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Chaos and Order in Event-Triggered Control
Gabriel de Albuquerque Gleizer , Member, IEEE, and Manuel Mazo Jr. , Senior Member, IEEE

Abstract—Event-triggered control (ETC) is claimed to
provide significant reductions in sampling frequency when
compared to periodic sampling, but little is formally known
about its generated traffic. This work shows that ETC can
exhibit very complex, even chaotic traffic, especially when
the triggering condition is aggressive in reducing com-
munications. First, by looking at the map dictating the
evolution of states sampled, we characterize limit traffic
patterns by observing invariant lines and planes through
the origin, as well as their attractivity. Then, we present
abstraction-based methods to compute limit metrics, such
as limit average and limit inferior intersample time of pe-
riodic ETC (PETC), with considerations to the robustness
of such metrics, as well as measuring the emergence of
chaos. The methodology and tools allow us to find ETC
examples that provably outperform periodic sampling in
terms of average IST. In particular for PETC, we prove that
this requires aperiodic or chaotic traffic.

Index Terms—Chaotic systems, computational methods,
event-triggered control (ETC), hybrid systems, sampled-
data control.

I. INTRODUCTION

S INCE the seminal paper from [1], event-triggered con-
trol (ETC) has been considered a disruptive method for

sampled-data control implementations over digital media. The
astonishingly simple design and stability analysis methods pro-
posed by Tabuada cast new light on the idea of aperiodic
sampling, which had been studied since the 1950s [2] and
gained renewed interest in the early 2000s [3]. The idea be-
hind ETC is natural: instead of sampling periodically, sample
only when “needed” based on some significant event; there-
fore, massive reductions in communications, as well as in
energy of battery-powered motes, can be achieved, enabling
new control applications with cheap hardware, or larger net-
works of control systems. Unsurprisingly, immense interest
followed, and a lot of effort was dedicated in the follow-
ing years to design better event-triggering mechanisms [4],
[5], e.g., perturbed systems, extend applications to output-
feedback control [6], or make implementations more practi-
cal, as the periodic ETC (PETC) from [7], where events are
checked periodically.
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While understanding of the ETC’s control performance and
stability has reached a high level of maturity, thanks also to
the hybrid-systems formalism of [8], the comprehension of
ETC’s sampling patterns and performance is severely lacking.
Critically, how much bandwidth can ETC save compared to, e.g.,
periodic sampling? What is an ETC’s average intersample time
(IST)? Most ETC papers focus only on estimating a lower bound
for the minimum intersample time (MIST), to prove the absence
of Zeno behavior. Unfortunately, the MIST is often conservative
and does not prove that the ETC’s performance is better than a
well-designed periodic sampling time. Unsurprisingly, nearly
all ETC papers contain numerical simulations showing IST
trajectories and their average statistics, to give evidence of ETC’s
practical relevance.

Comparatively, much less effort has been put to model ETC’s
generated traffic. We split the existing literature into two cat-
egories.1 The first category aims at understanding asymptotic
properties of ETC’s ISTs qualitatively [10], [11], [12], [13],
which are mostly dedicated to two-dimensional linear time-
invariant (LTI) systems. The earliest work in this category is
[10], which analyses equilibrium ISTs, and is the first (possibly
only) to notice the emergence of chaotic behavior when using
the triggering condition of [1]. The other works are much more
recent, and provide conditions to show when traffic converges
to periodic sampling or oscillatory patterns. In particular, Pos-
toyan et al. [13] allows us to approximately compute average
intersample for such planar systems when the triggering pa-
rameters are sufficiently small. The second category aims at
taming the highly variable ISTs of ETC for scheduling pur-
poses, relying on finite-state models (abstractions) under the
framework of [14]. Such models have been developed for con-
tinuous ETC (CETC) for LTI systems in [15], [16], PETC [17],
[18], and nonlinear systems [19], [20], while only [21], [22],
[23] address longer-term traffic predictions. In particular, the
authors in [22] and [23] developed tools to compute the small-
est (across initial states) average intersample time (SAIST)
of an LTI PETC system, by using weighted automata [24]
as abstractions.

There are issues involved in both the qualitative and quantita-
tive analyzes in the present literature. On the quantitative side,
the obtained metrics lack a sense of robustness: that is, a given
PETC system may have a SAIST of, e.g., 1 time unit, which may
be only attained from a negligible, 0-measure subset of initial
conditions. If all other initial states lead to some other traffic
pattern with higher SAIST, e.g., 3, this much higher value is
clearly a more representative performance metric. In addition,
as noted in [10] and investigated here, ETC systems can exhibit

1It is also worth mentioning the approach of [9], which proposed an event-
triggering mechanism that ensures given traffic criteria in terms of a token bucket
model. Although very interesting, we veer away from this approach because it
is unclear whether adding conditions to enforce traffic patterns could actually
degrade the sampling performance of the original mechanism.
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chaotic traffic, and as such a stable representative traffic pattern
may not be found. This hints on a problem of the qualitative side
of the literature, which more recently has ignored the emergence
of chaotic traffic. This also forces us to carefully define robust
metrics for ETC before attempting to compute them.

This work expands the qualitative understanding of ETC’s
asymptotic traffic patterns and bridge it to the quantitative ap-
proach of [22], [23], focusing on LTI systems with zero-order-
hold state feedback and a common class of quadratic triggering
conditions [7]. For that, we first characterize limit metrics of
interest, such as limit inferior and limit average, and observe
that they are related to the asymptotic properties of the traffic.
This is the starting point for our main contributions:

1) presenting limit behaviors of LTI ETC systems and meth-
ods to compute them, not limited to R2;

2) classifying limit behaviors in terms of stable versus un-
stable, periodic versus aperiodic, orderly versus chaotic;

3) based on this, expanding the results from [22], [23] for
PETC to compute robust metrics.

We propose auxiliary concepts and obtain results that may be
useful on their own right:

1) we show that if a PETC that renders the origin globally
asymptotically stable (GES) converges to a periodic traf-
fic pattern, then this traffic pattern can be used as a (mul-
tirate) periodic sampling schedule (Proposition 9)—this
does not necessarily happen to CETC;

2) we provide a stability characterization for outputs of a
system, when these outputs come from a finite set;

3) we present the notion of behavioral entropy (Def. 17) as a
measure of chaos of a system’s output trajectories, how to
compute this quantity in an abstraction (Theorem 8), and
show that this quantity is an upper bound of the concrete
system’s (Proposition 12).

The rest of this article is organized as follows. Section III
presents the basic ETC formulation, how ISTs can be computed,
and the main problem statement. The qualitative side of the
work, presenting limiting behaviors and their general properties
is given in Section IV, where we are able to establish conditions
for which periodic patterns occur and the associated states that
generate them. In doing that, we explore their local attractivity
and the emergence of chaotic invariant sets. This paves the way
for the quantitative side of this work in Section V using symbolic
abstractions, where we properly define robust limit metrics for
PETC taking chaos into consideration, provide methods to esti-
mate PETC’s behavioral entropy using the abstraction, establish
when traffic patterns are not involved in chaos, and describe how
to estimate the desired robust limit metrics. Numerical examples
are given in Section VI. Finally, Section VII concludes this
article with discussions about the presented results.

II. MATHEMATICAL PRELIMINARIES

We denote by N0 the set of natural numbers including
zero, N := N0 \ {0}, N≤n := {1, 2, . . ., n}, and R+ the set of
nonnegative reals. We denote by |x| the norm of a vectorx ∈ Rn,
but if s is a sequence or set, |s| denotes its length or cardinality,
respectively. For a square matrix A ∈ Rn×n, λ(A) ⊂ Cn is the
set of its eigenvalues, and λi(A) is the ith largest-in-magnitude.
The complex conjugate of z ∈ Cn is denoted by z∗. The set Sn

denotes the set of symmetric matrices in Rn. For P ∈ Sn, we

write P � 0 (P � 0) if P is positive definite (semidefinite);
λmax(P ) (λmin(P )) denotes its maximum (minimum) eigen-
value. For a set X ⊆ Ω, we denote by cl(X ) its closure, ∂X its
boundary, and X̄ its complement: Ω \ X . We often use a string
notation for sequences, e.g., σ = abc reads σ(1) = a, σ(2) =
b, σ(3) = c. Powers and concatenations work as expected, e.g.,
σ2 = σσ = abcabc. In particular, σω denotes the infinite rep-
etition of σ. An infinite sequence of numbers is denoted by
{ai} := a0, a1, a2, . . .. We apply a function f : X → Y to a set
A ⊆ X the usual way, f(A) := {f(x) | x ∈ A}. For a relation
R ⊆ Xa ×Xb, its inverse is denoted as R−1 = {(xb, xa) ∈
Xb ×Xa | (xa, xb) ∈ R}.

An autonomous system ξ̇(t) = f(ξ(t)) is said to be GES if
there exist M ∈ [1,∞) and b > 0 such that all of its solutions
satisfy |ξ(t)| ≤ Me−bt|ξ(0)| for every initial state ξ(0). When
needed to avoid ambiguity, we use ξx(t) to denote a trajectory
from initial state ξ(0) = x.

A. Chaos

Consider the map f : X → X ,whereX is a metric space, and
the discrete-time system (or recursion) x(k + 1) = f(x(k)). A
set Y ⊂ X is said to fixed or invariant if f(Y) = Y , forward
invariant if f(Y) ⊆ Y , and periodic if there is somem ∈ N such
that fm(Y) = Y . The forward orbit of a point x is O(x) :=
{fk(x) | k ∈ N0}. Obviously, every forward orbit is forward
invariant. Whilst there are multiple slightly different definitions
of chaos, we use the concept of [25], which relies on the notions
of transitivity and sensitivity to initial conditions.

Definition 1 (Transitivity [25, Sec. 2.5]): A map f : X → X
is said to be (topologically) transitive on an invariant set Y if
the forward orbit of some point p ∈ X is dense in Y . From the
Birkhoff Transitivity Theorem, this is equivalent to the following
property: for every two open subsets U and V of Y , there is a
positive integer n such that fn(U) ∩ V �= ∅.

If f is transitive, points starting arbitrarily close to each other
can drift away but will come arbitrarily close back to each other
after enough iterations.

Definition 2 (Sensitivity to initial conditions [25, Sec. 3.5]): A
map f : X → X , X being a metric space, is said to be sensitive
to initial conditions on an invariant set Y ⊆ X if there is an
r > 0 such that, for each point x ∈ Y and for each ε > 0, there
exists a point y ∈ Y satisfying d(x,y) < ε and a k ∈ N with
d(fk(x), fk(y)) ≥ r.

Definition 3 (Chaos [25, Sec. 3.5]): A map f : X → X , X
being a metric space, is said to be chaotic on an invariant set Y
provided (i) f is transitive on Y , and (ii) f is sensitive to initial
conditions on Y .

In case a chaotic system is additionally ergodic,2 the cele-
brated Birkhoff Ergodic Theorem is particularly useful when
one is interested in limit average metrics.

