral wave steepness in Myrhaug 
et al. (2020). Different distributions were tried out to model the joint distribution of wave height 
and period using the conditional modelling approach in Huang et al. (2018a). 

Hierarchical conditional models have also been used to model the joint distribution of circular-
linear variables such as wind speed and direction, as outlined in Haghayeghi & Ketabdari 
(2018) and Vanem et al. (2020b). They assume a mixture of von Mises distributions for the 
marginal model of wind direction (the circular variable) and a conditional Weibull distribution 
for wind speed conditioned on the direction. Similar models extended to the tri-variate case for 
a combination of circular and linear variables are proposed in Haghayeghi et al. (2020). 

Different bivariate time series models for significant wave height and spectral wave period are 
investigated in Sandvik et al. (2019), taking the joint behaviour of the variables into account 
together with temporal dependencies. They assume a conditional model for the joint 
distribution and transform the data to a standard normal space using the Rosenblatt transform 
and then apply a seasonal transform before various time-series models are applied to the 
transformed data. Vector autoregressive (VAR) models, vector ARMA (VARMA) models and 
Markov models are explored and it is concluded that the VAR and VARMA models perform 
well.  

The use of copula to establish multivariate statistical models is an alternative that has received 
increasing attention in recent years. Essentially, a joint distribution of variables 𝑋1, 𝑋2, . . . , 𝑋𝑛 
can be modelled by way of their marginal distributions and a copula describing their 
dependence structure in the following way (see e.g. Nelsen (2006)),  

 f(X1, X2, . . . , Xn)  = f1(X1) f2(X2) ⋯ fn(Xn)c(F1(X1), F2(X2); . . . , Fn(Xn)).   (7.2) 
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The joint model can then be established by estimating the marginal models 
𝑓1(𝑋1), 𝑓2(𝑋2), . . . , 𝑓𝑛(𝑋𝑛), independently, and the copula density 𝑐(∙). Such methods have 
been applied to environmental sea states variables (Li et al. (2018a), Chen et al. (2019d)), 
although it has been shown that straightforward use of standard symmetric copulae may not be 
appropriate, meaning that asymmetric copula-constructions are needed Vanem (2016), Zhang 
et al. (2018), Fazeres-Ferradosa et al. (2018). A combination of parametric and non-parametric 
marginal distributions and c-vine copulas is used to model multivariate wave and wind 
variables in Li & Zhang (2020), Bai et al. (2020), Bai et al. (2021). 

Even though there exist several parametric copulas to choose from, it may not be straightfor-
ward to find the best one, even in the bivariate case. The copula approach can also be extended 
to three or more dimensions, for example by pair-copula constructions (Aas et al. (2009) or 
vine copulas Czado (2019)), including also circular variables (Lin & Dong (2019), Heredia-
Zavoni & Montes-Iturrizaga (2019)), but modelling becomes increasingly challenging as the 
number of variables increases. A pair-copula based model for the trivariate probability 
distribution of typhoon-induced wind, wave and the time lag between them was outlined in 
Wei et al. (2021). More complicated models based on mixtures of copulae have also recently 
been suggested (Lin et al. (2020), Huang & Dong (2021)), offering an interesting approach to 
construct more complex multivariate models using copulas. Copulas are also used in a double 
entropy approach for establishing the joint distribution function for wave height and period in 
Liu et al. (2019a), and for modelling significant wave height in different locations in Jane et al. 
(2016). 

Different copula-based models for modelling the joint distribution of circular-linear wind var-
iables are explored in Soukissian & Karathanasi (2017), and compared to the so-called John- 
son-Wehrly model (Johnson & Wehrly (1978)). It concluded that the Johnson-Wehrly model 
performs best and that this is a useful model for joint bivariate models of wind speed and di-
rection. This model has also previously been applied to wave height and direction data in 
Soukissian (2014). 

7.3.1 Multivariate extreme value analysis and environmental contours  
The analysis and description of extreme values is especially challenging in the multivariate 
case, and it is even ambiguous what a multivariate return value is (Serinaldi (2015), see also 
e.g. Vanem (2018), Ross et al. (2020)). There are various statistical modelling approaches for 
multivariate extremes, and e.g. the conditional extremes model has recently been promoted as 
a good approach (Heffernan & Tawn (2004), Jonathan & Ewans (2013)). A critical review of 
this approach along with a comparison to classical multivariate extreme value models is given 
in Drees & JanBen (2017). Several applications of the conditional extremes model to metocean 
data are reported, including non-stationary models, in e.g. Ross et al. (2017b), Ross et al. 
(2018), Hansen et al. (2020) and Gouldby et al. (2017). 

An event-based approach for the modelling of joint extremes of waves and sea levels is 
presented in Mazas & Hamm (2017), focusing on an event-based sampling from the bivariate 
time series and then joint modelling of the extreme samples by way of extreme value copulas. 
Various sampling methods are explored, and it is demonstrated that this has great influence on 
the results. The bivariate approach is also extended to higher-dimensional cases.  

The environmental contour method is one approach for describing joint extremes which, given 
a joint statistical model, is often used for structural reliability assessment of ships and other 
marine structures. Traditionally, contours based on iso-density or IFORM have been used 
(Haver (1985), Haver & Winterstein (2009)), but recently a number of other approaches to 
environmental contours have been proposed, see e.g. Manuel et al. (2018), Haselsteiner et al. 
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(2017), Ross et al. (2020), Wrang et al. (2021), Eckert et al. (2021), and also the direct sampling 
method Huseby et al. (2015) is now recommended in DNV’s recommended practice on 
environmental conditions DNV GL (2019). The effect of sampling variability on the 
uncertainties of environmental contours is studied in a simulation experiment reported in 
Vanem et al. (2019b), suggesting that this is an important aspect to consider when constructing 
environmental contours based on finite datasets. Other uncertainties in environmental contours 
are assessed in Montes-Iturrizaga & Heredia-Zavoni (2017). 

Recent applications of the environmental contour method for different problems are discussed 
also in e.g. Horn & Winterstein (2018), Velarde et al. (2019), Raed et al. (2020), Li & Zhang 
(2020), Chen et al. (2020a) and Zhao et al. (2020b). Environmental contours based on non-
parametric bivariate kernel density estimation is also proposed in Wang (2020), but it is advised 
to use such methods with great care when the interest is in the tails of the distributions, as is 
the case when constructing environmental contours. Recently, free software has been released 
allowing for easy computation of environmental contours (Haselsteiner et al. (2019b)), but it 
is noted that this software has serious limitations with regards to the choice of parametric 
distribution functions and fitting methods that can be used. Different contour methods are 
compared with response-based methods for extreme ship response analysis in Vanem et al. 
(2020a), suggesting that results are in general agreement. 

There have been several proposed developments of contour methods for describing joint ex-
treme conditions recently. Buffered environmental contours are presented in Dahl & Huseby 
(2018), based on buffered failure probabilities. Similar adjustments corresponding to a number 
of unwanted events are presented in Vanem (2020a). Environmental contours based on a 
particular version of inverse SORM is proposed in Chai & Leira (2018), to give more con-
servative contours than the IFORM method, and contours based on inverse directional simula-
tion are presented in Dimitrov (2020). A variance reduction technique is proposed in Clarindo 
et al. (2021). A novel approach to construct environmental contours without the need for fitting 
a joint distribution is developed in Derbanne & de Hauteclocque (2019), based on fitting a 
number of univariate distributions to data projected in various search directions. 

Most applications of environmental contours focus on bivariate problems but are in principle 
extendable to arbitrary dimensions. An extension of the direct sampling approach to higher 
dimensions, with examples of 3-dimensional problems is presented in Vanem (2019). A similar 
approach is also taken in Raillard et al. (2019). In some cases, one of the variables in a 
multivariate problem may be circular (e.g. direction or period/season), and environmental 
contours for such situations are proposed in Haghayeghi & Ketabdari (2017), Vanem et al. 
(2020b). Environmental contours for a three-dimensional problem where one of the variables 
are circular are presented in Heredia-Zavoni & Montes-Iturrizaga (2019), based on three-
dimensional vine copulas. 

Given the fact that environmental contours have been an active area of research in recent years, 
a benchmarking exercise was announced at OMAE 2019 (Haselsteiner et al. (2019b)), where 
researchers and practitioners were invited to construct contours for datasets that were made 
available. Several responses to this call were presented at OMAE 2020 and summarized in 
Haselsteiner et al. (2021). This summary revealed that there is significant variability in contour 
results from different practitioners, due to differences in data handling, statistical modelling 
and contour methods. One particular issue that was highlighted as important in this benchmark 
study was how to account for serial dependence in the statistical modelling, something that is 
further investigated in Mackay et al. (2021). A forthcoming special issue of Ocean Engineering 
will present the summary as well as individual contributions to this benchmark. 
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7.4 Non-stationary analysis and covariate effects 
The statistics of environmental variables will typically be dependent on many factors such as 
season of the year, location, long-term trends (e.g. due to climate change) and prevailing wind 
or wave directions. That is, the IID assumption will generally not be met and data describing 
the environment will typically not be stationary. These non-stationarities could be important 
and should be incorporated in the statistical models (Serinaldi & Kilsby (2015)). One way of 
doing this is by including covariate effects in the statistical models. Another is to perform pre-
processing of the data to remove the non-stationary effects and to assume stationary models on 
the residuals or pre-processed data. Yet another approach could be to use time-series to account 
for autocorrelations and dependencies in space and time. The effect of non-stationarity would 
be important for both univariate and joint models, and for extreme value models and 
distribution models for all the data.  

Stationary and non-stationary extreme value models for significant wave height are compared 
in Calderon-Vega et al. (2019). The non-stationary models account for the seasonal variations 
and results suggest that non-stationary models perform better. A number of simulation studies 
are presented in Mackay & Jonathan (2020), where stationary extreme value models are fitted 
to non-stationary data, non-stationary models are fitted to stationary data and non-stationary 
models are fitted to non-stationary data, to assess the performance of stationary and non-
stationary extreme value models. They conclude that non-stationary extreme value models can 
give improved estimates of return values, provided that the models are consistent with the data-
generating model. However, in general, the relative performance of stationary and non-
stationary extreme value models will be problem specific, and in some cases stationary models 
may be sufficient to obtain omnicovariate return values. 

A number of recent publications address the problem of accounting for non-stationarity in 
extreme value modelling of sea state variables. A review of methods for non-stationary extreme 
events is presented in Salas et al. (2018), and some approaches to model and make inference 
of the effect of covariates for extreme ocean environments are critically compared in Jones et 
al. (2016). A simple approach to account for non-stationarity due to seasonal effects is 
presented in Vanem (2018), where data are pre-processed by seasonal normalization in order 
to make the IID assumption more reasonable, and then fitting stationary statistical models to 
the pre-processed data. The effect of seasonality can then be put back in for estimation of return 
values for particular seasons, or for omni-seasonal estimates. Spatiotemporal trends in 
significant wave height are based on non- parametric methods such as the Theil-Sen estimator 
and the line of best fit in Wang et al. (2021a), see also De Leo et al. (2020). 

