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Abstract

Human input is pivotal in building reliable and robust arti-
ficial intelligence systems. By providing a means to gather
diverse, high-quality, representative, and cost-effective hu-
man input on demand, microtask crowdsourcing market-
places have thrived. Despite the unmistakable benefits avail-
able from online crowd work, the lack of health provisions
and safeguards, along with existing work practices threatens
the sustainability of this paradigm. Prior work has investi-
gated worker engagement and mental health, yet no such in-
vestigations into the effects of crowd work on the physical
health of workers have been undertaken. Crowd workers com-
plete their work in various sub-optimal work environments,
often using a conventional input modality of a mouse and key-
board. The repetitive nature of microtask crowdsourcing can
lead to stress-related injuries, such as the well-documented
carpal tunnel syndrome. It is known that stretching exer-
cises can help reduce injuries and discomfort in office work-
ers. Gestures, the act of using the body intentionally to af-
fect the behavior of an intelligent system, can serve as both
stretches and an alternative form of input for microtasks. To
better understand the usefulness of the dual-purpose input
modality of ergonomically-informed gestures across different
crowdsourced microtasks, we carried out a controlled 2 × 3
between-subjects study (N=294). Considering the potential
benefits of gestures as an input modality, our results suggest
a real trade-off between worker accuracy in exchange for po-
tential short to long-term health benefits.

Introduction
Artificial intelligence (AI) techniques and machine learning
(ML) in particular, are drastically changing our lives through
technological revolutions across several domains (Erlei et al.
2020, 2022). A primary stimulant that has led to these
rapid advances in AI and ML in recent times, apart from
the computational resources now available, is the design
and development of crowdsourcing methods over the last
decades to harness human intelligence at scale (Gray and
Suri 2019). Human input is pivotal in building reliable and
robust AI systems (Gadiraju and Yang 2020); it is required
for data generation, evaluation, and debugging of ML mod-
els (Vaughan 2017), and plays a central role in building hy-
brid human-machine systems (Demartini et al. 2017). Mi-

Copyright © 2022, Association for the Advancement of Artificial
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crotask crowdsourcing marketplaces have thrived due to the
growing demand for accessible, high-quality, representative,
and cost-effective human input (Kittur et al. 2013). We have
witnessed a growth and a continuous influx of people turn-
ing towards microtask crowdsourcing platforms around the
globe, to earn a significant portion of their livelihoods (Di-
fallah et al. 2015; Difallah, Filatova, and Ipeirotis 2018).

Despite the unmistakable benefits that can be reaped from
online crowd work, issues emerging from the dynamics
of platform work, the lack of health provisions or safe-
guards, and existing work practices threaten the sustainabil-
ity of this paradigm (Sannon and Cosley 2019; Fan et al.
2020; Toxtli, Suri, and Savage 2021; Lascau et al. 2022).
Prior work has tangentially addressed some of these issues
by proposing different methods to increase worker engage-
ment and improve the overall experience of crowd work-
ers. To improve worker engagement, Rzeszotarski et al.
(2013) proposed to use micro-breaks while Dontcheva et al.
(2014) proposed to combine learning elements within tasks.
More recently, authors proposed to use conversational in-
terfaces, worker avatars, human and non-human metaphors
to increase worker engagement and satisfaction (Qiu et al.
2021; Jung et al. 2022). Researchers have reported that both
physical and mental fatigue can negatively impact crowd
work (Mao, Kamar, and Horvitz 2013; Zhang, Ding, and Gu
2018), and creating enjoyable experiences can positively im-
pact the mental health of crowd workers (Allan et al. 2018).

Prior work however, has not explored the broad impli-
cations of microtask crowdsourcing on the physical health
of workers. This is despite the fact that physical discom-
forts and ergonomics of desk work, particularly for sit-
ting workers, has been studied for several decades (Mur-
rell 2012). Crowd workers are also known to have sub-
optimal work environments and are often embedded in mul-
titasking contexts (Gupta et al. 2014; Gadiraju et al. 2017).
There have also been reports of stress related injuries among
crowd workers due to the repetitive nature of microtask
crowdsourcing – for example, carpal tunnel syndrome re-
sults from repetitive tasks and specific wrist positions, lead-
ing to pressure on the wrist’s median nerve and associated
pain, numbness, and weakness in the hand and fingers (Pa-
tel et al. 2022). It is well-known that stretching exercises
at the workplace can help in producing short-term effects
in reducing musculoskeletal pain in office workers (Dubey
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et al. 2019). Others have shown that taking active mini-
breaks for neck exercises at workstations creates a greater
reduction in neck pain symptoms rather than modifying the
workstation alone (Smith 2014). Several applications and
health interventions have also been developed over the last
decade to help users improve their workspace practices and
health awareness. However, behavioral change is a well-
documented challenge across several domains (Stawarz and
Cox 2015). This is exacerbated by the whimsical dynamics
of crowd work, leaving few opportunities for workers to pri-
oritize their health. Workers who are striving to complete
more tasks and maximize their monetary earnings in the im-
mediate present may not be sufficiently incentivized to delve
into practices that can bear health returns in the future.