Theorem 1 (Birkhoff Ergodic Theorem [25]): Assume f :
X → X is an ergodic function with ergodic measure μ, and
let g : X → R be a μ-integrable function. Then,

lim
n→∞

1

n+ 1

n∑
i=1

g ◦ f i(x) =

∫
X
g(x)dμ(x)

for μ-almost every x.

2See [25] for a rigorous definition of ergodicity. We skip the definition and
present a simplified version of the Birkhoff Ergodic Theorem due to readability
and space considerations.

Authorized licensed use limited to: TU Delft Library. Downloaded on November 16,2023 at 07:49:09 UTC from IEEE Xplore.  Restrictions apply. 



GLEIZER AND MAZO JR.: CHAOS AND ORDER IN EVENT-TRIGGERED CONTROL 6543

As a consequence, if f is ergodic and μ is well-behaved,3

the iteration-average (left-hand side of the expression above)
converges to the same value from almost every initial condition.

B. Invariants of Linear Systems

Most of the analysis of limit behaviors of (P)ETC on linear
systems involve studying invariants of linear systems, their
stability and relationship with quadratic cones. Here, we provide
some definitions and results on this topic.

Definition 4 (Homogeneous set): A set Q ⊆ Rn is called
homogeneous if x ∈ Q ⇒ λx ∈ Q, ∀λ ∈ R \ {0}.

For the next results, we borrow a few definitions from previous
work [23] concerning square matrices.

Definition 5 (Mixed matrix [23]): Consider a matrix M ∈
Rn×n and let λi, i ∈ N≤n be its eigenvalues sorted such that
|λi| ≥ |λi+1| for all i. We say that M is mixed if, for all i < n,
|λi| = |λi+1| implies that �(λi) �= 0 and λi = λ∗

i+1.
Mixed matrices are diagonalizable and do not have distinct

eigenvalues of the same magnitude, with the exception of pairs
of complex conjugate eigenvalues.

Definition 6 (Matrix of irrational rotations [23]): A matrix
M ∈ Rn×n is said to be of irrational rotations if the arguments
of all of its complex eigenvalues are irrational multiples of π.

The set of mixed matrices of irrational rotations is of full
Lebesgue measure in the set of square matrices [23], and as
such these matrices can be considered generic.

Proposition 1 presents a simple way to verify whether a linear
subspace is a subset of a quadratic cone.

Proposition 1 (see [22]): Let A be a linear subspace with
basis v1,v2, . . .,vm, and let V be the matrix composed of
the vectors vi as columns. Let Q ∈ Sn be a symmetric matrix
and define Q≥ := {x ∈ Rn | xTQx ≥ 0}, Q> := {x ∈ Rn |
xTQx > 0} and Q= := {x ∈ Rn | xTQx = 0}. Then, A \
{0} ⊆ Q≥ (resp. Q> and Q=) if and only if V TQV � 0

(resp. V TQV � 0 and V TQV = 0).

III. ETC AND ITS TRAFFIC

A. Traffic Models of ETC Systems

Consider a closed-loop linear system

ξ̇(t) = Aξ(t) +BKξ̂(t),

ξ(0) = ξ̂(0) = x0,
(1)

which is a sampled-data state feedback with zero-order hold: the
state ξ(t) ∈ Rnx is sampled at instants ti, ∀i ∈ N, and held con-
stant for feedback, which makes the state signal used for control
ξ̂ satisfy ξ̂(t) = ξ(ti), ∀t ∈ [ti, ti+1). Matrices A,B,K have
appropriate dimensions.

In ETC, a triggering condition determines the sequence of
times ti. In PETC, this condition is checked only periodically,
with a fundamental checking period h. The sampling time ti+1,
hence, assumes the following form:

ti+1 = inf{t ∈ T | t > ti and c(t− ti, ξ(t), ξ̂(t))}, (2)

where c : T × Rnx × Rnx → {true, false} is the triggering con-
dition, and T , the set of checking times, is R+ for CETC and
hN for PETC. We consider the family of quadratic triggering

3That is, 0 < μ(x) < ∞ for all x in the invariant set of interest; as a
consequence μ-almost all are almost all.

conditions from [7] with an additional maximum interevent time
condition as follows:

c(s,x, x̂) :=

[
x

x̂

]T
Q(s)

[
x

x̂

]
> 0 or s ≤ τ̄ (3)

where Q : T → S2nx is the designed triggering matrix function
(possibly constant), and τ̄ is the chosen maximum interevent
time.4 When T = R+, we assume Q is differentiable. Many of
the triggering conditions available in the literature can be written
as in (3); the interested reader may refer to [7] for a comprehen-
sive list of quadratic triggering and stability conditions.

We are interested in modeling the traffic generated by (P)ETC,
i.e., understanding how the ISTs evolve from different initial
conditions. As noted in [18], the interevent time ti+1 − ti is
solely a function of the ith sample ξ(ti). First, note that, ξ(t) is
a function of ξ̂(t) = ξ(ti) and the elapsed time s := t− ti

ξ(ti + s) = M(s)ξ(ti),

M(s) :=Ad(s)+Bd(s)K :=eAs+
∫ s

0 e
AtdtBK.

(4)

Now let τ : Rnx → (0, τ̄ ] ∩ T be the interevent time function,
i.e., for every statex ∈ Rnx , τ must return the value of ti+1 − ti.
It follows from (2) to (4) that

τ(x) = inf
{
s ∈ T | xTN(s)x > 0 or s = τ̄

}
,

N(s) :=

[
M(s)

I

]T
Q(s)

[
M(s)

I

]
,

(5)

where I denotes the identity matrix. Thus, the event-driven
evolution of sampled states can be compactly described by the
recurrence

ξ(ti+1) = M(τ(ξ(ti)))ξ(ti). (6)

Throughout this article, we refer to the function above as the
sample system, using the shortened version

xi+1 = f(xi),

yi = τ(xi),
(7)

where xi := ξ(ti) and f(x) := M(τ(x))x. The map is
equipped with an output y which is the associated interevent
time: for a traffic model, this is the output of interest. We shall
denote the sequence of outputs from (7) for a given initial state
x0 by {yi(x0)}. We make the following assumption on the ETC
system.

Standing Assumption: System (1)–(3) is non-Zeno, i.e.,
τ(x) ≥ τ > 0 for all x �= 0. In addition, f(x) �= 0 for all
x �= 0, i.e., the origin can only be reached (sample-wise) asymp-
totically.

Observe that it is standard in ETC design to prevent Zeno
behavior. The value τ is the system’s MIST.

B. Isochronous Subsets in ETC

We start our analysis of sampling behaviors of ETC by study-
ing the subsets of Rnx that generate the same IST. The first

4Often a maximum interevent time arises naturally from the closed-loop
system itself (see [26]). Still, one may want to set a smaller maximum interevent
time so as to establish a “heart beat” of the system.
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characteristic to be highlighted is that ISTs are insensitive to
magnitude.

Proposition 2 (Adapted from [27]): The sample system (7) is
homogeneous; more specifically, for all λ ∈ R \ {0}, τ(λx) =
τ(x) and f(λx) = λf(x).

Proof: Take any x ∈ Rnx and λ �= 0; from (5), it
holds that sign((λx)TQ(s)(λx)) = sign(λ2xTQ(s)x) =
sign(xTQ(s)x), hence, τ(λx) = τ(x). With this, f(λx) =
M(τ(λx))λx = λM(τ(x))x = λf(x). �

This fact implies that the sequence {yi(x)} is equal to
{yi(λx)}, for any λ �= 0. Hence, to determine whether ETC
exhibits fixed (periodic) behavior, we need to verify which
lines passing thorough the origin, or collections of lines,
are invariant under f or under a finite iterate of f . Here-
after, we shall refer to lines that pass through the origin as
o-lines.

Let us first look in detail what are the subsets of Rnx , which
share the same (sequence of) interevent time(s).

Definition 7 (Isochronous and isosequential subsets): Con-
sider system (7) and a sequence of ISTsσ := s1s2. . .sm, si > 0.
We call the set of states x ∈ Rn whose next m ISTs are
s1, s2, . . ., sm an isosequential subset, denoted by Qσ . When
m = 1, we call it an isochronous subset.

By definition, when σ = s is a singleton, Qs = {x ∈ Rnx |
τ(x) = s}; when m > 1, Qσ can be obtained recursively as the
set of states x ∈ Qs1 such that M(s1)x ∈ Qs2...sm .

Proposition 3: Consider system (1)–(3) and a scalar s > 0.
An isochronous subset Qs can be characterized as

i) If T = R+ (CETC) and s < τ̄ , Qs = {x ∈ Rn |
xTN(s)x = 0 and xTN(s′)x ≤ 0, ∀s′ < s and
xTṄ(s)x > 0}.

ii) If T = hN (PETC) and s < τ̄ , Qs = {x ∈ Rn |
xTN(s)x > 0 and xTN(s′)x ≤ 0, ∀s′ < s, s′ ∈ hN}.

iii) Qτ̄ = {x ∈ Rn | xTN(s′)x ≤ 0, ∀s′ < τ̄, s′ ∈ T }.
Proof: This is a trivial manipulation of (5), where in (i) we

use the fact that N(s) is differentiable over [0, τ̄). �
Isosequential subsets are the intersection of an algebraic set

with infinitely many semialgebraic sets for CETC; for PETC, it
is the intersection of finitely many semialgebraic sets. We end
this section with a result that simplifies the analysis for CETC
under some special conditions.

Proposition 4: Consider system (7) and T = R+ (CETC). If
τ̄ = inf{s > 0 | N(s) � 0} < ∞ and

∀x ∈ Rnx \ {0}, s ∈ (0, τ̄ ],xTN(s)x = 0 ⇒ xTṄ(s)x > 0

then
i) f and τ are differentiable;

ii) Qs = {x ∈ Rnx | xTN(s)x = 0}, ∀s ∈ (0, τ̄).
Proof: We first prove (ii), which is a lemma to (i).
ii) For any fixed x �= 0, consider the function φx(s) =

xTN(s)x, which is differentiable. If for some s, φx(s) = 0,
we prove that all conditions from Proposition 3 (i) are satisfied;
since φ̇x(s) > 0 by assumption, we need to prove that φx(s

′) ≤
0, ∀s′ < s. Now, since φx(s) = 0 ⇒ φ̇x(s) > 0, from continu-
ity, it holds that φx(s

−) < 0 for some s− < s. For contradiction,
assumeφx(s

′) > 0 for some s′ < s−. Then, from Bolzano’s the-
orem there is some point s′′ ∈ (s,′ s−) such that thatφx(s

′′) = 0.
One such s′′ must have φx(s

′′) cross zero from positive to
negative, which implies φ̇x(s

′′) ≤ 0, leading to a contradiction.

i) Now τ(x) is characterized by the implicit equation
xTN(τ)x = 0. Therefore, we can simply apply the implicit
function theorem, whose condition (φx(s) = 0 ⇒ φ̇x(s) �= 0)
is satisfied by ours. �

Remark 1: The condition in Proposition 4 is equivalent, by the
s-procedure, to the linear matrix inequality ∃λ ∈ R : λN(s) +

Ṅ(s) � 0. Note that it is trivially satisfied if Ṅ(s) � 0 for
all s ∈ [0, τ̄ ], which holds when the triggering function φx is
monotonically increasing for all x.