Extreme value models for ocean environments with covariates are addressed in several papers. 
The directional time evolution of extreme significant sea states is modelled assuming a 
nonstationary Markov extremal model in Tendijck et al. (2019). Directional-seasonal extreme 
value analysis of storm peak significant wave height is presented in Ross et al. (2017b), where 
a piecewise gamma-generalized Pareto distribution is assumed, for body and tail, respectively, 
where the effect of covariates is based on discrete bins in the covariate space but smoothed by 
way of splines across bins. Bayesian inference is used with conjugate priors. The effect of long-
term climatic trends may also be incorporated in extreme value models by using time as a 
covariate (see e.g. Vanem (2015a) for a block maximum approach and Montoya et al. (2018) 
for a peaks-over-threshold approach). A non-stationary generalized extreme value model with 
a cyclic time-covariate with a period of around 30 years was used to model extremes in Jagtap 
et al. (2019). The need for non-stationary extreme value analysis for significant wave height in 
the Mediterranean Sea was explored in De Leo et al. (2021). 
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Non-stationary extreme value models for multivariate extremes are also being promoted. Non-
stationary conditional extremes models composed from piecewise stationary models in 
covariate bins are presented in Ross et al. (2018), and non-stationary marginal models with 
stationary conditional extremes models are suggested in Hansen et al. (2020). The effects of 
several covariates such as direction, season, surge and tide on the joint distribution of extreme 
significant wave height, individual wave and crest heights and total water level are modelled 
in Feld et al. (2019). A joint model for several storm wave climate variables based on 
combining marginal models with copulas for describing the dependencies on time and ENSO 
variations, and using a vine copula to model different storm summary statistics is presented in 
Davies et al. (2017). A multivariate non-stationary model for marine storms using time and 
climate indices as covariates and assuming copulas for the dependence modelling is presented 
in Lin-Ye et al. (2017). 

Non-stationary joint time-series of significant wave height and mean zero-crossing wave 
periods that captures seasonal and inter-annual patterns are modelled in Jager et al. (2019), 
assuming a model with several components including renewal processes, Fourier series with 
random coefficients, ARMA processes and copulas. A regime switching approach is applied 
to account for switches in main wave direction.  

7.5 Spatial and temporal statistics 
The oceans, by their nature, cover a large area and one is often interested in the spatial and 
temporal variability of sea states and other environmental variables and to model the spatial 
and temporal dependencies of relevant parameters, as well as their extremes. Hence techniques 
from spatial statistics and time series modelling are relevant and useful for statistical modelling 
of the ocean environment, and several applications of spatial modelling have been applied to 
ocean environment data. Spatio-temporal modelling considers dependencies in both space and 
time and combines spatial models and temporal models. In the following, a brief review of 
relevant literature will be presented.  

7.5.1 Spatial statistics 
A review of some methods for spatial analysis of extremes is given in Hiles et al. (2019), 
including regressing distributional parameters on spatially varying covariates and regional 
frequency analysis. They develop an approach for modelling the spatial variability of extreme 
significant wave height utilizing both long-term measurements and high resolution hindcast. A 
spatial model for extremes is proposed in Reich & Shaby (2019), where the extremes are 
modelled by a generalized extreme value model and where the parameters vary in space 
according to a clustering of the locations and a spatial Markov model for the clusters. The GEV 
model is also combined with a spatial model in Sartini et al. (2017). 

The regional frequency analysis is a method to utilize spatial data by pooling data from loca-
tions that can be regarded as homogeneous in order to effectively increase the sample size in 
estimating the probability distribution (or equivalently, the quantile function) within the region. 
The location-specific probability distributions can then be found from this common regional 
distribution function (growth curve) by applying a site-specific scaling factor (the index flood). 
Regional frequency analysis has traditionally been applied in hydrology, and a few recent 
applications of this method have been reported for ocean wave data (Vanem (2017), Sartini et 
al. (2018), Campos et al. (2019b), Lucas et al. (2020), Lucas et al. (2017)) and wind data 
(Campos et al. (2018a)). These studies indicate that regional frequency analysis is a useful tool 
for spatial modelling of ocean environment data and that improved estimates of extreme return 
values can be obtained, if the underlying assumptions of homogeneous regions are reasonable. 
Confidence bounds for extreme quantile estimates obtained by regional frequency analysis 
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were constructed in Lucas et al. (2019a), suggesting that uncertainties are small. An application 
of bivariate regional frequency analysis for significant wave height and wave period is 
presented in Vanem (2020b), demonstrating that the regional frequency analysis approach can 
be extended and is useful for multivariate extreme value analyses. 

Spatial extreme statistics can be modelled as so-called max-stable processes in order to char-
acterize the spatial dependence, and spatial models based on such processes are applied for 
modelling storm peak significant wave height in Ross et al. (2017a). However, as pointed out 
in Drees et al. (2018) space-time processes are typically only observed at discrete points, and 
the influence of interpolation to fill such gaps in the marginal distributions is discussed. Spatial 
extreme events have also been modelled by the conditional extremes model, where the 
distribution of extreme events over a spatial region can be conditioned on the spatial process 
being extreme at observed locations within the region (Tawn et al. (2018)). Such conditional 
extremes spatial models are applied to ocean storm severity data, i.e. significant wave height, 
in Shooter et al. (2019), see also Shooter et al. (2021) where the conditional dependence of a 
spatial process measured at one or more locations are conditioned on extreme values of the 
process at other locations. 

A spatial model for extreme significant wave height in cyclone-dominated regions is proposed 
in Wada et al. (2018b), which combines models for the space-time maximum with models for 
the exposure. The space-time maximum is defined as the largest significant wave height 
observed anywhere in the spatial region during the time period of a cyclone, and such space-
time maxima above a threshold are modelled by a generalized Pareto distribution. Since space-
time maxima are used, data from all cyclone events are used and not only data from a single 
location. This is then combined with the exposure for a particular location, which is defined as 
the storm severity at those locations as a fraction of the space-time maximum. A marginal 
distribution is then estimated for the exposure at all locations, providing a spatial model over 
the domain. The joint STM-E model is then found by assuming that exposure is independent 
of the space-time maximum. The model is applied to data from Gulf of Mexico in Wada et al. 
(2019). 

A non-stationary spatial model for significant wave height using stochastic partial differential 
equations (SPDE) is proposed in Hildeman et al. (2019b). They combine a SPDE representation 
of a Gaussian Matern field with a deformation approach to capture both non-stationarities and 
anisotropies. It is shown that this model agrees well with significant wave height data from the 
North Atlantic Ocean. This model is extended to jointly model significant wave height and 
wave period over space in Hildeman et al. (2019a). Other multivariate stochastic differential 
equation random fields for multivariate spatial modelling are discussed in Bolin & Wallin 
(2020). 

Graphical models have recently been proposed as alternatives to spatial models, see e.g. 
Engelke & Hitz (2019), Nerantzaki & Papalexiou (2019), and a model for spatial extremes 
based on ensemble of trees of pairwise copulas are presented in Yu et al. (2017b). High-
dimensional dependence modelling using vine copulas and graphical methods are suggested in 
Muller & Czado (2019). Spatial and temporal clustering of extreme wave events are outlined 
in Santos et al. (2017), where main spatial footprints were identified around the coast of UK. 

7.5.2 Time series analysis 
In time-series analysis, one wants to model the temporal evolution of stochastic variables, and 
several techniques are available for such temporal dependencies or correlations. For 
multivariate time-series, one needs to model both the cross-correlations, or dependencies 
between variables, and the temporal dependencies, or autocorrelations, in the time series.  
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A generic approach to modelling and simulating time series with specified marginal distribu-
tion and correlation structures are proposed in Papalexiou (2018). This is based on establishing 
proper transformations and finding a parent Gaussian autoregressive model that yields a time 
series with the desired properties after transformation. Such methods could be applied to time-
series of metocean data in order to obtain statistical models that not only describe the marginal 
distribution, but also the serial correlation, see also Papalexiou et al. (2018). 

Fuzzy time-series have been proposed for modelling non-stationary time series of wave and 
wind data in Stefanakos (2016), and extensions and applications at various time scales of such 
modelling have been presented in Stefanakos & Vanem (2018) and Wu et al. (2019). Whereas 
a conventional time series is considered as a realization of a random process, a fuzzy time series 
is considered a realization of a fuzzy random process, i.e. a sequence of fuzzy random variables. 
A fuzzy time series is then modelling the temporal relationship between such fuzzy variables. 
Typically, fuzzy time series modelling involves fuzzification of the input variables (data; crisp 
values), inference and defuzzification to transfer fuzzy output to crisp values. 

A shapelet transform was applied to time-series of ocean wave data to classify and identify 
breaking waves in Arul & Kareem (2021). 

Bivariate time-series of significant wave height and wave period using vine-copulas and as-
suming the Markov property for the temporal evolution are presented in Jager et al. (2017). 
Joint time series modelling of wave height, period and directional data are also presented in 
Jager et al. (2019). 

In a comprehensive study, Klahn et al. (2021) presents a detailed investigation of the role 
played by the wave steepness in connection with the statistical properties of the surface 
elevation and fluid kinematics in irregular, directionally spread, deep-water wave fields 
initially given by a JONSWAP spectrum. Using ensembles of large wave fields obtained from 
fully nonlinear simulations, they consider the statistical properties of the surface elevations, 
velocities and accelerations. Furthermore, they investigate the joint PDF of the surface 
elevation and each of the velocities and accelerations at the surface, and use it to determine the 
surface elevations for which the velocities and accelerations at the surface are large. Finally, 
they consider the PDFs of the location at which the largest velocities and accelerations occur 
relative to the crest. 

7.6 Machine learning applications 
Advanced statistical models and algorithms for describing or predicting random behaviour 
based on sampled data are often referred to as machine learning. Typically, machine learning 
is used for regression and classification tasks, relating various responses or outputs to input 
data, in what is commonly referred to as supervised learning, or in pattern recognition and 
clustering of unlabelled data in what is referred to as unsupervised learning. As alternatives to 
more traditional statistical models for regression and classification, machine learning has 
recently been used in a number of applications related to the description and prediction of the 
ocean environment. A brief review of some recent applications will be given herein. A recent 
survey on machine learning methods for various sea wave parameters can be found in Umair 
et al. (2019) 

Artificial neural networks are powerful algorithms that can be used to model highly nonlinear 
relationships between inputs and outputs, and several recent applications of such models to 
predict wave parameters reported. Significant wave height predictions based on neural 
networks using wind speed and previous observations of significant wave height is presented 
in Mudronja et al. (2017), see also Fan et al. (2020), Demetriou et al. (2021) and Wang et al. 
(2021b). Neural networks, as well as support vector machines are applied in Berbic et al. (2017) 
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to predict near-future significant wave height based on previous measurements of significant 
wave height and wind measurements. Sequential neural networks, with the capability of 
updating the network as it learns, are applied to predict wave heights based on several input 
variables including previous wave heights and wind speed in Kumar et al. (2017). Hybrid 
models combining neural networks with the mind evolutionary algorithm and the genetic 
algorithm, respectively, are explored in Wang et al. (2018b). Machine learning models are 
trained by numerical wave model output to forecast wave conditions in James et al. (2018), 
where a neural network is used to model significant wave height and a support vector machine 
is used to model wave period. Neural networks are applied for wave ensemble averaging based 
on 20 ensemble members of a wave forecast model in Campos et al. (2019a), reporting a benefit 
corresponding to gaining five forecast days compared to using the arithmetic ensemble mean 
averaging. Convolutional neural networks have also been used to predict wave conditions from 
acceleration data Liu et al. (2019c), deep neural networks have been used to estimate significant 
wave height in real time from raw ocean images Choi et al. (2020), and recurrent and sequence-
to-sequence networks have been used to forecast significant wave height Pirhooshyaran & 
Snyder (2020). 

Although different variants of neural networks are perhaps the most commonly used machine 
learning technique, there are several other approaches that have been used to predict ocean 
wave conditions or other related variables, see e.g. Sinha et al. (2018), Wei (2018). These 
include fuzzy k-nearest neighbour models (Nikoo et al. (2018)), Group Method of Data 
Handling (GMDH) models (Shahabi et al. (2016)), deep learning models (Zhang & Dai (2019), 
Kumar et al. (2018a)), hybrid models (Oh & Suh (2018)), support vector machines (Chen 
(2019)), random forests (Hengl et al. (2018)), sequential sampling and Gaussian processes 
regression (Mohamad & Sapsis (2018)) and ensembles of neural networks (Kumar et al. 
(2018b), Ali & Prasad (2019)). A genetic algorithm is proposed to estimate JONSWAP spectral 
wave parameters from measured data in Rueda-Bayona et al. (2020). Ensembles of 
computationally lightweight surrogate models for forecasting ocean waves were combined 
with aggregation techniques in O'Donncha et al. (2019). 

