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A B S T R A C T

A microscale numerical framework for modeling creep rupture in unidirectional composites under off-axis
loading is presented, building on recent work on imposing off-axis loading on a representative volume
element. Creep deformation of the thermoplastic polymer matrix is accounted for by means of the Eindhoven
Glassy Polymer material model. Creep rupture is represented with cohesive cracks, combining an energy-
based initiation criterion with a time-dependent cohesive law and a global failure criterion based on the
minimum in homogenized creep strain-rate. The model is compared against experiments on carbon/PEEK
composite material tested at different off-axis angles, stress levels and temperatures. Creep deformation is
accurately reproduced by the model, except for small off-axis angles, where the observed difference is ascribed
to macroscopic variations in the experiment. Trends in rupture time are also reproduced although quantitative
rupture time predictions are not for all test cases accurate.
1. Introduction

Structural parts made of fiber reinforced polymer (FRP) composites
usually require operational time that spans from several years to sev-
eral decades [1]. Therefore, the long-term structural integrity of these
components is of utmost importance. A challenge to this requirement
is the inherent time dependent mechanical response of the composites
which has its roots in the viscous nature of the polymer matrix. When
exposed to a constant stress level FRP composites will undergo creep
deformation, whose magnitude further depends on the off-axis loading
angle, temperature, moisture, etc.

Many models that describe deformation kinetics of polymers are
based on the Eyring thermally activated flow theory [2]. Kanters
et al. [3] represented a constant plastic strain-rate in thermoplastic
polymers and composites and applied a creep rupture criterion based
on a critical value of the plastic strain accumulated in the material.
The similar idea was followed by Erartsin et al. [4] and extended to
off-axis failure of unidirectional (UD) glass/iPP composite systems. Also
based on the Eyring flow theory, Spathis and Kontou [5] proposed an
equation for the creep strain-rate, and assumed the creep rupture time
as the moment when the creep strain-rate reaches a minimum value.
Raghavan and Meshii [6] developed a creep rupture model for com-
posites, in which the creep strain is modeled by the thermal activation
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theory, and the creep rupture happens when the stored elastic energy
in the material attains a critical value. As an alternative to the Eyring
flow theory, the single integral approach developed by Schapery [7]
has often been used to represent the creep behavior in polymers. Lou
and Schapery [8] showed that this theory can also represent the creep
response of composites for different stress levels and off-axis angles.
All models for the composite material mentioned so far aim to describe
the homogenized response in (semi-)analytical form. Although this
approach is computationally efficient, complete characterization of the
homogenized orthotropic material is challenging, giving rise to complex
formulations and extensive experimental identification procedures.

On the other side, computationally more expensive microscale mod-
els explicitly account for the heterogeneous microstructure of the com-
posite material. In this context a numerical implementation of the
Schapery’s model for polymers was done by Haj-Ali and Muliana [9],
and later used in the Aboudi four-cell micromodel [10] to repre-
sent the creep response of different FRP composites under off-axis
loading [11], but no creep rupture was predicted. Jafaripour and
Taheri-Behrooz [12] also applied the Schapery’s integral to model creep
behavior in a UD composite representative volume element (RVE).
However, the RVE model is not suitable for every fiber orientation
and does not predict creep rupture. In order to represent degradation
vailable online 7 November 2023
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of the composite constituents on the microlevel, Gal and Fish [13]
applied an isotropic continuum creep damage model [14,15], followed
by the upscaling of the unit cell response in structural analyses of
composite components. In a multiscale model aimed at predicting the
time-dependent response of UD composites Govaert et al. [16] also
addressed creep failure due to off-axis loading. The model assumes a
regular distribution of fibers in the RVE, and a failure criterion based
on the critical plastic strain at one point in the RVE.

Despite the vast amount of literature dealing with the microme-
chanical modeling of FRP composites, only a small part concerns the
creep behavior and to our knowledge only the model by Gal and
Fish [13] describes progressive creep rupture of the material. Recently,
we have developed a micromechanical model to impose a constant
strain-rate on the RVE under an off-axis angle [17], assuming finite
deformations in the material locally and in the homogenized sense.
The model was supplemented with a cohesive surface methodology
to simulate rate-dependent failure in thermoplastic composites [18].
In this study the microscale numerical model is modified to apply a
constant stress on the RVE and analyze off-axis creep rupture in uni-
directional composites. The Eindhoven Glassy Polymer (EGP) material
model is used to represent the creep behavior in the polymer matrix. In
order to simulate the rupture process, a modified version of the Reiner–
Weissenberg material failure theory [19] is proposed. Specifically,
when the Helmholtz free energy of the EGP model locally reaches a
critical value, a cohesive segment is inserted in the RVE. The necessity
to use a time-dependent cohesive law to model decohesion due to creep
loading is illustrated. Global failure of the material coincides with the
homogenized creep strain-rate of the RVE reaching a minimum value.
Simulation results obtained for different off-axis angles, temperatures
and stress levels are compared with experimental observations on a UD
carbon/polyetheretherketone (PEEK) composite system.

The paper is organized as follows: the experimental benchmark for
comparing the model predictions is introduced in the next section.
Then the micromechanical framework is outlined, with emphasis on
the changes with respect to earlier work [17,18]. In the subsequent
section the constitutive models for the composite constituents are ex-
plained. Afterward, the results obtained by the model are compared
with experiments.

2. Experimental benchmark

Carbon fiber reinforced UD tapes with PEEK matrix were provided
by Solvay. Previous research efforts by Erartsin et al. [20] on com-
mercial UD tapes with the fiber volume fraction 𝑉𝑓 of 0.6, showed
a large scatter in the experimental data. Hence in this study tapes
with more matrix (𝑉𝑓 = 0.4) than commercial tapes were preferred
to ensure good repeatability of data. The tensile test coupons were
prepared according to the procedure outlined in [18]. The coupons
had a thickness of 1.8 mm and a width of 15 mm. A gauge length of
100 mm was used for 90◦ and 45◦ loaded samples. For smaller loading
angles of 30◦ and 15◦, a longer gauge length of 120 mm was used to
contain the failure within the gauge section. A tab length of 25 mm
was utilized to carry out the experiments. However, while carrying
out experiments at higher temperature, smaller clamps that could fit
inside the temperature chamber were used, with a reduced tab length
of 20 mm.

Creep experiments under uniaxial tension at room temperature were
performed using a Zwick Z100 universal tensile tester equipped with
a 50 kN load cell. Zwick Z05 tester equipped with a smaller 5 kN
load cell was used for higher temperature experiments, also utilizing
temperature chambers with digital controls to ensure precise control
of temperature, see Fig. 1(right). A constant force was applied on the
specimen, from which the engineering (eng.) stress was computed. The
reported creep strains are a direct translation of the crosshead displace-
ment, and measure the engineering strain. A schematic representation
of the testing specimen is shown in Fig. 1(left), where 𝜒 is the initial
angle between the fibers and loading direction, often referred to as the
off-axis angle. It is defined as 𝜒 = 90◦ − 𝜃0, where 𝜃0 is the initial angle
between the global 𝑥-axis and the fibers, see Fig. 2.
2

Fig. 1. Schematic representation of testing specimen (left), where 𝜒 is the initial off-
axis angle; creep testing of UD carbon/PEEK composite system at higher temperature
in a temperature chamber (right); dimensions in mm.

3. Micromechanical framework

3.1. Homogenized kinematics and external force vector

In this section, the equations needed to impose a constant Cauchy
stress on the RVE under an off-axis angle and compute the logarithmic
strain in the global loading direction are presented. To facilitate the
comparison with experimental results, the adjustment to impose a
constant engineering stress on the RVE and calculate the engineering
strain is introduced afterward.

