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ABSTRACT
For years, attackers have exploited vulnerabilities in Internet of
Things (IoT) devices. Previous research has examined target selec-
tion in cybercrime, but there has been little investigation into the
factors that influence target selection in attacks on IoT. This study
aims to better understand how attackers choose their targets by
analyzing the frequency of specific exploits in 11,893 IoT malware
binaries that were distributed between 2018–2021. Our findings
indicate that 78% of these binary files did not specifically target
IoT vulnerabilities but rather scanned the Internet for devices with
weak authentication. To understand the usage of exploits in the
remaining 2,629 binaries, we develop a theoretical model from rele-
vant literature to examine the impact of four latent variables, i.e.
exposure, vulnerability, exploitability, and patchability. We collect
indicators to measure these variables and find that they can explain
to a significant extent (𝑅2=0.38) why some vulnerabilities are more
frequently exploited than others. The severity of vulnerabilities
does not significantly increase the frequency with which they are
targeted, while the presence of Proof-of-Concept exploit code does
increase it. We also observe that the availability of a patch reduces
the frequency of being targeted, yet that more complex patches
are associated with higher frequency. In terms of exposure, more
widespread device models are more likely to be targeted by exploits.
We end with recommendations to disincentivize attackers from
targeting vulnerabilities.

CCS CONCEPTS
• Security and privacy→Malware and its mitigation; Vulner-
ability scanners; • Computer systems → Embedded systems.
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1 INTRODUCTION
The proliferation of Internet of Things (IoT) devices [12] has made
them a prime target for cyber attackers looking to exploit devices
and build up attack infrastructure [2]. The poor security features
of many IoT devices are music to the attackers’ ears, as they can
easily compromise these devices that were never designed to re-
pel complex attacks. In this abundance of devices, what drives an
attacker’s decision to target a particular device type?

Previous research on attacker target selection [20, 44] has shown
that a rational choice approach is often used, with attackers select-
ing targets that are perceived to be easy to exploit, have known
vulnerabilities, and offer a high reward. This has been observed in
both physical burglaries and cybercrime, with offenders selecting
accessible targets with known vulnerabilities. A new and more real-
istic attacker model [5] suggests that cyber attackers are not equally
likely to exploit all possible vulnerabilities. Instead, attackers will
choose to exploit only one vulnerability per software version, in-
clude only vulnerabilities with low attack complexity, and be slow
at introducing new vulnerabilities into their arsenal. No research
has yet tested empirically whether these factors also hold for target
selection in IoT malware development. It is unclear whether attack-
ers base their decisions on specific characteristics of the devices,
their exposure, or other considerations.

In this paper, we aim to improve our understanding of how at-
tackers choose their targets by studying the vulnerabilities and
exploits used in IoT malware that was distributed between 2018–
2021. Although 78% of these binaries only scanned the Internet
for devices with weak authentication, the remaining 2,629 binaries
were targeting specific vulnerabilities. We first develop a theoretical
model based on relevant literature to understand the factors that
influence the choice of exploits in IoT malware. We then relate
these factors to four latent variables (exposure, vulnerability, ex-
ploitability, and patchability) and examine the impact on the usage
of particular exploits, as measured by the frequency of specific
exploit code in binaries observed in the wild.
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By understanding these relationships, we aim to provide answers
to this overarching question: How can we explain the attackers’
choices of IoT vulnerabilities as targets in malware binaries?

To answer this question, we gather information about various
aspects of IoT vulnerabilities, such as their publication date, the
availability of proof-of-concept (PoC) exploit code, and the release
dates of patches. Our findings indicate that certain types of vulner-
abilities are more frequently exploited, yet this is not explained by
the severity of the vulnerabilities. We also find that the availability
of a patch decreases the exploitation of a particular vulnerability,
while the existence of an PoC exploit increases it. Additionally,
we find that more complex patches are related with higher exploit
frequency. Our results also show that the more widespread a given
device model is, the more likely it is to be targeted by exploits.

Our main contributions are as follows:

• We develop a theoretical model that posits that exploit usage
is influenced by latent variables such as vulnerability, patch-
ability, exploitability, and exposure, which can be inferred
from observable indicators.

• We characterize the targeted IoT vulnerabilities in malware
binaries by collecting and analyzing data on vulnerabilities,
exploits, patching and device exposure information.

• We estimate a generalized linear model to understand how
different factors, such as vulnerability disclosure, patch re-
lease dates, patch complexity, and the number of exposed
devices on the Internet, influence target selection.

• We provide recommendations to decrease the exploitability
of IoT devices in the wild.

2 THEORETICAL MODEL
When analyzing the exploit code malware binaries, it became appar-
ent that some vulnerabilities are more often targeted than others.
Some exploit code is only seen once in the wild, while other code
has been in use for years. To help explain our main question of
how attackers choose IoT vulnerabilities as targets in malware bina-
ries, we will use the exploit frequency in binaries as our dependent
variable.

While research in this area is limited, previous studies have
investigated various factors and indicators that influence target
selection in IoT vulnerabilities. For example, some studies have
examined the relationship between attack frequency, vulnerability
disclosure, and patching [9], while others studied the relationship
between attacks and exposure [10]. We aim to bring together these
indicators, and some new ones, in a comprehensive theoretical
model.

While we can’t always know the true intentions of attackers, we
can build on work that assumes attackers maximize their benefit
against the lowest possible cost. Allodi et al. [5] formalized this
theoretical starting point in their “work-averse attacker” model.
They posit that not all vulnerabilities will be attacked equally. The
initial fixed costs of exploit development induce attackers to delay
implementation and deployment of exploits of vulnerabilities. They
found empirical validation for this model in analyzing Symantec’s
WINE attack signatures.

The key question then becomes: what factors impact the attack-
ers’ benefits and costs for exploiting IoT vulnerabilities? Extending

the earlier theoretical work, we develop a model that explains the
frequency with which IoT vulnerabilities are targeted from four
factors that impact the cost and benefits to the attacker. First, the
features of the vulnerabilities themselves, such as their severity,
may make them more attractive to attackers. Second, patchability,
may reduce the benefits. If a patch is deployed for a vulnerable IoT
device, this may reduce the available attack surface that the exploit
can successfully compromise. Third, exploitability, considers the
availability and complexity of the Proof-of-Concept exploit code,
which reduces the cost to the attacker. Fourth, exposure, consid-
ers the size of the install base of devices with the vulnerability. A
larger install base increases the benefits to attackers of targeting
that vulnerability.

These factors allow us to synthesize indicators from previous
studies and study their relative influence. For example, the charac-
teristics of vulnerabilities such as disclosure date, severity and type
can be used as indicators to predict whether or how soon vulnera-
bilities are likely to be selected as a target by attackers [32] and how
frequent [9]. Similarly, the availability of Proof-of-Concept (PoC)
exploit code is correlated to the likelihood that attackers select the
vulnerability for their attacks [21, 32], while the availability and
the time of the release of patches [9] as well as the effort needed to
deploy them [13] can all impact the attack surface [9].

Moreover, when exposed devices can be discovered via search
engines, it increases the likelihood of these devices being targeted
for vulnerabilities. [8, 10, 27]. In addition to the indicators from ear-
lier work, we also collect new ones, most notably patch complexity
and exploit complexity.

In sum, we developed a theoretical model, shown in Figure 1, that
interprets these indicators as signals for the four underlying factors.
This allows us to theoretically interpret the relationships. To the
best of our knowledge, there is not yet a study that systematically
measures the impact of these factors – and all of the associated
indicators – on the target selection of vulnerabilities in IoT malware
binaries. We now briefly explore each of the four factors in a bit
more detail. (In Section 3 we will discuss the data sources we have
used to measure the indicators for each factor, as summarized in
Table 2.)