The condition in Proposition 4 ensures that the triggering
function crosses zero only once for each initial condition x,
which in turn simplifies the isochronous subset description to a
simple quadratic form and renders f and τ continuous. As we
will see, even when this continuity is observed, the behaviors
generated by ETC can be extremely rich.

C. Problem Statement

We are interested in quantifying the traffic usage of system
(1)–(3), which involves studying the sample system (7). Some
candidate metrics are the following:

1) Inf := infx∈Rnx τ(x);
2) Sup := supx∈Rnx τ(x);
3) InfLimInf := infx∈Rnx lim infi→∞ yi(x);
4) SupLimSup := supx∈Rnx lim supi→∞ yi(x);
5) InfLimAvg := infx∈Rnx lim infn→∞

1
n+1

∑n
i=0 yi(x).

6) SupLimAvg := supx∈Rnx lim supn→∞
1

n+1

∑n
i=0 yi(x).

The first two metrics are simply the minimal and maxi-
mal interevent times that can be exhibited. The former has
received most attention in the literature, mainly to prove
absence of Zeno behavior. These metrics serve as worst-
and best-case ISTs and provide basic information about
how sample-efficient one given ETC system is. Inf is triv-
ially calculated as Inf = inf{s ∈ T | N(s) ⊀ 0}, while Sup is
more involved: Sup = min(τ̄ , inf{s ∈ T | ∀x ∈ Rnx ∃s′ < s :
xTN(s′)x > 0}). The last four metrics concern limit behaviors
of the system. InfLimInf (SupLimSup) gives what is the minimal
(maximal) IST the system can exhibit as the number of samples
goes to infinity, i.e., after transients on the sequence {yi} vanish.
Finally, InfLimAvg (SupLimAvg) gives the minimum (maxi-
mum), among initial states, average IST. Here, lim inf (lim sup)
is used to ensure that the value exists even if the sequence of
averages does not converge.

We argue that the limit metrics are more informative to
determine the performance of a sampling mechanism than the
simpler Inf and Sup metrics. For instance, if the states x asso-
ciated to Inf are transient, the Inf metric turns out to be very
conservative: after a few samples, the typical IST of the system
will be higher. InfLimInf gives the complementary information
of what minimal IST can appear infinitely often. InfLimAvg
informs about the average utilization rate. A disadvantage of
these two metrics is that they can still capture exceptional be-
havior: suppose, for example, that a measure-zero set X ⊂ Rnx

is invariant under (7) and it is associated to the InfLimInf or
InfLimAvg of the system; moreover, suppose for every state
x /∈ X , the trajectories ξx(ti), i ∈ N, never enter X , but instead
converge to some other subset with higher values of InfLimInf
or InfLimAvg. Then, the metric will not reflect the dominant
performance of the system. While this information might still
be useful, a more robust version of these metrics is of interest.
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All these observations lead to our main problem statement as
follows:

Problem statement: Given an ETC system,
1) identify its limit traffic patterns;
2) characterize their robustness w.r.t. small perturbations in

the initial state;
3) compute the system’s robust limit metrics.

IV. QUALITATIVE ANALYSIS: LIMIT BEHAVIORS IN ETC

In this section, we investigate the limit behaviors of the traffic
generated by ETC. We first see that limit metrics are insensitive
to transient behavior; then we look at some examples to classify
the different limit behaviors that can be exhibited. In several
cases, ETC traffic converges to a periodic sampling pattern,
which is shown to be characterized by linear invariants. This
allows us to show that, if PETC stabilizes a periodic traffic
pattern, then this traffic pattern can be used as a sampling
schedule that guarantees GES of the system.

A. Properties of Limit Metrics

The following trivial result shows that limit metrics are insen-
sitive to transient behavior. We focus on inferior metrics, as the
superior counterparts follow similar reasoning.

Proposition 5: Let {ki} be a sequence of real numbers and
decompose it as ki = ai + bi, where bi is the transient compo-
nent, i.e., it satisfies limi→∞ bi = 0. Then,

i) lim infi→∞ ki = lim infi→∞ ai;
ii) lim infn→∞

1
n+1

∑n
i=0 ki = lim infn→∞

1
n+1

∑n
i=0 ai.

Proof: It is a property of lim inf that lim infi→∞(ai + bi) =
lim infi→∞ ai + lim infi→∞ bi if either {ai} or {bi} converge.
Thus, result (i) trivially holds. For item (ii), we only need to
prove that the sequence { 1

n+1

∑n
i=0 bi} converges and is equal

to zero. For this, we apply the Stolz–Cesàro theorem:

lim inf
n→∞

bi = 0 ≤ lim inf
n→∞

1

n+ 1

n∑
i=0

bi ≤ lim sup
n→∞

bi = 0

which concludes the proof. �
Corollary 1: Let {ki} be ultimately periodic, i.e., ki = ai +

bi, limi→∞ bi = 0, and ai+M = ai for some M ∈ N+ and all i.
Then,

1) lim infi→∞ ki = mini<M ai;
2) lim infn→∞

1
n+1

∑n
i=0 ki =

1
M

∑M−1
i=0 ai.

Proposition 5 implies that computing limit metrics of ETC is
fundamentally a problem of finding its limit behaviors, ignoring
transients. In particular, given Corollary 1, if a sequence of
interevent times yi converges to a periodic pattern, then the
limit metrics are solely functions of the periodic component.
This motivates us to study fixed and periodic solutions of (7);
for example, if some y is a recurring pattern of (7), then there
must be a subset of Qy that is invariant. This is done in Section
IV-C. Before that, we investigate some examples to understand
what are the possible limit behaviors exhibited by ETC.

B. Illustrative Example

Consider system (1)–(3) with nx = 2. In this case, an
o-line is uniquely defined by the angle θ := angle(x) :=
arctanx1/x2 ∈ [−π/2, π/2). Using the coordinate θ and iden-
tifying points along an o-line (that is, regarding any point along

Fig. 1. Map f̃ and interevent time τ for case 1 of Example 1.

an o-line as the same), the sample system (7) becomes

θi+1 = f̃(θi) := angle
(
f
([

sin θ cos θ
]T))

,

yi = τ̃(θ) := τ
([

sin θ cos θ
]T)

. (8)

The map f̃ can be seen as a map on the circle. An analysis of
system (8) has been conducted in [12], aiming at finding fixed
points or their absence. In the cases studied therein, when f̃ had
fixed points, it always had a stable one. In the next example,
we show that this is not always true, and investigate the many
possible behaviors that ETC traffic exhibits.

Example 1: Consider system (1)–(3) with

A =

[
0 1,
−2 3

]
, B =

[
0
1

]

c(s,x, x̂) = |x− x̂| > a|x| (9)

where a ∈ (0, 1) is the triggering parameter. This is the seminal
triggering condition of [1], which can be put in the form (3)
with sufficiently large τ̄ . The graphs of f̃ and τ(·), for CETC
(T = R+) are given for four cases.

1) K = [0 − 5], a = 0.2: Fig. 1. This map is invertible,
orientation-preserving,5 and has no fixed points.

2) K = [0 − 6], a = 0.32: Fig. 2(a). This map is no longer
invertible. It has one unstable fixed point near θ = −1.3
and one stable fixed point near θ = −0.6.

3) K = [0 − 6, a = 0.5: Fig. 2(b). This map has two un-
stable fixed points, but a stable period-4 solution as indi-
cated by the cobweb diagram.

4) K = [0 − 6], a = 0.6: Fig. 2(c). This map has no stable
fixed points or orbits, and exhibits chaotic behavior. By
inspection of the graph, the system has as a minimal set6

the interval [−1.07,−0.42], which contains the maximum
IST τ̄ � 0.76, so SupLimSup = Sup � 0.76.

Finally, notice that all these maps are differentiable, but this is
not always the case, as has been observed in [12]. In particular,
it is almost never the case for PETC (T = hN). One example is

5A map f : X → X is said to be orientation-preserving if its Jacobian Jf
satisfies det(Jf (x)) > 0 for all x ∈ X .

6A minimal set is an invariant set which contains no proper subsets that are
also invariant.
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Fig. 2. Maps f̃ for Example 1, along with cobweb diagrams of solutions of (8) starting from θ0 = 0. A stable orbit for Case 3 is highlighted in red.
(a) Case 2. (b) Case 3. (c) Case 4.

Fig. 3. Map f̃ of the PETC version of Example 1, case 2, with h =
0.05, and a cobweb diagram of a solution of (8) with θ0 = 0.

shown in Fig. 3, for K = [0 − 6], a = 0.32 (like case 2) and
h = 0.05. Different from the CETC case, its fixed points are
unstable and it exhibits chaos.

Remark 2: Invertible orientation-preserving maps on the cir-
cle have been extensively studied in the field of dynamical
systems [28], and they have an attribute called rotation number.
When this number is a rational p/q, p and q coprime, all solutions
converge to a q-periodic orbit. When it is irrational, all solutions
are quasiperiodic: oscillatory, but the same point is never visited
twice. In the latter case, if f̃ is twice continuously differen-
tiable, it is topologically conjugate to an irrational rotation
g(θ) = (θ + rπ mod π)− π/2, which is ergodic with dense
orbit in [−π/2, π/2). Hence, InfLimInf = Inf, and InfLimAvg
= SupLimAvg can be obtained to arbitrary precision through
simulations from any initial condition.

C. Invariant Isosequential Sets in ETC

Example 1 illustrates the complex behavior that can emerge
in ETC traffic. Nonetheless it becomes apparent that obtaining
fixed or periodic patterns is a fundamental step in the traffic
characterization. The first thing we want is a computational
or analytical method to determine fixed and periodic patterns.
Then, we want to characterize their local stability.

Fig. 4. Illustration of Theorem 2 in R3. The blue cone splits R3 into Q1

and Q2 the line is an invariant of M(1) and the plane is an invariant of
M(2). Points indicate distinct sample trajectories {xi}, with the arrows
indicating progress of time.

In [23], it has been shown that periodic patterns can be
characterized by linear invariants.

Theorem 2: (see [23]) Consider system (7), let σ :=
y1y2. . .ym be a sequence of m outputs. Denote by Mσ :=
M(ym) · · ·M(y2)M(y1). (i) If Mσ is nonsingular and there
exists a linear invariant A of Mσ such that A \ {0} ⊆ Qσ ,
then σω is a possible output sequence of system (7). More-
over, if (ii) Mσ is additionally mixed and of irrational rota-
tions, then σω being an output sequence of system (7) implies
that there exists a linear invariant A of Mσ such that A ⊆
cl(Qσ).