In the case at hand unidirectional composite material is exposed
to a constant stress, i.e., to creep loading conditions, see Fig. 2(left).
Beside the extensional deformation, this uniaxial loading will deform
the orthotropic material also in shear, see Fig. 2(middle). Due to the
viscous nature of the polymer matrix, deformation in the material
will keep increasing. Furthermore, accounting for finite strains in the
material the local coordinate frame aligned with the reinforcement may
change orientation from the angle 𝜃0 to a new angle 𝜃1. Given the
angle 𝜃1 the stress state can be transformed to the local coordinate
frame, resulting in the Cauchy stress components shown in Fig. 2(right).
We aim to simulate this deformation process on the microscale, by
means of an RVE model of a thin slice of material perpendicular to
the fibers. Therefore, the homogenized stress components acting on
the RVE, see Fig. 3(left), must be equal to the stress components in
Fig. 2(right). This condition implies that the RVE, which is defined in
the local coordinate system aligned with the fibers, must account for the
change in orientation during the deformation process from the angle 𝜃0
to the angle 𝜃1. To satisfy this requirement, proper kinematic relations
and the external force vector components acting on the micromodel
need to be derived for a thin slice RVE. Defining an off-axis uniaxial
stress state in an RVE while accounting for a possible update in its
orientation can be achieved with the arclength formulation proposed
in [17]. This formulation was originally designed for constant strain-
rate simulations, where the deformation in load direction is known for
every time step while the magnitude of the stress is not. By contrast, for
creep simulations, the stress magnitude is given and the corresponding
deformation unknown, which asks for a small modification of the for-
mulation. We consider an RVE with periodic boundary conditions [21],
that also enforce the periodicity in microcracking [22]. Homogenized
kinematic relations are defined following displacement components of
master nodes of the RVE. Active displacements of the master nodes
are shown in Fig. 3(right), accompanied with non-zero force compo-
nents. Master node displacements not indicated in the figure are set to
zero. The detailed discussion of this choice of boundary conditions is
presented in [17].
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Fig. 2. Constant stress applied on unidirectional composite material (left); deformed material due to uniaxial loading (middle); Cauchy stresses in local coordinate system (right).
Fig. 3. Homogenized stress components on RVE faces (left) as result of force compo-
nents applied on RVE master nodes (right); non-zero displacement components of four
RVE master nodes also indicated in the right figure.

To derive expressions for the external force components, first we
need to introduce the homogenized deformation gradient of the RVE,
�̄�. With the Dirichlet boundary conditions as defined in Fig. 3(right),
the homogenized deformation gradient is:

�̄� =
⎡

⎢

⎢

⎣

𝐹11 𝐹12 0
0 𝐹22 0
0 0 𝐹33

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

1 + 𝑢11
𝑙01

𝑢21
𝑙02

0

0 1 + 𝑢22
𝑙02

0

0 0 1 + 𝑢33
𝑙03

⎤

⎥

⎥

⎥

⎥

⎦

(1)

where 𝑢𝑖𝑗 is displacement of master node 𝑖 in direction 𝑗, and 𝑙0𝑖
is the initial length of the RVE in direction 𝑖. Components of the
external force vector are derived considering the equilibrium between
the homogenized internal and external force vector: 𝐟 int = 𝐟ext. Without
loss of generality we assume that the whole RVE domain is represented
with a single trilinear hexahedral finite element. Following Belytchko
et al. [23] the homogenized internal force vector can be expressed as:

𝐟 int = ∫𝛺0

�̄�T
0 �̄�

−1�̄�𝐽𝑑𝛺0 (2)

in which �̄�0 is the strain — nodal displacement matrix defined over the
reference configuration, 𝐽 is the determinant of �̄�, while �̄� represents
the homogenized Cauchy stress acting on the material in the local
frame. After evaluating the integral in Eq. (2), the expressions for the
corresponding external force vector components acting on the master
nodes yield:

𝑓11 = 𝜎𝑦𝑦𝐴
0
1𝐽

(

𝑠21
𝐹11

− 𝑐1𝑠1
𝐹12

𝐹11𝐹22

)

𝑓21 = 𝜎𝑦𝑦𝐴
0
2𝐽
𝑐1𝑠1
𝐹22

𝑓22 = 𝜎𝑦𝑦𝐴
0
2𝐽

𝑐21
𝐹22

(3)

Here 𝑓𝑖𝑗 is force component acting on master node 𝑖 in direction 𝑗, 𝐴0
𝑖

is the initial surface of the RVE on which a corresponding stress com-
ponent is acting, while 𝑠𝑖 and 𝑐𝑖 denote sin(𝜃𝑖) and cos(𝜃𝑖) respectively,
with 𝑖 being either 0 or 1. The angle 𝜃1 is computed as: 𝜃1 = 𝜃0 + 𝜙,
where the angle 𝜙 represents the change in orientation of the RVE in
3

the deformation process. Following [17], it can be expressed as:

𝜙 = arctan

(

−𝐹11𝑐0𝑠0 + 𝐹12𝑠20 + 𝐹22𝑐0𝑠0
𝐹11𝑐20 − 𝐹12𝑐0𝑠0 + 𝐹22𝑠

2
0

)

(4)

The expressions for the force components, Eq. (3), are very simi-
lar to the unit force components of the strain-rate based arclength
model [17], differing only for the presence of the creep stress 𝜎𝑦𝑦. When
periodic boundary conditions are applied, every force component in
Eq. (3) is distributed over the nodes belonging to the side of the RVE
on which the force component is acting. This way, the external force
vector 𝐟ext applied on the RVE is fully defined. This vector has to be
in equilibrium with the internal force vector, i.e., 𝐟ext = 𝐟 int. In the
presence of cracks, and the absence of body forces, the internal force
vector is defined as presented in [18].

Since we are dealing with the creep problem, it is pertinent to plot
the strain in the material versus time. For this purpose an expression
for the homogenized strain component 𝜀𝑦𝑦 corresponding to the creep
stress in the global loading direction needs to be derived. To find
this expression, a relation between the RVE homogenized deformation
gradient and the deformation gradient 𝐅 of the material in the global
frame is needed. Due to the analogy between an off-axis creep stress
and an off-axis strain-rate loading, we can follow the transformation
rules and kinematic relations derived in [17] for an off-axis strain-rate
acting on the material. Accordingly:

𝐅 = 𝐐T
1 �̄�𝐐0 (5)

In this equation 𝐐0 is the transformation matrix that depends on the
angle 𝜃0:

𝐐0 =
⎡

⎢

⎢

⎣

cos(𝜃0) sin(𝜃0) 0
− sin(𝜃0) cos(𝜃0) 0

0 0 1

⎤

⎥

⎥

⎦

(6)

The transformation matrix 𝐐1 has the same form, although it depends
on the angle 𝜃1. Given Eq. (5), the homogenized strain in the loading
direction can be written as:

𝜀𝑦𝑦 = ln(𝐹𝑦𝑦) (7)

where 𝐹𝑦𝑦 is the component of 𝐅 in the global loading direction.
Eqs. (3) and (7), impose the homogenized Cauchy (true) stress

on the RVE and measure the homogenized logarithmic (true) strain,
respectively. However, the experimental results are reported in the
form of engineering strain as the result of a constant force imposed
on the specimen. The consequence of applying the constant force
and relying on the engineering stress, is that the actual stress on the
material changes with deformation. In that regard, the Cauchy stress
𝜎𝑦𝑦 in Eq. (3) is computed from the engineering stress 𝜎eng

𝑦𝑦 :

𝜎𝑦𝑦 =
𝜎eng
𝑦𝑦

𝐹𝑥𝑥𝐹𝑧𝑧
(8)

where 𝐹𝑥𝑥 and 𝐹𝑧𝑧 are components of the homogenized deformation
gradient in the global frame, Eq. (5). Finally, the engineering strain in
the global loading direction is extracted from the model as follows:

𝜀eng = 𝐹 − 1 (9)
𝑦𝑦 𝑦𝑦
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Table 1
Algorithm of the microscale creep model for time step 𝑛.