Vulnerability. Vulnerability refers to a weakness or flaw to
exist in an IoT device that can be exploited by an attacker to gain
unauthorized access or cause harm. As each vulnerability has its
own characteristics, we want to understand which ones have the
most impact on the attackers’ choice to select as a target. We used
five indicators of vulnerability to measure the impact on IoT exploit
frequency in binaries. One of these indicators is the vulnerability
release date in public, which can provide important information
about the number of exploit frequency. In another words, the older
a vulnerability is, the higher the potential number of frequency is
as it can accumulate over time. We will be using it to measure the
lifetime a vulnerability by counting the days since the vulnerability
release date until last day of binaries collection.

For vulnerabilities with CVE-ID, we collected the severity as
measured by CVSSv3 metric. The CVSSv3 scoring system is used
to assign a numerical score to a vulnerability based on its charac-
teristics and the potential impact if exploited. We only collected
CVSSv3 since it is the most recent revision of CVSS scoring system
for vulnerabilities published 2016 onwards, which corrected the
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Figure 1: Theoretical Model for Exploit frequency in IoT Binaries.

shortcomings in older versions. The CVSSv3 score ranges from 0
to 10, with higher scores indicating a more severe vulnerability.
Additionally, we also counted the number of affected systems using
their corresponding Common Platform Enumeration (CPE) for each
vulnerability. CPE is a naming scheme that structures the informa-
tion about affected systems, software, and packages. Thus, it can
help to identify which systems are affected by a vulnerability and
which are not.

Next, we collected data on device type that is affected by the
vulnerability, as some types of devices are more often targeted than
others.We categorized the devices according to their use. Finally, we
examined the vulnerability type to determine if some vulnerability
types such as: Remote Code Execution, Command Injection and
Password Overflow are more targeted than others.

Patchability. Patchability refers to the ease or difficulty of patch-
ing (fixing) a vulnerability in an IoT device in order to reduce the
likelihood of a successful attack. Our hypothesis is that the patching
of IoT devices can affect the frequency of exploits.

The availability of patches will lower the chances an attack
succeeds, therefore, patchable devices will be targeted less in IoT
binaries.

To test this, we use a range of four indicators to measure relevant
patching properties. One such indicator is the patch availability.
We assess this by determining whether patches are available on the
vendor’s website or on security blogs, which leads to our second
indicator, the existence of a vendor’s security advisory. We hypothe-
size that the existence of security advisory can lead to more patched
devices and less vulnerable devices. This is because if manufactur-
ers or vendors do not have effective public source dedicated to
issue security advisories in place, users may be less likely to apply
patches to their devices. Then, if patches are available, we evaluate
their complexity, as this could be a factor in users not updating
their devices. We do this by counting the number of steps required
to apply the patch listed in the security advisory, as we believe
that the more steps involved, the less likely a user is successful or
even willing to install the update. Finally, is the patch release date
provided by vendors, which can serve as a proxy for the amount
number of exploit number to measure whether the release time
of a patch has an impact on the number of exploits showing in
binaries. We use the publication date to measure the patch lifetime

by counting the days between the patch publish date and last day
of binaries collection.

Exploitability. Assuming that attackers minimize effort, avail-
able and complexity of PoC exploit code would increase the odds of
exploit code showing up in binaries. We use three simple indicators
to measure the exploitability of a particular vulnerability. First, ex-
ploit availability, where we determine whether the exploit we found
in binaries has PoC exploit available in public repositories. If so, we
collect information of our second indicator, exploit complexity. We
crudely approximate this by counting the number of lines of the
PoC exploit code, assuming that an exploit with more code is most
costly to use successfully by attackers. Lastly, exploit publish date,
which refers to the publish date where the PoC exploit code was
released. We also use the publication date to measure the exploit
lifetime by counting the days between the exploit publish date and
last day of binaries collection.

Exposure. Exposure refers to the size of the discoverable at-
tack surface that an attacker might target with an exploit. We
hypothesize that the larger the install base is of devices exposed
to Internet-wide scans or public search engines (e.g., Shodan [28]),
the higher the chances an attacker would target them.

Table 1: Overview of data collection work process.

Automated Semi-automated Manual

Binary collection Vulnerability release date Exploit signature generation
Exploit extraction Patch availability Mapping exploit to vulnerability
Severity (CVSSv3) Security advisory Installed base
CPE Exploit availability Device type

Exploit release date Vulnerability type
Patch release date
Patch complexity
Exploit complexity

3 METHODOLOGY
Our methodology involves two main steps in order to explain the
target selection of IoT vulnerabilities using exploit frequency in
binaries as our dependant variable. First, we gather the indicators,
including information on the exploit code in the malware binaries,
the vulnerabilities they exploit, the patch status of the affected
devices, and the level of exposure of the devices (see Table 1 for
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Table 2: Description of variables.

Variable Description Data sources

Installed base Number of IoT devices exposed in public Shodan
Vulnerability type (CI) A dummy variable that denotes if the vulnerability type is command injection NVD
Vulnerability type (RCE) A dummy variable that denotes if the vulnerability type is remote code execution NVD
Vulnerability type (other) A dummy variable that denotes for other the vulnerability type NVD
Device type (router) A dummy variable that denotes if the device type is router NVD
Device type (surveillance) A dummy variable that denotes if the device type is surveillance NVD
Device type (Other) A dummy variable that denotes for other device type NVD
Severity (CVSSv3) A value between 0 and 10 that measures the impact of exploiting the vulnerability NVD
CPE Number of affected systems, software and packages NVD
Vulnerability lifetime Number of elapsed days from the vulnerability published date until the last capture day of binaries NVD
Patching lifetime Number of elapsed days from the patching release date until the last capture day of binaries Security advisory
Patch complexity Number of steps a user needs to patch a device Security advisory
Patch availability A dummy variable that denotes whether a patch is available or not NVD, Security advisory
Security advisory A dummy variable that denotes whether a vendor has released a security note for a vulnerability or not Vendors’ website
Exploit availability A dummy variable that denotes whether an exploit code is available or not Exploit-db, Github, Security reports
Exploit complexity Number of lines for exploit code Exploit-db, Github, Security reports
Exploit lifetime Number of elapsed days from the PoC exploit code publish date until the last capture day of binaries Exploit-db, Github, Security reports

data collection work process). Second, we use a count regression
model to analyze and quantify the significance of each indicator.
The output of the model provides insights into the factors that
influence the decisions of attackers in selecting what exploit code
to include in IoT binaries, allowing us to better understand the
threat landscape and make recommendations for improving the
security of IoT systems.

3.1 Data collection
In this section, we will discuss the data collection work process we
used to measure the indicators for each factor, as summarized in
Table 1.

3.1.1 IoT exploits in binaries. In our study, we collected IoT mal-
ware samples from an IoT-specific honeypot over a period of four
years (2018 – 2021). We used dynamic analysis to extract exploits
from these samples and map them to vulnerabilities.

Collecting IoTmalware binaries.We obtained 11,893 binaries
from September 2018 to September 2021 via IoTPOT [39].

The present version of IoTPOT is a high-interaction honeypot
using bare-metal vulnerable IoT devices running Telnet and/or
HTTP as Web User Interface. For the entire observation period, the
honeypot utilized eight devices (three routers, two WiFi storage
devices, an IP camera, a printer, and a satellite decoder) connected
to 64 IP addresses in Japan. Additionally, from September 2018 to
February 2020, the honeypot utilized seven more devices (five IP
cameras, a router, and a WiFi storage device) connected to 32 IP
addresses in Japan. Although the devices connected to our high-
interaction honeypot may not represent the overall population
of IoT devices on the internet, the honeypot can still serve our
research objectives and generate insights into the population of
IoT exploits used in the wild. Therefore, we believe that the set of
binaries collected over a period of fours years captures the essence
of exploits targeting vulnerable IoT devices, not only in Japan but
globally.