8. WAVE-COUPLED PHENOMENA  
Wave-induced effects in the lower atmosphere and the upper ocean have been a major research 
topic over the last decade (see e.g. Babanin et al. (2012) for introduction to this topic). It is 
rapidly becoming clear that many large-scale geophysical processes are essentially coupled 
with the surface waves, and those include weather, tropical cyclones, storm surges, climate and 
other phenomena in the atmosphere, at air/sea and sea/land interface, including coupled 
interactions of waves with sea ice and fast ice, and many issues of the upper-ocean mixing and 
ocean currents below the surface. Besides, the wind-wave climate itself experiences large-scale 
trends and fluctuations (Young et al. (2011), Young & Ribal (2019)). 

Until now, coupling of the wave-related air-sea interactions into weather and climate research 
has been conducted in ad hoc manner or not conducted at all, due to two main reasons. In terms 
of geophysics, the reason is the traditional perception that processes of such distant scales can 
be studied and modelled separately, and exchange between the scales can be parameterized as 
some larger-scale average (mean fluxes of energy and momentum in this case). In technical 
terms, the computational costs of such coupling have been prohibitive until recently. Things, 
however, are changing now. 

8.1 Wave breaking  
Wave breaking, if it did not exist, would have to be invented. Its role in the coupled air-wave-
ocean systems is hard to overestimate. On the surface, it limits the wave growth and hence 
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prevents occurrence of very high waves, and serves as a major dissipation mechanism which 
controls wave evolution. Above the surface, it facilitates the fluxes of momentum and energy 
(through the sea drag), heat and moisture (through spray). Spray and spume, furthermore, link 
waves to aerosol production and thus all the way to inland corrosion, cloud physics, and 
climate. Below the surface, wave breaking is a major source of turbulence and the main source 
of bubbles (hence a major contributor to the ambient noise). The former is relevant for ocean 
mixing, sediment and nutrient suspension and transport, the latter to gas exchange, aeration, 
and underwater acoustics, and both offer links to biology (biomass production). Wave 
momentum, lost due to breaking, goes to surface currents and contributes to scattering of 
surface debris and pollutants.  

In normal conditions, one or two waves out of 100 breaks, and therefore every wave record 
contains breaking waves. Liberzon et al. (2019) suggested an original method to distinguish 
such breaking waves from those that are non-breaking. This new method enables the detection 
of breakers by using only surface elevation fluctuation measurements from a single wave 
gauge. The detection is based on the use of the phase-time method to identify breaking-
associated patterns in the instantaneous frequency variations of surface elevation fluctuations. 
A wavelet-based pattern recognition algorithm is devised to find such patterns and provide 
accurate detection of breakers in the examined records. Validation and performance tests, 
conducted using both laboratory and open-sea data, including mechanically generated and 
wind-forced waves, are reported in this paper. The method is shown to be capable to achieve a 
positive detection rate exceeding 90%. 

As the trigger of the main dissipation mechanism (often called whitecapping dissipation), wave 
breaking is parameterized and included in all modern models for wave forecast and wave 
evolution. Still, descriptions of this mechanism contain very large uncertainties, and field 
measurements of wave-breaking dissipations are very few. In this regard, a recent study of 
Viana et al. (2020) attempted such measurement by means of satellite remote sensing. They 
used polarimetric Synthetic Aperture Radar (SAR) data to estimate wave energy dissipation 
under different wind and sea conditions. The methodology considered decomposing the 
backscatter SAR return in terms of two contributions: a polarized contribution, associated with 
the fast response of the local wind (Bragg backscattering), and a non-polarized (NP) 
contribution, associated with wave breaking (Non-Bragg backscattering). Wind and wave 
parameters were estimated from the NP contribution and used to calculate the dissipation from 
a parametric model dependent of these parameters. The results were analysed using outputs of 
wave model WAVEWATCH III. For wind-sea conditions, the estimates obtained from pol-
SAR data showed good agreement with whitecapping dissipation obtained in numerical 
simulations. Under prevailing swell conditions, the total energy dissipation rate was higher 
than expected.  

Wave breaking is closely related to the problem of rogue waves. Those are waves of maximal 
possible height, usually induced either by the modulational instability or by superposition of 
waves, but the growth of this height is limited by breaking. Effects of breaking on formation 
and probability of rogue waves in 1D and 2D wave fields with JONSWAP spectrum were 
considered by Kirezci et al. (2021a, b, respectively). Detailed laboratory modelling of the well-
known Draupner rogue wave, and of the role of wave breaking in crossing seas was conducted 
by McAllister et al. (2019). 

The effect of wind on the wave breaking induced by the modulational instability was 
investigated numerically by Iafrati et al. (2019). The two-phase flow was modelled by the two-
dimensional Navier-Stokes equations for a single incompressible fluid and a Volume of Fluid 
technique was employed to capture the air–water interface. Simulations covered the initial 
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development of the wind profile, the growth of the modulation instability, the breaking and 
post breaking phases. The latter is particularly interesting as investigations of this phase of 
wave breaking are very rare. It was shown that an initial growth of the energy content in water 
was observed, followed by a dissipation stage which is not related to the breaking process. The 
dissipation rate for the wind case was noticeably higher and was found to be related to the 
larger amount of air entrained by the breaking process, which links this problem to the topic of 
air-sea gas exchange. 

This link was explored in detail by Li et al. (2021b) and resulted in parameterization of the CO2 
exchange in terms of both wind and waves. The CO2 gas transfer velocity (KCO2) at air–sea 
interface is usually parameterized with the wind speed, but to a great extent it is defined by 
waves and wave breaking. To investigate the direct relationship between KCO2 and waves, 
laboratory experiments were conducted in a wind-wave flume. Three types of waves were 
forced in the flume: modulated wave trains generated by a wavemaker, wind waves with 10-m 
wind speed ranging from 4.5 to 15.5m/s, and (mechanically generated) modulated wave trains 
coupled with superimposed wind force. The wave height and wave orbital velocity were found 
to be well correlated with KCO2 whereas wind speed alone cannot adequately describe KCO2. 
To reconcile various measurements, non-dimensional equations were established in which gas 
transfer velocity is expressed of wave parameters (including wave-breaking rate) and an 
additional secondary factor to account for influence of the wind. 

8.2 Wave-current interactions 
Surface waves are wind-generated, but the respective fluid motion is mostly a part of the water 
side of the interface and is strongly linked to the upper-ocean dynamics including the ocean 
currents. Wave-current interactions are common conditions both in the open ocean and in 
coastal areas. Major currents such as the Gulfstream, Kuroshio, or Agulhas are well known for 
harsh seas and high likelihood of abnormal (rogue) waves. Tidal inlets with waves on strong 
and variable currents are a typical feature of shipping routes in coastal areas. While linear 
effects of currents on waves, such as refraction, Doppler shift, or relative speed with respect to 
the wind are assumed to be implicitly or explicitly accommodated in wave-forecast models 
(often unverified and not validated), nonlinear effects are usually left out or, at this stage, even 
unknown. These include changes to wave-wave nonlinear interactions in presence of currents 
with horizontal or vertical velocity gradients, wave–current energy and momentum exchanges, 
and nonlinear modifications of the wave spectrum. 

A review paper by Babanin et al. (2017) outlines principles of phase-resolving and phase-
averaged wave models, with emphasis on the state of the art of wave-current interaction 
physics. They argue that these interactions are the least well-developed part of such models. 
Linear and nonlinear dynamics of waves on currents are discussed, depth-integrated and depth-
varying approaches are described, examples of numerical model performance for waves on 
currents in realistic oceanic scenarios are presented.  

Waves, in turn, can substantially influence the surface currents through their Stokes drift, and 
even more so through radiation stress due to momentum lost in wave breaking (even in deep 
water). These influences are largely missing in modelling the ocean circulation of open oceans, 
hence an understanding of this gap brings the old topic of wave-current interactions into the 
active research focus again. Most essential is the role of waves in influencing and even 
producing currents in finite depths where wave breaking is extensive. Fully coupled wave-
current models are difficult, both scientifically and numerically (computationally), and can be 
a subject of an entire thesis such as Tran (2020). This author investigated, experimentally and 
numerically, hydrodynamics in Port Phillip Bay (PPB), a large tidal inlet in Australia, both due 
to natural causes and in response to channel deepening. The coupled hydrodynamic modelling 

D
ow

nloaded from
 http://onepetro.org/snam

eissc/proceedings-pdf/ISSC
22V1/1-ISSC

22V1/D
011S001R

002/3099098/snam
e-issc-2022-com

m
ittee-i-1.pdf/1 by Bibliotheek TU

 D
elft user on 15 N

ovem
ber 2023



62   ISSC 2022 Committee I.1: Environment 
 
 

system included SCHISM (ocean model) and WWMIII (wave model). Typical for an inlet, the 
current velocity is strong (e.g. an excess of 3m/s) at the entrance of PPB, and it is weak in other 
parts of PPB, which fact finds its reflection on the wave climate and trends. The navigation 
channel deepening (on the way to the Port of Melbourne at the North top of PPB) could increase 
the current speed by up to 10% at both-ends of the channel system. Consequently, this would 
modify the wave field in the south of the Bay. For example, the wave height at the entrance 
was flattened due to a strong current during the ebb tide, while an increase of 10% of significant 
wave height was found in the area of coastlines nearby the south channel system.  

Surface currents in the open seas usually involve a substantial proportion of the upper ocean, 
but the vertical profile of such currents remain hidden from observations. Lund et al. (2018) 
offered a very innovative paper to estimate such profiles experimentally. A HZG marine X-
band radar (MR) onboard research vessel m/v “F.G. Walton Smith” was used to yield near-
surface current maps at ~500 m resolution up to a maximum range of ~3 km. This study 
employed the drifter measurements to perform the first comprehensive validation of near-
surface current maps. For a total of 4130 MR–drifter pairs the root-mean-square error for the 
current speed was 4 cms and for the current direction 12°. Underpinned by the in-situ 
measurements, the MR samples currents at a greater effective depth than the drifters (1-5 m vs. 
~0.4 m). The mean MR–drifter differences are consistent with a wave- and wind-driven vertical 
current profile that weakens with increasing depth and rotates clockwise from the wind 
direction (by 0.7% of the wind speed and 15°). The technique presented has great potential in 
observational oceanography, as it allows research vessels with X-band radars to map the 
horizontal flow structure, complementing the vertical profiles measured by ADCP. 

8.3 Wave-ice interactions  
Wave-ice interactions have long been a marginal field of research, but with the Arctic opening 
from ice in summer months, and with some major infrastructure projects in Antarctica, wave-
ice modelling acquires important practical meaning. Among the various theories to explain 
wave-ice interactions, some differ qualitatively, i.e. wave scattering (without dissipation) and 
dissipation (with or without scattering); others differ quantitatively. In the field, all the 
mechanisms are acting together, depending on their relative magnitude, and practical guidance 
of the existing theoretical knowledge in forecasting waves in Marginal Ice Zones (MIZ) is 
limited. Additional complications in this regard are due to waves being able to break the ice 
and thus facilitate its melt - this makes wave-ice interaction an essentially coupled problem. 

The wave-ice problem can be roughly subdivided into three large groups of interactions. First 
is the interaction of waves with solid or uniform ice. Second, once the ice is broken, which is 
the definition of the Marginal Ice Zone (MIZ), the dissipation mechanism is different: it is due 
to various interactions of ice floes with each other, such as collisions, rafting etc., all of which 
take energy from the mean wave motion. Therefore, third, for wave models to predict waves 
in ice, they should be able to identify the moment of ice breakup by waves.  