(1) set step size 𝛥𝑡
(2) given �̄�𝑛−1, compute 𝜙 from Eq. (4); set 𝜃1 = 𝜃0 + 𝜙
(3) update 𝐟ext using Eqs. (3) and (10), for eng. stress–strain use Eq. (8) in Eq. (3)
(4) follow the algorithm outlined in [24]
(5) if commit, compute 𝜀𝑦𝑦 combining Eqs. (5) and (7),

for eng. strain, compute 𝜀eng
𝑦𝑦 combining Eqs. (5) and (9)

3.2. Implementation

The computational framework for the model presented herein is
based on the updated Lagrangian formulation [23], an approach suit-
able for modeling finite deformations. The equations introduced so far
assume no discretization in time. However, in the spirit of a force
controlled analysis an incremental-iterative procedure is applied, with
a finite time increment 𝛥𝑡 in every simulation step. In order to match
the experiment in terms of the time needed to reach a constant load
level, the engineering stress-rate �̇�eng

𝑦𝑦 is considered, such that at time
step 𝑛 the engineering stress in Eq. (8) is computed as follows:

𝜎eng
𝑦𝑦,𝑛 = min

(

𝜎eng
𝑦𝑦,𝑛−1 + �̇�

eng
𝑦𝑦 𝛥𝑡, 𝜎const

𝑦𝑦

)

(10)

where 𝜎const
𝑦𝑦 is the constant (engineering) stress. If the simulation con-

iders a constant Cauchy stress, then the superscript ‘‘eng’’ is dropped
rom Eq. (10) and 𝜎𝑦𝑦,𝑛 is directly applied in Eq. (3) without correcting
he stress for the previous deformation, as done in Eq. (8) for the
ngineering stress. The algorithm for one time step of the analysis
s presented in Table 1. The core part of the implementation with
daptive stepping and insertion of cohesive cracks on the fly coincides
ith the algorithm introduced by Van der Meer and Sluys [24]. It

hould be noted that the external force vector is computed knowing
he homogenized deformation gradient from the last converged time
tep �̄�𝑛−1, and no update in the 𝐟ext is made during iterations within
he current time step.

. Constitutive models

In this section the constitutive models representing the behavior of
he composite constituents are outlined. The description of the EGP
odel for the polymer matrix is followed by explaining a transversely

sotropic material model for carbon fibers. The creep rupture process is
imulated with interelement cohesive surfaces that are inserted during
he simulation. For the creep simulations, a new cohesive zone (CZ)
nitiation criterion is proposed as well as a time-dependent cohesive
aw.

.1. The Eindhoven Glassy Polymer constitutive model

To represent the behavior of the polymer matrix we choose the
GP material model. The EGP is a 3D elasto-viscoplastic model without
yield surface. Instead, it is based on the Eyring flow theory [2],

n the sense that the viscosity reduces with the stress applied on the
aterial [25], leading to the flow of the polymer. In this regard, the

ield point is perceived as the stress induced melting [26].
The model formulation builds upon the multiplicative decomposi-

ion of the deformation gradient in the elastic and the plastic part:

𝑖 = 𝐅𝑖e ⋅ 𝐅𝑖p (11)

o make the distinction from the homogenized deformation gradient of
he RVE in the global frame, Eq. (5), the subscript 𝑖 is used to indicate
he deformation gradient at integration point 𝑖 inside the RVE. It is
ssumed that the plastic part of deformation is volume preserving, such
hat:

= det(𝐅 ) = det(𝐅 ) (12)
4

𝑖 𝑖 𝑖e h
Fig. 4. Mechanical analog for multi-process, multi-mode driving stress in the EGP
model.

The derivation of the Cauchy stress follows from principles of con-
tinuum thermodynamics as described by Khaleghi et al. [27], but with-
out damage. Following the Clausius–Duhem inequality, the internal
dissipation for an isothermal process can be written as:

Dint = 𝝈 ∶ 𝐋 − 1
𝐽𝑖
�̇� ≥ 0 (13)

here 𝝈 is the Cauchy stress, 𝐋 is the velocity gradient, and 𝜓 is
he Helmholtz free energy. The free energy is decomposed in the
ydrostatic part 𝜓h, the hardening part 𝜓r, and the driving part 𝜓d.
he definition of the hydrostatic free energy is the same as in [27]:

h = 𝜅
2
(𝐽𝑖 − 1)2 (14)

n which 𝜅 is the bulk modulus. The hardening part of the free energy
s different than in [27] and is defined such that the derived stress
omponent corresponds to the neo-Hookean model [26]. Accordingly:

r =
𝐺r
2

[

tr
(

�̃�
)

− 3
]

(15)

where 𝐺r is the hardening modulus, and �̃� is the isochoric left Cauchy–
Green deformation tensor:

�̃� = 𝐽−2∕3
𝑖

(

𝐅𝑖 ⋅ 𝐅T
𝑖
)

(16)

The driving component allows for thermorheologically complex re-
sponse of the model, meaning that multiple relaxation processes may
govern the material response. In this study, we consider two relaxation
processes, 𝛼 and 𝛽. In addition to this, each relaxation process may be
represented by a number of Maxwell elements connected in parallel,
with the mechanical analog of the stress tensor corresponding to the
driving free energy shown in Fig. 4. Therefore, the driving free energy
is defined as:

𝜓d = 1
2

𝑝
∑

𝑘=1
𝐺𝛼,𝑘

[

tr
(

�̃�e𝛼,𝑘
)

− 3
]

+ 1
2

𝑞
∑

𝑙=1
𝐺𝛽,𝑙

[

tr
(

�̃�e𝛽,𝑙
)

− 3
]

(17)

In this equation, 𝑝 and 𝑞 are the number of modes respectively for
rocess 𝛼 and 𝛽, 𝐺𝑥,𝑗 is the shear modulus of Maxwell element 𝑗
elonging to relaxation process 𝑥, where 𝑥 is either 𝛼 or 𝛽, and 𝑗 is
ither 𝑘 or 𝑙, �̃�e𝑥,𝑗 is the isochoric elastic left Cauchy–Green deformation
ensor of the same Maxwell element.

Given the definition of the free energy, the corresponding stress
ensors can be defined. Following the Coleman–Noll formalism [28]
nd the procedure outlined in [27] the stress tensors corresponding to
he free energy components emerge as:

h = 𝜅(𝐽𝑖 − 1)𝐈

𝝈r =
1
𝐽𝑖
𝐺r�̃�d

𝝈d =
𝑝
∑

𝑘=1
𝝈𝛼,𝑘 +

𝑞
∑

𝑙=1
𝝈𝛽,𝑙

= 1
𝐽𝑖

𝑝
∑

𝑘=1
𝐺𝛼,𝑘�̃�d

e𝛼,𝑘 +
1
𝐽𝑖

𝑞
∑

𝑙=1
𝐺𝛽,𝑙�̃�d

e𝛽,𝑙

(18)

here 𝐈 is the second-order unit tensor, and the total Cauchy stress
s the summation of three stress tensors, the hydrostatic stress 𝝈h, the
ardening stress 𝝈 , and the driving stress 𝝈 : 𝝈 = 𝝈 + 𝝈 + 𝝈 .
r d h r d
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Table 2
EGP model parameters.
𝜅 [MPa] 𝐺r [MPa] 𝑉𝛼 [nm3] 𝑉𝛽 [nm3] 𝛥𝐻𝛼 [kJ/mol] 𝛥𝐻𝛽 [kJ/mol] 𝜇𝛼 = 𝜇𝛽 𝑆𝛼 = 𝑆𝛽
2600 25 3.518 3.518 375.87 325.28 0.08 0
I
e
t
m
T

