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Abstract

This report is concerned with a friendly competition for formal verification and policy
synthesis of stochastic models. The main goal of the report is to introduce new benchmarks
and their properties within this category and recommend next steps toward next year’s
edition of the competition. Given that the tools for stochastic models are at their early
stages of development compared to those of non-probabilistic models, the main focus is to
report on an initiative to collect a set of minimal benchmarks that all such tools can run,
thus facilitating the comparison between the efficiency of the implemented techniques. This
friendly competition took place as part of the workshop Applied Verification for Continuous
and Hybrid Systems (ARCH) in Summer 2023.

1 Introduction

The subgroup “Stochastic Models” of the annual friendly ARCH-Competition focuses on recent
developments of tools that can analyze systems that exhibit uncertain, stochastic behavior. This
includes a diverse set of systems, expressing uncertainty in its various ways, e.g., continuously
applied stochasticity or discrete mode changes, which happen with a certain probability.

G. Frehse and M. Althoff (eds.), ARCH23 (EPiC Series in Computing, vol. 96), pp. 126–150
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Disclaimer The presented report of the ARCH friendly competition for stochastic mod-
eling group aims at providing a unified point of reference on the current state of the art
in the area of stochastic models together with the currently available tools and framework
for performing formal verification and optimal policy synthesis to such models. We further
provide a set of benchmarks, which we aim to push forward the development of current
and future tools. To establish further trustworthiness of the results, the code describing
the benchmarks together with the code used to compute the results is publicly available at
https://gitlab.com/goranf/ARCH-COMP.

This friendly competition is organized by Alessandro Abate (alessandro.abate@cs.ox.ac.uk), Abol-
fazl Lavaei (abolfazl.lavaei@newcastle.ac.uk), Stefan Schupp (stefan.schupp@tuwien.ac.at), and Sadegh
Soudjani (sadegh.soudjani@newcastle.ac.uk).

This report presents the results of the ARCH Friendly Competition 2023 in the group
stochastic models. We refer the interested reader to the survey paper [14] and references therein
for the details of most of the underlying techniques used in the development of the tools of
this category. The following tools and frameworks have participated in this category so far:
(in alphabetical order): AMYTISS, FAUST2, FIGARO workbench, hpnmg, HYPEG, Mascot-SDS,
the Modest Toolset, ProbReach, PyCATSHOO, RealySt, SDCPN&IPS, SReachTools, StocHy, and
SySCoRe.

Tools participated in this year are (in alphabetical order): HYPEG, ProbReach, RealySt, and
SySCoRe. The benchmark collection has been enriched by an extended version of a Package
Delivery benchmark that differs from the original version in that it shows more complex noise
distributions which may pose additional challenges for the tools. This benchmark can be used to
check specifications that are expressed by various classes of finite state automata. We have also
improved the collection of minimal examples first presented last year. The goal of this collection
is to provide a set of simple challenges such that different tools can be employed with the least
modifications of the underlying model. The initiative for developing this benchmark will allow
us to compare the tools that previously were only applicable to separate set of benchmarks.

Similar to last years, all participants were encouraged to provide a repeatability package
(e.g., a Docker container) for centralized evaluation on the servers of the ARCH-group. Apart
from providing repeatable results, this allows for sharing of the tools themselves to both the
ARCH and the wider research community.

This report has the following structure. Section 2 provides a short overview of the partici-
pating tools and frameworks. Sections 3, 4 present already established benchmarks and a set of
new benchmark descriptions, which include a discussion of the individual models syntax and
semantics. In Section 5 we present the results of the friendly competition with the participating
tools or algorithmic frameworks that are used to solve instances of the collection of benchmarks.
We identify key challenges and discuss future plans in Section 6.