Starting from the third problem, Voermans et al. (2020) proposed a universal nondimensional 
threshold for the wave-ice breakup. Based on field observations, they produced a breakup 
parameterization for an observational threshold which separates breaking and non-breaking 
cases. The data cover a wide range of scales, from laboratory-grown ice to polar field 
observations. Both field and laboratory observations tend to converge to a single quantitative 
threshold at which the wave-induced sea-ice breakup takes place, which opens a promising 
avenue for robust parametrization in operational forecasting models. 

This threshold separates interactions of group one and group two types, but a traditional method 
of modelling waves in ice (i.e. when the threshold is not known or cannot be identified based 
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on available initial conditions), is to merge the different mechanisms into a single 
parameterization where ‘effective’ ice properties (mostly viscosity) are meant to roughly 
describe wave attenuation in any sea-ice circumstances. Liu et al (2020) implemented three 
dissipative (two viscoelastic and one viscous) ice models in the spectral wave model 
WAVEWATCH-III to estimate the ice-induced wave attenuation rate. These models are then 
explored and intercompared through hindcasts of two field cases: one in the autumn Beaufort 
Sea in 2015 and the other in the Antarctic MIZ in 2012. The capability of these dissipative 
models, along with their limitations and applicability to operational forecasts, were analysed 
and discussed. The sensitivity of the simulated wave height to different source terms – the ice-
induced wave decay and other physical processes (e.g., wind input, nonlinear four-wave 
interactions) was also investigated. For the Antarctic MIZ experiment, the ’’other’’ terms were 
found to be remarkably less than the ice term and thus contributed little to the simulated 
significant wave height. Nonetheless, these other physical mechanisms should not be 
disregarded within a more general modelling perspective, as the simulations suggest that they 
could be comparable to the ice influence in the Beaufort Sea case where wave and ice 
conditions are remarkably different. 

Visco-elastic properties of solid ice, thus described, cause dissipation and change of rate of 
propagation of wave energy. Below such ice, Voermans et al. (2019a) presented observations 
indicating that turbulence generated by the differential velocity between the sea-ice cover and 
the orbital wave motion may also be an important dissipative mechanism of wave energy. 
Through field measurements of under-ice turbulence dissipation rates in pancake and frazil ice, 
it was shown that turbulence-induced wave attenuation coefficients were in agreement with 
observed wave attenuation in MIZ, hence the wave-ice-turbulence mechanism of dissipation is 
as effective as the visco-elastic process. The paper suggested a parameterization based on the 
characteristic wave properties and a coefficient determined by the ice layer properties. 

Thus, the rich and complex nature of wave-ice interactions caused a surge of dedicated research 
in recent years. This combined the relative novelty of the topic with the sudden demand on the 
practical outcomes for wave forecast in the freezing seas and specifically in MIZ. 

8.4 Atmospheric wave boundary layer  
Connection of the surface waves with the wind is most intimate and makes the Wave Boundary 
Layer (WBL), which is the part of the Atmospheric BL near the surface, different to any other 
boundary layer in fluid mechanics or geophysics. The wind generates the waves, but the waves 
then change the very wind which produced them. The waves do not provide a constant 
roughness because they grow, they move and they break. In the classical wall-layer sense, the 
waves are not roughness at all, as the roughness scale of the logarithmic profiles in the constant-
flux layer is orders of magnitude smaller than the wave height. The logarithmic profile is 
characteristic of the constant turbulent flux, and in WBL this is not the case. The total flux in 
WBL is indeed constant, but apart from the turbulent flux, it is also supported by form drag 
which goes into wave growth and tangential drag which passes momentum to the surface 
currents. As a result, the actual turbulent flux in the constant-flux layer is reduced towards the 
surface and the wind profile in WBL deviates from the logarithmic profile (see Babanin & 
McConochie (2013)). We refer to the book of Chalikov (2016) which has chapters on wind-
wave interactions and Wave Boundary Layer written by one of the leading experts in this field. 

Most noticeable effects of waves in the AWBL are the case of large waves and strong winds, 
and Voermans et al. (2019b) investigated them in a Tropical Cyclone. A common method to 
approximate the wind stress is by measuring the turbulent momentum flux directly. However, 
during high wind speeds, wave heights are typically of the same order of magnitude as 
instrument heights, and thus, turbulent momentum flux observations alone are insufficient to 
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estimate wind stresses in tropical cyclones, as wave-induced stresses contribute to the wind 
stress at the height of measurements. In Voermans et al. (2019b), wind stress observations 
during the near passage of Tropical Cyclone Olwyn were presented through measurements of 
the mean wind speed and turbulent momentum flux at 8.8 and 14.8 m above the ocean surface. 
The high sampling frequency of the water surface displacement (up to 2.5 Hz) allowed for 
estimations of the wave-induced stresses by parameterizing the wave input source function. 
During high wind speeds, their results show that the discrepancy between the wind stress and 
the turbulent stress can be attributed to the wave-induced stress. It is observed that for u* >1m/s, 
the wave-induced stress contributes to 63% and 47% of the wind stress at 8.8 and 14.8m above 
the ocean surface, respectively. Thus, measurements of wind stresses based on turbulent 
stresses alone underestimate wind stresses during high wind speed conditions. The paper 
showed that this discrepancy can be solved through a simple predictive model of the wave-
induced stress using only observations of the turbulent stress and significant wave height. 

Wind-wave energy exchange is the most traditional application in the wave-coupled science, 
since such wind input is a necessary term for any wave model. This exchange, however, 
remains an active area of research as the theory and the observations of the wind input are still 
far apart. Such uncertainty can be overcome by direct implementation of the WBL model in 
air-sea interaction models, instead of using sea-drag parameterizations. Chalikov and Babanin 
(2019) used a WBL numerical model for parameterization of the ocean-atmosphere interactions 
in coupled air-sea models and wave-prediction models. Their equations explicitly take into 
account the vertical flux of momentum generated by the wave-produced fluctuations of 
pressure, velocity and stresses. The surface values are calculated with the use of the spectral 
beta-functions whose expression was obtained by means of the 2-D simulations of WBL. 
Hence, the model directly connects the properties of WBL with an arbitrary wave spectrum. 

Researching this old problem of wind input, Janssen and Bidlot (2021) investigated novel 
effects by using the critical layer theory, the oldest analytical theory of wind-wave exchange 
(Miles (1957)). For extreme winds, they assumed that nonlinearity is so large that the slope of 
the wind waves has reached a limiting steepness. This limitation was implemented in the WAM 
model version at ECMWF and resulted in a reduced increase of the drag coefficient with wind 
speed in the range of large wind speeds. The slowing down of the wind is a nonlinear process 
because it depends on the wave spectrum itself. Therefore, the growth rate of the waves by 
wind depends on the wave spectrum, and following work by Miles (1965) it is straightforward 
to obtain the sea state dependence of the growth rate. For strong winds it is found that  since 
the waves are typically steep, this nonlinear effect gives a further reduction of the wind input 
(see also experimental paper by Donelan et al. (2006)). As a consequence, in these extreme 
circumstances the drag coefficient may decrease with increasing wind. 

8.5 Wave influences in the upper ocean 
Dynamic wave influences in the upper ocean can be subdivided into two parts: momentum 
which the waves pass to the surface currents, and the energy which is passed to the upper layer 
of the ocean. The latter, apart from the currents, goes to the turbulence and mixes the ocean. If 
the mixing is limited to the ocean’s mixed layer, then it does not change the sea surface 
temperature and basically just affects sediment suspension and transport of other admixtures 
(e.g. nutrient transport for the biomass production). If, however, the mixing through the 
pycnocline occurs because it is close enough to the surface (which is usually the case in spring-
summer period), then such mixing can impact thermohaline circulation, cool the surface – with 
important consequences for large-scale processes discussed in Section 8.6 below. Note that we 
do not include wave breaking influences here, which were the topic of Section 8.1 – they are 
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powerful bursts of momentum and energy transfer, but are different: random, sporadic and 
concentrated very near the surface, at the scale of wave height. 

In terms of the wave-induced turbulence, unrelated to the breaking, there are three different 
mechanisms proposed to describe the generation of such turbulence over the years. None of 
them cancels the other two; all are feasible, so the upper-ocean dynamics is a matter of their 
relative significance. Historically the first one was due to viscous effects (solutions) of wave 
dynamics (equations) being able to produce vorticity which, stretched by random waves, 
becomes turbulence.  

The second mechanism is the turbulence generated by potential (non-viscous) waves; hence 
the turbulence must be pre-existing, which is always the case in the ocean. Babanin (2017) 
proposed a similarity theory of isotropic turbulence induced by waves on the water with free 
surface due to such mechanism. Scaling is obtained from experimental and numerical 
observations of dissipation rates for surface waves, and then used to estimate the turbulent 
viscosity of the locally-isotropic turbulence. 

Langmuir turbulence which requires the Stokes drift and therefore nonlinear waves is a yet 
different mechanism, three-dimensional as opposed to the first two. This is a phase-average 
theory where the Stokes drift shear plays a role of mean flow shear. Kukulka & Veron (2019) 
conducted investigation of this mechanism in the ocean surface boundary layer (OSBL) by 
means of the Lagrangian approach. This was based on a large-eddy simulation (LES) model 
coupled to a Lagrangian stochastic model (LSM). Langmuir turbulence (LT) was captured by 
the Craik–Leibovich wave forcing that generates LT through the Craik-Leibovich type 2 (CL2) 
mechanism. Breaking wave (BW) effects were modelled by a surface turbulent kinetic energy 
flux that is constrained by wind energy input to surface waves. With LT, Lagrangian 
autocorrelations of velocities reveal three distinct turbulent time scales: an integral, a dispersive 
mixing, and a coherent structure time. With and without waves, the high frequency spectral tail 
is consistent with expectations for the inertial subrange, but BWs substantially increase spectral 
levels at high frequencies. These results indicated that the Lagrangian analysis framework is 
effective and physically intuitive to characterize OSBL turbulence. Further numerical 
investigations of this mechanism were carried out by Fujimara et al. (2018), Yoshikawa et al. 
(2018). 

Experimental research of such multi-scale phenomena is always difficult, and Wei et al. (2018) 
conducted a laboratory experiment in a wind wave tank to investigate the wave induced 
turbulence. In this experiment, the wave surface elevation and velocity beneath the water 
surface were measured simultaneously to estimate the relation between the waves and 
turbulence. The profile of the turbulent dissipation rate and Reynolds stress were calculated 
using experimental data. It was found that the turbulence decreased with increasing depth from 
the water surface and that the turbulence induced by a wave with larger wavelength and wave 
height was much stronger. Finally, it was shown that the wind-forced waves are more effective 
in activating the wave induced turbulence. 

Therefore, with wave-induced turbulence and mixing being a relatively new topic, research in 
this field concentrates on clarifying and validating physical concepts responsible for such 
turbulence. While qualitatively three different mechanisms possible, and all of them appear to 
be relevant, their quantitative significance remains a subject of active research and may differ 
in different circumstances. 

8.6 Waves in the large-scale air-sea-system 
The wave-coupled effects in large-scale air-sea systems were singled out in the previous 
Section because they bring the wave modelling into poorly charted waters of large-scale and 
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long-term simulations of weather, climate and general oceanic circulation. Here, ‘large-
scale’ means large by comparison with the scale of wind-generated waves. Weather and 
climate are phenomena of very different scales (days and years or even longer in time, hundreds 
of kilometers and global in space). Both scales, however, are much larger with respect to the 
scale of ocean surface waves (seconds in time and hundreds of meters in space). 