According to Theorem 2, ETC exhibits a periodic sampling
pattern whenever a linear invariant of the corresponding linear
system is contained in the associated isosequential subset; in
fact, the set A \ {0} is a periodic set (with period m) of f .
An illustration for a PETC system with nx = 3 and k̄ = 2 is
given in Fig. 4: because an invariant of M(1) is a subset of
Q1, we know that 1ω is a sampling pattern exhibited by the
system; likewise with M(2). The corollary given below (see
the proof in the Appendix) states that in general this invariant is
an o-line (or o-plane, a plane through the origin), and we have
an if-and-only-if condition.

Corollary 2: Given the premises of Theorem 2, assume (i)
Mσ is nonsingular, mixed, and of irrational rotations, and that
(ii) for every linear invariant A of Mσ , A ⊆ cl(Qσ) ⇒ A \
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{0} ⊆ Qσ . Then, σω is a possible output sequence of system
(7) if and only if there exists an o-line or o-plane A invariant of
Mσ such that A \ {0} ⊆ Qσ.

Condition (ii) is satisfied in the illustrative example of
Fig. 4, as the invariants lie in the interior of the correspond-
ing isochronous sets. This result is particularly useful to ver-
ify whether a given periodic sequence is exhibited by sys-
tem (7), and is instrumental in the symbolic methods used in
Section V.

Remark 3: Using Corollary 2, one can find fixed inter-sample
patterns (t)ω by searching over t ∈ [τ , τ̄ ] for an M(t) which
has a linear subspace belonging to Qt (via Proposition 1). This
search is one-dimensional, in contrast to the search for invariants
of system (7) over Rnx .

The following lemma is useful when dealing with fixed o-
lines.

Lemma 1: Let l be a fixed o-line of f in system (7), i.e., x ∈
l ⇒ f(x) ∈ l. Then, there exists a real λ such that f(x) = λx
for all x ∈ l.

Proof: By Proposition 2, every x ∈ l shares the same IST τ .
Then, for any such x, f(x) = M(τ)x ∈ l; therefore, f(x) =
α(x)x for some scalar-valued function α. By definition of
eigenvalues, x is an eigenvector of M(τ) and α(x) ≡ λ is the
corresponding eigenvalue. �

For some classic triggering conditions, we can get some
interesting specialized results that relate the triggering parameter
with the eigenvalues of the matrixM (τ) for which τ is a periodic
pattern:

Proposition 6: Consider system (1)–(3) with c(s,x, x̂) ≡
|x− x̂| > a|x|, T = R+, and assume 0 < a < 1 is designed
rendering the closed-loop system GES. A fixed o-line with IST
τ exists iff 1/(1 + a) ∈ λ(M(τ)).

Proof: Consider a fixed o-line l and a trajectory x(ti) on
it. By Lemma 1, it holds that x̂(ti+1) = λx̂(ti), where λ is a
real eigenvalue of M(τ). Fix z := x̂(ti). From the triggering
condition, it then holds that |λz − z| = a|λz|. Hence, |λ − 1| =
a|λ| ∴ λ = 1/(1± a). Since |λ| < 1 for GES, λ = 1/(1 + a) <
1. �

Proposition 7: Consider system (1)–(3) with c(s,x, x̂) ≡
xTPx > e−2ρsx̂TP x̂, T = R+, with 0 < ρ < 1 and P � 0.7

A fixed o-line with IST τ exists iff either e−ρτ or −e−ρτ is an
eigenvalue of M(τ).

Proof: Using the same arguments as in Proposition 6,
we have that x̂(ti+1) = ax̂(ti). Let z :=

√
P x̂(ti). An in-

variant o-line then satisfies a2zTz = e−2ρτzTz ∴ a = ±e−ρτ .
Now,

√
P

−1
M(τ)

√
P x̂ =

√
P

−1
M(τ)z = a

√
P

−1
z = ax̂.

Since M(τ) is similar to
√
P

−1
M(τ)

√
P , a ∈ λ(M(τ)). �

A more general result can be obtained by invoking a result
from topology (see the proof in the Appendix) to conclude about
which cases a fixed o-line certainly exists, only by knowing the
state-space dimension nx;

Theorem 3: Consider system (7) and assume f is continuous.
If nx is odd, then f has a fixed o-line.

Apart from o-lines, it is also interesting to know when can
o-planes be fixed, as illustrated in the PETC example of Fig. 4.
The next result presents for which dimensions this can generally
hold (the proof is also in the Appendix).

Theorem 4: If system (7) exhibits a fixed o-plane P that is
isochronous with some IST τ , then one of the following holds:

7This is the triggering condition initially used for STC in [27].

i) nx = 2 and τ = τ̄ (periodic sampling, trivial);
ii) nx = 3, and T = hN (PETC) or N(τ) is singular

CETC;
iii) nx ≥ 4.

D. Local Attractivity of Isochronous Invariants

After having determined the fixed (or periodic) o-lines and o-
planes of system (7), the next step is to characterize their (local)
attractivity. We say that an o-line l ⊂ Rnx is attractive if for any
other o-line l′ s.t. the angle between l and l′ is sufficiently small,
limn→∞ fn(l′) = l. The following can be applied for fixed o-
lines (see proof in the Appendix.)

Proposition 8: Let l := {ax | a ∈ R \ {0}} be a fixed o-line
of system (7), and suppose f is differentiable at x, with Jf (x)
being the corresponding Jacobian matrix. Take λ as the real
s.t. f(x) = λx (Lemma 1), and let Ox be an orthonormal basis
for the orthogonal complement of x. Then, if 1

λ
Ox

TJf (x)Ox

is Schur, then l is locally attractive.
The Jacobian matrix can be expressed as Jf =

∂(M(τ(x))x)/∂x = ∂(M(τ(x))/∂x)x+M(τ(x)) =

−2

xTṄ(τ(x))x
Ṁ(τ(x))xxTN(τ(x)) +M(τ(x)). (10)

The matrix Ox
TJf (x)Ox is the Jacobian of f w.r.t. the non-

radial directions and projected onto those. It is easy to see
that the eigenvalues of Ox

TJf (x)Ox are the same as those of
Jf except the one associated with the eigenvector x, while λ
is precisely the eigenvalue associated with x; hence, Propo-
sition 8 gives a condition on the ratio between the largest-
in-magnitude eigenvalue of Jf and that of the fixed o-line in
consideration. For fixed planes, this analysis may require more
sophisticated analyses of orbital stability, such as Poincaré return
maps.

As we see next, the case of PETC is revealing thanks to the fact
that M is constant by parts and, thus, Jf = M(τ(x)) almost
everywhere. Because PETC has a discrete output set, we must
first properly define stability of an infinite sequence.

Definition 8: Consider system (7) with T = hN (PETC). An
infinite sequence of outputs {yi} is said to be stable if there
exists x ∈ Rnx with a neighborhood U such that every x′ ∈ U
satisfies yi(x′) = yi(x) = yi, ∀i ∈ N.

Proposition 9: Consider system (7) with T = hN (PETC)
and assume it is GES. Let {yi} be a p-periodic output trajectory
associated with it, and let M := M(yp−1) · · ·M(y1)M(y0).
If {yi} is stable, then M is Schur.

Proof: Every trajectory {xi} of (7) that generates {yi}
satisfies xi+p = Mxi. If M is not Schur, then from almost
every x0, (and hence for any point’s neighborhood) there are no
M > 0, 0 < a < 1 such that |xmp| ≤ Mam|x0|, which implies
that the PETC system is not GES. This is a contradiction. �

Proposition 9 implies that stable fixed or periodic sampling
patterns generated by a PETC system can be used in a mul-
tirate periodically sampled system that also renders the ori-
gin GES. Note that the existence of such a stable periodic
sampling pattern does not imply that the PETC generates that
pattern everywhere;in fact, it may generate sequences that
converge to this stable sequence. In these cases, the PETC
has a rival periodic sampling schedule which also achieves
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Fig. 5. Informal summary of the results in Section IV.

GES.8 This is not necessarily true if no stable periodic pattern
is exhibited, i.e., when PETC exhibits chaotic or aperiodic
traffic.

Remark 4: Proposition 9 and its associated conclusion are not
true for CETC. For example, consider the case 2 from Ex. 1: its
stable fixed point occurs for the interevent time y ≈ 0.3903; the
eigenvalues of M(y) are 0.757 (which is 1/(1 + σ) as expected
from Proposition 6) and −1.33, hence M(y) is not Schur.
Given Proposition 9, it is now not surprising that case 2’s PETC
implementation (see Fig. 3) does not exhibit an asymptotically
stable interevent time trajectory. More interestingly, this stays
true regardless of how small h is.

This section has presented many properties of fixed and
periodic subsets of ETC, such as dimensional conditions for
fixed o-lines and o-planes to exist, how to find them, and how
to characterize their attractivity, which we summarize in Fig. 5.
However, it has not yet provided a means to compute the limit
metrics or their robust versions. Looking again at Example 1, it
is clear that several challenges remain.

1) If a stable fixed or periodic pattern is found, can we ensure
that it is almost globally attractive? (Here, almost is used
to exclude the finitely many unstable fixed or periodic
patterns, in case these exist.)

2) If f has fixed or periodic patterns, how can we obtain
some information about the limit metrics?

3) If multiple fixed or periodic patterns are found, but inside a
chaotic invariant set, how to compute robust limit metrics?

The following section provides (partial) answers to these
questions for PETC using a symbolic approach.

V. QUANTITATIVE ANALYSIS: A SYMBOLIC APPROACH

In this section, we shift from the nonlinear analysis tools used
in Section IV to symbolic tools in the spirit of [14]. We focus on
PETC, whose discrete-output nature facilitates the construction
of finite-state models [18]. For this part, it is necessary to
introduce some formalism and previous results.

A. Transition Systems, Simulations, and Quantitative
Automata

Tabuada [14] gives a generalized notion of transition system.
Definition 9 (Transition System [14]): A system S is a tuple

(X ,X0, E ,Y, H) where:

8While both approaches stabilize the system with equal limit average sampling
performances, their transients should be different; thus, their control perfor-
mances can differ.

• X is the set of states;
• X0 ⊆ X is the set of initial states;
• E ⊆ X × X is the set of edges (or transitions);
• Y is the set of outputs;
• H : X → Y is the output map.

Here, we have omitted the action set U from the original
definition because we focus on autonomous systems. A system is
said to be finite (infinite) state when the cardinality of X is finite
(infinite). A transition in E is denoted by a pair (x, x′). We define
PostS(x) := {x′ | (x, x′) ∈ E} as the set of states that can be
reached from x in one step. SystemS is said to be nonblocking if
∀x ∈ X ,PostS(x) �= ∅. We call x0x1x2. . . an infinite internal
behavior, or run of S if x0 ∈ X0 and (xi, xi+1) ∈ E for all
i ∈ N, and y0y1. . . its corresponding infinite external behavior,
or trace, if H(xi) = yi for all i ∈ N. We denote by BS(r) the
external behavior from a run r = x0x1. . . (in the case above,
BS(r) = y0y1. . .), by Bl

x(S) (resp. B+
x (S) and Bω

x (S)) the
set of all l-long (resp. finite and infinite) external behaviors
of S starting from state x, and by Bl(S) :=

⋃
x∈X0

Bl
x(S)

(resp. B+(S) :=
⋃

x∈X0
B+
x (S) and Bω(S) :=

⋃
x∈X0

Bω
x (S))

the set of all l-long (resp. finite and infinite) external behaviors
of S .