𝐼

𝐼

T

T
d
u
P
a
P
f
r
l

In order to determine �̃�d
e𝑥,𝑗 in Eq. (18) it is necessary to integrate

he rate equation of �̃�e𝑥,𝑗 :

̇̃
e𝑥,𝑗 =

(

�̃� − 𝐃p𝑥,𝑗
)

⋅ �̃�e𝑥,𝑗 + �̃�e𝑥,𝑗 ⋅
(

�̃�T − 𝐃p𝑥,𝑗
)

(19)

ere, 𝐃p𝑥,𝑗 is the plastic part of the rate of deformation tensor of
axwell element 𝑗 as part of relaxation process 𝑥, which is defined

y introducing a constitutive relation of the form [29]:

p𝑥,𝑗 =
𝝈𝑥,𝑗

2𝜂𝑥,𝑗 (𝜏𝑥, 𝑝, 𝑆𝑥, 𝑇 )
(20)

where 𝜂𝑥,𝑗 is the viscosity in the dashpot of Maxwell element 𝑗 and
elaxation process 𝑥. It is a function of the equivalent stress 𝜏𝑥, the

hydrostatic stress 𝑝 = −tr(𝝈)∕3, the state parameter 𝑆𝑥 and the absolute
temperature 𝑇 :

𝜂𝑥,𝑗 = 𝜂0𝑥,𝑗
𝜏𝑥∕𝜏0𝑥

sinh(𝜏𝑥∕𝜏0𝑥)
exp

(

𝜇𝑥𝑝
𝜏0𝑥

)

exp(𝑆𝑥) exp
[

𝛥𝐻𝑥
𝑅

(

1
𝑇

− 1
𝑇ref

)]

(21)

n this equation 𝜂0𝑥,𝑗 is the initial viscosity, 𝜏0𝑥 is the characteristic
hear stress, 𝜇𝑥 is the pressure dependency parameter, 𝛥𝐻𝑥 is the
ctivation enthalpy, 𝑅 is the gas constant, and 𝑇ref = 298.15 K is the
eference absolute temperature. The equivalent stress is defined as:

𝜏𝑥 =
√

1
2
𝝈𝑥 ∶ 𝝈𝑥 (22)

ith 𝝈𝑥 =
∑

𝝈𝑥,𝑗 , whereas the definition of the characteristic shear
tress is:

𝜏0𝑥 =
𝑘B𝑇
𝑉𝑥

(23)

in which 𝑘B is the Boltzmann constant, and 𝑉𝑥 is the activation volume.
The state parameter 𝑆𝑥 takes into account the thermodynamical

history of the material, which in turn depends on its processing history.
In the EGP model it is represented as a product of the aging parameter
𝑆a𝑥 and the softening function 𝑅𝛾𝑥, i.e., 𝑆𝑥 = 𝑆a𝑥𝑅𝛾𝑥. Since the
influence of processing on the mechanical properties is not addressed
in this study, the aging parameter is set to zero. Furthermore, the
experimental results considered in this study show no flattening of the
creep curves, which, if present, would indicate progressive aging.

The EGP model parameters are shown in Table 2, while the re-
laxation spectrum is listed in Table 3. As claimed in [18], a different
crystallinity of PEEK in the composite material and that of neat PEEK
may imply a different mechanical behavior of the polymer matrix.
Hence, the calibration of the EGP parameters was done directly on
the creep experiments of UD tapes. Because the extensometer was
not used in the experiments, the relaxation spectrum implicitly takes
into account the compliance effect of the machine grips, see Fig. 1.
More accurate measurements of the strain response would result in
re-calibration of the EGP and the cohesive law parameters.

The equivalent plastic strain �̄�p in the EGP model is computed by
integrating the evolution law:

̇̄ p =
𝜏𝛼,1
𝜂𝛼,1

, 𝜏𝛼,1 =
√

1
2
𝝈𝛼,1 ∶ 𝝈𝛼,1 (24)

here 𝜏𝛼,1 is the equivalent stress associated with the mode of highest
iscosity 𝜂𝛼,1.

.2. Transversely isotropic constitutive model for carbon fibers

With the assumption that failure processes take place only in the
olymer matrix, carbon fibers are modeled with a hyperelastic trans-
5

ersely isotropic material model [30], with a small modification as s
Table 3
Relaxation spectrum of the EGP model.
𝑥, 𝑗 𝐺𝑥,𝑗 [MPa] 𝜂0𝑥,𝑗 [MPa s]

𝛼, 1 521.96 1.992 ⋅ 1026

𝛽, 1 455.96 4.965 ⋅ 1022

𝛽, 2 385.58 5.518 ⋅ 1021

𝛽, 3 312.50 6.761 ⋅ 1020

𝛽, 4 238.85 2.108 ⋅ 1019

𝛽, 5 166.87 1.591 ⋅ 1015

𝛽, 6 98.51 2.571 ⋅ 1012

𝛽, 7 35.14 7.086 ⋅ 109

presented in [17]. In the model, the Cauchy stress is decomposed in
two parts:

𝝈 = 𝝈iso + 𝝈tri (25)

where the neo-Hookean model [23] describes the isotropic stress ten-
sor:

𝝈iso =
𝜇
𝐽𝑖
(𝐁 − 𝐈) + 𝜆

𝐽𝑖
ln(𝐽𝑖)𝐈 (26)

while the transversely isotropic part of the stress tensor is derived as:

𝝈tri = 𝐽−1
𝑖 {2𝛽(𝐼4−1)𝐁+2[𝛼+𝛽(𝐼1−3)+2𝛾(𝐼4−1)]𝒂⊗𝒂−𝛼(𝐁𝒂⊗𝒂+𝒂⊗𝐁𝒂)}

(27)

n Eqs. (26) and (27) 𝐽𝑖 is the determinant of the deformation gradi-
nt at an integration point, 𝐁 is the left Cauchy–Green deformation
ensor, 𝐈 is the second-order unit tensor, 𝒂 is the vector defining the
aterial preferential stiffness direction in the deformed configuration.
he invariants 𝐼1 and 𝐼4 are defined as:

1 = tr(𝐁)

4 = 𝒂 ⋅ 𝒂
(28)

he other model parameters assume the form as presented in [17]:

𝑛 =
𝐸1
𝐸2

𝑚 = 1 − 𝜈23 − 2𝑛𝜈212

𝜆 =
𝐸2(𝜈23 + 𝑛𝜈212)
𝑚(1 + 𝜈23)

𝜇 =
𝐸2

2(1 + 𝜈23)
𝛼 = 𝜇 − 𝐺12

𝛽 =
𝐸2(𝜈12 + 𝜈23𝜈12 − 𝜈23 − 𝑛𝜈212)

4𝑚(1 + 𝜈23)

𝛾 =
𝐸1(1 − 𝜈23)

8𝑚
−
𝜆 + 2𝜇

8
+ 𝛼

2
− 𝛽

(29)

The five elastic constants of the material model are shown in
able 4, where 𝐸1 is the Young’s modulus in the preferential stiffness
irection. It was determined from quasi-static experiments on UD tapes
nder 0◦ off-axis angle. 𝐸2 and 𝜈23 are the Young’s modulus and the
oisson’s ratio defining the model behavior in the plane of isotropy,
dopted according to [31]. 𝐺12 and 𝜈12 are the shear modulus and the
oisson’s ratio in the plane perpendicular to the isotropic plane. The
ormer is determined in the process of fitting the experimental creep
esponse of the composite material for 45◦ loading angle, while the
atter is adopted according to [17], which ensures the computational
tability of the hyperelastic constitutive model.
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Fig. 5. Evolution of the Helmholtz free energy and its components in the EGP model for 𝜒 = 90◦ and 𝜎eng
𝑦𝑦 = 95 MPa (left), 𝜒 = 45◦ and 𝜎eng

𝑦𝑦 = 112 MPa (right); 𝑇 = 25 ◦C.
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Table 4
Elastic constants of the transversely isotropic constitutive model.
𝐸1 [GPa] 𝐸2 [GPa] 𝐺12 [GPa] 𝜈12 𝜈23
125 15 5 0.05 0.3

4.3. Microcrack initiation

The EGP model can capture creep deformation but it does not
predict creep rupture in the material. According to Fig. 4, as creep
deformation proceeds, there is stress relaxation in the Maxwell ele-
ments, which is picked up by the elastic hardening and hydrostatic
stress components. In the limit of complete stress redistribution the
creep deformation would reach a constant value without failure taking
place.

