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ABSTRACT

Free-space optical communication (FSOC) links are considered a key technology to support the increasing needs
of our connected, data-heavy world, but they are prone to disturbance through atmospheric processes such as
optical turbulence. Since turbulence is highly dependent on local topographic and meteorological conditions,
modeling optical turbulence strength C2

n is challenging during the design phase of an optical link or network.
Over the past 25 years, C2

n parameterizations of varying complexities have been combined with various numerical
weather prediction models for the spatio-temporal estimation of C2

n. However, the outputs of these models
can exhibit substantial variability based on the user-defined configuration that determines how atmospheric
processes are represented. To address this concern, we propose to run not a single model configuration but
multiple diverse ones to generate an ensemble estimate of C2

n. We employ the Weather Research and Forecasting
model (WRF) with ten different planetary boundary layer (PBL) physics schemes forming a diverse ensemble
yielding a probabilistic C2

n estimate. We demonstrate that this ensemble outperforms the individual runs when
compared to scintillometer field measurements and show it to be robust against outliers. We believe that FSOC
downstream tasks such as link budget estimations should also become more robust if based on a C2

n ensemble
estimate compared to single model runs.

Keywords: Optical Turbulence, Free-Space Optical Communication, Mesoscale Modelling, Ensemble Modelling

1. INTRODUCTION

Free-space optical communication (FSOC) is considered a key technology to support the increasing needs of our
connected data-heavy world by providing energy-efficient, secure links with high-data transmission capacity at
potentially low cost. In contrast to traditional radio frequency communication, FSOC transmits data with an
optical beam that propagates through the atmosphere. This propagating beam is disturbed by the atmosphere
through, for example, clouds, particle/molecular scattering, and fluctuations of the atmospheric refractive index,
the so-called optical turbulence.1 Knowledge of these optical turbulence conditions is highly relevant for designing
and deploying reliable, high-performance FSOC links, and there is an urge to quantify them well.2 Turbulence
strongly depends on the local topography and the ever-changing meteorological conditions. Hence, performance
quantification of an FSOC link requires measuring or modeling the optical turbulence conditions for the time
and site of (envisioned) operation. One modeling approach is to employ well-established mesoscale models to
simulate the relevant atmospheric conditions of the link and estimate the optical turbulence strength C2

n in a
post-processing step.3,4 Mesoscale models, such as the Weather Research and Forecasting (WRF) model,5 come
with a multitude of physics schemes to parameterize different atmospheric processes of the atmosphere, such as
radiation and turbulence. For each process, multiple options, i.e., multiple physics schemes, are offered that all
aim to solve the same general problem but vary in underlying assumptions or simplifications and, consequently,
in complexity and accuracy. As a result, the simulated meteorology can differ significantly between different
model configurations. Notably, the choice of the Planetary Boundary Layer (PBL) scheme, which parameterizes
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Figure 1: (a) Cabauw Experimental Site for Atmospheric Research (CESAR) with two scintillometers used to
validate C2

n obtained from our probabilistic WRF simulation. The paths of both scintillometers are marked as
dashed (blue) and dotted (green) lines in the sketches of (b) the vertical cross-section and (c) the top-down
view of the CESAR site.

turbulent processes within the first ∼ 1 km of the atmosphere, is expected to impact C2
n estimation significantly.

At the same time, the PBL is the most relevant for FSOC because it distorts satellite uplinks and downlinks and
is the region where terrestrial links operate.1 However, the effect of different PBL schemes on C2

n estimation is
challenging to assess a-priori. We propose to solve this issue by utilizing an ensemble of WRF models configured
with different PBL schemes, similar to techniques successfully used for, e.g., precipitation forecasting.6 Many
PBL schemes have specific strong points, such as good performance of non-local schemes (e.g., the ACM2 scheme)
in the daytime PBL, so a diverse PBL ensemble is expected to benefit from these specializations while being
robust against outliers. Quantifying the ensemble spread yields information about the quality of the simulated
C2

n and, subsequently, the expected quality of derived FSOC calculations, such as the link budget.