We draw inspiration from working ergonomics research
and envision the dual role of novel input modalities that can
simultaneously serve as exercises to benefit crowd workers’
health while acquiring input from workers on different tasks.
An example of this can be seen in Figure 1. For the purposes
of this work, we adopt the definition of a “gesture” as intro-
duced by Carfı̀ and Mastrogiovanni (2021): “Gestures are
body actions that humans intentionally perform to affect the
behavior of an intelligent system.” As a first step towards
that end, in this paper, we assess the trade-offs of using ges-
tures as an input modality for crowdsourced microtasks. The
choices of gestures in this work are informed by literature in
the fields of workplace ergonomics, physical therapy, and
medical sciences (Lee, Park, and Kim 2013; Vuletic et al.
2019; Carfı̀ and Mastrogiovanni 2021). We thereby aim to
address the following research questions:

RQ#1: How effective and efficient are ergonomically
informed gesture-based input modalities for microtask
crowdsourcing?
RQ#2: How do workers perceive ergonomically in-
formed gesture-based input modalities in different
types of crowdsourced microtasks?

We carried out a 2 × 3 factorial between-subjects study
with 294 participants recruited from the crowdsourcing plat-
form Prolific.1 Participants completed one of three micro-
tasks, while using one of two different input modalities de-
pending on the experimental condition – one with gestures
as an input modality and another using the conventional key-
board and mouse as input. We have participants complete a
pre-task survey for the purpose of gathering demographic in-
formation. The pre-task survey also allows us to get a view
of how each participant perceives the comfort and health
levels of their work environment, and specific parts of the
body. Further, we employed a post-task survey to assess the
worker engagement, their perceived cognitive load, and de-
termine whether workers perceived any health benefits while
using gestures for providing their input. Performance mea-
sures such as accuracy and task completion time to com-
plete the task were also collected. Results show compara-
ble performance for both input modalities, yet workers find
the standard input more usable while gestures are viewed as
more rewarding. Our findings indicate that with potentially

1https://prolific.co

reasonable trade-offs gestures can serve as an alternative in-
put modality for microtask crowdsourcing.

Figure 1: An example of a task with Gesture input that
includes the question prompt, the possible answers, the cho-
sen answer, the webcam view and a countdown timer.

Original contributions. Through our work, we created a
gesture capture pipeline, introducing a novel, modular pose
classification strategy that enables flexible, real-time gesture
capture. Using this new pipeline, we found that crowd work-
ers can execute microtasks accurately using a novel input
modality of ergonomically-informed gestures (with a drop
in accuracy of 6% in comparison to a conventional base-
line). However, the task completion time of workers was
not significantly different when using gesture-based input.
We reveal a viable trade-off between the choice of the input
modality and the promise of short to long-term health ben-
efits for workers. In our study, workers did not view input
modalities in terms of their health, or how such inputs may
impact their health. A potential application of using gestures
is the creation of health-driven interventions where crowd
workers complete tasks using ergonomically informed ges-
tures (Luttmann, Schmidt, and Jäger 2010; Mehrparvar et al.
2014) to reduce musculoskeletal discomforts. Our findings
have important design implications for promoting crowd
worker health and well-being, as a pivotal step towards en-
suring the sustainability of the paradigm.

All data and code corresponding to our work, along with
supplementary material can be found on the Open Science
Framework companion page.2

Related Work
Ergonomics, Health, and Crowd Work
Ergonomics is the relationship between a worker and their
environment (Murrell 2012; Woo, White, and Lai 2016). In-
vestigations into the working environments of crowd work-
ers discovered that workers work in a large variety of en-
vironments, with different access to hardware and software
needed to complete microtasks (Martin et al. 2014; Gupta

2https://osf.io/7x526/
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et al. 2014; Gadiraju et al. 2017). Such differences in en-
vironments result in different interactions with tools, which
can in turn have varying effects on workers’ physical health
(Ranasinghe et al. 2011; Woo, White, and Lai 2016). Fol-
lowing a study on work activity and muscular complaints,
Luttmann, Schmidt, and Jäger (2010) concluded that work-
ers should make an effort to change the pace and sequence of
their work in order to decrease muscular activation through-
out the day, thereby reducing muscular discomfort. Lee,
Park, and Kim (2013) investigated the effects of neck ex-
ercises on high school students, focusing on the neck and
shoulder area. Findings indicated that strengthening of the
cranio-cervical flexor muscle has significant effect towards
improving neck and shoulder posture. A broader study of
stretches for the neck, shoulders, lower back, hands and
wrists found that complaints of musculoskeletal discomfort
reduced when workers performed the stretches (Mehrparvar
et al. 2014). Converting targeted stretches that benefit mus-
cles used in working environments into interpretable ges-
tures can potentially lead towards maintained performance
while also benefiting the health of workers.

Crowdsourcing researchers have demonstrated that fa-
tigue, both mental and physical, can negatively affect
crowd worker performance (Mao, Kamar, and Horvitz 2013;
Zhang, Ding, and Gu 2018). Mental health is a growing topic
of import within society, as it relates to people worldwide
(Organization 2001). Previous studies in office work have in-
vestigated mental disorders and treatment techniques, such
as meditation and relaxation therapies (Loewenstein 1991;
Montero-Marin et al. 2019; Stein 2001; Tariq et al. 2006).
As a means to assess the overall and mental health, the SF-
36 survey has been extensively used in studies (Ware et al.
1993; Ware Jr 2000). The survey contains two sub-scales for
measuring mental health, focused on mental well-being and
energy/fatigue. Within crowdsourcing marketplaces, work-
ers need to invest a large amount of time and effort into un-
derpaid tasks due to factors such as power asymmetry and
invisible labor (Gray and Suri 2019; Irani and Silberman
2013; Martin et al. 2014; Toxtli, Suri, and Savage 2021; San-
non and Cosley 2019). Such factors influence not only men-
tal well-being of crowd workers, but also their psychosocial
condition. To assess the psychosocial condition of crowd
workers and their environments, the Copenhagen Psychoso-
cial Questionnaire (COPSOQ) has been widely applied (Pe-
jtersen et al. 2010). To the best of our knowledge, neither of
these surveys has been applied in a crowdsourcing scenario
using gestures as input, a gap which we address in this work.