The concepts of simulation and bisimulation are fundamental
to establish formal relations between systems.

Definition 10 (Simulation Relation [14]): Consider two sys-
tems Sa and Sb with Ya = Yb. A relation R ⊆ Xa ×Xb is a
simulation relation from Sa to Sb if the following conditions are
satisfied:

i) for every xa0 ∈ Xa0, there exists xb0 ∈ Xb0 with
(xa0, xb0) ∈ R;

ii) for every (xa, xb) ∈ R, Ha(xa) = Hb(xb);
iii) for every (xa, xb) ∈ R, we have that (xa, x

′
a) ∈ Ea im-

plies the existence of (xb, x
′
b) ∈ Eb s.t. (xa,

′ x′
b) ∈ R.

We say Sa � Sb when Sb simulates Sa, which is true if
there exists a simulation relation from Sa to Sb. When R is
a simulation relation from Sa to Sb and also R−1 is from Sb to
Sa, we say that Sa and Sb are bisimilar, and denote by Sa

∼= Sb.
Weaker but relevant relations associated with simulation and
bisimulation are, respectively, behavioral inclusion and behav-
ioral equivalence.

Definition 11 (Behavioral inclusion and equivalence [14]):
Consider two systemsSa andSb withYa =Yb. We say thatSa is
behaviorally included in Sb, denoted by Sa �B Sb, ifBω(Sa) ⊆
Bω(Sb). In case Bω(Sa) = Bω(Sb), we say that Sa and Sb are
behaviorally equivalent, denoted by Sa

∼=B Sb.
(Bi)simulations lead to behavioral inclusion (equivalence).
Theorem 5 (see [14]): Given two systems Sa and Sb,Sa �

Sb ⇒ Sa �B Sb and Sa
∼= Sb ⇒ Sa

∼=B Sb.
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If S is finite-state, we can associate a digraph G with it,
where states are nodes and an edge x → x′ exists iff (x, x′) ∈ E .
A digraph has an associated incidence matrix T , obtained by
attributing an index to each node, then Tij = 1 if xi → xj ,
Tij = 0 otherwise. We call T the incidence matrix of S .

For quantitative analysis of system properties, we resort to the
framework of [24], with the adaptations made in [22] to include
output maps.

Definition 12 (Weighted transition system (WTS) [22]): A
WTS S is the tuple (X ,X0, E ,Y, H, γ), where

1) (X ,X0, E ,Y, H) is a nonblocking transition system;
2) γ : E → Q is the weight function.

For a given run r = x0x1. . . of S , abusing notation,
γ(r) = v0v1. . . is the sequence of weights defined by vi =
γ(xi, xi+1). We use γi(r) for the ith element of γ(r). A
WTS is called simple if for all (x, x′) ∈ E , γ(x, x′) = H(x)
[23]; in this case γ(r) = BS(r), i.e., the set of weight se-
quences of S is equal to its behavior. All WTSs we con-
sider in this work are simple, so hereafter we focus on this
case. In this case, we define the following values of a be-
havior set B ⊆ 2N→Q, in the spirit of the metrics presented in
Section III-C:

ILI(B) := inf
{
lim inf
i→∞

yi | {yi} ∈ B
}
,

ILA(B) := inf

{
lim inf
n→∞

1

n+ 1

n∑
i=0

yi

∣∣∣∣ {yi} ∈ B
}
.

For a valueV ∈ {ILI, ILA}, we often use the shorthand notation
V (S) := V (Bω(S)). The following result is extracted from [23,
Th. 3] and its proof.

Theorem 6: Given a finite-state WTS S ,
1) ILI(S) can be computed inO(|X |+ |E|); moreover, there

exists x ∈ X such that H(x) = ILI(S) and x belongs
to a strongly connected component (SCC) of the graph
defined by S .

2) ILA(S) can be computed in O(|X ||E|). Moreover,
system S admits a cycle x0x1. . .xk satisfying xi →
xi+1, i < k, and xk → x0, s.t. the run r = (x0x1. . .xk)

ω

satisfies lim infn→∞
1

n+1

∑n
i=0 γi(r)) = ILA(S).

Theorem 6 gives that global values of limit metrics are
computable for finite-state systems. This is fundamentally dif-
ferent from the infinite-state case, where a qualitative anal-
ysis is possible, but it is extremely challenging to deter-
mine regions of attraction of fixed lines, or computing tight
bounds on the metrics when no fixed (periodic) solutions
are found.

Remark 5: The algorithm for computing ILI(S) and SLS(S)
is the same as the one to determine Büchi acceptance, and
consists of computing SCCs and performing reachability to
those [24]. The cycle mentioned in Theorem 6 is a minimum
average cycle (MAC) of the weighted digraph defined by S .
The algorithm to compute the value is due to [29], which also
detects reachable SCCs and employs dynamic programming on
those. The cycle can be recovered inO(|X |) using the algorithm
in [30].

Remark 6: In case S is infinite, a method to compute ILA(S)
using abstractions was proposed in [22], [23], and the same
results can be extended to ILI. The main idea is to compute
the metric on the abstraction and retrieve a cycle σ that attains
the minimum value (an MAC when computing ILA or any cycle

Fig. 6. l-complete models of the illustrative PETC system of Fig. 4, for
l = 1 (left) and l = 2 (right). Each node represents a state, with the top
label being the state label and the bottom being its output.

in the SCC that attains the ILI). The value of the abstraction is a
lower bound to the value of the concrete system [23]. Then, one
verifies if σω ∈ Bω(S) (in the PETC case, by using Theorem 2
with Proposition 1): if true, then the value of the abstraction
is in fact equal to the value of the concrete system [22]; if
not, one can refine the abstraction and reiterate. The following
section presents how to abstract a PETC traffic model and
refine it.

B. l -Complete PETC Traffic Models

Here, we recover results of our previous work [21], [22],
which determines how to build a finite-state system that captures
sequences of l ISTs from system (7) with T = hN (PETC) and
their associated state-space partition. First, let us describe the
system (7) as a transition system

S = (Rnx ,Rnx , E ,Y, H, γ) , where

E = {(x,x′) ∈ Rn × Rn | x′ = M(τ(x))x} ,
Y = {h, 2h, . . ., τ̄},
H(x) = γ (x,x′) = τ(x).

(11)

Denote by K := Y/h, the set of possible interevent times nor-
malized by h.

Definition 13 (see [22]): Given an integer l ≥ 1, the l-
complete PETC traffic model of systemS from (11) is the system
Sl := (Xl,Xl, El,Y, Hl, γl), with

1) Xl := Bl(S);
2) El = {(kσ, σk′) | k, k′ ∈ K, σ ∈ Kl−1, kσ, σk′ ∈ Xl};
3) Hl(k1k2. . .km) = γl(k1k2. . .km, ·) = hk1.

The state space of the model above is the set of l-long outputs
that the PETC system S can generate, which can be computed
by using the techniques described in [22]. The output of a state
x is its next IST (divided by h), which is also the weight of any
transition leaving x. The transition relation is what is called
in [31] the domino rule: a state associated with a sequence
k1k2. . .kl must lead to a state whose next first l − 1 samples are
k2k3. . .kl, because the system is deterministic, autonomous, and
time-invariant. Hence, any state in Xl that starts with k2k3. . .kl
is a possible successor of k1k2. . .kl. Note that both S and Sl are
simple WTSs. The following result gives the desired simulation
refinement properties.

Proposition 10 (see [22]): Consider the system S from (11)
and Sl from Def. 13, for some l ≥ 1. Then, S � Sl+1 � Sl,
which implies that S �B Sl+1 �B Sl.

Fig. 6 shows l-complete models S1 and S2 for the illustrative
PETC example of Fig. 4. For l = 1, it is simply the complete
graph with states 1 and 2, corresponding to the possible ISTs
the system exhibits. With l = 2, one needs sequences of length
2: in this illustrative case, it is verified (e.g., through [22])
that X2 = {(1, 1), (1, 2), (2, 2)}; the transitions and outputs
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are thus obtained using Def. 13. Note that (1, 2) ∈ X2 means
that there are points in R3 that belong to Q1, but the next
sample would belong to Q2; at the same time, (2, 1) /∈ X2,
which implies that no points leave Q2 after sampling, i.e.,
Q2 is forward-invariant. This kind of observation is central
when using abstractions to differentiate robust from fragile
behaviors.

C. Robust Limit Metrics

Limit metrics of PETC traffic can be computed using abstrac-
tions as described in Remark 6. However, as discussed in Section
III-C, these metrics can be rare in the sense that they only occur
from a zero-measure initial set, e.g., revisiting cases 2 and 3 of
Example 1, we have 1 and 2 unstable fixed points, respectively. In
both cases, the unstable fixed point near θ = −1.3gives the value
of InfLimInf and InfLimAvg; but for all other initial conditions
θ0, trajectories {θi} are attracted to the stable fixed point in
case 2 and the stable period-4 orbit in case 3. Thus, robust limit
metrics should be oblivious to unstable orbits. Let us properly
define what stable and unstable behaviors are for systems with
a finite output set.

Definition 14 (Stable behaviors): Consider a deterministic
WTS S where X is a metric space and Y is finite. A periodic
behavior σω ∈ Bω(S) is said to be stable if there exists x ∈ X
with a neighborhood U such that every x′ ∈ U satisfies Bω

x =
Bω
x′ = σω (as in Def. 8).
Definition 15 (Robust limit metrics): Let S be a simple WTS,

Bω
u (S) be the set of its unstable behaviors, and V be a system

limit metric (ILA or ILI). Then, the robust version of the metric
is RobV (S) := V (Bω(S) \ Bω

u (S)).
Removing unstable behaviors as the ones discussed above

is safe in that small perturbations in the initial state lead to
distant behaviors. However, consider case 4 of Example 1 and
its chaotic invariant set: it has infinitely many unstable orbits,
and almost every orbit comes arbitrarily close to those orbits.
In fact, due to transitivity, every initial solution starting on the
chaotic invariant set will come arbitrarily close to any unstable
orbit within it. Thus, the infimum of a set of metrics on behaviors
on a chaotic set, even when excluding the unstable ones, can be
equal to one of its unstable behaviors. This deserves a further
distinction between unstable behaviors.