In order to simulate the creep rupture mechanism in the RVE the
cohesive zone modeling is applied. When a suitable initiation criterion
is satisfied, a cohesive segment is inserted between two bulk finite
elements on the fly [32]. A stress-based initiation criterion seems not
suitable for capturing creep rupture because the microscale stresses
might remain less than a prescribed critical value, while rupture may
still occur if the creep load is kept long enough, making it difficult
to actually define the critical stress. Therefore, we also account for
the deformation component by proposing an initiation criterion that
is energy-based. According to the Reiner–Weissenberg theory [19],
material fails when the deviatoric part of the stored energy attains
a critical value. In a slightly modified form this theory was followed
by Brüller [33] to model failure in thermoplastic polymers, and by
Hiel et al. [34] to model failure of polymer composites. Instead of the
deviatoric part, as stated by Brinson [1], the total stored energy may
be a better indicator of failure in composites. Following this idea, we
propose that a cohesive microcrack initiates when the total free energy
reaches a critical value. In order to define the critical value 𝜓cr, it is
pertinent to plot the evolution of the free energy and its components
for different loading angles, without adding cohesive segments in the
micromodel. For several points in the RVE that exceed the eventually
determined critical energy this evolution is shown in Fig. 5, for two
loading angles, 90◦ and 45◦, and two stress levels, 95 MPa and 112

Pa, respectively. Vertical and horizontal gray lines show the time
nstance on which the constant stress level is reached and the eventual
alibrated value for the critical energy value, respectively. The total
ree energy evolves differently for the two loading angles, resulting
n much lower energy values for 𝜒 = 90◦. Much of the difference is
ue to the significantly different change in the hardening part of the
ree energy, which for 𝜒 = 45◦ attains a high value. The homogenized
train evolution corresponding to these two loading cases is shown in
ig. A.23 in the Appendix.

The chosen value for the critical energy is 𝜓cr = 2.74 N/mm2. This
value needs to be low enough to have progressive failure in 𝜒 = 90◦
6

simulations, but high enough to avoid premature failure in 𝜒 = 45◦

simulations. The balancing between these two requirements is due to
the large difference in the stored energy for the two loading angles.
The critical value intersects the total energy already in the phase of
increasing loading (𝑡 < 10 s) for the 45◦ loading angle. In this phase
the driving energy part reaches a maximum after which relaxation
takes place and this energy part reduces, for some points even to a
negative value, see Fig. 5(right). What causes the unexpected negative
energy deserves special attention in future investigations, but is outside
the scope of this paper. When computing the total free energy, which
remains positive in a deformed state, the possible negative values of the
driving energy are precluded by performing the Macaulay operation:
⟨𝜓d⟩ = max(0, 𝜓d). Since this energy component corresponds with the

axwell viscous element, we intend to enable the relaxation process
n the early loading phase. Therefore, an auxiliary condition is added,
hose role is to prevent early microcrack initiation and enable relax-
tion in the 45◦ loading case. The auxiliary condition states that the
riving energy part must be less than a prescribed fraction of the total
ree energy for initiation to happen:

⟨𝜓d⟩

𝜓h + 𝜓r + ⟨𝜓d⟩
< 0.73 (30)

How the energy ratio in Eq. (30) changes with time for the off-axis
angles of 90◦ and 45◦ is shown in Fig. 6, where the data correspond
to the same points as in Fig. 5. For the 90◦ loading angle the reported
results show no intersection between the energy ratio and the auxiliary
condition. On the other hand, for the 45◦ loading angle the value of 0.73
crosses the energy ratio close to the end of increasing loading phase,
practically preventing the microcrack initiation in the early loading
phase.

With the energy-based initiation criterion, it is possible to have co-
hesive segments along every edge of the bulk finite element. Since this
situation may lead to computational instability, initiation is allowed
along maximum two edges of the 12-node wedge-shaped finite element,
while the remaining edge must remain intact. Another consequence of
the energy-based initiation criterion for interelement cohesive segments
is that the orientation of the cohesive zone may be any orientation
defined by the edges of the bulk finite element. To prevent initiation
along a physically less favorable direction, a cohesive segment cannot
initiate if the angle between the projection of the maximum principal
stress direction in the 𝑥𝑦-plane of the RVE (the plane perpendicular to
fiber direction) and the potential cohesive surface normal is larger than
60◦.

4.4. Time-dependent cohesive zone model

After initiation takes place, a cohesive zone model controls the
process of decohesion. A CZ model used as the base model in this
work is the shifted mixed-mode damage cohesive law elaborated by Liu
et al. [35], and extended to 3D in [18]. Mode I representation of this
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CZ model is shown in Fig. 7, where the normal traction component is
plotted versus the normal component of the displacement jump. The
area below the diagram is defined as the fracture energy 𝐺𝑐 . When
cohesive segment is inserted in the RVE the traction on the cohesive
surface is non-zero, while the displacement jump is zero. In a mixed-
mode loading scenario this combination would lead to the singularity
problem [24], therefore the cohesive law is evaluated with a shifted
displacement jump:

[[�̄�]]sh = [[�̄�]] + [[�̄�]]0 (31)

where [[�̄�]]0 is the displacement shift:

[�̄�]]0 = �̄�0
𝐾𝑚

(32)

ere, �̄�0 is the traction vector at the moment of CZ initiation, and 𝐾𝑚
s the dummy stiffness. The constitutive law for the traction is given by
he following relation:

̄ = (𝐈 −𝛀)𝐾𝑚[[�̄�]]sh = (𝐈 −𝛀)�̄�eff (33)

n this equation �̄�eff is the effective traction on the cohesive surface, 𝐈
s the second-order unit tensor, and 𝛀 is the damage tensor accounting
or stiffness recovery in normal direction under compression:

𝑖𝑗 = 𝜔𝑚𝛿𝑖𝑗

(

1 + 𝛿𝑖1
⟨−𝑡eff

𝑛 ⟩

𝑡eff
𝑛

)

(34)

he 𝛀 depends on the damage variable 𝜔𝑚 which is a non-decreasing
unction of time defined as:

𝑚 = max
𝜏≤𝑡

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, 𝛥 ≤ 𝛥0
𝛥𝑓
𝛥

(

𝛥−𝛥0
𝛥𝑓−𝛥0

)

, 𝛥0 < 𝛥 < 𝛥𝑓

1, 𝛥 > 𝛥𝑓

(35)

where 𝛥 is the equivalent shifted displacement jump:
[ sh 2 sh 2 sh 2]1∕2
7

𝛥 = (⟨[[𝑢]]𝑛 ⟩) + ([[𝑢]]𝑠 ) + ([[𝑢]]𝑡 ) (36) t
with the subscripts 𝑛, 𝑠 and 𝑡 representing normal and two shear
orthonormal directions respectively. In Eq. (35) 𝛥0 is the equivalent
displacement jump at the instant of initiation:

𝛥0 =
𝑡0eq

𝐾𝑚
(37)

which depends on the equivalent traction 𝑡0eq at the same moment:

𝑡0eq =
[

(𝑡0𝑛)
2 + (𝑡0𝑠 )

2 + (𝑡0𝑡 )
2]1∕2 (38)

he decohesion process is completed when the equivalent shifted dis-
lacement jump attains a failure value 𝛥𝑓 :

𝑓 =
2𝐺𝑐
𝑡0eq

(39)

he fracture energy 𝐺𝑐 provided to the model interpolates between a
ower bound value 𝐺𝐼𝑐 and an upper bound value 𝐺𝐼𝐼𝑐 as a function
f the local stress ratio at the moment of CZ initiation [18], see Fig. 8.
n this figure 𝑡⟂ is the stress component on the cohesive surface per-
endicular to the fiber direction when the cohesive segment initiates,
hile 𝑡∥ is the stress component parallel with the fiber direction.

This CZ model is time-independent, and in a creep rupture scenario
he traction vector on the cohesive surface may not change at all as the
ime progresses. This fact is explained with a simple example illustrated
n Fig. 9. A polymer material is loaded in tension with a constant stress.
s the consequence of the creep stress a cohesive segment is inserted

n the polymer material when a suitable initiation criterion is satisfied.
ue to the equilibrium condition the stress transmitted through the CZ

rom the right piece of the material to the left piece is equal to the
reep stress applied. Given the viscous material, the deformation will
eep increasing, but for the same amount for the left and the right
art, keeping the displacement jump unchanged from the previous time
nstants. Being purely a function of the displacement jump, the cohesive
aw would keep the constant stress in this deformation process, and
upture would never occur. This fact holds true for any CZ model whose

raction vector is defined only in terms of the displacement jump.
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Fig. 8. Cohesive law fracture energy depending on local stress ratio when cohesive
segment is initiated.

Fig. 9. Displacement jump and traction of a cohesive zone governed by time-
independent constitutive model during creep loading of polymer material not changing
at different time instants.

The time-independent cohesive law remains ineffective also in the
context of a more complex RVE geometry. Some decohesion due to
stress redistribution is possible, but any changes in traction are very
slow resulting in the material time-to-failure being much longer than
experimentally observed. Due to this reason a modification is proposed
to the base cohesive law, such that the traction on the cohesive surface
also depends on time through the viscous degradation tensor 𝐃𝑣:

�̄� = (𝐈 −𝛀)𝐃𝑣𝐾𝑚[[�̄�]]sh (40)

To define components of the tensor 𝐃𝑣, the viscous degradation variable
𝑣 at time step 𝑛 is defined as a non-increasing function:
𝑛
𝑣 = 𝐷𝑛−1

𝑣 exp(−𝛥𝑡∕𝜏r) (41)

here 𝛥𝑡 is the time increment, and 𝜏r is the relaxation time which
epends on the normal component of the traction vector through the
ollowing relation:

r = 𝜏r0
𝑡𝑛∕(𝐷𝑣𝑡0)

sinh[𝑡𝑛∕(𝐷𝑣𝑡0)]
(42)

In this equation 𝜏r0(𝑇 ) is the initial relaxation time that depends on
he temperature, while 𝑡0(𝑇 ) is the traction-like variable also dependent
n the temperature. This constitutive relation for the relaxation time
s chosen on the basis of experimentally observed rupture time, see
ig. 10, which indicates that a small change in the applied stress
auses a significant change in the rupture time. The shift function
𝑡𝑛∕(𝐷𝑣𝑡0)]∕ sinh[𝑡𝑛∕(𝐷𝑣𝑡0)] has a similar counterpart in the viscosity

definition of the EGP model, Eq. (21), and its role is to shift the initial
relaxation time given an adequate stress measure. In this regard, the
time-dependent component of the cohesive law can be perceived as
an Eyring-based. It should be noted that 𝜏r moves towards the initial
value 𝜏r0 as 𝑡𝑛 decreases. Finally, inclusion of 𝐷𝑣 in Eq. (42) prevents
the evolution in the relaxation time from drastically slowing down the
8

rupture event, after the minimum creep strain-rate is observed. W
Table 5
Model parameters of time-dependent cohesive law.
𝐾𝑚
[N/mm3]

𝐺𝐼𝑐
[N/mm]

𝐺𝐼𝐼𝑐
[N/mm]

𝜏r0(25 ◦C)
[s]

𝑡0(25 ◦C)
[N/mm2]

107 0.03 0.095 109 4.6

It can be shown that for constant 𝜏r the discrete evolution law in
Eq. (41) is equivalent to the following continuous rate equation:

�̇�𝑣 = −
𝐷𝑣
𝜏r

(43)

Under the assumption that 𝜏r is changing more slowly than 𝐷𝑣, Eq. (41)
provides a more accurate time-integration of this rate equation than the
direct Euler forward approach.

The viscous degradation tensor has three non-zero components
corresponding with the orthogonal directions defining the orientation
of the cohesive surface:

𝐃𝑣 =
⎡

⎢

⎢

⎣

𝐷𝑛
𝐷𝑠

𝐷𝑡

⎤

⎥

⎥

⎦

(44)

With the scalar 𝐷𝑣 defined in Eq. (41), the components of the tensor
𝐃𝑣 assume the following form: 𝐷𝑠 = 𝐷𝑡 = 𝐷𝑣, whereas the component
𝐷𝑛 restores the initial stiffness in the normal direction, in the case of
compression:

𝐷𝑛 =

{

𝐷𝑣, 𝑡𝑛 ≥ 0
1, 𝑡𝑛 < 0

(45)

The initial value of 𝐷𝑣 is equal to 1, and evolves towards 0 with time.
To simplify the linearization and implementation of the cohesive law,
the normal traction component and the viscous degradation variable
from the previous converged time step are used in Eq. (42).

The time-dependent components of the cohesive law trigger a de-
crease in the traction due to creep loading and subsequently a change in
the displacement jump. One possible trajectory of the normal traction
component plotted against the normal jump component is depicted
in Fig. 11. As a consequence of the stress relaxation, the actual frac-
ture energy is lower than 𝐺𝑐 defined for the time-independent cohe-
sive law. The parameters used to run simulations with the described
time-dependent cohesive law are listed in Table 5.

5. Results and discussion

In this section several examples are considered to illustrate the
model performance. Since the main purpose of the paper is to formulate
the framework and indicate necessary components to model creep
deformation and rupture, only one RVE was considered in the study,
with 9 (3 × 3) fibers in total and the fiber diameter of 5 μm.

The first example aims at showing the inability to model creep
rupture with the time-independent cohesive zone model, i.e., without
the viscous degradation introduced in Eq. (40). In Fig. 12 the homog-
enized strain-rate is plotted versus time for two off-axis angles, 45◦

and 90◦, and several stress levels. The strain-rate at the current time
step is computed as: �̇�𝑛𝑦𝑦 = (𝜀𝑛𝑦𝑦 − 𝜀

𝑛−1
𝑦𝑦 )∕𝛥𝑡, where 𝜀𝑛𝑦𝑦 is obtained from

q. (7) or Eq. (9). Unless otherwise stated, the creep stress is reached
t 𝑡 = 10 s. After the increasing loading phase is completed, the strain-
ate corresponding to the creep stress is gradually decreasing. When
he initiation criterion is satisfied cohesive segments are inserted in the
VE, causing a disturbance in the displacement field, which is reflected

n oscillations of the homogenized strain-rate. Apart from these brief
scillations, the strain-rate is monotonically decreasing and comparison
ith experiments in terms of the rupture time cannot be made.