2. METHODOLOGY

To demonstrate the capability of our probabilistic C2
n simulation, we use the WRF model to simulate a 2-day test

case with quiescent atmospheric conditions around the Cabauw Experimental Site for Atmospheric Research7

(CESAR) in the Netherlands (cf. figure 1(a)). CESAR is selected because of the many instruments deployed,
which serve for accuracy assessment of our WRF ensemble, and because it has been used as a test site for FSOC
links.8 Two scintillometers that measure C2

n along different paths are mounted at CESAR at different heights
(see inset of figure 1(a)). Like FSOC links, scintillometers emit a laser beam at one end of the path and receive
it at the other. C2

n is then derived by measuring the fluctuations in received power caused by optical turbulence
along the path. At CESAR, a Large Apperture Scintillometer (LAS) is mounted at 9m above ground, measuring
along a 859m path, and an EXtra Large Apperture Scintillomter (XLAS) operates at 80m above ground along
a 10 km path. Both scintillometer paths are marked in panels (b) and (c) of figure 1, which represent a vertical
cross-section and a top-down view of the CESAR site, respectively.

The WRF ensemble is made up of ten individual WRF runs, so-called ensemble members, where each member
is configured with a different PBL scheme. To connect the surface with the overlying atmosphere, WRF also
requires configuring a surface layer (SL) scheme that depends on the selected PBL scheme, so we vary PBL
and SL as PBL/SL pairs as listed in table 1. It is beyond the scope of this work to compare the schemes in
detail, so the reader is referred to Skamarock et al.5 for an overview or to the respective original publications
of each scheme for in-depth discussions. Other physics options, such as microphysics or radiation schemes, are
kept unchanged for all the simulations. In particular, we use WSM-59 for the microphysics, the Rapid Radiative
Transfer Model for GCMs10 (RRTMg) for long-wave and short-wave radiation, the Noah11 land surface model,
and the Modified Kain-Fritsch Scheme12 to parameterize cumulus clouds in the largest domain. Each WRF
simulation is forced with the same ERA5 reanalysis data provided by the European Centre for Medium-Range
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Table 1: Planetary boundary layer (PBL) and surface layer (SL) schemes used for the 10 WRF models forming
our ensemble. The numbers in the square brackets correspond to the WRF configuration option for
bl pbl physics and sf sfclay physics.

PBL scheme SL scheme
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Weather Forecasts and set up with three nested domains with a final horizontal resolution of 1 km on the finest
domain. The vertical resolution close to the surface ranges between 20m and 30m as can be seen in figure 1(b)
depicting the model levels (grey lines).

Each run yields the temporal evolution of the 3D fields of mean potential temperature θ, mean wind compo-
nents (u, v), relative humidity, and atmospheric pressure, from which we estimate C2

n following the gradient-based
parametrization of Wyngaard et al. (1971, W71 hereafter).29 W71 is selected because it only requires the afore-
mentioned meteorological variables, readily available from any PBL scheme. However, W71 is only applicable
in the lower 10% of the PBL, the surface layer (SL), which changes in depth throughout the day. Typically, the
SL is shallow during the night (∼10m) and deep during the day (∼100m),30 so the height until which W71 can
be applied also changes. Therefore, our current approach cannot be used to estimate C2

n during the night for
FSOC links or instruments mounted at large heights. Alternative C2

n parameterizations,4,31 which are applicable
anywhere in the PBL, depend on higher-order turbulence variables, such as turbulent kinetic energy, which not
all PBL schemes yield. Selecting these parameterizations would limit the number of applicable PBL schemes
and, thus, the ensemble diversity. Since in this study we target diversity, we accept the current surface layer
constraint.

The agreement between probabilistic log10 C
2
n estimated from the WRF ensemble and the respective scintil-

lometer observations is quantified on two levels: the individual member level and the ensemble level. To compare
each individual model to the observations, the mean absolute error (MAE) and the Pearson correlation coefficient
r are used. The MAE can be interpreted as a distance between simulated and observed time series, and the
correlation coefficient quantifies how well the pattern of the time series (e.g., the diurnal cycle) is matched where
r = 0 means no correlation and r = 1 perfect correlation. The Continuous Ranked Probability Score32 (CRPS)
is employed to compare the predicted log10 C

2
n distribution, i.e., the entire ensemble, against the observations.