Gestures as Input
Gestures as a mechanism for interaction between humans
and machines is well researched, with many taxonomies
defining the different gestures being presented. In some
works, gestures are divided into “vision-based” and “sensor-
based” (Al-Shamayleh et al. 2018; Cheok, Omar, and Jaward
2019; Sarma and Bhuyan 2021). Sensor-based solutions of-
ten take the form of wearable devices, such as smartwatches
or gloves. Adams et al. (2018) introduced Keppi, a pressure-
sensitive stick, that users can squeeze to self-report pain lev-
els. Vision-based solutions rely on cameras, such as built-in

webcams or externally connected devices (Kim et al. 2015;
Shin and Kim 2017; Wachs et al. 2011). Quek (1995) sep-
arates gestures into “communicative” and “manipulative”.
Communicative gestures, as the name implies, are used to
communicate. Manipulative gestures are used to interact
with objects or systems and create an effect, such as moving
an object. Each of these larger classifications have been fur-
ther subdivided over time. Stern, Wachs, and Edan (2008)
introduced the idea of conversational and control gestures.
Conversational gestures are those that occur during speech
activities. Control gestures are command-oriented gestures
meant to give instructions. Further variations of a gesture
taxonomy include those by (Karam and m. c. schraefel
2005) and (Rojas-Muñoz and Wachs 2019), which include
Butterworth’s, semaphoric, and linguistic gestures among
those previously discussed. In an effort to provide unifor-
mity across the many taxonomies, Vuletic et al. (2019) per-
formed a systematic literature survey. Inspired by the survey
conducted by Vuletic et al. (2019), Carfı̀ and Mastrogiovanni
(2021) performed a literature review to define what a gesture
is in a concrete way, and also introduce a more flexible tax-
onomy of gestures. Gestures are defined as “body actions
that humans intentionally perform to affect the behavior of
an intelligent system”. While there are many variations of
gestures for human-machine interaction, none are explicitly
defined for crowdsourcing microtasks. In this work, we ad-
dress this gap by proposing gestures as an input modality for
microtask execution.

Study Design
In this study, we aim to understand the efficacy of gestures
(referred to henceforth as Gesture) as an alternative in-
put modality to the conventional means of using a keyboard
and mouse (Gadiraju et al. 2017) (referred to henceforth as
Standard). We seek to understand what trade-offs may
exist between the two modalities in terms of effectiveness
and efficiency, and we also aim to understand how crowd
workers perceive gestures. Due to the variety in task types
and the potential interaction of task types with input modal-
ities, we additionally consider different task types in our ex-
ploration. Towards these ends, we conducted a controlled
2×3 between-subject crowdsourced study. The independent
variables for the study are the input modality (Gesture,
Standard) and task type (sentiment analysis, classifica-
tion, and information finding), resulting in a total of six ex-
perimental conditions. An example of what one of these ex-
perimental conditions looks like can be seen in Figure 1. For
each condition, crowd workers are asked to complete a sur-
vey before and after their interaction with the microtask.

Surveys and Measures
Prior to completing the microtask, each worker is asked a set
of 16 questions intended to gather demographic information,
e.g., their age, their mood, their experience on Prolific, how
much and when they tend to work on the platform, and their
earnings. To ensure that we gather high-quality responses, an
attention check question was included in this survey (Gadi-
raju et al. 2015). Additionally, we inquire as to how workers
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are feeling, sectioned off into specific parts of the body. The
demographic data affords us contextual information that is
helpful in interpreting the responses to the post-task survey.

We aim to understand the trade-offs of using gestures
(Gesture) as an input modality on worker engagement in
comparison to using the conventional input modality of a
keyboard and mouse (Standard). To capture engagement,
we included six questions from the short form of the User
Engagement Scale (UES-SF), specifically from the “per-
ceived usability” and “reward” scales (O’Brien, Cairns, and
Hall 2018).

Furthermore, we explore whether gestures as an input
modality lead to a similar cognitive load, while still en-
abling workers to complete their tasks effectively and effi-
ciently. To measure this, we include the six questions from
NASA’s Task Load Index (TLX) (Hart 2006). Finally, to ex-
plore whether using gestures results in any perceived health
benefits from the standpoint of workers, we implemented
questions from the COPSOQ (Pejtersen et al. 2010) and the
SF-36 survey (Ware et al. 1993; Ware Jr 2000).

Considering the survey responses together with the accu-
racy of responses, e.g., how many were responded to cor-
rectly, enables us to assess the effectiveness of the Gesture
input modality. We also want to understand how Standard
and Gesture inputs compare in terms of efficiency. There-
fore, we also record how long it takes for workers to com-
plete a micro task, excluding the time spent on pre- and post-
task surveys.