Next, the difference when considering a constant engineering stress
nd a constant true stress in the analysis is illustrated in Fig. 13.

ithout inserting cohesive segments in the RVE, the engineering strain
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Fig. 10. Experimentally measured engineering strain versus time due to constant engineering stress for two loading angles; constant load level is reached after 10 s; failure of
specimen coincides with termination of the strain curves.
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Fig. 11. Red line representing one possible trajectory of the normal traction component
s function of the displacement jump; actual fracture energy of time-dependent cohesive
aw is reduced due to viscous degradation; dashed line represents quasi-static cohesive
aw.

s computed for two loading angles, and comparison is also made
ith experimental data. For the homogenized strain of approximately
.03 and higher, the difference in the outcome for the two stress
easures becomes significant. A constant engineering stress in tension

mplies an increase in the actual stress on the material, see Eq. (8),
eading to higher strains as opposed to the case of a constant true
tress applied. Because the experimental results are reported in terms
f the engineering strain as the result of a constant engineering stress,
he following simulation results consider engineering stress and strain
easures.

The ability of the time-dependent cohesive law to trigger a global
ncrease in the homogenized creep strain-rate is shown in Fig. 14(right),
here the strain-rate evolution corresponding to 𝜒 = 90◦, 𝑇 = 25 ◦C and
ifferent stress levels is plotted. The minimum point in the strain-rate
urve is taken as the point of rupture and used to define the material
ime-to-failure. Comparison of the homogenized strain plotted against
ime with experimental results is shown in Fig. 14(left), where the
upture points obtained from the strain-rate plot are also indicated. The
odel predicts reasonably well the creep strain response, whereas the

ccuracy in predicting the rupture time decreases with a decrease in
he creep stress. The largest difference is for the stress 𝜎eng

𝑦𝑦 = 92 MPa.
t is important to notice that in all considered cases the experimentally
bserved failure mechanism is brittle, with the lack of tertiary creep
nd without large macroscopic deformation. For plotting the strain-
ate curves in Fig. 14 and the subsequent figures for 𝑇 = 25 ◦C,
edian filtering is performed on the data, see [36]. This is because the

scillations become substantial around the minimum point, making it
ifficult to clearly mark the rupture point. Comparison of the filtered
urves with the unfiltered ones is shown in Fig. B.24.

In the next example the off-axis angle of 45◦ is considered, with
he temperature 𝑇 = 25 ◦C and different stress levels. In Fig. 15 the
omogenized strain and the homogenized strain-rate are plotted versus
ime. Similarly to the previous example, the creep strain response is
easonably well reproduced by the model as well as the general trend
f a rupture time that decreases with increasing stress. The difference
9

n the predicted rupture time relative to the experiment is pronounced
or the stress level of 110 MPa and 117 MPa.

The possibility to model the creep response at an elevated temper-
ture is presented next. First, all the parameters are kept the same as
n the previous cases, including the initial relaxation time 𝜏r0 and the

traction-like variable 𝑡0 in Eq. (42) The evolution of the homogenized
strain and strain-rate are shown in Fig. 16, for 𝜒 = 90◦, 𝑇 = 90 ◦C and
different stress levels. The creep strain is captured reasonably well, ex-
cept for 𝜎𝑦𝑦 = 72 MPa. According to the experimental observation there
is a significant change in the response when increasing the creep stress
from 71 MPa to 72 MPa. This change is not captured by the model.
Correspondingly, the model overestimates the time-to-failure that is
experimentally observed (a minimum in strain-rate is not observed in
the considered time range, see Fig. 16). On the other hand, if different
values are assigned to 𝜏r0 and 𝑡0 at the higher temperature, better results
re obtained. Accordingly, we consider a case with 𝜏r0(90 ◦C) = 103 s

and 𝑡0(90 ◦C) = 10.5 N/mm2, see Fig. 17, where the homogenized strain
and strain-rate are plotted versus time. The newly obtained results lead
to a better match with the experiment in terms of the rupture time, even
though a difference remains present, particularly for a creep stress of
72 MPa.

Although the homogenized strain and strain-rate curves are plotted
in the previous graphs, the numerical framework also provides for the
microstructural distribution of stress, strain and history variables. As
an example, the distribution of the equivalent plastic strain is shown in
Fig. 18 for different off-axis angles, temperatures and stress levels, at
the moment of failure 𝑡 = 𝑡f and at the time when the constant stress
level is reached, 𝑡 = 10 s, for one of the cases. As can be observed from
the figure, after 𝑡 = 10 s there is practically no visible plastic strain in
the model. The situation has changed at the moment of rupture, with
significant plastic strain predicted in the polymer matrix throughout
the RVE domain. Notably, the case of 𝜒 = 90◦ and 𝑇 = 25 ◦C features
much less plastic strain than the other depicted cases, which is due to
the higher viscosity compared to the 𝑇 = 90 ◦C case, see Eq. (21), and
the lower deviatoric deformation compared to the 𝜒 = 45◦ case.

Beside the equivalent plastic strain, it is interesting to show initiated
cohesive zones when the minimum creep strain-rate is reached, that
defines the rupture time and is followed by a sudden change in the
homogenized strain. In Fig. 19 cohesive segments in the RVE at 𝑡 = 𝑡𝑓
are shown for two loading angles and two temperature conditions. The
number of initiated cohesive segments varies with the loading angle
and temperature. For 𝑇 = 90 ◦C this number is rather limited, indicating
that a small zone of degrading material triggers a sudden change in the
creep strain and leads to rupture. The effect of cohesive segments on the
evolution of homogenized strain is illustrated in Fig. 20, for the same
loading cases considered in the previous figure. Again it is observed
that localization of deformation in the present framework cannot be
achieved without a cohesive zone model.

The microscale model accounts for finite strains in the material,
which implies the change in orientation of the RVE with respect to the
loading direction, see Fig. 2. It was already shown that this rotation

of the RVE has an important effect on the material strength for a
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p

Fig. 12. Homogenized strain-rate versus time for 𝑇 = 25 ◦C, different off-axis angles and stress levels, with time-independent cohesive law governing decohesion process.
Fig. 13. Comparison of experimental results with simulations assuming constant engineering stress and constant true stress on the material, for two off-axis angles and 𝑇 = 25 ◦C.
Fig. 14. Evolution of homogenized strain for 𝜒 = 90◦ and 𝑇 = 25 ◦C (left); evolution of homogenized strain-rate (right); solid lines: model response, markers: model creep rupture
oints, dotted lines: experiment.
Fig. 15. Evolution of homogenized strain for 𝜒 = 45◦ and 𝑇 = 25 ◦C (left); change in homogenized strain-rate with time (right); solid lines: model response, markers: model creep
rupture points, dotted lines: experiment.
constant strain-rate loading scenario [18]. The effect of this rotation
on the creep response is illustrated next. In Fig. 21 the RVE response,
without including the rupture process, is plotted for when the rotation
is allowed (𝜙 ≠ 0) as well as for when the rotation is restrained
(𝜙 = 0) in comparison with the experiment. This is done for three
loading angles: 15◦, 30◦ and 45◦. The change in orientation implies an
10
alignment of the stiff fibers with the loading direction and the change
in the actual off-axis angle, which reduces the material compliance.
The rotation of the microstructure has a drastic effect on the creep
response for lower off-axis angles: 15◦ and 30◦. For these loading
angles the fibers carry most of the loading, and a small variation in the
off-axis angle leads to a significant increase in the material stiffness,
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Fig. 16. Creep response at elevated temperature with all parameters the same as before; homogenized strain versus time for 𝜒 = 90◦ and 𝑇 = 90 ◦C (left); evolution of homogenized
strain-rate (right); solid lines: model response, dotted lines: experiment.