Definition 16 (Absolutely unstable behaviors): Consider a
deterministic WTSS whereX is a metric space andY is finite. A
periodic behavior σω ∈ Bω(S) is said to be absolutely unstable
(a.u.) if it is unstable and for almost all x there exists L ∈ N
such that ∀l > L, σl is not a subsequence of Bω

x (S). The set of
a.u. behaviors of S is denoted by Bω

au(S).
A.u. behaviors are fragile in the sense that small perturbations

to initial states lead to substantially different behaviors.
Periodic behaviors of a PETC system S that occur in an

abstraction Sl can be verified to be (absolutely) unstable (see
proof in the Appendix).

Proposition 11: Consider system S from (11) and let σω ∈
Bω(S). Assume Mk is nonsingular for all k ∈ {1, . . ., k̄}. Fur-
thermore, assume Mσ is mixed, and let v1,v2, . . .,vn be the
unitary eigenvectors of M ordered from largest-in-magnitude
corresponding eigenvalue to smallest. Denote by A any linear
invariant of Mσ containing v1. (I) If A � cl(Qσ), then σω is an
unstable behavior. (II) If additionally the cycle x1x2. . .xc in Sl

that generates σω (i.e., BSl
({x1x2. . .xc}ω) = σω) is the only

cycle of its SCC, then σω is absolutely unstable in S .

Hereafter, we shall denote a linear invariant A containing v1

as in Proposition 11 a dominant linear invariant, after the concept
of dominant modes in linear systems. Referring again to Fig. 4
and the corresponding 2-complete model (see Fig. 6), we see
two periodic behaviors, 1ω and 2ω . The illustrated o-line is an
invariant ofM(1) that is not dominant (as can be inferred by the
trajectory of gray points that diverge from the line); moreover,
the cycle of S2 that generates 1ω is a simple cycle, the node
11 with a self loop. This implies that 1ω is absolutely unstable.
Note that this conclusion could not be obtained by inspectingS1,
which is a complete graph without simple cycles. The behavior
2ω , on the other hand, is stable.

Clearly, removing only a.u. behaviors is safe to give a
lower bound estimate to RobV (S), i.e., V (Bω(S) \ Bω

au(S)) ≤
V (Bω(S) \ Bω

u (S)). An equality holds when S is not chaotic,
since all unstable behaviors are also absolutely unstable. There-
fore, determining when S is or is not chaotic is critical to
compute the exact value of RobV (S). As we see next, chaos
on S can be estimated from the abstraction Sl.

D. Estimating Chaos in Abstractions

In this section, we show how to detect (and quantify) chaos
on a PETC traffic model S , and when one can conclude that
S is not chaotic. A commonly used measure of chaos is the
topological entropy h(S) ≥ 0 [25], with h(S) = 0 implying
there is no chaos. However, instead of a topological measure,
we are interested in a measure of chaos of the output of the
system: if the state is behaving chaotically but this is not reflected
in the output, it does not interfere in our metrics of interest.
Therefore, we introduce a notion called behavioral entropy, a
natural extension of the original concept.

Definition 17 (Behavioral entropy): Consider a system S
and equip Y with a metric d. A set W ⊂ Bω(S) is called
(n, ε)-separated if for all behaviors y,y′ ∈ W , where y =
y0y1. . .yi. . . and y′ = y′0y

′
1. . .y

′
i. . ., we have d(yi, y

′
i) > ε for

all i ≤ n. Let s(n, ε,S) be the maximum cardinality of any
(n, ε)-separated set. The behavioral entropy is the quantity

h(S) := lim
ε→0

lim sup
n→∞

log(s(n, ε,S))
n

. (12)

In particular, if |Y| < ∞ and the distance metric is d(y, y′) = 0
if y = y′ and d(y, y′) = 1 otherwise, we can ignore the ε com-
ponent, and it turns out that

h(S) = lim sup
n→∞

log(N(n,S))
n

, (13)

whereN(n,S) is the number of different words of length n over
the alphabet Y that are possible trace segments of S .

A system is called behaviorally chaotic whenever its behav-
ioral entropy is positive.

Remark 7: The topological entropy also takes the form in
(13) for subshifts of finite type, an abstraction used for au-
tonomous dynamical systems to study their topological prop-
erties (see [25]).

Definition 17 takes a behavioral approach [32] to extend the
original definition [25] for systems that are possibly nonde-
terministic and have output maps. If H = Id and Post(x) =
{f(x)} for some continuous map f : X → X , we recover the
original notion. It may seem unproductive to extend a measure of
chaos to nondeterministic systems, as these should all be chaotic
in some sense; however, this is not always the case. For example,
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consider S2 of Fig. 6: it is easy to see that N(n,S2) = n+
1 : 11. . .11, 11. . .12, . . ., 122. . .22, 22. . .22. Hence, h(S2) =
limn→∞(log(n+ 1)/n) = 0, and this system is not (behav-
iorally) chaotic.

The following result establishes that the behavioral entropy
of an abstraction bounds that of the concrete system.

Proposition 12: Consider transition systems Sa and Sb with
Ya = Yb = Y s.t. Sa �B Sb. If |Y| < ∞, then h(Sa) ≤ h(Sb).

Proof: Trivially, from behavioral inclusion [14], ∀n ∈
N, N(n,Sa) ≤ N(n,Sb). The result follows from monotonicity
of the log function. �

The question now is how to compute the behavioral entropy of
a finite-state system. This result is known for topological entropy
of subshifts of finite type, which is the same as a finite-state
transition system with H = Id.

Theorem 7 (see [25, Th. IX.1.9]):9 Let S be a finite system
and N ′(n,S) be the number of different n-long words over the
alphabet X generated by S (note that this reflects the internal
behavior of S). Then,

lim sup
n→∞

log(N ′(n,S))
n

= log λ1(T ),

where T is the incidence matrix of S .
Under a detectability condition of S , the same result holds for

behavioral entropy.
Definition 18 (Detectability): A transition system S is said to

be l-detectable if there exists a finite l ∈ N such that, for each
wordw ∈ B+(S), |w| ≥ l, there exists a uniquex ∈ X such that
w ∈ B+

x (S).
Theorem 8: Let S be an l-detectable finite-state system for

some finite l ∈ N, and let T be its incidence matrix. Then,

h(S) = log λ1(T ). (14)

Proof: Let s := |Y|. Because of l-detectability, every (n+
l)-long external behavior ofS gives a uniquen internal behavior,
hence N(n+ l,S) ≥ N ′(n,S). From every external behavior
of length n, there can be at most sl external behaviors of length
n+ l (simply concatenate every possible word inY l to complete
the length). Thus, slN(n,S) ≥ N(n+ l,S). Finally, since the
output map H is single-valued, the number of external behav-
iors can never be bigger than the number of different internal
behaviors: N(n,S) ≤ N ′(n,S). Combining these inequalities,
the following holds for all n > l:

N(n,S) ≤ N ′(n,S) ≤ slN(n,S).
Now,

lim sup
n→∞

log(slN(n,S))
n

= lim sup
n→∞

(
log(sl)

n
+

log(N(n,S))
n

)

= lim sup
n→∞

log(N(n,S))
n

.

The sandwich rule and Theorem 7 conclude the proof. �

9In [25], the internal behavior from an initial state is called itinerary. The
original theorem states that this quantity is also the topological entropy of the
subshift S, but here we only need the formula relating the limit to the spectral
radius of T .

Therefore, computing the behavioral entropy of a detectable
finite transition system simply requires to compute the spectral
radius of the associated graph. The following results help us
apply Theorem 8 to the PETC traffic model.

Proposition 13: A nonblocking finite-state l-detectable au-
tonomous transition system S has zero behavioral entropy if and
only if all the SCCs of its associated graph are isolated nodes or
simple cycles.

Proof: The spectrum of a digraph is the union of the spectra
of its SCCs [33]. Because S is nonblocking, it must have at least
one cycle. The adjacency matrix of an isolated node is [ 0 ], thus,
its spectrum is {0}. Furthermore, all vertices of a simple cycle
have only one outgoing edge, hence the corresponding SCC has
a constant outdegree of 1. From [33, Th. 2.1], the spectral radius
of an SCC is 1 iff it has constant outdegree 1. Hence, the spectral
radius of the whole graph is max(1, 0) = 1, whose log is 0. �

Remark 8: The l-complete PETC traffic model of Def. 13 is
l-detectable because, by definition, each k1k2. . .kl ∈ Xl is the
unique state that generates the finite behavior hk1, hk2, . . .hkl.

The following result establishes that the behavioral entropy
of an l-complete abstraction bounds that of the concrete system.
This implies that, if the abstraction is not behaviorally chaotic,
the same holds for the concrete system.

Theorem 9: Consider the PETC system (1)–(3) (T = hN),
its traffic model S from (11) and its l-complete traffic model
(Def. 13) Sl, with l ∈ N. The following assertions are true:

i) h(S) ≤ h(Sl);
ii) If all SCCs of Sl are simple cycles, then h(S) = h(Sl) =

0, i.e., S is not chaotic.
Proof: Assertion (i): Proposition 10 gives that S � Sl; then,

from Theorem 5, S �B Sl; finally, Proposition 12 concludes the
proof.

Assertion (ii): Sl satisfies the premises of Proposition 13.
Hence,h(Sl) = 0. Using assertion (i) and the fact thath(S) ≥ 0,
we conclude that h(S) = 0. �

Revisiting Fig. 6, it is easy to see that h(S1) = log(2) = 1 bit
(base 2), while h(S2) = 0, which implies that the example of
Fig. 4 is not chaotic.

E. Estimating and Computing Robust Metrics

Now we are equipped with the necessary tools to estimate
robust limit metrics using an abstraction and determine when
they are equal to the concrete system’s or simply a lower bound.
Based on the discussion in Section V-C, we define the following
robust limit metric for the abstraction.

Definition 19 (Robust metric forSl): Consider systemS from
(11) and an l-complete model for it, Sl (Def. 13). Let B̃ω

au(Sl)
be the set of behaviors of Sl that are simple cycles in Sl and are
absolutely unstable in S . We define RobV (Sl) as V (Bω(Sl) \
B̃ω

au(Sl)).
Theorem 10: Consider system S from (11) and its l-complete

model Sl. Consider V ∈ {ILI, ILA}; then RobV (Sl) ≤
RobV (S). Moreover, if all SCCs of Sl are simple cycles, and
the minimizing cycleσ satisfiesσω ∈ Bω(S), then RobV (Sl) =
RobV (S).

Proof: Because all behaviors in B̃au are absolutely unstable
in S , we have B̃ω

au(Sl) ⊆ Bω
au(S), and thus B̃ω

au(Sl) ⊆
Bω
u (S). From Proposition 10, Bω(Sl) ⊇ Bω(S); hence

Bω(Sl) \ B̃ω
au(Sl) ⊇ Bω(S) \ Bω

u (S). Now, for any behavior
set B, V (B) = inf{f(yi) | {yi} ∈ B} = inf{F ({yi}) |
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{yi} ∈ B}, where F ({yi}) is either lim infi→∞ yi (ILI) or
lim infn→∞

1
n+1

∑n
i=0 yi (ILA). Hence, Ba ⊆ Bb implies

V (Ba) ≥ V (Bb), and the inequality RobV (S) ≥ RobV (Sl)
follows.