Extracting exploits.We perform dynamic analysis on all the
11,893 collected honeypot binaries. In a sandbox, we executed each
of the binaries, which is built as a virtual machine running Linux

Debian for the MIPS and ARM architectures. With the exception of
DNS resolutions, we run each binary for five minutes in a closed
network environment. As malware repeatedly tries to connect to
the C&C server in such an environment whereas port scans on the
same host are typically not repeated, this isolated environment help
us in differentiating between port scans and C&C communications,
especially when they are on the same port. In addition, if the mal-
ware on a destination port accesses more than 100 destination IP
addresses, we conclude that the port is being scanned. Then, we
execute all binaries again for five minutes with dummy servers that
pretend to be the target on the scanned ports once the sandbox has
been cleaned up. With the implementation of PyNetSim, we redi-
rect all connection attempts on the examined port to the dummy
servers, which merely establishes TCP sessions with no further
response. We found that a significant number of binaries actually
begin scanning for and exploiting vulnerabilities immediately af-
ter execution, without contacting C&C servers or their intended
targets.

During the dynamic analysis of the 11,893 binaries, 2,256 of them
did not show any scanning (propagating) behavior. There can be
different reasons why they did not show propagation: they simply
did not have any propagating capabilities; they might have needed a
trigger, such as a command fromC&C server; or theymight not have
been executed successfully [2, 6]. Given that we could not detect
exploits, we dropped these 2,256 binaries from further analysis. In
the end, we had dynamic analysis results for 9,637 samples with
propagating behavior. Of this set, 7,008 binaries conducted scans
on only Telnet ports, such as 23, 2323, and 2223/TCP, to try brute-
forcing with known credentials. Since this general attack vector is
not tied to a specific CVE or known vulnerability, we did not include
these binaries in the model. For the remaining 2,629 binaries, we
found evidence of targeting specific CVE or known vulnerability
via 48 different ports and various protocols. All of the detected
protocols, such as CPE WAN Management Protocol (CWMP) and
Simple Object Access Protocol (SOAP), are HTTP-based in terms
of the transport layer, which is consistent with the findings in
[7, 22, 40].
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Exploit signature generation. For each payload captured from
the dynamic analysis, we manually extract HTTP-based request
lines and HTTP headers to create a signature of a distinctive sub-
string, such as a destination resource of HTTP requests, which can
be used to identify an exploit. We use the URI (Uniform Resource
Identifier) syntax or absolute path of the GET or POST in the request
line to generate the unique signature. In Figure 2, we present an
example of an exploit payload. As can be seen in this figure, the
URI syntax consists of four components (colored in red): scheme,
authority, path, query and fragment. The scheme part is followed
by a colon and two forward slashes, if specified. Then comes the
path name that begins with a single forward slash. Next, the query
string preceded by a question mark. Finally, the fragment, which is
a set of characters for resource that is subordinate to another.
However, the most common format is: the path name, question
mark and the query string. We use this URI syntax during the ex-
traction of each request. In this example, the final exploit signature
is /backupmgt/localJob.php?session=fail.

GET /backupmgt/localJob.php?session=fail;cd+/tmp;wget
+http://212.192.241.72/lolol.sh;curl+O+http://212.192.241.72/lolol.sh; sh+lolol.sh
HTTP/1.1
Connection: close
Accept-Encoding: gzip, deflate
Accept: /
User-Agent: Dark

Figure 2: Example exploit payload

Using this signature generation method, we created 59 unique
signatures from the captured HTTP requests. To identify the vul-
nerabilities that each one of these exploit targeted, we search them
in public exploit databases such as Exploit-db [41] or Github[47].
From these two sources, we were able to identify 45 out of the
59 signatures. The remaining 14 signatures with no information
in the above sources, we use other public sources such as reports
from AV vendors and researchers that describe them. For every
signatures that were confirmed to be used as an exploit code to
target vulnerability, we tag them as Known exploit. Otherwise, we
would tag them as Unknown payloads. However, all the signatures
that we generated were found in the public sources meaning that
they were all tagged as known exploit.
Apart from using signatures to identify exploits, we also used them
to allow us to count how often each exploit appears across the
dataset. We call this ‘exploit frequency’, our dependent variable. It
is meant to capture the more prevalent exploits among attackers,
hence the vulnerabilities they prefer to target.

3.1.2 Characterizing IoT exploits. After we confirmed that these
signatures belonged to known exploits according to the above pub-
lic sources, we collect information about their corresponding vul-
nerabilities and their proof of concept (PoC) exploit codes. Next,
we characterized these vulnerabilities using the National Vulner-
ability Database (NVD [33]). We then collected data on the patch
information using the vendor’s security advisories.

Mapping exploit to vulnerabilities. We manually mapped
exploits to their corresponding vulnerabilities using the signatures

to search in Exploit-db, Github or Google Search. For example,
for each exploit entry in Exploit-db, there is a CVE field we can
retrieve the vulnerability information, if available. Otherwise, we
used the vulnerability description title in Exploit-db, e.g., “OptiLink
ONT1GEW GPON version 2.1.11_X101 RCE” [42]. We applied the
same approach for the other two sources. We found that the 59
unique exploits weremapped to 64 vulnerabilities. Next, we checked
whether a proof of concept (PoC) exploit code was available for
them. If so, we retrieved the date when the PoC exploit code was
released and measure its complexity through counting the lines of
code.

Exploit coverage. At the heart of our analysis is frequency
data: how often is a vulnerability attacked in the wild? For this, we
needed to capture binaries in live attacks on our honeypot infras-
tructure. The number of times that an exploit was present in these
captured binaries tells us how often a vulnerability was targeted.
This means we can’t supplement the data with binaries from an
existing repositories of binaries, since those data sources lack the
frequency with which the binaries were observed in live attacks.
The honeypot infrastructure was running in Japan. This location
might impact the observations. That said, we did not observe any
binaries targeting specific network ranges. Rather, scanning was
traversing randomly through the IPv4 space. To assess the coverage
of our dataset with previous work, we compared the overlap of
exploits with datasets used in [2] and [6]. Alsadi et al. [2] extracted
exploits using both static and dynamic analysis. Therefore, it does
not have the limitations of relying exclusively on dynamic analysis
to identify exploit code, so it provides a good point of comparison.
We observe that our set of exploits is consistent with their datasets,
namely UrlHaus (Jul 2020 - Oct 2020), IoTPoT (Sep 2018 - Aug 2020),
and the Genealogy (Jan 2015 - Aug 2018). Our results showed that
we covered 55.17% (32 out of 58) of the exploits in UrlHaus, all
exploits in IoTPoT, and 80% (12 out of 15) in the Genealogy datasets.
To compare against Alrawi et al. [6], we looked at the top 25 IoT
exploits reported in their study. Out of the 25 exploits, 17 list a
CVE-ID. Of these 17, 14 are also in our set, 3 are not. The remaining
8 exploits have no CVE-ID or affected product listed, so we cannot
compare them to our dataset. So although we can only conduct a
limited comparison, for the vulnerabilities with a CVE-ID, we have
a high overlap with their dataset.

Characterizing IoT vulnerabilities. To collect information on
the 64 vulnerabilities targeted by the captured exploits, we used
the National Vulnerability Database (NVD). It publishes Common
Vulnerabilities and Exposures (CVEs), their associated identification
number, description, public references, and severity score. In case,
a vulnerability is reserved in the NVD, e.g., due to pending CVE
status, we used the MITRE website [30] to collect the information.
However, 15 of the 64 vulnerabilities were not registered in NVD,
so they had no CVE-ID [2, 6]. For those, we used the vulnerability
description title in the exploit databases.

Identifying patches. For the identified IoT vulnerabilities, we
collect patch information that has beenmade available by the device
manufacturer through security advisories. Security advisories are
documents that provide information about vulnerabilities in prod-
ucts, including Internet of Things (IoT) devices. They are typically
issued by the manufacturer or vendor of the device in question, or
by independent organizations or government agencies that have
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discovered a vulnerability. These advisories normally include brief
headers that list the vulnerability title, advisory release date, af-
fected products, advisory ID, and any relevant CVE ID. We found
them on the website of the manufacturer or vendor, or on the web-
site of the organization or agency issuing the advisory. In this study,
we used the security advisory pages of vendors. Specifically, we
gathered patch information for each vulnerability, including exis-
tence of advisory notes by vendors, patch release dates, availability
and patch complexity.