Tasks Design
We selected three task types as being well-suited for comple-
tion via gesture input, from the taxonomy of microtasks in-
troduced by Gadiraju, Kawase, and Dietze (2014). The tasks
we selected were: Sentiment Analysis, Classification, and
Information Finding.

Figure 2: Interface for the Sentiment Analysis task.

The Sentiment Analysis microtasks (Figure 2) involve
workers reading a review for a movie or TV show and as-
signing the star rating they deem most appropriate based on
the sentiment of the review content. The reviews were sam-
pled from the Amazon Review Dataset (Ni, Li, and McAuley
2019) such that there were two reviews for each rating level,
from 1–5 stars, for a total of 10 reviews. Additionally, these
reviews were limited to a maximum of 150 words to ensure
a coherent and consistent display, and to maximize the ease
of reading for workers.

Figure 3: Interface for the Classification task.

The Classification microtasks (Figure 3) ask workers to
classify the beak shape of a bird in an image using a set of
example images for 8 different beak shapes. A series of 10
images are shown, sampled from the dataset originally pro-
duced by Balayn et al. (2022). For each image, the worker
is asked to select the beak type from the candidates that
matches the beak type in the image.

Figure 4: Interface for the Information Finding task.

Finally, the Information Finding microtasks (Figure 4)
follow a similar design to the information finding tasks de-
signed in (Gadiraju and Dietze 2017). This task involves
workers being presented with the name of a famous person.
Using the name and any search tool at their disposal, e.g.,
Google, Bing, or Wikipedia, workers are tasked with find-
ing the middle name or profession of the famous person. In
total, there are 10 names presented: five requiring searching
for the profession and five for the middle name.

Combining the input modalities of Gesture and
Standard and the three types of microtasks, we de-
signed six separate experimental conditions: (i) Gesture-
Sentiment, (ii) Standard-Sentiment, (iii) Gesture-Classify,
(iv) Standard-Classify, (v) Gesture-Finding, and (vi)
Standard-Finding.

When designing the gestures for each task, we made sure
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(a) (b) (c)

(d) (e) (f)

Figure 5: Example screenshots of gestures for selecting an answer. First row, left to right: (a) Sentiment, closed fist moving
left/right to choose a rating. (b) Classification, number of extended fingers in the bottom 2/3 of view to choose an answer option.
(c) Finding, tilting head left or right to choose between two options. Second row, left to right: (d) Sentiment, open fist to submit
rating. (e) Classification, hand in top 1/3 of view to submit answer. (f) Finding, lowering head to submit answer.

that separate actions are used for selection and submission of
an answer for both Standard and Gesture input modal-
ity, keeping them consistent. For the Standard tasks, it
means that two mouse clicks are required to submit an an-
swer: one for selecting the answer and one more for sub-
mitting. Similarly for Gesture, two actions are required
to choose an answer and to submit it. The answer selection
gesture for all tasks has immediate effect, whilst the confir-
mation gesture needs to be held for 2 seconds for the answer
to be submitted. When the answer is changed or the confir-
mation gesture is interrupted, then the 2 second countdown
will be reset, allowing workers to change the answer.

In the sentiment analysis task, the answer can range be-
tween 1–5, thus the camera view is divided into 5 columns;
with the leftmost column representing 1 to the rightmost col-
umn representing 5. When a hand enters the view, the cen-
troid of its landmarks are denoted by a yellow square. With
a closed fist, workers can move the hand left and right and
change the selected answer based upon which column the
hand centroid falls into (Fig. 5(a)). The confirmation gesture
is an open hand, which needs to be held for longer than 2
seconds (Fig. 5(d)).

In the classification task, there are 8 bird classes to choose
from, each denoted with a number from 1–8. To select an an-
swer, the workers have to raise the respective number of fin-
gers with one or both hands (Fig. 5(b)). The finger count is
independent from the combination of fingers raised. All fin-
gers apart from the thumb are taken into account. We opted
to ignore the thumb because during testing we have found
the recognition of thumb extension to be unreliable. To con-
firm the answer, any of the visible hands’ centroid has to be
raised above the line drawn on the camera view (Fig. 5(e)).

In the information finding task, there are only two an-
swers; one on the left and one on the right. To select an
answer, the worker has to tilt their head in the direction of
the chosen answer (Fig. 5(c)). Once chosen, the worker can
return to the neutral head position and lower the head to con-
firm the answer (Fig. 5(d)).

Examples of all the described gestures can be found in
Figure 5. Although not shown in the figure, extra compo-
nents are displayed on the task page to provide immediate
feedback to the worker of their actions, such as the selected
answer and the countdown timer. These can be found in the
task screenshots, available on the companion page.

To limit familiarity biases, we included a tutorial stage for
all task types. All tutorials include a text description of the
task and instructional text. The classification task addition-
ally includes example images of birds so workers can famil-
iarise with the bird classes first. For the three Gesture task
tutorials, workers also have to submit two specific answers
with gestures before proceeding to the actual task. These are:
answers 4 and 1 for the sentiment task, 5 and 8 for the classi-
fication task and left and right for the finding task. These an-
swers were chosen specifically to confirm that workers have
understood the gesture inputs correctly.