Substantial amount of excellent work was published in this space over the 2018-2021 period. 
Shi et al. (2018) investigated data assimilation of a global high-resolution wave-tide-circulation 
coupled model using the tropical Pacific TAO buoy observations. Couverlard et al. (2019) 
described development and assessment of a 2-way coupled ocean-wave model based on a 
global NEMO(v3.6)-WW3(v6.02) coupled configuration. Lucas et al. (2019b) studied 
influence of autumn storms on the processes that control the evolution of the ocean surface 
boundary layer (OSBL). Observations of the rate of dissipation of turbulent kinetic energy 
(TKE), temperature, salinity, current structure, and wave field over a period of 9.5 days in the 
northeast Atlantic during the Ocean Surface Mixing were presented. The focus of this study is 
a storm that passed over the observational area during this period. The profiles of TKE in the 
OSBL were consistent with profiles from large-eddy simulation (LES) of Langmuir turbulence 
(see also Section 8.5).  

Most difficult are fully coupled modelling efforts in the polar seas, where the sea-ice model 
has to be added to the suite of air-sea-wave coupled systems. Li et al. (2021a) investigated the 
role of sea-ice wave breakup in the Arctic. They introduced two independent parameterizations 
in a high-resolution coupled ice-ocean model to investigate the effects of wave-induced sea ice 
breakup (through albedo change) and mixing on the Arctic sea ice simulation (as described in 
Section 8.5). The results showed that wave-induced sea ice break-up leads to increase in the 
sea ice concentration and thickness in the Bering Sea, the Baffin Sea and the Barents Sea during 
the ice growth season, but accelerated the sea ice melt in the Chukchi Sea and the East Siberian 
Sea in summer. Furthermore, wave-induced mixing can decelerate the sea ice formation in 
winter and the sea ice melt in summer by exchanging the heat fluxes between the surface and 
subsurface layer. Therefore, since the baseline models underestimate sea ice cover in winter 
and produce more sea ice in summer, wave-induced sea ice breakup plays a positive role in 
improving the sea ice simulation. This study provides two independent parameterizations to 
directly include the wave effects into the sea ice models, with important implications for the 
future sea ice model development. 

In Summary, Section 8 outlines multiple effects and feedbacks which surface ocean waves have 
in the lower atmosphere and upper ocean. These include wave breaking, wave-current and 
wave-ice interactions, Wave Boundary Layer in the wind flow, wave-induced currents and 
mixing in the upper ocean. Taken beyond the problem of wave dynamics and wave forecast, 
these effects can have impact on large-scale processes such as weather, including tropical 
cyclones, ocean circulation and climate. 

9. EXTREME EVENTS AND CONDITIONS  
9.1 Rogue waves 
In an integrable system, the mechanism of rogue wave generation is different and the 
probability of rogue wave formation depends significantly on the relative number of breathers 
and solitons in the initial conditions. 

Taking advantage of the fission of a sinusoidal wave in a shallow water regime to continuously 
inject solitons that propagate along the tank in both directions, Redor et al. (2019) reported an 
experimental realization of a bidirectional soliton gas in a wave flume. Despite the unavoidable 
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damping, solitons can retain their profile while decaying. The two-soliton interaction is 
compared favourably with the analytical solutions of the Kaup-Boussinesq integrable equation. 

Solitons and breathers are nonlinear models that exist in a wide range of physical systems and 
are fundamental solutions of a number of nonlinear wave evolution equations. Chabchoub et 
al. (2019) experimentally observe their propagation obliquely to the direction of the wave field, 
which is in an agreement with the numerical prediction of (2D+1) NLSE. The coherent waves 
with a peculiarity of finite crest length might be a consequence of nonlinear beam dynamics, 
suggesting that the nonlinearity is also a possible underlying mechanism for the actual finite-
length-crested rogue wave events, complementing the linear superposition and interference 
arguments as has been generally suggested. 

The Peregrine breather propagating over an adverse uniform current region is experimentally 
observed by Liao et al. (2018), showing that the opposite currents tend to shift the focusing 
point upstream and enhance the amplitude of the Peregrine solution. Moreover, the total energy 
of the wave train increases exhibited by the broadening of wave spectrum and enlarged 
horizontal asymmetry around the peak frequency. Zhang et al. (2021a) numerically studied the 
effect of irregular background wave on the evolution of Peregrine breather solution and 
concluded whether the abnormal wave induced by breather dynamics can be generated is 
mainly a localized behaviour, strongly dependent on the initial wave group energy as well as 
the detailed structure of the group. 

Based on a forced-damped MNLS equation, Eeltink et al. (2017) numerically investigated the 
effect of wind forcing on the spectral dynamics of Akhmediev breathers, a wave-type known 
to model the modulation instability, showing a good agreement with the corresponding 
laboratory experiments within the range of the facility’s length. Interestingly, the wind forcing 
can induce a permanent upshift of the spectral mean. However, due to the dissipation effects 
including wave breaking, the permanent downshift of the spectral mean and of the spectral 
peak is often observed in wind experiments. 

According to the integrable turbulence theory for the NLSE, the coexistence of solitons and 
extreme events should be expected and in the context of hydrodynamic waves Cazaubiel et al. 
(2018) experimentally observe these nonlinear coherent structures within the incoherent wave 
background. The extreme events result from the strong steepening of wave train fronts and 
their emergence occurs after roughly one nonlinear length scale of propagation. Solitons arise 
when nonlinearity and dispersion are weak, and of the same order of magnitude. The spectral 
and statistical properties of this state are compatible with the theoretical prediction although 
some deviations can be identified. 

The partially coherent waves can be seen as a set of independent humps at the early stage of 
the nonlinear propagation. In the case when nonlinearity significantly dominates dispersion, 
self-focusing dynamics can lead to the gradient catastrophe which asymptotically tends to the 
Peregrine soliton. Tikan (2020) numerically demonstrated the effect of the universal local 
emergence of Peregrine solitons on the evolution of statistical properties of random waves. The 
position of the most probable emergence of local Peregrine solitons coincides well with the 
maximum of the fourth-order statistical moment. 

The link between soliton interaction and the modulation instability of the plane wave has been 
explored by Gelash et al. (2019). Based on N-soliton solution of the focusing one-dimensional 
nonlinear Schrödinger equation, a theoretical model is proposed for the asymptotic stage of the 
noise-induced modulation instability. A remarkable agreement has been revealed between 
spectral (Fourier) and statistical properties of the long-term evolution of the modulation 
instability and those of the constructed multisoliton, random-phase bound states. 
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Most studies of rogue wave concentrate on the occurrence rate and/or wave height while little 
is known about its shape and relative position within a wave group. Based on the statistical 
analysis of surface elevation records from two locations in the northeast Pacific, around 2×106 
wave groups, Gemmrich & Thomson (2017) concluded there is tendency for steep waves to 
occur at the front of wave group, but these are not the largest waves of the group and do not 
meet the rogue wave criterion. Actually, rogue waves are not necessarily steep and tend to 
occur in the middle of the wave group. Besides, the estimation of group dynamics in terms of 
spectral width also suggests that random superposition of higher order Stokes waves seems to 
be sufficient to explain the observations of individual rogue waves. 

Groupiness is one of the most obvious properties of ocean waves and the number of waves 
within a group is strictly related to the relative width of the spectrum. Based on the deep water 
laboratory experiments with monochromatic waves, Babanin et al. (2019a) showed that due to 
BF-like instability mechanism, there seems to be a natural modulation bandwidth, determined 
by the initial wave steepness, for all wave trains. This is also consistently observed in wind-
forced regular waves, in the presence of three-dimensional instabilities and even in wind-
generated wave fields characterized by continuous frequency-directional spectrum. 

With the help of a fully nonlinear numerical simulation, Slunyaev (2018) showed a drastically 
different scenario of coherent nonlinear wave groups induced by self-modulation of water wave 
trains. It is mainly demonstrated by the deviation from the dispersive relation in Fourier space, 
which results in the excitation of new waves due to the Cherenkov-type resonance. 
Consequently, the groups may emit waves with similar or different lengths, which propagate 
in the same or opposite direction. Slunyaev & Dosaev (2019) also numerically revealed that 
due to the same physical mechanism the recurrence of modulation unstable water wave trains 
is incomplete, i.e. quasi-periodic breathing. Note that the incomplete process is observed in the 
simulation governed by integrable NLS equation as well whereas it is due to the hardly 
controllable effects of noise. 

9.1.1 Unimodal Sea State 
Extreme wave statistics of long-crested irregular water surface waves over a shoal are 
experimentally investigated by Trulsen et al. (2020), who find that for a sufficiently shallow 
shoal the surface elevation can have a local maximum of skewness and kurtosis above the 
shallower part of shoal close to the edge on the incoming side, and a local minimum of 
skewness over the downward slope on the lee side of the shoal. Meanwhile, the horizontal 
velocity is also considered therein, which can have a local maximum and minimum of skewness 
at the same locations as those for the surface elevation while its local maximum of kurtosis is 
quite different, i.e. located over the lee side of the shoal. 

For practical and computational reasons, the bandwidth and amplitude limited model such as 
the modified nonlinear Schrodinger equation is often used to investigate the properties of 
deepwater ocean waves. Simanesew et al. (2017) reported that for long-crested irregular waves 
with moderate steepness, reliable prediction can be performed up to about 40 characteristic 
wavelengths while for short-crested waves the accuracy of prediction is strongly reduced with 
increasing directional spread. 

To estimate the accuracy of various deterministic wave prediction models, i.e. the linear wave 
solution, NLS, MNLS and HOSM, a comparative study on the evolutions of nine different 
irregular sea states characterized by JONSWAP wave spectra is made by Klein et al. (2020). 
The incoming surface elevation snapshot, which is normally taken by a ship’s X-band radar in 
reality, is used as the initial input condition. As indicated by the surface similarity parameter 
(SSP), with the increased nonlinearity the more complex wave model has a better performance 

D
ow

nloaded from
 http://onepetro.org/snam

eissc/proceedings-pdf/ISSC
22V1/1-ISSC

22V1/D
011S001R

002/3099098/snam
e-issc-2022-com

m
ittee-i-1.pdf/1 by Bibliotheek TU

 D
elft user on 15 N

ovem
ber 2023



ISSC 2022 Committee I.1: Environment 69 
 
 

 

but at the cost of computational effort which is in principle in agreement with the former 
conclusions presented in the review of Zhang et al. (2019c).  

However, the linear dispersion focusing is still likely the generation mechanism of freak wave 
and the influence of water depth can change the wave mechanism completely. With the aim of 
unifying the two apparently incompatible mechanism of formation of rogue waves, i.e., the 
nonlinear focusing and the linear superposition, Dematteis et al. (2019) proposed that the 
hydrodynamic instanton can be used to describe rogue waves. It not only reconciles these two 
theories but also smoothly interpolates between them. The hydrodynamic instanton is a 
complex spatiotemporal wave field configuration that can be defined using the mathematical 
framework of large deviation theory and calculated via tailored numerical methods. 

Moreover, the vorticity can also influence the property of solitary wave that can be considered 
as the prototype of rogue waves in realistic sea state. Within the framework of 1D and 2D NLS 
equations, Abid et al. (2019) found that for gravity-capillary solitary wave the negative constant 
vorticity is capable of reducing the wave height and amplifying the rate of growth and 
bandwidth of transverse instability, and vice versa. 

To date, two main approaches have been proposed to study the nonlinear stage of modulation 
instability (MI). One is related to the spontaneous oscillations (auto-modulation) and the other 
is super-regular breathers in term of particular pairs of breathers with opposite velocities. 
Conforti et al. (2018) reconcile the two approaches and show that, more generally, auto-
modulations and breather pair formation coexist, strongly dependent on the shape and the 
parameters of the initial perturbation. 