For the equality: if Sl contains only simple cycles, then S is
not behaviorally chaotic (Theorem 9), and thusBω

u (S) = Bω
au(S)

(all unstable cycles are absolutely unstable). Then, the minimiz-
ing cycle σ of Sl is by exclusion a stable cycle of S . Since
σω ∈ Bω(S) \ Bω

u (S), we have that RobV (Sl) = F (σω) ≥
inf{F ({yi}) | {yi} ∈ Bω(S) \ Bω

u (S)} = RobV (S). Hence,
RobV (Sl) = RobV (S). �

Revisiting Figs. 4 and 6 one last time, we have that ILI(S) =
ILA(S) = 1, but using Theorem 10 on S2 we conclude that
Rob ILI(S) = Rob ILA(S) = 2. Nevertheless, by Proposition
9, M(2) must be Schur, and hence a sampling period of 2h also
stabilizes the system with the same traffic performance.

Remark 9: In the case of Rob ILI, if the invariant associated
to the minimizing cycle σ can be verified to belong to a chaotic
invariant set, under mild assumptions it holds that Rob ILI(Sl) =
Rob ILI(S). To see this, first note that Rob ILI = min(σ) =:
y; denoting by Xc the chaotic invariant set, if Qy ∩ Xc has
nonempty interior, by the Birkhoff Transitivity Theorem (see
Def. 1) almost every solution starting in Xc visits Qy infinitely
often.

Remark 10: In case a chaotic invariant set is ergodic, the
infinimal limit average is the same almost everywhere (when
restricted to the set), i.e., it is independent of the initial condition
(as a consequence of Birkhoff Ergodic Theorem). As a matter
of fact, almost everywhere means everywhere except the union
of periodic orbits. Thus, Rob ILA(Sl) can then be a conser-
vative estimate. Nevertheless, the associated Rob ILA can be
estimated through simulations. Ergodicity can be statistically
tested using the approach of [34], where one tests whether the
two initially different distributions on X converge to an equal
one upon the repeated application of the map f by using a
nonparametric hypothesis test such as the Kolmogorov–Smirnov
test. Alternatively, the test can be performed on the distributions
of outputs; because Y is discrete, one must use a hypothesis
test suitable for discrete supports, such as the Cramér–von
Mises (CvM) test [35]. For this approach to succeed, the initial
distribution must contain only points that are in or lead to
the chaotic invariant. The abstraction Sl can be used as an
approximate selector of points on the chaotic invariant set,
as its SCCs that are not simple cycles are related to overap-
proximations of potential chaotic invariants on the concrete
system S .

VI. NUMERICAL EXAMPLES

We have implemented the methods to compute behavioral
entropy and Rob ILA(S) using Theorem 10 in ETCetera [36],
a Python toolbox to compute traffic abstractions of ETC
systems.

Example 2: Consider system (1)–(3) with

A =

[
0 1
−2 3

]
, B =

[
0
1

]
,

c(s,x, x̂) = |x− x̂| > a|x|, (9 revisited)

as in Example 1. Now we use PETC with h = 0.05 and check
the following cases.

1) K = [0 − 5], a = 0.2, as in Ex. 1 case 1.

TABLE I
ILA VALUES FOR EXAMPLE 2

Fig. 7. Entropy h(Sl) as a function of l for Example 2.

2) K = [0 − 6], a = 0.2.
3) K = [0 − 6], a = 0.32, as in Ex. 1 case 2, and Fig. 3.

Table I shows the values of ILA and RobILA for each case, as
well as the l value at which the algorithms were terminated (or
interrupted) and CPU times. Case 1 shows a periodic sequence
σω with |σ| = 27 that is stable and attains both the ILA and the
RobILA, as well as ILI = Rob ILI = 0.1. In fact, case 1 exhibits
only this cycle, and a bisimulation is found with l = 27. Case
2 is different in that an a.u. cycle is attained at y = 0.1, but a
stable cycle has y = 0.25 (stationary). Upon inspection of Sl,
there is another stable cycle at y = 0.3. Unsurprisingly, we also
obtain ILI(S) = 0.1 and Rob ILI(S) = 0.25, which happen at
the same cycles. Finally, Case 3 is a chaotic example; the ILA is
found at y = τ = 0.1 in the first iteration, but RobILA is never
confirmed, although a lower bound of 0.4 is obtained, related
to two unstable cycles, (0.4)ω and (0.35, 0.45)ω . However, note
the CPU time for obtaining the S10 abstraction of approximately
1.5 h (compare with the others of less than a minute): this
is the effect of chaos on the refinements. As indicated by the
entropy formula (12), the number of l-sized sequences grows
exponentially with l. In fact, S10 has 9271 states, and an entropy
of 1.14 bits. The SCC at which the two cycles belong has 7767
states, a strong indicative of a chaotic invariant set.

Fig. 7 shows the evolution of h(Sl) as a function of l for the
three cases, where it is clear that the entropy seems to stabilize
at a high value in Case 3, whereas it descends to zero in the other
cases. Following Remark 10, two different initial distributions on
states related to the large SCC of S10 where generated with 1000
points each, and after 9 iterations they converged to the same
distribution (CvM test, p = 0.998), indicating that the chaotic
invariant set is ergodic. The obtained ensemble average, which
by Birkhoff Ergodic Theorem is equal to the limit average of any
run starting in the invariant, is 0.417, slightly higher than the 0.4
using Theorem 10. Interestingly, 0.4 is a slightly higher limit
average than what was obtained in the CETC implementation
(Ex. 1 Case 3, and Remark 4), of 0.39; moreover, M(0.4) is
not Schur, which highlights that the PETC has a larger aver-
age sampling period than any stabilizing periodic sampling.
Finally, while ILI(S) = ILA(S) = 0.1 (at the same unstable
cycle 0.1ω) the best lower bound for RobILI is found to be 0.3,
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which is witnessed by the unstable cycle (0.3, 0.45, 0.4, 0.5)ω .
By inspection, the associated o-line belongs to the chaotic
invariant, thus, by Remark 9 this is the correct value of
Rob ILI(S).

VII. CONCLUSION

ETC can exhibit very complex traffic patterns, and this seems
to be more true the more “aggressive” the triggering mechanism
w.r.t. sampling reduction. Simple traffic is observed on the
opposite case. This is in line with the findings on [11] for R2, in
which for small enough triggering parameters the states behave
essentially like linear systems: two asymptotes, one stable and
one unstable, or a spiral toward the origin when eigenvalues are
complex conjugate. We have also seen an example of CETC
whose robust ILA is higher than any stable periodic sampling
strategy, whereas the same cannot happen with PETC under
some generic assumptions. The first case is a concrete example
where ETC is more sampling-efficient than any periodic imple-
mentation. At the same time, any practical implementation of
it is effectively PETC, and as such any stable IST sequence it
exhibits is stabilizing as a periodic sampling strategy; the only
option for PETC to beat the most sampling-efficient periodic
implementation involves chaotic or oscillatory traffic. This is
not a problem per se: one could speculate that chaotic traffic
could help in cyber-security aspects, but it can make scheduling
multiple ETC loops in a network even more challenging.

A symbolic method for computing these robust limit metrics
for PETC was presented in Section V. Despite its focus on
linear systems, it applies to linearizable nonlinear systems if
the controller renders the origin GES, as observed in [23].
Unfortunately, our method suffers from the curse of dimen-
sionality, particularly when chaotic behaviors are present; future
work includes using different abstractions that help pinpoint the
existence of chaotic invariant sets. For the latter, an approach
such as in [37] may be interesting, which can be seen in the
framework of [1] as finding an abstraction that is backwards
simulated by the concrete system.

While this work focuses on analysis, it is natural to ask how
to use its results and methods for synthesis of efficient ETC
systems. A straightforward way is to use it in a design-verify-
adjust loop, but the insights of our results can be used more
effectively. For example, one could design Tabuada’s triggering
parameter a, such that the conditions of Proposition 6 hold only
for a sufficiently large IST. This topic is interesting for future
work.

Admittedly, we have considered here the simple case of
state-feedback without disturbances. It is known that output-
feedback or external disturbances can severely alter the inter-
sample behavior of the closed-loop system, potentially causing
Zeno behavior [38], and practical modifications to the triggering
condition are often necessary. It is an unclear whether adding
these imperfections change our conclusions drastically, or if
there are simple adjustments for these cases. Other important
extensions involve considering time-regularized and dynamic
triggering. The former seems easier, as it becomes essentially a
combination of PETC (the state-space region triggering at the
enforced minimal IST) and regular CETC; with this observation,
most results of Section IV can be adapted. The latter can be more
challenging, as the dynamics of the triggering parameter is often
nonlinear. For perturbed systems, it is possible to extend the
symbolic approach of this work by following the steps in [20].

Nevertheless, despite the simple case, we address here, we
believe this work casts new light on the long-standing question
of how relevant ETC is.

APPENDIX

A. Proof of Corollary 2

Proof: Assumption (i) combined with Theorem 2 implies
that, if σω is an output sequence of (7), then there exists a
linear invariant A of Mσ s.t. A ⊆ cl(Qσ). From (ii), any such
A satisfies A \ {0} ⊆ Qσ , which by Theorem 2 implies σω is
an output sequence of (7). This establishes the equivalence.

To see that one such invariant A is either an o-line (1-
dimensional) or an o-plane (2-dimensional), assume that it is
higher dimensional. By assumption, Mσ is mixed, therefore,
A is spanned by o-lines (associated with real eigenvalues)
and o-planes (associated with complex conjugate pairs). Let
V ∈ Rnx×m be a basis for A with m > 2, where the ith column
of V is a real eigenvector of Mσ or, in case of a complex
eigenvector pair v,v∗, the ith and (i+ 1)th columns are v + v∗

and iv − iv∗, respectively; these two columns form an invariant
plane of Mσ . In the former case, we have V Ei = v, and

in the latter, V Ei,i+1 =
[
v + v∗ iv − iv∗

]
, where Ei is a

row matrix with the ith element being 1 and the rest zero, and
Ei,i+1 ∈ R2×m has the entries (1, i) and (2, i+ 1) equal to 1,
the rest being zero.

Since Qσ is an intersection of sets of the form {x ∈
Rnx | xTQix ∼ 0}, where ∼∈ {=,≥, >}, by Proposition
1, V TQiV ≈ 0 for every such Qi, where ≈∈ {=,�,�},
respectively. Since A ≈ 0 ⇒ BTAB ≈ 0 for any non-
singular B, we can conclude that V TQiV ≈ 0 im-
plies (V Ei)

TQi(V Ei) ≈ 0 and (V Ei,i+1)
TQi(V Ei,i+1) ≈

0, which imply that the corresponding o-line or o-plane is also
a subset of Qσ . �

B. Proofs of Theorem 3 and Proposition 8

In these proofs, if f is not invertible in the pointwise sense, we
treat its inverse in a set-based manner: f−1 : Y ⇒ X , f−1(y) =
{x ∈ X | f(x) = y}. In addition, here we work on the real
projective space Pnx−1, the space of all o-lines in Rnx . The
real projective space is the quotient of Rn \ {0} by the relation
x ∼ λx, λ ∈ R \ {0}. Therefore, x and λx are the same point
p ∈ Pnx−1. We denote the natural projection of a point in Rnx

onto Pnx−1 by h : Rnx \ {0} → Pnx−1.
Lemma 2: Given f in (7), g := h ◦ f ◦ h−1 is a well-defined

function; moreover, if f is continuous, then g is continuous.
Proof: For any p ∈ Pnx−1, h−1(p) gives an o-line l ⊂ Rnx .