Participants and Quality Control
We carried out a power analysis using the G*Power tool
(Erdfelder, Faul, and Buchner 1996), to determine the re-
quired sample size in our controlled study, resulting in 279
participants. To account for potential exclusion of data, we
recruited 50 participants for each of the 6 experimental con-
ditions, resulting in a total population sample of 300. Partic-
ipants were recruited from the Prolific crowdsourcing plat-
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Figure 6: Simplified structural diagram of the gesture recognition pipeline we implemented.

form, while enforcing a set of pre-screening filters to ensure
reliability of responses. We restricted participation to work-
ers who were both fluent in English (since the task instruc-
tions and microtasks were entirely in English), and had an
approval rating of 90% or above on Prolific. We also ensured
that workers could not participate in more than a single ex-
perimental condition in our study. All workers were required
to complete an informed consent form prior to participation.
Upon completing an experimental condition, each worker
was compensated at a rate of £8.00 per hour. Our study also
received an institutional ethics approval.

Technical Implementation
All six experimental conditions were hosted on a custom de-
veloped website written using the React library, connected to
a back-end server written using the NestJS framework. The
back-end API manages the progress of each worker and the
front-end is responsible for rendering the pages and handling
gesture, mouse, and keyboard inputs. The communication
between the front-end and back-end consists of an HTTP
REST API with all the worker data being stored in a Mon-
goDB NoSQL database. The input of gestures is enabled by
two consecutive client-side stages: pose detection and pose
classification, which is concisely represented in Figure 6.

Pose Detection The pose detection stage detects the body,
face and hand landmarks of the worker on each frame. It
utilises two libraries to do so: MediaPipe holistic3 and Kali-
dokit4. First, the webcam video feed is passed to MediaPipe
holistic, which uses multiple pre-trained models to perform
real-time pose landmark estimation of the body, face and
hands. We augment the result landmarks using Kalidokit,
a utility library which converts them into more directly in-
terpretable data such as simple Euler rotations of joints
and blend shape face values. The combination of these two
pieces of data is utilized to classify poses.

Pose Classification The pose classifier is defined by three
components: a set of pose classes, a set of action classes
(side effects) and the mapping between the two. A pose
class, in part inspired by the “Repetition Counting” section

3https://google.github.io/mediapipe/solutions/holistic.html
4https://github.com/yeemachine/kalidokit

in this Google solution5, is described by the entry condi-
tion (activation), exit condition (deactivation), duration and
maximum number of mistakes. When the classifier receives
pose data from the previous stage, it passes them onto all the
pose classes. Each pose class then evaluates its entry condi-
tion, which if truthful then the class enters the active state
and saves the current timestamp. Once a pose class enters
the active state, it will stay so until the exit condition eval-
uates to true and deactivate. Instead, if the class stays in the
active state for longer than the duration time (which can be
0), then a callback function is triggered. An action class de-
scribes three functions: callback, onActivate and onDeacti-
vate. These are called respectively when the duration of an
active class elapses, when the class is activated and when
it is deactivated. For example, we use the callback function
to change the answer choice or to submit the answer, and
the onActivate and onDeactivate functions to start and reset
the timer. The separation between gesture classes and their
actions allows for a modular setup and the ability to dynam-
ically assign a gesture to an action.

The entry and exit conditions are functions that, when
given landmarks of the body, face and hands, check whether
some conditions of the pose are met. For example if the co-
ordinates of a landmark enters a certain range of the webcam
frame or if an angle of a joint exceeds a certain degree. Fur-
thermore, by using the fingerpose package,6 it is also possi-
ble to evaluate finger gestures, as we show in the classifica-
tion task.

To protect the workers’ privacy, we made sure to not col-
lect any personally identifiable information; thus all user
data is only linked to their prolific id, including survey re-
sponses, question answers, and pose data. Participants also
have the possibility to revoke their consent whenever they
want during the entirety of the study; once revoked, any data
that was generated from that participant is then removed.
Furthermore, the webcam images used for gesture recogni-
tion are shown and processed all on the participants’ device
and never sent to the back-end or stored anywhere. We do
collect pose landmarks on some actions, but they are not per-

5https://google.github.io/mediapipe/solutions/pose
classification.html#repetition-counting

6https://github.com/andypotato/fingerpose

19



sonally identifiable information.

Results and Analysis
With this study we explore two key factors. First, we want to
determine if gestures can serve as a viable alternative input
strategy to a mouse and keyboard for crowdsourced micro-
tasks. Second, we want to know how crowd workers per-
ceive the gestures. To enable fair comparison between con-
ditions, we recruited 50 participants per experimental condi-
tion. Across all conditions, we had to remove six participants
for failing two attention checks. We removed one additional
participant for clicking through the post-task survey, i.e.,
providing the same answer to all questions on the post-task
questionnaire in a short period of time. Finally, we removed
two responses that were duplicated. As a result, we were left
with a total of 294 responses. The distribution across exper-
imental conditions can be seen in Table 1.

Experimental Condition #Participants
Gesture-Sentiment 46
Standard-Sentiment 49
Gesture-Classify 51
Standard-Classify 49
Gesture-Finding 49
Standard-Finding 50

Table 1: Number of participants per experimental condition.

Worker Demographics and Background
We required participants to complete a pre-task survey be-
fore interacting with a microtask to gather demographic-
related data. Figure 7 shows this demographic information
including age, gender, experience, and self-reported health
factors of the crowd workers. The majority of workers are
aged 18–35 (89%), while the remaining are aged 36–65
(11%). Of the 294 recruited participants, 157 were female
and 135 male, one preferred not to specify, and one reported
as non-binary or other. The experience of the workers var-
ied with most reporting having between six months and one
year of experience on Prolific, as seen in Figure 7(e). Ad-
ditionally, the workers reported working ten hours or less
each week (Figure7(g)). This is reflected in the yearly in-
come shown in Figure 7(f) with most respondents making
$25,000 and under from their crowd work.