For the deep-water surface waves with the initial envelope in the form of large-scale near-
rectangular barriers, Bonnefoy et al. (2020) experimentally reveal that for a range of initial 
parameters the nonlinear wave packet is not disintegrated by the Benjamin-Feir instability but 
exhibits a specific, strongly nonlinear modulation which propagates from the edges of the wave 
packet towards the center with finite speed. The observed counter-propagating dispersive dam 
break flows can be described within the framework of the semi-classical 1D NLSE and can be 
viewed as an example of dispersive shock wave (DSW) dynamics persisting in focusing 
nonlinear media. 

In the past, it is believed that if the wave propagates with opposite or oblique direction to a 
surface current field, large-amplitude wave can be formed simply due to the linear focusing 
mechanism (caustic theory), i.e. coalescence of wave energy in certain areas. Although the 
currents can locally increase steepness, trigger rogue waves and rapidly lead to non-Gaussian 
statistics, Toffoli et al. (2019) experimentally confirmed that the modulation instability, 
demonstrated by the nonlinear energy transfer in the frequency domain, can also be triggered 
in the case with a certain strength of current. It becomes more complex in a wider wave basin 
as directional properties can develop even for initial unidirectional wave fields. The refracted 
waves by surface current are reflected from the side walls and consequently facilitate the non-
negligible effects of linear directional focusing, further enhancing the occurrence of rogue 
waves. 

Unlike many experiments on rogue waves where waves are mechanically generated, Toffoli et 
al. (2017) conducted a laboratory wind-sea experiment in an annular flume, over which a 
constant and quasi-homogeneous wind blows. The peculiar facility allows the full evolution of 
the wave field (so-called duration-limited condition), from its generation to the fully developed 
stage. For the first time in the laboratory, rogue waves are detected during the development of 
a wind-forced wave field, just before reaching a stationary state. 

D
ow

nloaded from
 http://onepetro.org/snam

eissc/proceedings-pdf/ISSC
22V1/1-ISSC

22V1/D
011S001R

002/3099098/snam
e-issc-2022-com

m
ittee-i-1.pdf/1 by Bibliotheek TU

 D
elft user on 15 N

ovem
ber 2023



70   ISSC 2022 Committee I.1: Environment 
 
 

Motivated by the two deep water freak waves registered by the JKEO GPS buoy in the same 
storm, Fujimoto et al. (2018) used the third-generation wave model WAVEWATCH III to 
hindcast their initial wave spectra, which are used to conduct the detailed regional numerical 
simulation, performed with HOS method, to further investigate their geometry and possible 
generation mechanisms in statistical sense. The spatio-temporal pattern analysis reveals that 
the four-wave resonant interaction can prolong the lifetime of freak waves and give rise to the 
front-rear asymmetry in the case with narrow spectral width and directional distribution. This 
is further confirmed in the later numerical research Kokorina & Slunyaev (2019), where the 
maximum rogue wave lifetime in long-crested sea state is found up to be about 90 wave periods 
and various intricate 3D rogue wave patterns are detected. 

More specifically, the four-wave interaction can be separated into the direct interaction of four 
free waves and the virtual-state interaction of two second-order bound waves induced by them. 
As indicated by the coefficient of kurtosis Fujimoto et al. (2018), for directional waves the 
latter interaction is dominant with a positive effect in the evolutionary process in comparison 
with the former interaction (negative).  

In contrast, by virtue of the direct numerical simulation performed with the same method 
(HOS), Slunyaev (2019) pointed out the irregular nonlinear directional sea waves may violate 
essentially the Gaussian statistics due to the coherent dynamics of free waves. Moreover, it is 
reported that under the condition of relatively narrow angle spectrum the dynamic kurtosis may 
be comparable with the value of the bound wave kurtosis (coherent). This can be verified by 
the spread of wave number and wave frequency in the spatio-temporal Fourier domain, clearly 
indicating that the coherent 3D wave patterns persist in the irregular sea field and do not follow 
the classic dispersion relationship.  

With the modified HOS method suitable for varying bathymetry, Ducrozet & Gouin (2017) 
numerically investigated the rogue wave activity during the wave field propagating over a 
sloping bottom within unidirectional and directional sea states, demonstrating that the 
enhancement of the extreme wave occurrence observed close to the shallower side of the slope 
is reduced when considering the directional spreading effect. 

9.1.2 Bimodal Sea State 
In shallow water, the counterpart of the nonlinear Schrödinger equation is Korteweg-de Vries 
equation, within the framework of which, Didenkulova et al. (2019) performed direct numerical 
simulation for irregular unidirectional nonlinear wave with bimodal wave spectrum. Due to the 
existence of an additional wave system, the evolution of wave statistical characteristics and 
spectral shape are quite different. Particularly, the inclusion of an extra system with longer 
waves effectively increases the degree of nonlinearity of the entire wave system which 
consequently speeds up the evolutionary process and intensifies the extreme wave 
characteristics. 

In agreement with the prediction of 2D+1 NLSE, Steer et al. (2019a) experimentally 
demonstrated the existence of non-dispersive sing-crossed(?) wave groups and long-lived 
nonlinear hydrodynamic X wave packets when a carrier wave is modulated by a wave group 
crossing it at an angle of approximately ±35.26°. The experimental observation of crossed 
groups propagating unchanged over many wavelengths confirms the lifetime extension of wave 
groups that contain the potential for extreme events. 

The physical mechanisms that give rise to freak waves in intermediate water depths such as the 
Draupner wave are still contentious. Under unidirectional condition the Draupner wave has 
been roughly reproduced many times in the rectilinear wave basin. McAllister et al. (2018) 
reproduced the same Draupner wave, the form of which shows more good agreement with 
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measurement, in a circular wave tank under conditions where two wave systems cross at a large 
angle. The presence of a set-up in the second-order difference waves, observed only in crossing 
wave experiment and field measurement, further supports the hypothesis that crossing 
conditions created the Draupner wave. Meanwhile, breaking mechanism is fundamentally 
altered for sufficiently large crossing angles, indicated by less crest-amplitude limiting and the 
formation of near-vertical jets. 

However, for counter-propagating, irregular unidirectional sea states characterized by a 
JONSWAP frequency spectrum, Støle-Hentschel et al. (2018) experimentally and numerically 
confirm that both local kurtosis of surface elevation and local exceedance probability of crest 
height are larger in unidirectional seas than in counter-propagating seas. Even a small amount 
of waves propagating against an essentially unidirectional wave field can notably suppress the 
formation of large surface elevation. Consider that one of the wave fields is sufficiently wide-
banded, the observed behaviour maybe attribute to nonlinear interactions different from the 
modulation instability. In the following seas composed by wind wave and swell, Støle-
Hentschel et al. (2020) experimentally and numerically exhibited that the extreme wave 
statistics of combined two wave systems can be quite different from that of the corresponding 
single one. More concisely, to a certain degree the following swell seems to suppress the 
formation of large-amplitude wind wave depending on the sea-swell energy ratio. 

The statistical properties of extreme and rogue wave activity in crossing directional seas are 
examined in the ocean wave basin by Luxmoore et al. (2019), showing that the directional 
spreading of the individual components has more effect on the kurtosis and the exceedance 
probability than the crossing angle between the components. The kurtosis rarely exceeds the 
second-order theoretical value, and the wave height distribution is generally grouped around 
the Rayleigh distribution while the wave crest heights generally slightly exceed the second-
order Tayfun distribution. In fact, a set of systematic numerical simulations has been performed 
by Gramstad et al. (2018) for crossing sea states with respect to spectral shape, crossing angle 
and separation in peak frequency. It is shown that for a linear sea state the expected maximum 
crest elevation is largest when two wave systems propagate with a crossing angle close to 90°. 
However, if the nonlinearity is also considered, a peak in kurtosis will appear at large and small 
crossing angles while maximal crest height seems independent of crossing angle. Accompanied 
by analysing the modulation instability of two crossing Stokes waves (the same initial 
parameters as crossing seas each characterized by JONSWAP spectrum) with the coupled 
Zakharov equations, it is shown that there is a positive correlation between the value of kurtosis 
and the maximum unstable growth rate of two crossing Stokes waves. 

In a circular wave basin, Steer et al. (2019b) experimentally investigated the effects of crossing 
angle on the modulation stability of two crossing nonlinear surface gravity wave trains seeded 
with sideband perturbations, which is also compared with the numerical simulation governed 
by the coupled nonlinear Schrödinger equation (CNLSE). The results demonstrate that for the 
cases considered herein, the growth rate reduces with the increasing crossing angle and 
becomes negligible at and beyond a crossing angle of approximately 30°. 

Although various wave models can be used to predict the generation and evolution of ocean 
waves by wind, their predictive capabilities must be validated by a comprehensive and 
systematic field in-situ measurement as suggested by Babanin et al. (2019b). The observational 
network could include distributed system of buoys (drifting and stationary) and autonomous 
surface vehicles. Moreover, it would help to resolve the issues of limiting fetches, extreme 
Extra-Tropical cyclones, swell propagation and attenuation, wave-current interactions, and 
address the topics of wave-induced dispersal of floating objects, wave-ice interactions in the 
Marginal Ice Zone, Metocean climatology and its connection with the global climate. 

D
ow

nloaded from
 http://onepetro.org/snam

eissc/proceedings-pdf/ISSC
22V1/1-ISSC

22V1/D
011S001R

002/3099098/snam
e-issc-2022-com

m
ittee-i-1.pdf/1 by Bibliotheek TU

 D
elft user on 15 N

ovem
ber 2023



72   ISSC 2022 Committee I.1: Environment 
 
 

Cattrell et al. (2018) collated, quality controlled and analysed the largest dataset of single-point 
field measurements from surface following wave buoys, but a discernible link between rogue 
wave occurrence and the short-term wave statistics is not observed. In contrast, there is a 
potential predictability for rogue wave occurrence from long-term wave statistics. It seems that 
the generation mechanisms of rogue waves are region specific and rarely due to modulation 
instabilities considering the wave spectral width is large in most rogue seas.  

9.2 Polar Seas 
9.2.1 Extreme Ice loads on Ships 
The analysis of ice load data collected aboard XueLong in the Arctic showed that the Weibull 
distribution appears being a well suited distribution Wu et al. (2021). In order to estimate 
extreme ice loads Chai et al. (2018b) introduced a novel approach named ACER (average 
conditional exceedance rate). This method is applied by Chai et al. (2018a) for assessing the 
fatigue damage due to ice loads, while also the Weibull distribution is used to represent the ice 
induced stress ranges. A numerical analysis of bergy bits and growlers is performed by Yu et 
al. (2021) which is deemed as such ice features, are difficult to be detected by marine radars. 
On the basis of numerical simulations it is shown that a critical local sharpness of ice contours 
exists leading to maximum structural damage for a given impact energy. The investigated 
conditions led to impact energies being 50% of the maximum sustainable energy of the 
modelled structure. However, Yu et al. (2021) indicated that the energy can easily increase for 
larger ice pieces. The energy may also be increased when nomadic ice pieces float on waves 
von Bock Und Polach et al. (2019) as assessed in Zaman & Akinturk (2020). This interaction 
is considered to impose great risk in stormy event with large waves. The exercise concluded a 
good agreement between results of commercial tools. 

9.2.2 Extreme Events and Climate Change 
Li et al. (2019b) verified numerical WAVEWATCH III hindcast simulation on wave heights 
in the Arctic Ocean with buoy and altimeter measurements. It is found that the significant wave 
height is governed by surface winds when the ice extent is beyond 9.4 × 106 km2. Below this 
threshold, the increase is affected by both increasing fetch length and wind speed. The study 
shows a transition from wind to swell dominated waves with retreating ice cover and implies 
an increasing wave height (m (km2)-1) with decreasing ice extent. The reanalysis of ERA-
Interim data indicates that more than half of the extreme events are caused by cyclones 
originating in the Arctic Ocean and mid-latitudes (Waseda et al. (2021). When the ice extent is 
least (September) this percentage increased from 50% to 80% in the past four decades. 