3.1.3 Measuring device exposure. Vulnerabilities are associated
with certain device models. To measure the exposure of these tar-
geted IoT device models, we use search engines to identify the
number of Internet-connected devices and findable devices of each
model. This can help us understand the potential scale of exploiting
a certain vulnerability. By searching for the specific model numbers
of vulnerable devices, we can approximate the size of the install
base for those devices. Shodan is unlikely to provide us with a very
accurate absolute number of publicly reachable devices of a certain
type, but what we need is a proxy of the install base of each device
relative to the other targeted devices.

Estimating device installed base.We use Shodan [28] to de-
termine the quantity of Internet-connected devices for a particular
vulnerable model. Shodan allows us to search for specific types of
devices, such as servers, routers, and other Internet of Things (IoT)
devices, and retrieve information about them. By querying Shodan,
we gather information about devices that are publicly available on
the Internet, including their metadata and any web interfaces they
may have.

To measure the install base of vulnerable IoT devices, we devel-
oped a systematic querying approach (see Figure 3) that involves
using the vendor or device name as a starting point, then manu-
ally checking the search results and inspecting the HTML field to
confirm if the search results match the actual targeted device. We
also looked for other signatures that contain the model name or
the affected software version a given device is running. We then
filtered the results based on the device’s installed software version,
if available.

For example, some banners include a server name that shows
the device-specific, and then we search again in Shodan using these
signatures. Through experimentation and testing, we found that
approximately 57% of the devices can be found using the device
name approach, while the remaining cases can be found using the
server name approach.

3.2 Data processing
To prepare for analysis and modelling, we clean up the data, trans-
forming it in a way to make it suitable for the analysis. We used the
CVE-ID or the vulnerability name as the unit of analysis to count
the frequency for each exploit. The relationship between exploits
and vulnerabilities is often one-to-one, but not always. It was one-
to-one for 36 out of 49 observations. Where it is not one-to-one,
this creates an issue of creating duplicate data in the observations
for the model.

We encountered three scenarios that were not one-to-one. First,
sometimes we encountered multiple exploits targeting the same
vulnerability. If we would count each of these combinations as a

Vendor or device name

Search Shodan:
title:"vendor or
device name"

Manually select
results that match
the affected IoT

device description

Has web
interface?

Inspect the HTML
field in Shodan raw
data for device name

Inspect Shodan
raw data to con-
firm device name

Found?

Extract the strings
that contains

the device name
as a signature

Extract other
field that contains
the model name
as a signature

e.g., server name

Search Shodan:
all:“vendor name"

+ signature

Number of devices
for a specific model

yes

no

yes

no

Figure 3: Flowchart to determine the number of publicly
accessible IoT devices using Shodan.

separate observation, we would get observations where the vulnera-
bility properties are copied, hence feeding themodel with artificially
duplicate data while the model assumes these are all independent
datapoints. This is obviously not allowed. Therefore, for this first
scenario, we merge the frequency counts for each exploit and then
connect those with the one vulnerability. We investigated this fur-
ther and found that in all these cases, the different exploit codes
were coming from the same PoC. So they were already linked, if not
basically the same exploit to begin with. So merging their counts
makes sense. This scenario holds for six of our observations.

The second scenario is where we have one exploit targeting
multiple vulnerabilities. Here we merge the vulnerabilities into one
observation. Since they have different publish dates, we picked the
oldest date amongst them to cover the whole life cycle of such case.
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This scenario holds for four of our 49 observations. Since multiple
vulnerabilities also have different CVSS3 base scores, we use the
highest severity score.

The third scenario is where we found multiple exploits targeting
multiple vulnerabilities. This case is basically a mix of previous
two scenarios: some exploits stem from the same PoC and that PoC
actually targets multiple vulnerabilities. In those cases, we merged
both the exploit frequency counts as well as the vulnerabilities.
Again, we picked the oldest vulnerability publish date and the
highest CVSS3 score for the observation. This scenario holds for
three of our 49 observations.

A final bit of data processing concerns the size of the install base.
Since the size of the observed install bases spans multiple orders
of magnitude, we log-transformed the indicator to approximate a
normal distribution that the model can work with.

3.3 Modeling approach
We used a general linear model (GLM) as it is a commonly used
statistical tool for studying the relationship between a dependent
outcome variable and one or more independent explanatory vari-
ables. In the context of this study, where the dependent variable is
a count of the number of times a certain exploit code was observed
in a binary, using a GLM allows us to investigate the influence
of multiple factors on this outcome. The dependent variable (ex-
ploit frequency) will be a non-negative integer. Previous research
suggests that the Poisson regression model is a suitable option for
modeling this type of data (i.e., discrete, non-negative, and spo-
radic) [45]. However, a major limitation of the Poisson regression
model is that the variance of the dependent variable must be equal
to its mean. This is not our case as the variance is more than hun-
dred times larger than the mean. When the mean and variance of
the data are not equal, the estimated Poissonmodel coefficients tend
to be underestimated and biased. This limitation can be addressed
by using the negative binomial distribution, which is well-suited
for describing discrete, non-negative events, and does not have
the requirement that the mean must be equal to the variance. We
estimate the negative binomial dispersion parameter using max-
imum likelihood, which is the technique that is most often used,
and usually provides a slightly better estimate and smaller stan-
dard deviation than other commonly used estimators. The density
function of the negative binomial model is given by:

𝑓 (𝑦 |𝑥, 𝛽 ) = Γ (𝑦 + 𝑟 )
Γ (𝑦 + 1)Γ (𝑟 )

(
1

1 + 1
𝑟
· 𝑥⊺𝛽

)𝑦 (
1

1 + 1
𝑟
· 𝑥⊺𝛽

)𝑟
whereby in our case, 𝑦 is the count of exploit frequency, 𝑥 is the
vector of explanatory variables, 𝛽 is the vector of model coefficients,
and 𝑟 is a dispersion parameter for the negative binomial family. The
function Γ is the gamma function, which is defined as Γ(𝑛) = (𝑛−1)!
for positive integers 𝑛 and has a more general definition for other
values of 𝑛.

The 𝑗𝑡ℎ explanatory variable can be tested for its significance in
explaining the frequency of an exploit by examining the respective
coefficient 𝛽 𝑗 . However, it is necessary to check if the variable is
already represented by other factors, as redundant variables can
result from high collinearity with another variable. The variance
inflation factor (VIF) can be used to quantify this redundancy and
is defined as:

𝑉 𝐼𝐹 𝑗 =
1

1 − 𝑅2
𝑗

where 𝑅2
𝑗
is the 𝑅2 in a model containing 𝑥 𝑗 as the explanatory

variable only. O’Brien proposed [37] to indicate multicollinearity
𝑉 𝐼𝐹 (𝛽 𝑗 ) > 5 or 𝑉 𝐼𝐹 (𝛽 𝑗 ) > 10. In this paper, we chose a threshold
of 5 as VIF values exceeding this level indicate the presence of
multicollinearity issues. [17, 23, 29]. There are some approaches for
designing a measurement for the fitness of the GLMs. The 𝑅2 can
only be computed in a linear regression model, so most coefficients
of determination work with the likelihood function. McFadden’s
𝑅2 is chosen for the present analysis and defined by:

𝑅2 = 1 −
𝐿𝐿𝑓 𝑢𝑙𝑙

𝐿𝐿𝑛𝑢𝑙𝑙
where 𝐿𝐿𝑓 𝑢𝑙𝑙 is the log-likelihood of the full model and 𝐿𝐿𝑛𝑢𝑙𝑙 is

the log-likelihood of the null model (a model with no explanatory
variables).

4 DESCRIPTIVE FINDINGS
We present the factors and their indicators, which we hypothesized
will explain the vulnerability target selection in IoT malware bina-
ries. Table 3 presents a summary of descriptive statistics for the
indicators.