When reporting the comfort and health level of their
work environments, the crowd workers tend to consider
their environments somewhere between slightly comfort-
able/healthy and neither comfortable/healthy or uncomfort-
able/unhealthy. As seen in Figure 7(d), similar results were
reported for the comfort level of the eyes and the neck and
shoulders. Knees and feet were reported as the most com-
fortable, with the back being the least comfortable.

Efficiency and Effectiveness
Gaining a full picture of how well gestures serve as an al-
ternative input modality requires examining both the effec-
tiveness and the efficiency workers exhibit while using the

modality. To this end, we measure the accuracy of workers
for each task, i.e., how many of the 10 tasks they completed
correctly, and how quickly workers complete the tasks.

Experimental Condition Accuracy (%)
Gesture-Sentiment 36.74
Standard-Sentiment 41.22

Gesture-Classify 61.37
Standard-Classify 68.98

Gesture-Finding 76.73
Standard-Finding 82.8

Table 2: Accuracy of the crowd workers across different ex-
perimental conditions.

In exploring the effectiveness of gestures, we measure
the accuracy across all workers for each experimental con-
dition, reported in Table 2. The results show a significant
main effect for the input modality, F(1, 288)=9.56, p=.002
such that workers achieved higher accuracy in tasks with
the Standard input modality (M=.64, SD=.15) in con-
trast to those with the Gesture input modality (M=.58,
SD=.18). The main effect of task types was also significant,
F(2, 288)=146.53, p<.001. To see where the significance
resides with respect to the three task types, we implement
a post-hoc Tukey test. We found significant differences be-
tween all combinations of task types. The interaction effect
between the input modality and task type was not significant.

As an indicator of efficiency, we measured the time it
takes workers to complete the task in each experimental con-
dition. Note that the time spent on pre- and post-task surveys
is not included in this measurement. We found that work-
ers spent more time to complete the tasks when using the
Standard input modality (M=213.82, SD=92.01), in con-
trast to the Gesture modality (M=207.04, SD=113.63).
However, this difference was not statistically significant.

Worker Perceptions
Aiming for a broader overview of the effectiveness beyond
accuracy, we investigated workers’ perceptions. Depending
on the underlying data and dependent variables of interest,
we conducted one-way/two-way ANOVAs or the Kruskal-
Wallis H test. To correct for Type-I error inflation, we report
statistical significance with respect to adjusted p-values.

Through a two-way ANOVA, we explored the impact
of input modality and task type on the perceived usabil-
ity among workers. The results show a significant main ef-
fect for the input modality, F(1, 288)=13.26, p<.001 such
that workers perceived a higher usability in tasks with the
Standard input modality (M=4.06, SD=.66) in contrast to
those with the Gesture input modality (M=3.71, SD=.96).
The main effect of task types was also significant, F(2,
288)=13.72, p<.001. A post-hoc Tukey test uncovered sig-
nificant differences between the classification and informa-
tion finding tasks. Significance between the sentiment anal-
ysis and information finding task types was also found. The
interaction effect was not significant.
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Figure 7: Distribution of workers across the demographics of age, gender, experience on Prolific, income from crowd work, and
self-reported health and comfort.

We also investigate how the workers perceived the re-
ward of completing the microtasks with different inputs. We
found a significant main effect for the input modality, F(1,
288)=6.33, p=0.01 such that workers perceived a higher re-
ward in tasks with the Gesture input modality (M=3.8,
SD=.78) in contrast to those with the Standard input
modality (M=3.59, SD=.69). The main effect of task types
was also significant, F(2, 288)=3.19, p=0.042. A post-hoc
Tukey test of task types revealed no significant difference.
The interaction effect was not significant.

Through a two-way ANOVA we investigated the impact
of input modality and task type on the cognitive load of
workers. We found a significant main effect for the input
modality, F(1, 288)=28.49, p<0.001 such that workers ex-
perienced lower cognitive load when using the Standard
input (M=1.82, SD=0.49 versus when using the Gesture
input (M=2.17, SD=0.61). The main effect of task type
was also significant, F(2, 288)=10.61, p<0.001. A post-hoc
Tukey test uncovered significant differences between clas-
sification and finding as well as between the sentiment and
finding task types. The interaction effect was not significant.

We explored the impact of input modality and task type on
the self-reported general health of workers with a Kruskal-
Wallis H-test. We found the main effect for the input modal-
ity was significant, (H(1)=4.59, p=0.03), such that workers
report better general health when using the Standard in-
put modality (M=2.51, SD=.94) over the Gesture modal-
ity (M=2.28, SD=.94). Neither the main effect for task type
nor the interaction effect were significant.

Looking into the impact of the input modality and task
type on the work pace of workers, we found that the main
effect for input type was not significant. On the other hand,
the main effect for task type was significant, H(2)=6.05,
p=0.049. Applying a Dunn post-hoc test for the task types,

we find that there is a significant difference between the sen-
timent and metadata task types, such that workers feel the
need to work at a faster pace when completing the sentiment
analysis task (M=3.25, SD=.87) in contrast to the metadata
task (M=2.93, SD=.94).

There were no statistically significant effects found in our
exploration of the main effects of input modality and task
type on the emotional demands, emotional well-being, quan-
titative demands, and perceived error of workers.