Polar lows (PL) are intense mesocyclones developing over the ice free Arctic Ocean. If those 
stay stationary they can cause high wind waves (Golubkin et al. (2018). A presented model by 
Golubkin et al. (2018) shows a significant exceeding level of 6m and 8m of the significant 
wave height spectrum with the presence of polar lows. An analysis (Radovan et al. (2019) of 
33 January PL occurrences over 12 years (2000-2011) showed that, for the cases with lower 
thermal instability during formation stage, lapse rates throughout the boundary layer were 
stronger and steeper; therefore, these PLs were fostering convective development. The latter 
refers to 90% of the PL occurrences. In addition to increased wave heights Polar cyclones are 
considered causative to Antarctic ice calving (Francis et al. (2021). The study from Francis et 
al. (2021) showed that the unexpected calving event from the Amery Ice Shelf 
(September 2019, the largest since 1963) is due to a series of anomalously deep and stationary 
explosive twin polar cyclones. The generated tides and wind-driven ocean slope lead enforced 
existing rifts and finally the calving. According to Francis et al. (2021) such extreme events 
are predicted to occur more frequently under warmer climate. 
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9.3 Tropical cyclones 
Tropical Cyclones (TC, also called hurricanes in the Americas and typhoons in Asia) are small 
and rare, but have an unproportionally large impact on design and operation of offshore 
industry and shipping in tropical areas. While prediction of their tracks has advanced 
significantly, forecast of intensity of TCs has not been improving over decades in spite of rapid 
progress of numerical methods and computing capabilities. Apparently, some understanding of 
their physics is missing. 

Part of the missing physics is Metocean, i.e. wave-coupled interactions in the air-sea dynamics 
and thermodynamics of TCs (see also Section 8). TCs are a strongly coupled air-sea 
phenomenon: i.e. it occurs and develops in the lower atmosphere, but it depends and intensifies 
by gaining energy from the warm ocean (hence its tropical nature, except specific conditions 
when the atmospheric forcing directs it to higher latitutes along a warm current like Gulfstream). 
All the relevant cross-interface fluxes (energy, momentum, heat, mass) are facilitated or 
moderated by waves, which are not small in hurricanes, but waves are usually not included into 
the TC models and the fluxes are routinely parameterized in terms of wind speed. 

This includes parameterization of spray, which is most obviously not produced by the wind, 
but does affect the wind because it impacts the sea drag (hence the momentum flux) and heat 
fluxes (both latent and sensible). Currently, uncertainties in magnitude of the sea spray 
production estimates reach 3-5 orders of magnitude, hence their use in validation of TC models 
is problematic. In Ma et al. (2020), the sea spray volume flux (SSVF) was measured by laser 
altimeters under Tropical Cyclone Olwyn in the Indian Ocean. Their results showed that the 
SSVF increases gradually with the wind speed and is approximately 2 orders of magnitude 
larger than the results of two laboratory experiments and existing sea spray generation 
functions. The SSVF is also influenced by the sea state. When the nondimensional significant 
wave height is factored in as a new parameter, the correlation coefficients are improved. A new 
parameterization for SSVF generation function is proposed in terms of the nondimensional 
wave height and windsea Reynolds number. 

Xu et al. (2021) used the same Olwyn data, and made a correction for a missing proportion of 
the spray located in the troughs of the big waves in TCs. Furthermore, their observations of sea 
spray cover a broad range of wind and wave properties and offer a universal parameterization, 
from light winds to hurricane force. Improved performance of the model is observed when 
wave properties are included, in contrast to a parameterization based on wind properties alone. 
The novel in-situ sea spray observations and the predictive model derived are consistent with 
the spray model of Andreas (1992) in both trend and magnitude. Such novel parameterizations 
based on observations provide opportunities to improve the prediction of air-sea fluxes in 
operational weather forecasting models. 

10. WIND-WAVE CLIMATE  
10.1 Historic trends 
The accurate representation of long-term temporal variation of wind waves is crucial for many 
applications of design and ship routing, coastal infrastructures, harbour management, offshore 
wind farms, wave energy converters. Intensive research has been placed into global and 
regional wave climate over the past years, with the main focus on trends and variability of 
mean values and high percentiles. Present day climate is usually studied using reanalysis data, 
satellite or in-situ data, not only in global studies but also regional ones, that focus on coastal 
impacts. 

Stopa (2019) used observations from a multi-platform calibrated altimeter dataset from 1985-
2016 to study wind speed and wave height global seasonal patterns and concluded that some 
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regions of the ocean have distinct seasonal shapes different from sinusoids. He also identified 
several regions of the ocean that have strong seasonal inter-annual variability while other 
regions have small year-to-year variability which might be important areas to monitor for long-
term changes related to variability in solar radiation or climate change. 

Young & Ribal (2019) developed and analysed a global satellite database to determine trends 
in oceanic wind speed and significant wave height over the 33-year period from 1985 to 2018 
using data obtained from 31 satellite missions comprising three types of instruments-altimeters, 
radiometers, and scatterometers. The analysis showed small increases in mean wind speed and 
significant wave height over this period, with larger increases in extreme conditions (90th 
percentiles). The largest increases occur in the Southern Ocean. 

The analysis presented by Takbash & Young (2020) using the global ERA5 showed that there 
has been a statistically significant increase in the value of 100-year significant wave height 
(H100) over large regions of the Southern Hemisphere, but a smaller decrease in H100 in the 
Northern Hemisphere was also observed, although the related trends were generally not 
statistically significant. The increases in the Southern Hemisphere are a result of an increase in 
either the frequency or intensity of winter storms, particularly in the Southern Ocean. 

Timmermans et al. (2020) examined long-term global seasonal significant wave height trends 
from the CCI Level 4 dataset Dodet et al. (2020) and compared those with other high-quality 
sea state records over the period of continuous satellite coverage. Results showed variability 
across datasets, although in all cases intra-dataset variability showed a high degree of spatial 
coherence. The maximum range of trends across all datasets is approximately the same, but 
trends from the CCI L4 appear to be substantially more positive than those from the Ribal & 
Young (2019) and in better agreement with the ERA5 reanalysis of Takbash & Young (2020).  

Bitner-Gregersen (2018), investigated how realistic the adverse weather conditions proposed 
by the IMO in 2013 are, using data from selected ocean locations. It compared open sea and 
coastal water wind and wave climate applying hindcast data in the analysis. The study was 
focussed on the open sea metocean conditions of the North Atlantic while European waters 
were used as representative for coastal regions. Challenges in providing metocean description 
for assessment of ship manoeuvrability were discussed and three approaches for doing it were 
proposed, giving attention to associated uncertainties. Correlations between wind speed and 
significant wave height as well as significant wave height and spectral peak period were 
compared with the ones suggested by the 2013 Interim Guidelines and other existing standards. 

Caloiero et al. (2019) performed an analysis of present wave climate in the coast of the 
Cantabria region (Mediterranean Sea), using ERA-Interim reanalysis data. Trends in 
significant wave height and energy period were studied at annual and seasonal time scales. 
Also using the same reanalysis data set, Ding et al. (2019) analysed the present wave climate 
on the coast of Guangdong in China. Variability of main wave parameters was studied and its 
impacts on beach morphology as well as the relation between wave conditions and weather 
systems. 

Wind wave climate trends have also been investigated in other regions. Some examples are the 
positive trends in monthly and annual significant wave height of total sea that were found by 
Kumar et al. (2018c) for the North Indian Ocean using a 15-year wave hindcast and recently 
confirmed by Sreelakshmi & Bhaskaran (2020) that used the ERA5 reanalysis data to evaluate 
trends in swell and wind sea in the Indian Ocean, for a longer period. Shamji et al. (2020) 
studied trends in the extreme values of significant wave height of the total sea, in the Red Sea 
finding also positive values for the period 1979-2010. 
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Liu et al. (2021) used the observation-based version ST6 of WAVEWATCH-III (Liu et al. 
(2019d)) and developed a global Metocean database for the period of 1950-2020. The paper 
analyses (a) a long-term hindcast (1979-2019) forced by the ERA5 conventional winds U10 
and (b) two short-term hindcasts (2011-2019) driven by the NCEP climate forecast system 
(CFS)v2 U10 and the ERA5 neutral winds U10, respectively. The input field for ice was 
sourced from the Ocean and Sea Ice Satellite Application Facility (OSI SAF) sea-ice 
concentration climate data records. These wave simulations, together with the driving wind 
forcing, are validated against extensive in-situ observations and satellite altimeter records. The 
performance of the ST6 wave hindcasts shows promising results across multiple wave 
parameters, including the conventional wave characteristics (e.g., wave height Hs and wave 
period) and high-order spectral moments (e.g., the surface Stokes drift and mean square slope). 
The ERA5-based simulations generally present lower random errors, but the CFS-based run 
represents extreme sea states considerably better. The hindcast included novel features such as 
dominant wave breaking probability, wave-induced mixed layer depth, freak wave indexes and 
wave spreading factor, which were briefly analysed. Inter-comparisons of Hs from the long-
term (41 years) wave hindcast, buoy measurements and two different calibrated altimeter data 
sets highlight the inconsistency in these altimeter records arising from different calibration 
methodology. Significant errors in the low-frequency bins (period T > 15 s) for both wave 
energy and directionality call for further model development. 

10.2 Arctic and Antarctic 
The wave climate in the Arctic and Antarctic oceans is undergoing a dramatic change due to 
the sea ice retreat. These regions are experiencing some of the most rapid changes over the 
globe, and projected changes are significant. As sea ice coverage shrinks and ice‐free period 
lengthens, new water areas become available for ocean wave generation, growth, and 
propagation for a longer period. However, these regions are the ones less covered by in-situ 
observations, and the need to increase these types of observations is clear. 

Derkani et al. (2021), presented a data set of simultaneous observations of winds, surface 
currents, and ocean waves obtained during the Antarctic Circumnavigation Expedition (ACE), 
which went around the Southern Ocean from December 2016 to March 2017 (Austral summer). 
The data set is the most extensive and comprehensive collection of observations of surface 
processes for the Southern Ocean and is intended to underpin improvements of wave prediction 
models around Antarctica and research of air–sea interaction processes 

Liu et al. (2020), used the WW3 model, applying the SMC grid and the viscoelastic wave-ice 
model to find the relation between the growth of wave height and the retreating ice cover, in 
the Arctic. Results showed that when the ice extent is smaller than 9.4×106 km2, the mean wave 
height in the Arctic Ocean will increase by 0.07 m with shrinkage of 106 km2 ice cover and 
roughly 51% of the increase is contributed by the enlarged effective fetch. For the ice extent 
larger than 9.4×106 km2, ice extent and mean wave height are positively correlated.  

Wojtysiak et al. (2018), characterized wind wave climate of the west coast of Spitsbergen using 
modelled results from spectral wave models Wave Watch III (WW3) hindcast and the ERA-
interim reanalysis WAM, and observed the presence of seasonal cycle with difference of up to 
1 m between significant wave heights in summer and winter, extreme events analysis revealed 
that storms occur mainly in winter, but the most energetic ones occur in spring and autumn. 
Positive trends in frequency of storms and total duration of storms were also identified. 

Waseda et al. (2018) evaluated trends of extreme ocean waves in the emerging ice-free waters 
of the summer Arctic using ERA-Interim wave reanalysis. Results revealed an increase in the 
expected largest significant wave height from 2.3 m to 3.1 m in the ice-free water from the 
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Laptev to the Beaufort Seas during October that is highly correlated with the expected increase 
in highest wind speed. Also, this increase in the largest significant wave height follows from 
the enhanced probability of storms in ice-free waters. 

Duan et al. (2019), investigated the wave climate in the ice-free waters of Kara Sea using the 
ERA-Interim dataset. Results showed that the significant wave height and mean wave period 
are slightly higher in September than in August and that the largest waves predominantly occur 
in the zone of 77-79°N and 67-80°E.  