4.1 Distribution of exploit frequency in binaries
The exploit frequency distribution, as shown in Figure 4, ranges
from a minimum of 1 to a maximum of 2,177 times the same exploit
was seen in the 2,629 binaries. This results in a highly skewed
distribution. The average frequency is approximately 169, while
the median is 23. We encountered 12 exploits (24.5%) appearing
only once in the binaries. All but one of these 12 exploits targeted
a unique vulnerability that was not targeted ever again in another
binary.
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Figure 4: Distribution of exploits frequency.

Figure 5 presents the time series of the exploit frequency of the
top five most frequently exploited vulnerabilities. The vulnerabil-
ity with the highest frequency (2,177 occurrences) was CVE-2017-
17215 [35]. Despite the release of a patch around the time of the
vulnerability’s discovery, it continued to be targeted in binaries.
The second highest was CVE-2014-8361 [34], which was targeted
by three different exploits that all came from the same PoC exploit
code. This exploit was released eight months after the publica-
tion of the vulnerability in October 2014. The devices affected by
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Table 3: Descriptive statistics per indicator.

Indicator Stats / Values Freqs (%)

Installed_Base
[numeric]

Mean (sd) : 37098.1 (217960.2)
min < med < max:
2 < 485 < 1527377
IQR (CV) : 2819 (5.9)

≤ 35: 13 (26.5%)
≤ 572: 26 (51.0%)
≤5108: 37 (75.5%)

Vulnerability_Published
[logical]

1. FALSE
2. TRUE

15 (30.6%)
34 (69.4%)

Vulnerability_type
[factor]

1. A Password Overflow Issue
2. Backdoor
3. Command Injection
4. RCE

1 ( 2.0%)
2 ( 4.1%)
19 (38.8%)
27 (55.1%)

Device_Type
[factor]

1. NAS
2. Router
3. Surveillance
4. TV
5. Web app
6. Web server

3 ( 6.1%)
28 (57.1%)
7 (14.3%)
1 ( 2.0%)
7 (14.3%)
3 ( 6.1%)

Severity_CVSS3
[numeric]

Mean (sd) : 6.1 (4.5)
min < med < max:
0 < 8.8 < 10
IQR (CV) : 9.8 (0.7)

0.0 : 17 (34.7%)
7.2 : 2 ( 4.1%)
7.5 : 1 ( 2.0%)
8.8 : 7 (14.3%)
9.8 : 21 (42.9%)
10.0 : 1 ( 2.0%)

CPE
[numeric]

Mean (sd) : 1.9 (4.4)
min < med < max:
0 < 1 < 27
IQR (CV) : 1 (2.3)

0 : 16 (32.7%)
1 : 21 (42.9%)
2 : 5 (10.2%)
3 : 3 ( 6.1%)
5 : 1 ( 2.0%)
6 : 1 ( 2.0%)
16 : 1 ( 2.0%)
27 : 1 ( 2.0%)

Vulnerability Lifetime
[numeric]

Mean (sd) : 1373 (971.6)
min < med < max:
49 < 1222 < 4614
IQR (CV) : 1217 (0.7)

≤ 660: 13 (26.5%)
≤1222: 26 (51.0%)
≤1877: 37 (75.5%)

Patch_Availability
[logical]

1. FALSE
2. TRUE

25 (51.0%)
24 (49.0%)

Security_Advisory
[logical]

1. FALSE
2. TRUE

24 (49.0%)
25 (51.0%)

Patch_Complexity
[numeric]

Mean (sd) : 2.1 (3.7)
min < med < max:
0 < 1 < 13
IQR (CV) : 3 (1.8)

≤ 1: 35 (71.4%)
≤ 4: 41 (83.7%)
≤ 8: 48 (98.0%)

Patch_Lifetime
[numeric]

Mean (sd) : 1010.9 (983.3)
min < med < max:
17 < 907 < 3045
IQR (CV) : 753 (0.7)

≤ 66: 3 (12.0%)
≤554: 6 (24.0%)
≤907: 13 (52.0%)

Exploit_Availability
[logical]

1. FALSE
2. TRUE

1 ( 2.0%)
48 (97.9%)

Exploit_Complexity
[numeric]

Mean (sd) : 76.4 (67.7)
min < med < max:
0 < 69 < 317
IQR (CV) : 81 (0.9)

≤ 21: 13 (26.5%)
≤ 69: 26 (51.0%)
≤101: 37 (75.5%)

Exploit_Lifetime
[numeric]

Mean (sd) : 1308 (983.3)
min < med < max:
-27 < 1165 < 4412
IQR (CV) : 1161 (0.7)

≤ 556: 13 (26.5%)
≤1165: 26 (51.0%)
≤1717: 37 (75.5%)

CVE-2014-8361 have reached their End-of-Life, meaning that the
vendor will no longer provide software upgrades or address any
new vulnerabilities discovered in them.
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Figure 5: Top five targeted vulnerabilities based on their
monthly exploit frequency in binaries.

The next vulnerability in terms of exploit frequency is MV Power
Shell CI, which was published in August 2015. Unlike the previous
two, it did not have a patch available and its PoC exploit was not
released until a year and a half after its publication. It took another
46 months for the first exploit to show up in a binary. The fourth
most exploited vulnerability in binaries was CVE-2017-18368. Its
PoC exploit was made public six months before the vulnerability
was disclosed, but a patch is still not available to the public. The
final case in the top five is the combined CVE-2018-20062 and
CVE-2019-90082, which were exploited in binaries using the same
exploit a few times after their first disclosure in November 2018,
but stopped being seen in binaries until after the PoC exploit was
released in April 2020. From then on, these vulnerabilities were
exploited in binaries for several months. To contrast, in some other
cases (such as CVE-2013-7471 and Xiaogmai Backdoor) PoC exploits
had been available for years, but attacks only started to appear
more frequently in binaries after the vulnerabilities were publicly
disclosed.

4.2 Distribution of vulnerability features
We found all targeted vulnerabilities were published in 2013 on-
wards except for one that was published in 2009 (CVE-2009-0545).
However, the 2009 vulnerability was found to share the same PoC
exploit with a vulnerability that was published 10 years later, CVE-
2019-12725. At the other extreme, the most recent vulnerability,
CVE-2021-38647, was published in August 2021 and was seen in
binaries a month after that. Most targeted vulnerabilities were pub-
lished in 2018 and 2021.

Looking at the vulnerability type in Table 3, Remote Code Ex-
ecution (RCE) represents the majority (55%) in the IoT binaries,
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followed by Command Injection around (39%). The other vulnera-
bility types, Backdoor and Password Overflow, both represent 4%
and 2%, respectively. That being said, CVE-2017-17215, which is
the vulnerability with the highest exploit frequency of 2,177 times
and was seen continuously in binaries used command injection for
exploitation.

In terms of the six device types we encountered, routers are
the primary type attackers target, which covers 28 out of the 49
observations. Surveillance and Web application were each seen in
seven cases, NAS and Web servers supporting IoT devices in only
three. The one remaining device type is TV, which was only seen
once. This result ties well with previous studies wherein TV is the
least device type attackers are targeting [2, 6].

Also, Table 3 shows that the maximum CVSSv3 score is 10 out
of 10 (critical), which was seen in one case: CVE-2019-7256. Re-
markably, this vulnerability was exploited only once in binaries.
Overall, the average score base is 6.1 (“Medium”) and the median is
8.8 (“High”).

Next indicator is CPE. The average affected versions is 1.9. This
means that 85.7% of the total cases had two or less versions affected
for a given vulnerability. On the other hand, the maximum CPE
number is 27. These 27 affected systems belonged to one vulner-
ability (CVE-2020-9054), of which the corresponding exploit seen
only once in our malware binaries.