From Proposition 2, it holds that f(l) = l′, where l′ is also an
o-line. Hence, h(l′) = p′ ∈ Pnx−1, so g is well defined.

Continuity: f is also continuous for o-lines, i.e., if l is an
o-line, liml′→l f(l

′) = l; hence, limp′→p g(p
′) = p. �

Proof of Theorem 3: Every continuous map from the real
projective space to itself has a fixed point if its dimension is
even [38, p. 109]. From Lemma 2, g : Pnx−1 → Pnx−1 is a
continuous function; thus, g has a fixed point if nx is odd.
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Now we need to show that, if g has a fixed point, then f
has a fixed o-line. If p is a fixed point of g, then take a point
x ∈ h−1(p). Then, h(f(x)) = g(h(x)) = p ∴ f(x) ∈ h−1(p)
Hence, there exists x′ ∈ h−1(p) satisfying x′ = f(x), where
x′ = λx, for some λ. Since f is homogeneous as per Proposi-
tion 2, x′ = f(x) is true for any x in the o-line containing it.
Hence, this line is fixed by f , and the proof is complete. �

Proof of Proposition 8: From Lemma 2, g : Pnx−1 → Pnx−1

is well defined. Fix x ∈ l and let p := h(x). We want to show
that there is a coordinate system for the tangent space of g at p
such that the Jacobian of g at p is equal to 1

λ
Ox

TJf (x)Ox.
First, note that the real projective space is locally equal to

the unit sphere, hence, we can use the orthogonal subspace to
a unitary x within l as the tangent subspace of p embedded in
Rnx . Denote it as T (x). Let d be a unitary vector orthogonal to
x. Any point in T (x) can be described as x+ ad. To get the
Jacobian of g, we apply f to x+ hd and project the result back
to T (x).

f(x+ hd) = f(x) + hJf (x)d+O(h2)

= λx+ hJf (x)d+O(h2),

whose projection back to T (x) is simply x+ h/λ · Jf (x)d+
O(h2). Thus, the vector of variation of g w.r.t. d embedded in
Rnx is

lim
h→0

x+ h/λ · Jf (x)d+O(h2)− x

h
=

1

λ
Jf (x)d.

Now let di be the ith column of Ox. Every di is unitary and
orthogonal tox. Settingd1,d2, . . .dnx−1 as a coordinate system
for the tangent space of g atp, the component of the derivative of
g on dj from a variation in di is dTj

1
λ
Jf (x)di; putting in matrix

form, we arrive atJg(p) = 1
λ
Ox

TJf (x)Ox,which implies local
attractivity if Schur. �

C. Proof of Theorem 4

We start by introducing the following lemma.
Lemma 3: Let N ∈ Sn be a symmetric matrix, and let

(P,N,Z) be its signature, i.e., the number of its positive, neg-
ative, and zero eigenvalues, respectively. Let m be a positive
integer s.t. m ≤ n. The following holds.

i) There is an m-dimensional linear space A such that x ∈
A \ {0} ⇒ xTNx > 0 if and only if N has at least m
positive eigenvalues.

ii) There is an m-dimensional linear space A such that x ∈
A ⇒ xTNx = 0 if and only if min(P + Z,N + Z) ≥
m. As a consequence n ≥ 2m− Z.

Proof: (i) This is a trivial consequence of Sylvester’s law of
inertia (see [40, Ch. XV.4]).

(ii) Based on Proposition 1, this is equivalent to V TNV = 0,
for some V ∈ Rn×m.

Proof of necessity: We assume that some full-rankV ∈ Rn×m

satisfiesV TNV = 0 and prove thatmin(P + Z,N + Z) ≥ m.
Using Sylvester’s law of inertia, we can write N = TTST ,
where S is diagonal containing only 1, 0 and −1 entries in
the diagonal, with counts P,Z, and N, respectively, and T
is invertible. If Z ≥ m, min(P + Z,N + Z) ≥ m is trivially

satisfied. Let us now assume that Z < m. Then, V TNV =[
W 0

W 1

]T[
0 0

0 S̄

][
W 0

W 1

]
, where

[
W 0

W 1

]
:= TV is partitioned

according to the zero and the nonzero (S̄) parts of S, and it
also has rank m. Thus, W 0 has rank Z and W 1 has rank
m− Z. Let W 2 := S̄W 1. Pre-multiplying W 2 by S̄, we get
S̄W 2 = S̄

2
W 1 = W 1 (note that S̄2

= I). Thus, we can write

S̄
[
W 1 W 2

]
= S̄W =

[
W 2 W 1

]
= WP

where P :=

[
0 I

I 0

]
is a permutation matrix of dimension

2(m− Z). This matrix has m− Z eigenvalues in 1 and m− Z
eigenvalues in −1. Now, take one pair (λ,x) such that Px =
λx. Then, S̄Wx = WPx = λWx, so λ is also an eigenvalue
of S̄. Thus, S has at least m− Z eigenvalues equal to 1 and
m− Z equal to −1. Therefore, min(P + Z,N + Z) ≥ m.

Proof of sufficiency: Now we start with a symmetric N
satisfying min(P + Z,N + Z) ≥ m, and then construct V ∈
Rn×m such that V TNV = 0. Take the Sylvester matrix S
of N and select its rows and columns such that the obtained
submatrix has Z̄ := min(Z,m) zero entries, max(m− Z, 0)
entries equal to 1 and max(m− Z, 0) entries equal to −1.
Denote this submatrix by S̄. We have that that there exists W̄ ∈

R(2m−Z̄)×(2m−Z̄) such that W̄−1
S̄W̄ =

[
0 0

0 P

]
, where P

is the same permutation matrix as in the proof of necessity

(W̄ comes from the eigendecomposition of

[
0 0

0 P

]
). Build

W :=

[
W̄

0

]
s.t. W ∈ Rn×(2m−Z̄), and denote its first m

columns ofW byW 1. Using the same arguments as in the proof
of necessity, the matrix V = T−1W 1 satisfies V TNV = 0.

Finally, P + Z ≥ m and N + Z ≥ m imply (by addition)
P +N + 2Z = n+ Z ≥ 2m. Hence, n ≥ 2m− Z. �

Proof of Theorem 4: Case (i) is trivial, because the only
o-plane is the whole R2, which being isochronous implies
periodic sampling. Conversely, it is necessary that nx ≥ 3 if we
are interested in nontrivial cases. What remains to be shown is
that nx = 3 in CETC implies that N(τ) is singular if an o-plane
is isochronous with IST τ .

For CETC, the isochronous set Qτ contains a set of the form
{x ∈ Rnx | xTN(τ)x = 0}. As we are looking for o-planes, we
apply Lemma 3 (ii) withm = 2. Suppose that nx = 3 andN(τ)
is not singular, i.e., Z = 0; then, by Lemma 3 (ii), N(τ) must
have at least two positive and two negative eigenvalues, implying
that nx ≥ 4. This is a contradiction; therefore, either N(τ) is
singular, proving case (ii), or nx ≥ 4, proving case (iii). �

D. Proof of Proposition 11

First we introduce the following Lemma.
Lemma 4: Let ξ(k + 1) = Mξ(k) be a linear autonomous

system, M mixed, and let v1,v2, . . .,vn be the unitary eigen-
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vectors of M ordered from largest-in-magnitude corresponding
eigenvalue to smallest. Denote by A any linear invariant of M
containing v1. Then, for every initial state ξ(0) = a1v1 + · · · =
anvn where a1 �= 0, it holds that limk→∞

ξ(k)
|ξ(k)| ∈ A.

Proof: This is trivial consequence of the proof of [22, Lemma
3] when a1 �= 0. �

Lemma 4 paraphrases the known fact that almost every tra-
jectory of a linear system converges to its dominant mode.

Proof of Proposition 11. Item (I): For contradiction, assume
that σω is stable, and let m := |σ|. First, we check x0 ∈ Qσ . In
this case, the samples {xi} evolve according toxi+m = Mσxi.
Let x0 = a1v1 + · · · = anvn where vj are the eigenvectors
of Mσ ordered as in Lemma 4. For any x0 ∈ Rn almost all
points in its neighborhood satisfy a1 �= 0. Hence, by Lemma 4,
limi→∞

xmi

|xmi| ∈ A, but A � cl(Qσ). Thus, {xmi} escapes Qσ

at a some finite i, hence, {y(xmi)} �= σω. This contradicts the
assumption that σω is stable.

We now see that the set of states x such that Bω
x(S) = ασω ,

|α| < ∞ has measure zero. This is done by induction on the
length of α. Let Xm be the set of states whose behavior is if
ασω with |α| = m. If m = 0, we have already seen that X0

is a linear invariant of Mσ; because this linear subspace does
not contain v1, it has zero measure. Now assume Xm has zero
measure. The setXm+1 is the pre-image ofXm, hence,Xm+1 ⊆
∪k̄
k=1M

−1
k Xm. Because Mk is nonsingular and the union is

finite, Xm+1 is also measure zero. This concludes the proof that
σω is unstable.

Item (II): First, note that c must be a multiple of |σ|. Let α
be any l-long subsequence of σω. We have already seen that
for almost every x ∈ Qα there exists a finite k such that the
solution to (7)ξx(ck − 1) /∈ Qα.To prove absolutely instability,
it suffices to check the behavior from any such ξx(ck − 1) does
not contain σL for some L large enough. We show that it is true
with L = c/|σ|.

Let C be the simple-cycle SCC formed by {x1, x2, . . ., xc}.
Since α ∈ C, w.l.o.g., let x1 = α, which is related to x. Let
x′ := ξx(ck) and take x′ as the unique state in Sl related to x′,
respectively. We first show that x′ /∈ C: since there is a run from
x to x′ with length ck, there must be a run segment of length
ck from x1 to x′. Because C is strongly connected, if x′ ∈ C, the
only path would be (x1. . .xc)

kx1, hence, x′ = x1. But this is
a contradiction because x′ �= α since ξx(ck − 1) /∈ Qα. Thus,
x′ /∈ C.

Now, there is no path in the abstraction connecting x′ to C
(otherwise C would not be a simple cycle). Therefore, because
Sl � S , it is trivial to see that there is also no path fromx′ back to
Qα, i.e., ξx′(k) /∈ Qα, ∀k ∈ N. Thus, Bω

x′(S) does not contain
σL as a subsequence, concluding the proof. �
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