2 Participating Tools & Frameworks

HYPEG The Java-based library HYPEG [21] implements time-bounded discrete-event simu-
lation for hybrid Petri nets with general transitions (HPnGs) [5], which combine discrete and
continuous components with a possibly large number of random variables, whose stochastic
behavior follows arbitrary probability distributions. HYPEG uses well-known statistical model
checking techniques to verify complex properties, including time-bounded reachability [22]. These
techniques comprise several hypothesis tests as well as different approaches for the computation of
confidence intervals. Continuous behavior that can be expressed by systems of ordinary differen-
tial equations can be simulated using an approximative approach [20, 18], whereas piecewise-linear
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continuous behavior is simulated without approximation. HYPEG resolves discrete nondeter-
minism either probabilistically or using reinforcement learning to maximize or minimize the
probability of a property [17, 19], also in combination with a contract-based approach [2]. The
tool is available at https://zivgitlab.uni-muenster.de/ag-sks/tools/HYPEG.

ProbReach ProbReach [26] implements algorithms for computing probabilistic bounded
reachability in so-called parametric stochastic hybrid systems. These models may feature
nonlinear continuous dynamics (i.e., defined by nonlinear ODEs) and random (continuous
and discrete) and/or nondeterministic parameters. ProbReach can compute numerically sound
enclosures that are formally guaranteed to contain the exact value of the bounded reachability
probability [27] (for models with only random parameters the enclosure’s size can be made
arbitrarily small). Furthermore, ProbReach implements Monte Carlo simulation algorithms [25]
for computing confidence intervals for the bounded reachability probability with numerically
sound sampling (i.e., the model simulations are numerically rigorous). ProbReach is written in
C++ and is available at https://github.com/dreal/probreach.

RealySt This tool optimizes reachability probabilities for the class of rectangular automata
with random clocks (c.f. [3]), which exhibit discrete and continuous nondeterminism as well
as stochasticity. Using forward reachability anaylsis and a backward refinement approach,
probabilities can be maximized [3]. It is implemented in C++ and relies on the library HyPro [24]
for the state-set representation via convex polytopes as well as efficient geometric operations.
Monte Carlo integration algorithms for multi-dimensional integration are provided by the GNU
Scientific Library (GSL) [4] and improved for high-dimensional polytopes [28]. RealySt builds
on the tool hpnmg [9], a model checker for Hybrid Petri nets with an arbitrary but finite
number of general transition firings for specifications formulated in STL [10, 12, 13, 11] and on
the flowpipe-based approach to optimize reachability probabilities in singular automata with
random clocks [23]. RealySt is currently being developed within the DFG project 471367371 as
a cooperation between the RWTH Aachen and the University of Münster and is available at
https://zivgitlab.uni-muenster.de/ag-sks/tools/realyst.

SySCoRe This tool stands for Synthesis via Stochastic Coupling Relations for stochastic
continuous state systems and is a MATLAB toolbox for temporal logic control synthesis of
discrete-time continuous-state stochastic dynamical systems [8]. The fully automated imple-
mentation starts from a system description and a temporal logic specification and computes a
robust controller alongside robust quantified bounds on the probability of satisfying the given
property based on space discretization. The tool is based on establishing simulation relations
between stochastic processes based on coupling the underlying stochastic distributions. The
developed algorithms compute two precision parameters (ϵ, δ), which bound the deviations
in both the output trajectories (ϵ) and the transition probabilities (δ) of the models. The
development of SySCoRe is mainly based on the papers [6, 7]. The main advantage of SySCoRe
compared to alternative tools is the fact that the computed error does not grow linearly in time,
which makes the tool applicable to infinite horizon properties and unbounded disturbances.
The current version of SySCoRe supports nonlinear dynamics, complex co-safe temporal logic
specifications over infinite horizons, model-order reduction, arbitrary (possibly unbounded)
additive disturbance, and fast tensor computations.

It is worth noticing that further tools participated in previous editions (see e.g., [1]). Table 1
shows all tools that participated and the years in which they solved a benchmark the first time.
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3 Established Benchmarks

In the previous editions of ARCH, we have presented numerous benchmarks for the sake of friendly
competitions. These benchmarks include automated anesthesia (AS), building automation (BA),
heated tank (HT), water sewage (WS), stochastic Van der Pol (VP), integrator chain (IC),
autonomous vehicle (AV), patrol robot (PR), geometric Brownian motion (GB), minimal
examples (ME), and package delivery (PD). In Table 1, we indicate the year a tool was first
applied to a given benchmark. We also present an overview of benchmark properties in Table 2.