Finally, the vulnerability lifetime. The shortest exploit window
we observed since the publication of vulnerability was 49 days for
CVE-2021-38647 that was published in August 2021, less than two
months before the end of our binary collection. On the contrary,
the largest is 4,614 days for a vulnerability that was published in
2009 (CVE-2009-0545). However, the average exploit window for is
1,373 days.

4.3 Distribution of patching features
Although patching is critical to mitigate any security flaw in a
vulnerable device, Table 3 shows that only 49% of vendors have
actually released patches. That means almost half of the IoT vulner-
able devices we observed remained vulnerable, unless users found
another way to secure them in the absence of a patch.

The percentage is a bit higher (51%) when wemeasure if a vendor
has issued a security advisory. In one case a vendor did provide a
security advisory, but the patch was not available.

Another indicator is patch complexity. When patching only
needs from a user to upgrade a firmware, we count this as one
step unless it states otherwise in the security notes. For example,
the maximum number of steps to patch was seen in D-Link DSL-
2750B device, the user needs 13 steps, whereas for CVE-2016-6277,
users needs to perform six steps according to the instructions on
their security advisory. In average, a user needs around 2 steps to
patch a vulnerable device, and one step in median.

In regards to the patch lifetime, the patches for the targeted
vulnerabilities were available and released for around 1,010 days,
on average. The vulnerability with the maximum patch lifetime
of 3,045 was Netgear DGN1000 RCE, and CVE-2021-38647 had the
minimum window of 17 days for patching.

4.4 Distribution of exploit features
We assume the availability of public PoC exploit can influence the
exploit frequency in binaries. Table 3 shows that all exploits have
PoC exploit available in public except for one exploit. It was for
a vulnerability we mentioned earlier that was reserved by NVD
(CVE-2019-7405), and it was only seen twice in our binaries. So
while PoC was available almost always, and this might influence
whether a vulnerability is targeted at all, it cannot help us explain
how often a vulnerability is targeted.

We approximate complexity via the number of lines of PoC ex-
ploit. The average PoC exploit is around 76 lines, with the minimum
being one line and the maximum 317 lines. The minimum was seen
in exploitation of Vacron NVR RCE vulnerability. Only fewer cases
were seen when the lines of PoC code getting higher than the av-
erage. In addition, the vulnerability with the highest frequency of
being targeted had an exploit complexity of less than the average
(25).

Lastly, the exploit lifetime. The maximum time a PoC exploit
was available is 4,412 that was targeting CVE-2009-0545; CVE-2019-
12725, yet only seen once in binaries. On the other hands, the most
recent PoC exploit that was targeting the most recent vulnerability
(CVE-2021-38647) for 20 times, it was available 27 days after the last
day of binary collection. On average, PoC exploits were available
for 1,308 days.

4.5 Distribution of exposure features
The installed base for the targeted devices of the 49 observations
can bee seen in Table 3. The mean and median install base for
the targeted devices are 37,098 and 485, respectively. However,
the standard deviation is 217,960. This explains how spread out
the data are from the mean. It can be explained when looking at
the maximum number of installed base of 1,527,377 (outlier) while
the minimum number of exposed devices in public is two. It is
worth discussing these interesting findings of the highest install
base device. It was for Huawei HG532 router that is affected by
CVE-2017-17215, which is the vulnerability with the highest exploit
frequency and were targeted continuously in binaries. Yet, the least
number of exposed devices was ZTE ZXV10 H108L gateway, which
was seen targeted five times in binaries. An interesting finding in
the understanding of the install base in regards to device types,
we found that the largest top four exposed devices were routers.
On the other hand, the smallest top four install base were all web
application except for one, which was a router.

5 QUANTIFYING THE FACTORS THAT DRIVE
IOT VULNERABILITY EXPLOITATION

To quantify to what extent some factors explain why some IoT
vulnerabilities are more frequently targeted than others, we create
a statistical model based on our theoretical model. By doing so, we
can develop a more comprehensive understanding of the factors
that drive IoT vulnerability exploitation.

5.1 Indicators selection
The first step is to select indicators for inclusion in the model.
This selection process is based on the principle of non-redundancy,
whereby highly correlated indicators are removed from the model.
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This reduced set of indicators is then used as explanatory factors in
the GLM, and the significance of each indicator is assessed in order
to further refine the model. The process of checking for redundancy
is performed using the variance inflation factor (VIF), and indicators
with VIF values greater than 5 are iteratively omitted. This leaves us
with ten indicators. Based on the the guideline from O’Brien et al.
[37] we exclude any of the indicators whose generalized variance
inflation factor (GVIF) exceeds five (see Table 4).

Table 4: Variance inflation factors

GVIF Df GVIFˆ(1/(2∗Df))

Installed_Base 1.19 1 1.09
Vulnerability_Lifetime 1.15 1 1.07

Severity_CVSSv3 1.63 1 1.28
Vulnerability_type 1.53 2 1.11

Device_Type 1.38 2 1.08
Patch_Complexity 1.56 1 1.25
Patch_Availability 3.46 1 1.86
Security_Advisory 3.01 1 1.73
Exploit_Complexity 1.43 1 1.20
Exploit_Availability 1.32 1 1.15

5.2 Model fit
We explore the model fit by adding variables to the model using a
stepwise forward procedure. The models are fitted using the log link
function, and the Type III test is used to evaluate the significance
of the variables [43]. This is because the results of the test indicate
the significance of the complete variable, which may not be the
same as the significance of the individual estimates of the different
categories for categorical variables. Even if the estimates of some
categories do not significantly differ from zero, the variable can
still be significant to the model because the categories can differ
significantly from each other.

We add variables to the model step-wise in the order they are
presented in table Table 5. First, we start having the intercept only
model (Model0) and then adding exposure variables, followed by
vulnerability, patching and exploit variables respectively. This lead
to the five different models as shown in Table 5.

To evaluate the goodness of fit, we employed selection criteria
based on established practices in the literature [1, 14, 16, 24, 25].
First, we used the Akaike Information Criterion (AIC) to compare
model scores and determine the best-fitting model for the data [8],
which also tends to perform better with relatively smaller sample
sizes. Second, the Bayesian Information Criterion (BIC) places a
stronger penalty on model complexity, favoring simpler models.
This criterion is especially useful for identifying the most parsi-
monious model. A lower AIC or BIC value indicates a better fit
[14, 16, 24]. Next, we calculated the Log-likelihood [18] to compare
different models and assess their relative fit to the data. Then, the
F statistic [18] to evaluate and compare the variance explained by
the model against the unexplained variance, providing a measure
of the improvement in model fit compared to a null model. Unlike
AIC or BIC value, The higher the log-likelihood and the F statistic
value, the better a model fits a dataset. Furthermore, we used the

Table 5: GLM regression results.

Model0 Model1 Model2 Model3 Model4

(Intercept) 4.831*** 2.475*** 0.194 0.369 −1.881
(0.389) (0.735) (1.833) (1.161) (1.276)

Exposure
Install Base 0.186* 0.148 0.202** 0.225***

(0.091) (0.112) (0.073) (0.063)
Vulnerability
Vulnerability Lifetime 0.0006+ 0.0006 0.0005* 0.0007***

(0.0003) (0.0004) (0.0002) (0.0002)
Severity (CVSSv3) 0.065 0.005 −0.028

(0.091) (0.062) (0.052)
Command Injection 2.469 1.399 2.783**

(1.710) (1.066) (0.999)
Remote Code Execution 1.440 −0.242 0.794

(1.669) (1.040) (0.944)
Router 0.094 1.137* 1.334**

(0.855) (0.560) (0.480)
Surveillance 0.703 1.771* 1.480*

(1.232) (0.810) (0.705)
Patching
Complexity 0.294*** 0.262***

(0.068) (0.059)
Availability −1.122 −0.886

(0.772) (0.684)
Security Advisory 0.029 0.108

(0.712) (0.642)
Exploit
Complexity −0.008*

(0.003)
Availability 1.382

(0.974)
Num.Obs. 49 49 49 49 49
𝑅2 McFadden - 0.151 0.204 0.334 0.377
AIC 830.6 709.7 675.6 573.6 542.5
BIC 832.5 715.3 690.8 594.4 567.1
Log.Lik. −414.280 −351.836 −329.814 −275.805 −258.274
F - 3.968 1.448 5.265 6.257
RMSE 337.69 299.13 268.71 499.84 479.02
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Root Mean Square Error (RMSE), a widely used statistical metric for
comparing regression models [14]. RMSE offers a measure of over-
all accuracy for the model’s predictions, aiding in the quantification
of average prediction error. Even though our focus is to explain not
to predict, we only reported the RMSE scores for completeness.