Finally, we wanted to learn how workers perceive their
success rate at completing the various microtasks, thus we
asked them to estimate how many of the 10 questions
they believe they answered correctly. Using the Kruskal-
Wallis H-test, we found a significant main effect for the
input modality, H(1)=7.88, p=0.005 indicating that work-
ers perceive themselves to be more accurate when using
the Standard input modality (M=7.56, SD=1.62) versus
when using the Gesture modality (M=6.98, SD=1.85).
We also found a significant main effect for the task type,
H(2)=22.02, p<0.001. A post-hoc Dunn test revealed that
workers completing the classification task have significant
difference in their perceived accuracy when compared with
those that completed the sentiment analysis task. Workers
that completed the sentiment analysis task also estimated
significantly different accuracy when compared to those that
performed the information finding task.
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In summary, we investigated the effectiveness and effi-
ciency of Gesture inputs for crowdsourcing micro-
tasks and found no significant difference in the effi-
ciency of workers in comparison to the Standard
input method. We did discover significant main ef-
fects from the input modality for perceived usability,
perceived reward, cognitive load, self-reported gen-
eral health, and for perceived accuracy. Workers found
Standard to be more usable and to require less cog-
nitive effort. They also estimated more accurate per-
formance and perceived themselves to have better gen-
eral health while using the Standard input. Of note
is workers found Gesture to be a more rewarding in-
put modality. We additionally found significant main
effects from the task types in the same measures, as
well as for work pace.

Discussion and Implications
In an increasingly complex landscape of crowdsourcing
marketplaces, sweeping changes driven by policy or plat-
form regulations require the benefit of time. We argue that
crowd worker health is an urgent issue that cannot afford
the privilege of time. Thus, we envision gestures as a dual-
purpose input modality, that can allow workers to complete
their tasks while also serving the alternative purpose of pro-
viding short to long-term health benefits through the types
of movements used. However, the first step towards that goal
is to fully understand the trade-offs concomitant with using
gestures as an input modality for microtask crowdsourcing
— the main objective of this study.
The Usability of Gestures. When prompted on usability
across the experimental conditions, workers responded that
Standard inputs were more usable. This comes as no sur-
prise, given the ubiquitous presence of the modality. In addi-
tion to prevalence, Standard inputs have accrued a large
selection of accessibility support systems, such as stabiliza-
tion for tremors and zoom options for those with poor visual
acuity. Yet, Gesture inputs were viewed as being more re-
warding despite leading to higher perceived cognitive loads.
The increased cognitive load can be a result of workers’ lack
of familiarity with the novel input modality. For each gesture
task, we provided a short training at the beginning to demon-
strate the gestures, provided workers with an opportunity to
familiarize themselves with the modality, and practice the
gestures. This was intended to limit the impact of familiar-
ity. However, a brief training session may not always be suf-
ficient to even out workers’ prior use and experience with
Standard inputs.
Trade-offs When Using Gestures. Workers performed with
a higher accuracy when using the Standard input modal-
ity (64%) in contrast to the Gesture modality (58%). De-
spite generating slightly more accurate responses (around
6% better), workers spent nearly identical amounts of time
completing tasks across both modalities. Considering the
potential benefits of gestures as an input, our results suggest
a realistic trade-off between worker accuracy in exchange
for potential short to long-term health benefits. The perfor-
mance differences measured in this study may be offset over

time as workers become more familiar with the Gesture
modality, reducing the cognitive effort needed. Having said
that, repetitive gesture-based input may be just as damag-
ing as the existing standard. Therefore, we envision the role
of gesture-based input as one that can be used at intervals
or sporadically, either in a push-based fashion (where crowd
workers are required to complete specific tasks using ges-
tures) or a pull-based fashion (where crowd workers can opt
to use gestures to complete tasks), at the discretion of the
task requester or crowdsourcing platforms. Further research
is required to best understand how we can integrate ges-
tures as an input modality in everyday crowdsourcing mar-
ketplaces to maximize the health benefits of crowd workers,
and increase the sustainability of the paradigm.
Barriers to Participation. Gestures as an input modality
also have the potential to lower the barriers to participation
in crowd work. Narula et al. (2011) highlighted that mi-
crotask crowdsourcing platforms are often inaccessible to
workers in developing countries, and proposed a mobile-
crowdsourcing platform for OCR tasks, to lower the bar-
rier to participation. Khanna et al. (2010) studied usability
barriers that were prevalent on Amazon’s Mechanical Turk
(AMT), which prevented workers with little digital literacy
skills from participating and completing work on AMT. In
this context, using intuitive gestures that crowd workers are
familiar with as a means for input acquisition, offers a great
potential for lowering barriers to participation and easing the
onboarding of novice workers to crowd work.
Mitigation of Cognitive Biases. Performing research in-
volving crowd workers has the potential to introduce numer-
ous cognitive biases depending on task design and workflow.
If ignored, such biases can have negative effects on study
results. Therefore, we analyzed our experimental design by
using the Cognitive Biases Checklist introduced by Draws
et al. (2021) and took steps to mitigate any biases found.