Table 1: Tool-benchmark matrix: We indicate the year a tool was first applied to a given
benchmark. Shortkeys: automated anesthesia (AS), building automation (BA), heated tank
(HT), water sewage (WS), stochastic Van der Pol (VP), integrator chain (IC), autonomous
vehicle (AV), patrol robot (PR), geometric Brownian motion (GB), minimal examples (ME),
package delivery (PD), extended package delivery (PDx).

Tool
Benchmarks

AS BA HT WS VP IC AV PR GB ME PD PDx

FAUST2 2018 2018 2020
StocHy 2019 2019 2020
SReachTools 2018 2018 2020
AMYTISS 2020 2020 2020 2020 2020 2021
hpnmg 2020
HYPEG 2019 2020 2022
Mascot-SDS 2020 2021
modes 2018 2020 2022
ProbReach 2020
prohver 2020 2020 2022
RealySt 2022
SDCPN&IPS 2019 2021
SySCoRe 2021 2022 2022 2023
FIGARO workbench 2021
PyCATSHOO 2021

4 Extended Benchmarks

In this section, we present novel benchmarks or variants of old benchmarks that have been
proposed during previous editions of this competition (see, e.g., [1] for further benchmarks),
allowing for new outcomes.

4.1 Package Delivery (extended)

We extend the original version of the package delivery case study introduced in [1], which
is limited to Gaussian noise distributions, to arbitrary continuous distributions that can be
approximated with Gaussian mixture models (GMM) [16]. With this, the case study aims at
showing if the tools can synthesize controllers for both complex specifications, i.e., for non-acyclic
DFAs, and complex noise distributions.

Consider a simple time-discrete system with a continuous state x, control input u, and noise
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Table 2: Overview of benchmark properties. Shortkeys: Time horizon: Finite (F) or Infinite
(I); Type of control: Switching (S), Drift (Dr), or Multiple (M); Time line: Discrete (D) or
Continuous (C); State space: Continuous (C) or Hybrid (H); Drift in ODE/SDE: Linear (L),
Piecewise Linear (pL), or Nonlinear (NL); Noise: State-dependent (SD) or fixed (FX), Gaussian
(G) or Gaussian mixture model (GM), and Brownian motion (BM) or independently and
identically distributed (iid), Rate/Size spont. jumps: State-dependent (SD) or fixed (FX)

Aspect
Benchmarks

AS BA HT WS VP IC AV PR GB ME PD PDx

Liveness/deadlock ✓ ✓
Prob. reachability ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Control synthesis ✓ ✓ ✓ ✓ ✓ ✓ ✓
Min-max ✓ ✓
Time horizon F F F F I F F I F F I I
Type of control S M Dr Dr M M
Time line D D C C D D D D C C D D
State space C H H H C C C H C H C C
Drift in ODE/SDE pL NL NL pL NL L NL NL L pL L L
Noise in SDE FX FX FX FX FX FX SD SD FX FX
Noise type in SDE G GM
Noise: BM or i.i.d. iid iid iid iid iid iid BM iid iid iid
Guards ✓ ✓ ✓ ✓ ✓
Rate spont. jumps FX SD FX FX SD
Size spont. jumps FX FX FX FX FX
Environment ✓ ✓ ✓ ✓
Subsystems ✓ ✓ ✓
Concurrency ✓ ✓ ✓
Synchronization ✓ ✓
Shared variables ✓ ✓
# discr. states 5 576 35 2 3-5 1 1
# continuous vars. 3 7 2 11 2 50 7 4 1 1-2 2 2
# model params. 24 19 15 36 3 8 11 2 5 7 6 12

w. Assume that the system’s dynamics are captured by the following equations:[
ẋ1

ẋ2

]
︸︷︷ ︸
ẋ(t)

= A

[
x1

x2

]
︸︷︷ ︸
x(t)

+B

[
u1

u2

]
︸︷︷ ︸
u(t)

+

[
w1

w2

]
︸ ︷︷ ︸
w(t)

,

y(t) = x(t),

(1)

with states x ∈ X = [−6, 6]× [−6, 6] and dynamics matrices given by

A =

[
0.9 0
0 0.8

]
, B =

[
1.7 0
0 1.7

]
.