Casas-Prat et al. (2018), used the WW3 wave model with a customized unstructured Spherical 
Multi-Cell grid of ∼100 km offshore and ∼50 km along coastlines, forced with five CMIP5 
climate models for the historical (1979-2005) and RCP8.5 scenario future (2081-2100) periods, 
to produce simulations of the global ocean wave climate. The results showed that all five sets 
of wave simulations projected lower waves in the North Atlantic, corresponding to decreased 
surface wind speeds there in the warmer climate but also consistently projected an increase in 
the surface wind speed in the Southern Hemisphere mid-high latitudes, which translates in an 
increase in the WW3 simulated significant wave height in this region. The Arctic regional wave 
climate was studied in more detail, using the same data, by Casas‐Prat & Wang (2020a). The 
obtained results showed that annual maximum significant wave height is projected to increase 
up to 6 m offshore and up to two to three times greater than the corresponding 1979–2005 value 
along some coastlines, as waves become more exposed to the fall storms there. Also, the 
connection between the Atlantic Ocean and the Arctic wave climates is projected to strengthen 
due to increase of swell influence. In Casas‐Prat & Wang (2020b), projected changes and trends 
in the regional annual and monthly maxima of the significant wave height in the Arctic Ocean 
were studied. Results showed that the regional annual maximal Hs increases on average up to 
∼3 cm/year, or >0.5%/year, relative to the 1986–2005 climatological value, in many Arctic 
areas. It was concluded that changes in wind speed alone cannot explain the increases in the 
regional maximal Hs and that sea ice retreat also plays an important role by increasing fetch to 
promote wave growth. 

10.3 Future trends 
To evaluate future wind wave climate, there is a need to rely on climate simulations. Coupled 
Model Intercomparison Project Phase 5 CMIP5 has provided simulations for the earth system, 
until the end of the 21st century, for different types of emission scenarios (RCP’s), but these 
simulations do not include ocean waves. So, most wind wave climate studies depend on global 
scale wave simulations using the WAM or the WW3 model, for global assessment and other 
models for more regional studies, forced by CMIP5 wind and ice cover information. Future 
climate is usually divided into different periods: near future, mid-century and end of the 21st 
century. 

In recent years, intensive research has been placed into global and regional wave climate with 
the main focus in trends and variability of mean values and high percentiles. Under the auspices 
of the Coordinated Ocean Wave Climate Project (COWCLIP) effort, several global studies 
have considered how global wave climate may respond to projected future climate scenarios 
with increase greenhouse gas concentrations using both the dynamical and the statistical 
approach. Some studies present results from a single wave climate simulation, other analyse an 
ensemble of climate projections. 

One example of these studies is the one presented by Morim et al. (2018) where an analysis of 
91 published global and regional scale wind-wave climate projection studies were evaluated to 
establish consistent patterns of impacts of global warming on the wind-wave climate across the 
globe. Consensus amongst studies regarding an increase of the mean significant wave height 
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Hs across the Southern Ocean, tropical eastern Pacific, and Baltic Sea, and conversely, a 
decrease of Hs over the North Atlantic and Mediterranean Sea was found. The authors observed 
that the projection uncertainty surrounding wind-wave climate projections has been poorly 
sampled and identify sets of coordinated experiments within existing studies that can be used 
as a basis to systematically quantify these uncertainties. 

Bricheno & Wolf (2018) analysed historic and future wave conditions around the European 
Atlantic coast, making projections out to the year 2100 under RCP4.5 and RCP8.5 scenarios 
and find a decrease in mean significant wave height of the order 0.2 m is projected across most 
of the European coast. Increases in the annual maximum and 99th percentile wave height as 
large as 0.5– 1 m are observed in some areas but with a more complex spatial pattern. Bitner-
Gregersen et al. (2018) and Aarnes et al. (2017) presented results from the same Norwegian 
research project ExWaCli. The past (1971-2000) and the future wave (2071-2100) climate was 
simulated in this project by the Norwegian Meteorological Institute using the WAM model and 
Bitner-Gregersen et al. (2018) summarizes the results of the entire project (wave data, statistical 
analysis and impact on design) led by DNV GL with the Norwegian Meteorological Institute 
and the University of Oslo as partners. Six climate models, including the EC-Earth (with three 
ensemble members) and two emission scenarios RPC4.5 and RPC8.5 were used in these 
investigations. Annual statistics of significant wave height are analysed including mean 
parameters and upper percentiles.  

In Lemos et al. (2019), the near future impact of a warmer climate on the global ocean wave 
climate towards the mid-21st century (2031–2060) was investigated using a 4-member 
“coherent” ensemble of wave climate projections: single-model, single-forcing and RCP8.5 
scenario. Statistically significant increases in the global mean wind speed, wave height, wave 
period and wave energy flux are to be expected towards the mid-twenty first century, these 
changes being more striking in the mid-to-high latitudes of the Southern Hemisphere. 

Bonaduce et al. (2019), assessed the wave climate change of the North Atlantic by the end of 
the 21st century, using a regional wave climate projection under the RCP8.5 scenario. The 
historical run is validated with in-situ, remote sensing and ERA5 reanalysis. Systematic 
differences were found but in the general features of the present wave climate were captured 
by the historical run. In the future climate projection, similar wave climate change patterns 
were observed when considering both the mean and severe wave conditions, which were 
generally larger during summer. The range of variation in the projected extremes (±10%) was 
consistent with those observed in previous studies both at the global and regional spatial scales. 

Meucci et al. (2020), used an ensemble of global wave model runs of WW3 model, forced with 
surface winds simulated by different GCMs, to develop a dataset of storm wave conditions. 
Under the two emission scenarios (RCP4.5 and RCP8.5), found that the magnitude of a 1 in 
100-year significant wave height (Hs) event increases by 5 to 15% over the Southern Ocean by 
the end of the 21st century, compared to the 1979-2005 period. The North Atlantic shows a 
decrease at low to mid latitude (≈5 to 15%) and an increase at high latitudes (≈10%). The 
extreme significant wave height in the North Pacific increases at high latitudes by 5 to 10%.  

Bernardino et al. (2021), used the WW3 wave model forced with wind and ice-cover data from 
an RCP8.5 EC-Earth system integration for two 30-year time slices 1980-2009 representing 
present climate and the second 2070-2099, representing the climate in the end of the 21st 
century. Changes from present to future climate were evaluated, regarding both mean and 
extreme events. It was observed a generalized decrease in Hs (mean and 95th percentile) that 
is in line with results obtained from other authors for the North Atlantic. Changes in Tp and 
Tm are very small both in mean and in the extremes, but a small increase is observed in very 
high latitudes. 
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Lobeto et al. (2021), analysed hourly time series of significant wave heigh of a seven-member 
ensemble of wave climate simulations and estimated changes for return periods from 5 to 100 
years by the end of the century under RCP4.5 and RCP8.5 scenarios. Results obtained conclude 
that increases cover wider areas and are larger in magnitude than decreases for higher return 
periods. The Southern Ocean is the region where the most robust increase in extreme Hs is 
projected, showing local increases of over 2 m regardless the analysed return period under 
RCP8.5 scenario. On the contrary, the tropical north Pacific shows the most robust decrease in 
extreme Hs, with local decreases of over 1.5 m. Relevant divergences are found in several 
ocean regions between the projected behaviour of mean and extreme wave conditions. An 
example is an increase in Hs return values and a decrease in annual mean Hs found in the SE 
Indian, NW Atlantic and NE Pacific. 

O’Grady et al. (2021) evaluated how global climate change will alter wind sea and swell waves, 
modifying the severity, frequency, and impact. The authors conclude that extreme wave heights 
are not projected to increase everywhere, the largest increases will typically be experienced at 
higher latitudes, and that there is high ensemble model agreement on an increase (doubling of 
events) for the waters south of Australia, the Arabian Sea and the Gulf of Guinea by the end of 
the twenty-first century. 

So, in general, considering the available ensemble of wave climate projections, it can be said 
that there is consensus amongst studies regarding an increase of the mean significant wave 
height across the Southern Ocean, tropical eastern Pacific and Baltic Sea, and a decrease of Hs 
over the North Atlantic and Mediterranean Sea. However, there are other regions where is a 
lack of consensus among models. Similarly, future projections of extreme Hs lack consensus 
everywhere, except for the Southern Ocean and North Atlantic. 

11. CONCLUSIONS  
While being a very old research field, Metocean topics remain at the forefront of ocean sciences 
and ocean engineering. The presented Chapter can effectively be subdivided into two large 
parts: the first part follows the traditional breakdown of methods for Metocean research, and 
the second part outlines novel or recently intensified applications. 

The mainstream part starts from Analytical Theory (Section 2), the centuries-long way of 
researching the surface waves and other Metocean interactions, followed by Section 3 on 
Numerical Modelling which came flourished in the new century with rapid advances of modern 
computing and supercomputing. Effectively, these are both analytical methods where 
numerical approaches allow us to solve the analytical equations, even if approximately, when 
explicit mathematical solutions are not possible. We see that both continue to cover the full 
spectrum of wave problems, i.e. non-linear waves in deep and shallow waters, plus wave-ice 
interactions attracting major attention of researchers these days to a point of having a separate 
subsection in both analytical and numerical Sections. 

In engineering and science, any theory and numerical models require experimental verification, 
calibration and validation. Even if an analytical description of a physical mechanism is 
undoubtedly correct (e.g. follows from an explicit mathematical derivation), there is a question 
of a relative significance of this mechanism with respect to other relevant processes which in a 
complex Metocean environment are always present together and superimposed. Therefore, the 
experimental Section 4 (Measurements and Observations) is the largest in this review and 
covers the traditional range of laboratory experiments, where the physical phenomena can be 
split and scrutinised, and in situ observations where they interact in their full complexity. The 
last four decades have also seen an enormous surge of Remote Sensing of the ocean, and the 
Chapter has a separate Section 5 dedicated to this growing field of observations, with its own 
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methods and technologies ranging from ship, coastal and airborne radars to the satellite probing 
of the ocean. 

Section 5 in some way is a divider of the traditional and new applications in Metocean topics. 
With enormous serge of computing capabilities, data science and Data Analysis become a 
discipline of its own, and Section 6 is dedicated to this topic. Among other issues, it has a 
subsection on Machine Learning which is a rapidly growing application across most 
engineering fields. One of the most essential applications of the data analysis in ocean 
engineering is the traditional topic of Statistics, Theory and Analysis, which is the subject of 
Section 7.  

Sections 8-10 are the most recent themes in Metocean research, to a great extent a product of 
the last decade or two. Although concepts of the Wave-Coupled Phenomena (Section 8) on the 
ocean interface, in the Atmospheric Boundary Layer and in the upper ocean are not new, 
extensive research in these areas was marginal until recently. Rapid breakthrough in this field 
happened and is continuing due to both better understanding (and better measurements) of such 
coupled phenomena and, importantly, due to advances in computing and data science that allow 
us to implement outputs of such research into practical outcomes such as coupling small-scale 
and large-scale air-sea models. This is particularly essential for Extreme Events and Conditions 
(Section 9), which are often (if not always) a result of wave-coupled interactions in complex 
Metocean systems, and for studies on Wind-Wave Climate (Section 10) which in such coupled 
systems becomes another proxy for the large-scale climate. 

Thus, the reported 2018-2021 period demonstrates ongoing advances across the full spectrum 
of Metocean studies, from most traditional topics of analytical wave theories to the new 
methods and approaches such as remote sensing of the ocean and investigations and modelling 
of wave-coupled phenomena and effects. It would be fair to expect that this advance will 
continue as the new understanding of Metocean environment and new experimental/computing 
capabilities develop at accelerating rate. 
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