Self-interest bias is possible due to the monetary com-
pensation of crowd workers we recruited from the Prolific
crowdsourcing platform. To mitigate this, we rejected a sin-
gle submission that showed obviously low effort, i.e., same
answer for every survey question and an unreasonably short
completion time – a fair rejection as described by Gadi-
raju and Demartini (2019). The comparative nature of the
study comes with the potential for an affect heuristic, in the
form of a familiarity bias. Workers will have a higher level
of familiarity with the Standard input, therefore we in-
clude and provide time for a tutorial to workers using the
Gesture inputs. Through clear instructions and a detailed
task description, we attempt to address the presence of opti-
mism bias by ensuring the workers are as informed as they
can be before selecting our task. On the other side of this
coin, the sunk cost fallacy is also potentially present in our
study. We conducted a small pilot study to get an informed
estimate of how long each task would take in order to min-
imize the effect. Finally, there is the possibility of disaster
neglect, or workers being improperly informed of the conse-
quences of the task. The requirement of workers to complete
an informed consent form addresses this bias.
Caveats and Other Considerations. In our task instruc-
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tions to workers in the Gesture experimental conditions,
we did not mention the health-inspired motivation behind
the gestures to avoid priming workers towards favorable per-
ceptions. Therefore, through the questionnaires focused on
worker engagement and perceived health benefits, we found
that crowd workers gauge microtasks from the perspective
of completing the tasks, and not necessarily from the angle
of how gestures may help their health.

It is important to understand that gesture-based input may
not equally benefit all crowd workers. Crowd workers may
possess a variety of ailments that can impact their ability to
perform tasks (Uzor et al. 2021). Individuals with existing
physical ailments may be ill-suited to provide gesture-based
input. However, if crowd workers are given the agency to
self-select into specific input modalities such mismatches
can be avoided. We also envision the further development of
an “inventory of gestures” that can be used to suit different
worker preferences and capabilities, creating opportunities
to enhance worker experiences through personalization.

There are further considerations from a human-computer
interaction perspective regarding our task interface. In our
task design, we have provided feedback that immediately
reacts to the worker’s actions, but this feedback is only vi-
sual in nature. To improve the usability of the interface, fur-
ther feedback of other types such as acoustic and intermedi-
ary can be added. For example in the information finding
task, where workers have to open a second tab to search
for information, audio cues can help them input their an-
swers even when the browser tab containing the task is not
in focus. Similarly, workers do not have intermediary feed-
back on how close they are to the answer selection and sub-
mission gestures, namely to what degree to tilt their head
or how much to lower their chin to submit. Feedback on
these factors can potentially increase the overall usability of
Gesture inputs.

Limitations. In our work, we did not explore the role of
task complexity (Yang et al. 2016) in shaping the quality of
responses when using gesture-based input. It is likely that
more complex tasks cannot easily be transformed to suit
gesture-based input acquisition. This can be particularly true
in the absence of dedicated tools that can help requesters de-
sign tasks for gesture-based input. As much as this is a chal-
lenge, it is a vital opportunity for future research targeting
worker health and well-being. Our findings can inform the
design of software tools that can help automatically trans-
form tasks to suit gesture-based input from crowd workers.

Conclusions and Future Work
Crowdsourcing marketplaces are continuing to thrive nearly
two decades since Amazon’s MTurk broke a path for mi-
crotask crowdsourcing. Worker health and well-being, how-
ever, has received limited attention from researchers and
practitioners despite being essential for the sustainability of
the paradigm. It is well-known that many crowd workers
around the world deal with sub-optimal work environments
and harrowing work dynamics, that leave them straining to
earn their livelihoods. Workers however are the most impor-
tant actors in the ecosystem. To improve workers’ physical

and thereby mental health, we envision a dual-purpose in-
put modality that workers can use to (a) execute microtasks,
and one that is informed by workplace ergonomics and can
thereby (b) have a positive influence on worker health in
the short to long-term. With that vision in mind, we intro-
duce a novel, modular gesture capture pipeline that is flex-
ible and works in real time. With this pipeline, we carried
out a controlled study to better understand the efficiency
and effectiveness of ergonomically-informed gestures as a
dual-purpose input modality for crowdsourced microtasks.
We found that workers can efficiently execute microtasks
using gestures with an accuracy that is on average around
6% below a conventional baseline without any difference in
the task execution time. Across several types of microtasks,
workers perceived the conventional input modality of using
a mouse and keyboard as being more engaging and less cog-
nitively taxing. Workers also tended to view input modali-
ties in light of how the inputs will help them complete tasks,
rather than from the perspective of the health benefits that
they may provide. Through an analysis of various worker
perceptions that shed light on the effectiveness of this novel
input modality, we share insights leaving important implica-
tions for the design of gesture-based input for crowd work.

As a result of the findings in our work, we have uncovered
important questions that need to be considered in the future.
Our task design utilized gestures that focused on the head
and hands, using small movements. Such physical activity
can have a positive effect on one’s mood if done in moder-
ation (Peluso and De Andrade 2005). Zhuang and Gadiraju
(2019) explored the effect of a worker’s mood on their per-
formance and perception of microtasks, finding that there is
an effect on the perception of engagement. Is it possible to
create a sustainable, beneficial circle of health benefits and
positive moods through gestures as inputs? Further studies
targeting these questions can advance our understanding of
the potential physical benefits for crowd workers and im-
prove the sustainability of crowd work. In our study, work-
ers reported using more cognitive effort with gestures. In a
longer-term study, allowing workers more time to familiar-
ize themselves with the gesture inputs would elucidate the
varying cognitive load requirements of gestures in compari-
son to the conventional mouse and keyboard input.
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