The noise w follows a multimodal distribution given by a homoscedastic GMM, i.e, w ∼∑K
k=1 πkN (·|µk,Σ) with mixing weights π := (π1, . . . , πK), mean values µ := (µ1, . . . , µK),

and a common covariance matrix Σ. The parameters are chosen to be π := (0.8, 0.2), µ :=
([0; 0.8], [−0.8;−0.8]), and Σ := [

√
0.2, 0; 0,

√
0.2]. We consider a package delivery scenario, for

which we define three regions p1, p2, and p3 as follows: p1 := [3, 6]×[−2.5, 1], p2 := [−1, 1]×[−4, 3]
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and p3 := [−6,−3]2. The agent described by the dynamics in (1) can collect a package at p1
and must deliver it to the target region p3 (cf. Fig. 1). If the agent visits the avoid region p2
whilst carrying a package, he loses the package and has to restart by picking up a new package
at p1. This corresponds to the scLTL specification ♢(p1 ∧ (¬p2Up3)), which is captured by the
DFA given in Fig. 2. Note that we require the agent to remain in the bounded state space X.

Problem 1. Compute a policy for the dynamical system in (1) that maximizes the probability
of satisfying the scLTL specification ♢(p1 ∧ (¬p2Up3)).

p1p2

p3

Figure 1: Regions defined over the output space

q0start q1 q2

¬p1

p1

¬p2 ∧ ¬p3

p2

p3 ∧ ¬p2

1

Figure 2: DFA

4.2 Minimal Examples

The idea of this benchmark is to create minimal examples of stochastic hybrid automata, which
fit several formalisms. This allows us to compare different model characteristics and see how
different tools are able to tackle these. Hence, the following cases include instances of discrete
nondeterminism and race conditions between random variables, stochastic noise and time locks.
In the following, we present four cases (A, B, C, D) and two variants per case (Variant 1 and
Variant 2) as our minimal examples to fit numerous formalisms. Each case/variant is specified
in two formalisms: i) the stochastic hybrid automata (SHA) formalism of [15], and ii) the
rectangular automata with random clocks (RAR) formalism of [3].

4.2.1 Problem description

To compare how different formalisms and tools realize the four cases, we compute the probability
of time-bounded reachability from a unique initial state, i.e. the probability that the continuous
variable x reaches a value ≤ −1 before a time bound of 10.

Cases B and C implement an additional time delay of two time units. Here, we compute
the reachability probability for an extended time bound of 12, i.e. the probability that the
continuous variable x reaches a value ≤ −1 before a time bound of 12.
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4.2.2 Case A

The general idea of case A is to model a continuous variable that initially increases and a
race condition between two random variables, where the evolution of the continuous variable is
stopped, if the first random variable wins the race; and the continuous variable is decreased,
if the second random variable wins. The goal is to find the probability that the continuous
variable reaches a specific value < 0.

We consider two sets of random variables for all cases: 1) both random variables are
distributed exponentially with rates λ1 and λ2, and 2) one variable is distributed exponentially
with rate λ1 and the other follows a folded normal distribution with parameters µ and σ.

Variant 1 for case A in the formalism of Lygeros and Prandini Case A can be
modelled as a stochastic hybrid automaton following the syntax and semantics of [15], s.t.
HA = (Q,X , Dom, f, g, Init, λ,R) is a SHA, with

• Q = {ℓ0, ℓ1, ℓ2} discrete states

• X = R continuous states

• Dom(ℓ) : Q → 2X is a set valued map assigning to each ℓ ∈ Q an open subset of R:

– Dom(ℓi) = R for i ∈ {0, 1, 2}

• f : S → R is a vector field:

– f(ℓ0, x) = 2

– f(ℓ1, x) = 0

– f(ℓ2, x) = −3

• g : S → R1×1 is a diffusion coefficient: g(ℓi, x) = 0 for i ∈ {0, 1, 2}

• Init : B(S) → [0, 1] is an initial probability measure on (S,B(S)):

– Init(ℓ0, 0) = 1

– Init(a) = 0 for any other a ∈ S

• λ : S → R+ is a transition rate function:

– λ(ℓ0, x) = λ1 + λ2

– λ(ℓi, x) = 0 for i ∈ {1, 2}

• R : S̄ × B(S) → [0, 1] is a transition measure:

– R
((

ℓ0, x
)
,
{(

ℓi, x
)})

= λi

λ1+λ2
for i ∈ {1, 2}

– R
((

ℓi, x
)
,
{(

ℓi, x
)})

= 1 for i ∈ {1, 2}

– R
(
a,A

)
= 0 for all other (a,A) ∈ S̄ × B(S)

with λ1 = 0.1, λ2 = 0.08 and S, S̄ as defined in [15].
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Variant 2 for case A in the formalism of Lygeros and Prandini Case A can be
modelled as a stochastic hybrid automaton following the syntax and semantics of [15], s.t.
HA = (Q,X ′, Dom′, f ′, g′, Init′, λ′,R′) is a SHA, with

• X ′ = R2 continuous states

• Dom′(ℓ) : Q → 2X is a set valued map assigning to each ℓ ∈ Q an open subset of R:

– Dom′(ℓi) = R2 for i ∈ {0, 1, 2}

• f ′ : S → R2 is a vector field:

– f ′(ℓ0, (t, x)) = (1, 2)

– f ′(ℓ1, (t, x)) = (1, 0)

– f ′(ℓ2, (t, x)) = (1,−3)

• g′ : S → R2×1 is a diffusion coefficient: g′(ℓi, (t, x)) = (0, 0) for i ∈ {0, 1, 2}

• Init′ : B(S) → [0, 1] is an initial probability measure on (S,B(S)):

– Init′(ℓ0, (0, 0)) = 1

– Init′(a) = 0 for any other a ∈ S

• λ′ : S → R+ is a transition rate function:

– λ′(ℓ0, (t, x)) = λ1 + λ2(t)

– λ′(ℓi, (t, x)) = 0 for i ∈ {1, 2}

• R′ : S̄ × B(S) → [0, 1] is a transition measure:

– R′
((

ℓ0, (t, x)
)
,
{(

ℓ2, (t, x)
)})

= λi(t)
λ1(t)+λ2(t)

for i ∈ {1, 2} and λ1(t) = λ1

– R′
((

ℓi, (t, x)
)
,
{(

ℓi, (t, x)
)})

= 1 for i ∈ {1, 2}

– R′
(
a,A

)
= 0 for all other (a,A) ∈ S̄ × B(S)

with λ1 = 0.1, µ = 5, σ = 2, λ2(t) =
pNf

(t)∫ ∞
t

pNf
(x)dx

. Here, pNf
is the PDF of a folded normal

distribution Nf (µ, σ
2). Furthermore, S, S̄ are defined as in [15] and Q is defined in variant 1.

Variant 1 for case A in the formalism of Delicaris et al. Case A can be modelled as a
rectangular automaton with random clocks (RAR) following the syntax and semantics of [3], s.t.
HA = (Loc,VarC ,VarR,Distr , Inv , Init ,FlowC ,FlowR,EdgeC ,EdgeR) is a RAR, with

• Loc = {ℓ0, ℓ1, ℓ2} is a finite set of locations

• VarC = {x} is a finite ordered set of variables

• VarR = {r1, r2} is a finite ordered set of random clocks

• Distr : VarR → Fc is a function assigning a distribution to each random clock:

– Distr(r1) = Exp(λ1)
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x = 0
r1 = 0
r2 = 0

ℓ0

ẋ = 2
ṙ1 = 1
ṙ2 = 1

ℓ1

ẋ = 0
ṙ1 = 0
ṙ2 = 0

ℓ2

ẋ = −3
ṙ1 = 0
ṙ2 = 0

r1 r2

Figure 3: Case A modelled as a rectangular automaton with random clocks (RAR).