Looking at the scores provided by these criteria, Model 4 had
the best fit among the models, with a lower AIC, BIC, and log like-
lihood, and a higher F statistic and lower RMSE. Even though the
prediction score of RMSE in model 4 doesn’t reflect the lowest, we
used it to only report the observed value. Additionally, several of
the variables in Model 4 were statistically significant, including
the “Install Base", “Vulnerability Lifetime", “Vulnerability type Com-
mand Injection", “Device Type Router", “Device Type Surveillance",
“Patch Complexity", and “Exploit Complexity" variables. This sug-
gests that these factors play a significant role in determining exploit
frequency in IoT binaries.

Looking at McFadden’s 𝑅2 value, we can get insights about how
well a model explains the variance in the data. Note that in a GLM
with a negative binomial distribution, the 𝑅2 value is often lower
than in other types of regression, such as linear regression, because
the negative binomial distribution is often a better fit for overdis-
persed data (data with higher variance than expected under the
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Figure 6: Forest plot of the GLM exponentiated coefficients

model). This means that even though the model may have a good
fit to the data, there will still be some remaining variation that is
not explained by the model, resulting in a lower 𝑅2 value.

Additionally, our focus is on explanatory power rather than
prediction, as the negative binomial model is better suited for mod-
eling the underlying processes that generate the data. Therefore, a
lower 𝑅2 value does not necessarily indicate a poor model fit, but
rather reflect the inherent variability in the data and the focus on
explaining the underlying processes rather than making precise
predictions.

5.3 Interpretation of the variable effects
The coefficients of the GLM model represent the relationship be-
tween the latent variables (vulnerability, patching, exploit, and
exposure) as measured by the corresponding indicators and the
frequency of exploits. If the coefficient for a particular indicator of
vulnerability is positive, this suggests that an increase in that indi-
cator is associated with an increase in exploit frequency in binaries.
On the other hand, if the coefficient is negative, this suggests that
an increase in that indicator is associated with a decrease in exploit
frequency in binaries. The coefficients can be used to understand
how the different latent variables and their indicators influence the
target selection of vulnerabilities in IoT binaries.

All the coefficients are positive except for Patch Availability,
Severity (CVSSv3) and Exploit Complexity. The exponentiated coef-
ficient and the 95% confidence interval are plotted in Figure 6. The
forest plot shows the exploits frequency is affected in a different
manner by several factors. The variable with the largest impact is
the vulnerability type, with a 16.16-fold increase in the exploits
frequency when the vulnerability is a command injection compared
to other vulnerability types. The install base also has a significant
effect, with a 1.25-fold increase in the frequency of exploits per
unit increase in the installed base. For example, if the installed base
is 1,000, a unit increase in the installed base (i.e, 10,000) would
correspond to a 25% increase in the frequency of exploits when all
other variables in the model are held constant. Other significant
factors include the device type, with a 3.79-fold increase in the
frequency of exploits when the device is a router compared to other
types of devices, and patch complexity, with a 1.3-fold increase in
the exploits frequency per unit increase in patch complexity. This

confirms that vulnerability severity (CVSS) rating has no impact,
which was studied in previous work in [13].

On the other hand, some variables have a negative impact on the
frequency of exploits. These include patch availability, with a 0.41-
fold decrease in the frequency of exploits when patches are available
compared to when they are not, and exploit complexity, with a 0.99-
fold decrease in the frequency of exploits per unit increase in exploit
complexity.

To understand the particular impact of a change in the explana-
tory variables, we compute a set of contrasts at the mean. In Table 6,
the contrast estimates show the difference in the mean of the depen-
dent variable (exploits) between each group and a reference group.
For example, the contrast estimate for “Vulnerability type: Com-
mand Injection - Other" indicates that, compared to a hypothetical
exploit with average characteristics, the number of exploits is 287
higher for vulnerabilities of type “Command Injection" compared
to vulnerabilities of other types.

Table 6: Contrasts at the mean

Variable Contrast Estimate Std.Error

Install_Base +1 9.43 7.26
Vulnerability_Lifetime +1 0.03 0.02
Vulnerability_type CI - Other 287.00 197.00
Vulnerability_type RCE - Other 22.90 24.10

Device_Type Router - Other 30.80 23.70
Device_Type Surveillance - Other 37.40 32.10

Severity_CVSSv3 +1 −1.17 2.36
Patch_Complexity +1 11.00 8.33
Patch_Availability TRUE - FALSE −24.60 28.00
Security_Advisory TRUE - FALSE 4.30 26.70
Exploit_Complexity +1 −0.33 0.26
Exploit_Availability TRUE - FALSE 31.30 27.20

Looking at Table 6, we can see that some of the contrast estimates
have negative values. This indicates that, on average, the number
of exploits is lower for the group being compared to the reference
group. For example, the contrast estimate for “Patch Availability:
TRUE - FALSE" shows that, on average, the number of exploits is
24.60 lower when a patch is available to remediate the vulnerability
targeted by a specific exploit. Similarly, the contrast estimate for
“Exploit Complexity: +1" indicates that, on average, the number of
exploits is 0.33 lower for exploits with higher complexity compared
to those with lower exploit complexity.

6 DISCUSSION
Our results have shown that several factors drive the exploitation
of IoT vulnerabilities, including the exposure of the IoT devices and
their vulnerability, the existence and complexity of patches and
exploits, and the type of affected devices. These factors are aligned
with traditional criminology theories, where rational attackers are
interested in maximizing success while minimizing their effort and
the chances of being caught. This suggest that attackers are limited
by their resources when deciding which vulnerabilities to exploit,
and they tend to focus on exploiting vulnerabilities that have a high
impact and low complexity, as it is more cost-effective for them.
This is in contrast to the commonly held belief that attackers will
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exploit any vulnerability they can find. The evidence from actual
exploits confirms this theory indicates that attackers are not keen
on additional exploitation work, and rather tend to stick to the same
tactics as long as they are successful against a significant number
of IoT devices. This aligns with data from underground markets
[5], and it suggests that attackers are work-averse in the sense that
they are not inclined to change their approach if it is still effective.
From this perspective, IoT malware is likely to target vulnerabilities
with a high potential for financial gain and a low risk of detection.
This means that IoT malware is likely to focus on vulnerabilities
that can be easily exploited, have a large install base, and provide
significant benefits to attackers.

Attackers target vulnerabilities in commonly used devices, such
as routers and security cameras, allowing them to conduct dis-
tributed denial-of-service attacks. These vulnerabilities provide
attackers with a large number of potential targets and can be ex-
ploited with relatively little effort. Additionally, the potential for
disruption makes these vulnerabilities highly lucrative for attackers.
On the other hand, IoTmalware is less likely to target vulnerabilities
with low potential for financial gain. For example, vulnerabilities in
niche devices or those that only allow for limited access may not be
worth the effort for attackers, as they may not provide significant
benefits. Similarly, vulnerabilities that are difficult to exploit may
also be less attractive to attackers, as they may not be able to exploit
them successfully without being detected.