Fig. 17. Creep response at elevated temperature with updated parameters for the time-dependent part of the cohesive model: 𝜏r0 (90 ◦C) = 103 s, and 𝑡0 (90 ◦C) = 10.5 N/mm2;
evolution of homogenized strain for 𝜒 = 90◦, 𝑇 = 90 ◦C (left); homogenized strain-rate versus time (right); solid lines: model response, markers: model creep rupture points, dotted
lines: experiment.

Fig. 18. Distribution of equivalent plastic strain in RVE at the end of increasing loading phase 𝑡 = 10 s, and when failure is observed 𝑡 = 𝑡f for different off-axis angles, stress
levels and temperatures.

Fig. 19. Black lines representing degrading cohesive elements at the moment of minimum creep strain-rate in the RVE, which coincides with defined rupture time; green lines
indicate unloading cohesive segments, whereas gray lines represent finite element mesh.
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Fig. 20. Evolution of homogenized strain without cohesive zone model (CZM), and with cohesive zone model in the RVE, for different loading angles and temperature conditions;
x marks predicted rupture time.
Fig. 21. Creep response of rotating RVE (𝜙 ≠ 0) and non-rotating RVE (𝜙 = 0) compared with experiments for 𝑇 = 25 ◦C and three off-axis angles: 15◦ (290 MPa), 30◦ (154 MPa)
nd 45◦ (110 MPa); creep stress for 𝜒 = 15◦ reached at 𝑡 = 15 s.
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ith a corresponding decrease of the creep deformation rate. Given
he experimental setup which does not allow for completely free shear
eformation as assumed in the rotating RVE simulation (cf. Fig. 2),
t may be expected that the experimental response is a combination
f the two limit cases considered here: one in which material points
lign with the loading direction and the other in which orientation of
aterial points is fixed. This hypothesis may be checked by a multiscale

nalysis, in which different integration points represented by individual
VEs would undergo different deformation depending on their position

n the specimen. The stiffening effect due to the reorientation of the
icrostructure is present for 𝜒 = 45◦ as well, although to a lesser

xtent. It is because of this reason that the creep rupture time was
ompared with the experiments for 𝜒 = 45◦, and also 𝜒 = 90◦ for which
here is no rotation of the microstructure during the loading process.

A recommendation stemming from the previous discussion is that
umerical models aiming to simulate the mechanical behavior of or-
hotropic materials should account for the potential reorientation of
he microstructure in the course of deformation. Quite often semi-
nalytical models to predict the creep behavior of composites under
ff-axis loading assume an equation which, among other parameters,
epends on an off-axis angle. In the prediction, this angle is assumed
constant. Raghavan and Meshii [37] have proposed one such model

o predict creep response of UD composites. For the off-axis angle of
0◦ and 60◦ they report more compliant results than experimentally
btained. Beside the explanation provided therein, an additional reason
or this discrepancy might be a change in the actual off-axis angle
uring the process of creep deformation.

Bauwens-Crowet et al. [38] noticed a relation between the re-
ponse of glassy polymers when tested under constant strain-rate and
reep loading conditions. Namely, when plotted in a semi-log plot,
ield stresses versus the corresponding constant strain-rates and creep
tresses versus the corresponding minimum creep strain-rates lie on a
ingle straight line. Erartsin et al. [4] confirmed the similar relation for
D glass/iPP composites for different off-axis angles, only instead of

he yield stress, the failure stress of the composite material is paired
ith the strain-rate. Fig. 22 shows the plot for the material system
12

f

Fig. 22. Material failure stress versus corresponding strain-rate, obtained from the
model (circles) and from the experiment (triangles); empty markers represent data for
constant strain-rate loading case [18], filled markers represent creep data.

investigated here, with creep results (filled markers) from this paper
together with constant strain-rate results from [18] (empty markers).
Results from 𝜒 = 45◦ and 𝜒 = 90◦ are shown in red and green respec-
ively, triangles are used for experimental measurements and circles
or simulation results. As observed from the figure, the experimental
reep data indeed follow the trend established by the constant strain-
ate data. On the other hand, the trend is less followed by the creep data
s predicted by the model, resulting in a lower stress dependency of
he minimum creep strain-rate. The comparison of the numerical model
resented in this paper with the model from [18] is made, even though
otable differences exist between the two. The cohesive zone model
sed in [18] does not feature the viscous degradation term and assumes
different initiation criterion. Furthermore, the relaxation spectra of

he EGP model are different. For the constant strain-rate simulations,
relaxation spectrum was calibrated on stress–strain curves obtained

rom extensometer measurements. Finally, the stress values computed
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Fig. A.23. Homogenized strain evolution without initiated cohesive zones for two
loading cases: 45◦ (112 MPa) and 90◦ (95 MPa); creep stress reached at 𝑡 = 10 s.

in [18] are the Cauchy stress values, as opposed to constant engineering
stress considered in creep simulations.

A unified numerical framework to model progressive failure of a
UD composite material under off-axis creep, constant strain-rate and
eventually under general time-dependent loading has not yet been
achieved, but the formulations provided in this paper and our preceding
one on constant strain-rate tests together introduce essential ingredients
for this purpose.

6. Conclusion

In this paper a micromechanical model has been developed to
simulate creep rupture in UD composites subjected to off-axis loading.
The main ingredients of the model are a state of the art rate-dependent
plasticity model, a recently developed formulation for off-axis load-
ing on RVEs and a new time-dependent cohesive formulation. Creep
deformation in the polymer matrix of the RVE is represented by the
viscosity-dependent Eindhoven Glassy Polymer material model. The
creep rupture process, which terminates creep deformation, is triggered
by inserting cohesive segments along the finite element edges when
an initiation criterion is satisfied. For this matter, an energy-based
criterion depending on the critical Helmholtz free energy stored in the
polymer matrix is proposed. After the CZ initiates, the necessity to
apply a time-dependent cohesive law to further drive the decohesion
process in creep loading is illustrated. The composite material eventu-
ally fails when the homogenized creep strain-rate of the RVE reaches a
minimum value, which defines the creep rupture time.

The model is compared with original experiments on UD thermo-
plastic carbon/PEEK composite system tested at different stress levels,
temperatures and loading angles. The accuracy in predicting creep
deformation is satisfactory, but a discrepancy is observed in the rupture
time. Three new parameters are introduced to describe creep rupture,
the critical energy 𝜓 for initiation, the traction-like variable 𝑡 and
13

cr 0
the initial relaxation time of the cohesive law 𝜏r0. Of these, the last two
needed to be made temperature-dependent to get a reasonable agree-
ment with experimentally observed creep rupture times. Kinematical
relations allow for finite strains and, correspondingly, the change in
orientation of the RVE during the loading process. This reorientation
affects the creep response, reducing the material compliance especially
for lower off-axis angles.
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Appendix A

Homogenized strain curves for two loading cases (𝜒 = 45◦ and 𝜒 =
90◦), without inserting cohesive segments are shown in Fig. A.23. The
evolution of the creep deformation corresponds with the free energy
evolution shown in Fig. 5.

Appendix B

The unfiltered strain-rate curves are compared with the filtered
ones for RVE simulations with included cohesive segments and for two

loading angles in Fig. B.24.
Fig. B.24. Unfiltered versus (median) filtered homogenized strain-rate curves for 𝜒 = 45◦ and 𝜎eng
𝑦𝑦 = 112 MPa (left), and 𝜒 = 90◦ and 𝜎eng

𝑦𝑦 = 95 MPa (right).

http://dx.doi.org/10.4121/21835773.v1
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