The CRPS can be considered as a probabilistic distance and is comparable to the MAE.32

3. RESULTS

The simulated probabilistic C2
n is compared to the observed scintillometer data in figure 2. Both time-series plots

show that the median ensemble estimates of log10 C
2
n in panel (a) match observations from XLAS and LAS well

in magnitude and the diurnal cycle. Note that no estimates are made for the XLAS during the night because
the SL is expected to be shallower than the mounting height of the XLAS. The dark 50% uncertainty bands
of the probabilistic simulations are relatively narrow, indicating consistency between the ensemble members.
Only the 90% uncertainty band of the simulated C2

n time series at the XLAS location expands significantly
during daytime. Responsible for the enhancement of uncertainty are two poorly performing members that are
identified in panel (d) as BouLac/Eta (
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) due to their considerable overestimation of
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Figure 2: Comparison of log10 C
2
n estimates from the WRF simulations against scintillometer observations as

(a) ensemble time series and (b) individual member model performance quantified by correlation (azimuthal)
and relative error (concentric circles around observations). Distributions of members’ MAE are compared to
CRPS of the full ensemble in (c), and individual C2

n time series produced by each ensemble member are shown
in (d). The titles in (d) correspond to the PBL/SL configurations listed in table 1. Night-time estimates for the
XLAS location are excluded from the entire analysis because the surface layer is expected to be too shallow for
W71 to be applicable.
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the daytime C2
n values at the XLAS location. This exemplifies how some PBL schemes can perform poorly in

one condition but well in others (e.g., for the C2
n values at the LAS location). The strength of the ensemble is

its robustness against such conditionally low performance of a few members. BouLac/Eta and E-ϵ/MYNN are
also visible as outliers in the Taylor diagram33 in panel (b). The Taylor diagram shows the correlation coefficient
r in azimuthal direction and increasing relative error as increasing distance between the configuration markers
and the observation on the x-axis. Most of the markers are right of the dotted circle, indicating that most
ensemble members overestimate log10 C

2
n on average, as visible also in the time series in (a). Except for the

two outlier configurations, most ensemble members form a cluster around the median ( ), showing inter-model
agreement. The overall performance of the ensemble is compared to the individual performance of its members
in panel (c). The two box plots present the distribution of the MAE computed between simulated log10 C

2
n

and the observations for each model, and the black crosses represent the mean CRPS. Since CRPS and MAE
are comparable metrics, the CRPS values lower than most MAE values demonstrate that the probabilistic C2

n

estimate outperforms almost all the individual ones.

4. CONCLUSION

In summary, we demonstrated that our probabilistic C2
n WRF ensemble not only captures measurements in the

surface layer but also outperforms almost all the individual deterministic model runs. We also showed the more
general advantages of ensemble approaches, such as their robustness against outliers and the possibility of using
the ensemble spread as a reliability measure. We believe these advantages to be also highly relevant in the FSOC
context when FSOC calculations are based on a probabilistic simulation rather than a deterministic one. For
example, in situations where validation data are not available – at new sites or for forecasts into the future –, we
envisage that the ensemble’s robustness and its uncertainty bands will make it more trustworthy than single runs.
Also, downstream tasks, such as link budget calculations or link availability estimates, become potentially more
reliable if they are based on robust C2

n estimates. The disadvantage of our methodology is increased computation
time, which should be weighed with the advantages on a per-case basis. We also note that a more extensive
study is needed that covers more than two days to support our results further. Future ensembles could also vary
other physics options, such as the microphysics scheme, which is expected to be significant under precipitating
conditions. To extend the applicability beyond the SL, more advanced C2

n parametrizations4,31,34 can be used,
but at the cost of a reduced ensemble diversity due to fewer applicable PBL schemes.
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