Our findings suggest that the CVSS score of a vulnerability did
not significantly impact the exploit frequency. This means attackers
may not necessarily prioritize exploiting vulnerabilities with higher
CVSS scores over those with lower scores. This could be because
attackers may have different priorities and objectives than those
used to determine the CVSS scores. For example, a vulnerability
with a lower CVSS score may be more attractive to an attacker if
it is in a commonly used IoT device or if it has the potential for
significant disruption. Additionally, we also find that the availability
of patching did not significantly reduce the frequency of exploits.
This suggests that even when a patch is available, attackers may
still exploit the vulnerability successfully. This could be because
not all users may apply the patch, or because attackers may find
a way to bypass the patch. This highlights the importance of not
only patching vulnerabilities but also of continuous monitoring, to
detect and respond to any attempted exploitation.

Based on the results of our analysis, we recommend the follow-
ing measures to decrease the usage of exploits and consequently
improve the security of IoT devices:

• Prioritizing efforts on device types that are targeted more
frequently. Large manufacturers with large install bases for
their products should leverage their scale to improve de-
fenses, as they are more likely to be targeted.

• Investing in better updating mechanisms that take into ac-
count patching and patch complexity to disincentivize IoT
malware developers.

• Relying solely on CVSS scores on prioritizing vulnerabil-
ity can lead to the risk of being targeted by cyberattacks.
Instead, taking into consideration other characteristics of
vulnerability such as vulnerability type and device types can
help mitigating attacks.

• Providing a mechanism for consumers to obtain informa-
tion on vulnerabilities, patches, and device support status, as
well as considering the adoption of frameworks for secure
software development and security labeling, can improve
overall security and help consumers make informed deci-
sions about the devices they use as most of the targeted
devices are consumer-grade IoT.

• Requiring secure passwords, encrypted protocols for device
access can help prevent unauthorized access and reduce the
risk of vulnerabilities. Removing these feasibility will force
attackers to develop more sophisticated, and costly, exploits.

• Disabling or uninstalling unused services and debug hooks,
modes, and interfaces can help reduce the device’s attack
surface. The most frequent vulnerability types we observed
in the wild are linked to services that are not necessary for
the proper functioning of the devices. Hence, removing these
would directly reduce the attack surface.

7 LIMITATIONS
Due to the fact that we used a variety of external sources, it was
inevitable to inherit their limitations as well. First, the exploit cov-
erage. It is hard to estimate how representative our dataset is for
exploits frequency in IoT malware. During the dynamic analysis of
binaries collected over the last four years, we were able to capture
59 unique exploits during. This number could be limited due to
some IoT malware techniques used by malware authors such as
anti-analysis and obfuscation to evade detection. This issue in dy-
namic analysis techniques has been reported before in [2, 6]. We did
corroborate that our set of exploits is very similar to those reported
in two prior studies that used both static and dynamic analysis in
finding targeted vulnerabilities [2, 6]. However, to cover a wider
range of exploits in IoT binaries, we recommend collecting data
from diverse and comprehensive sources and conducting longitudi-
nal studies over an extended period. This will enable the capturing
of the evolving nature of IoT exploits. It is also important to involve
cross-referencing and validating exploit information using multiple
sources, such as Virustotal [46], to ensure a more representative
set of IoT exploits.

Moreover, during the phase of collecting information on vulnera-
bilities, we had to look for different sources to measure publication
date for the 15 vulnerabilities with no CVE-ID. We used sources we
believe a given vulnerability was first discovered and use the date
of the publication as the disclose date. This issue of vulnerability
disclosure date was in some published CVEs. Their publication date
didn’t match the year in the CVE-ID as some CVEs where published
years before the assigned date.

Second, in terms of device exposure, we used Shodan to measure
the size of install base of IoT devices in public. Even though it
is open for public, navigating through to find the correct device
has certain limitations [8, 10]. It’s not a single specific query that
can be carried out for all IoT devices. To maximize our chances of
finding the correct IoT devices, we manually checked the raw data
produced by the banner grabbing for all the devices in order to find
the most matching device name, services or software version to
build our query syntax. Despite manually verifying the available
information for all checked devices, the software version data is not
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always accessible due to reliance on Shodan’s collected banners.
Therefore, we can’t be sure that those devices are running the
vulnerable software version. They might not be vulnerable. That
said, this same limitation is faced by an attacker who is estimating
the potential victim population before deciding which vulnerability
to target. Only banner would be available to estimate the install base
of a vulnerable device, until the attacker can run actual exploit code
against potential victims. In this sense, this noisy data would still
provide a good predictor, since we are trying to infer the reasoning
of the attacker.

Finally, the patch availability. We couldn’t find information for
half of the cases even though we search their vendors website for
any updates. Although patching information can be found easier
for published vulnerabilities in the NVD, some of these CVEs are
not updated to include their security advisory in the resources. For
those case, we did our best to look on the internet, as well as for
the vulnerabilities that didn’t have CVE-ID.

8 RELATEDWORK
Attackers select specific IoT vulnerabilities to target in IoT binaries,
yet only few studies that focus on the attacker decision process [15].
Some studies looked at the relationship between vulnerabilities and
exploits. Householder et al. [19] looked into ‘when and how many
vulnerabilities get associated public exploits’ using CVE-IDs.

As a result of 6 years study of 75,807 vulnerabilities, only 3,164 of
them had public exploits within 91 days, on average. On the other
hand, Al Alsadi et al. [2] focused on answering which vulnerabilities
are targeted in the wild and for how long? They analyzed 17,720
samples statically and dynamically using three different datasets
from 2015 to 2020. They found only 63 unique exploits. On average,
they found the time it takes for an attacker to exploit a vulnerability
after it’s been disclosed is around 29 months. Similarly, Alrawi
et al.[6] used both static and dynamic analyses of 166k samples
collected in 2019 to find list of targeted IoT vulnerabilities found
in [2], which is also aligned with our findings. In addition, Nayak
et al. [36], found only 15% of known vulnerabilities are exploited in
the wild using around 300 million reports of intrusion-protection
collected from more than six million hosts. This finding of attackers
targeting only a few vulnerabilities out of thousands in the wild
was also addressed in [2–4, 6, 48].

While these previous studies focused on vulnerabilities and ex-
ploits, others have looked at their relationship with respect to patch-
ing in IoT and non-IoT devices. Nakajima et al. [31] found some
vendors don’t work to improve their patch release delay over the
years of study; and vulnerabilities with sever impact had no priori-
tize over the others. Yet, other factors can also impact the duration
of patch deployment. For example, Nappa et al. [32] found that
hosts belonging to security analysts and applications with an auto-
mated updating mechanism have significantly lower median times
to patch, and Kotzias et al. [26] found enterprise hosts are patching
faster than consumers of 90% of vulnerable systems take more than
six months on average to patch, while others found that attackers
prefer to spend their effort on known vulnerable devices that re-
mained unpatched [3, 38, 48] or on ones that needs less effort to
compromise [15].

Finally, some authors looked at the relationship between attacks
and Internet-exposed devices. Bada and Pete [10] they analyzed
forums that discuss the IoT search engine “Shodan" using CrimeBB
dataset from the Cambridge Cybercrime Centre. They investigated
the main use cases of Shodan for attackers. They found that Shodan
is actively used by attackers to collect information about vulnerable
devices. Others reported that using Shodan and other search engines
for exposed vulnerable devices made them susceptible for being
used by attackers [8, 27], yet these search engines were used in
research to help security defenders automate their detection for
vulnerable devices [8, 11].

9 CONCLUSION
We found that several factors have an impact on the frequency of
exploits. The type of vulnerability had the largest impact, with a
16.16-fold increase in the frequency of exploits when the vulnera-
bility is a command injection compared to other types of vulnera-
bilities. The installed base and the type of device were also found to
have a significant effect, as well as patch complexity. On the other
hand, variables such as patch availability and exploit complexity
were found to have a negative impact on the frequency of exploits.

Our findings have important implications for cybersecurity ef-
forts, as they can inform the design of more robust countermeasures
and controls against IoT attacks and help protect against the grow-
ing threat of IoT botnets targeting connected devices. Additionally,
our study highlights the need for proactive efforts to address vul-
nerabilities in IoT devices, as the proliferation of these devices is
likely to continue and create new opportunities for attackers to
exploit.
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