– Distr(r2) = Exp(λ2)

• Inv : Loc → I1 is a function assigning an invariant to each location:

– Inv(ℓi) = R for i ∈ {0, 1, 2}

• Init : Loc → I1 is a function assigning initial states to each location:

– Init(ℓ0) = [0, 0]

– Init(ℓi) = ∅ for i ∈ {1, 2}

• FlowC : Loc → I1 is a function assigning a flow to each location:

– FlowC(ℓ0) = [2, 2]

– FlowC(ℓ1) = [0, 0]

– FlowC(ℓ2) = [−3,−3]

• FlowR : Loc → I2 is a function assigning a flow for the random clocks to each location:

– FlowR(ℓ0) = ([1, 1], [1, 1])

– FlowR(ℓi) = ([0, 0], [0, 0]) for i ∈ {1, 2}

• EdgeC = ∅ ⊆ Loc × I1 × I1 × 2VarC × Loc is a finite set of non-stochastic jumps

• EdgeR = {e1, e2} ⊆ Loc ×VarR × Loc is a finite set of stochastic jumps:

– e1 = (ℓ0, r1, ℓ1)

– e2 = (ℓ0, r2, ℓ2)

with λ1 = 0.1, λ2 = 0.08 and Fc set of continuous distributions and I set of intervals as
defined in [3]. Compare Figure 3 for a graphical representation of this model as a RAR.
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Variant 2 for case A in the formalism of Delicaris et al. Case A can be modelled as a
rectangular automaton with random clocks (RAR) following the syntax and semantics of [3], s.t.
HA = (Loc,VarC ,VarR,Distr ′, Inv , Init ,FlowC ,FlowR,EdgeC ,EdgeR) is a RAR, with

• Distr ′ : VarR → Fc is a function assigning a distribution to each random clock:

– Distr ′(r1) = Exp(λ1)

– Distr ′(r2) = Nf (µ, σ
2)

with λ1 = 0.1, µ = 5, σ = 2, and Fc set of continuous distributions and I set of intervals as
defined in [3]. Compare Figure 3 for a graphical representation of this model as a RAR.

4.2.3 Case B

The general idea of case B is to extend both versions of case A with a nondeterministic choice.
If a specific random variable wins the stochastic race, a nondeterministic choice occurs after a
certain time delay. Note that different formalisms handle (discrete) nondeterminism differently,
i.e., Lygeros and Prandini resolve all nondeterminism probabilistically. Hence, using the formal
notation of [15] already deviates from the general idea in terms of nondeterministic choices.

Variant 1 for case B in the formalism of Lygeros and Prandini Case B can be
modelled as a stochastic hybrid automaton following the syntax and semantics of [15], s.t.
HB = (Q,X , Dom, f, g, Init, λ,R) is a SHA, with

• Q = {ℓ0, ℓ1, ℓ2, ℓ3, ℓ4} discrete states

• X = R2 continuous states

• Dom(ℓ) : Q → 2X is a set valued map assigning to each ℓ ∈ Q an open subset of R:

– Dom(ℓi) = R2 for i ∈ {0, 1, 3, 4}
– Dom(ℓ2) = R× (−∞, 2)

• f : S → R2 is a vector field:

– f(ℓ0, (x, y)) = (2, 0)

– f(ℓ1, (x, y)) = (0, 0)

– f(ℓ2, (x, y)) = (0, 1)

– f(ℓ3, (x, y)) = (0, 0)

– f(ℓ4, (x, y)) = (−3, 0)

• g : S → R2×1 is a diffusion coefficient: g(ℓi, (x, y)) = (0, 0) for i ∈ {0, 1, 2, 3, 4}

• Init : B(S) → [0, 1] is an initial probability measure on (S,B(S)):

– Init(ℓ0, (0, 0)) = 1

– Init(a) = 0 for any other a ∈ S

• λ : S → R+ is a transition rate function:

– λ(ℓ0, (x, y)) = λ1 + λ2
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– λ(ℓi, (x, y)) = 0 for i ∈ {1, 2, 3, 4}

• R : S̄ × B(S) → [0, 1] is a transition measure:

– R
((

ℓ0, (x, y)
)
,
{(

ℓi, (x, y)
)})

= λi

λ1+λ2
for i ∈ {1, 2}

– R
((

ℓ2, (x, y)
)
,
{(

ℓi, (x, y)
)})

=

{
1
2 , if y = 2

0, else
for i ∈ {3, 4}

– R
((

ℓi, (x, y)
)
,
{(

ℓi, (x, y)
)})

= 1 for i ∈ {1, 3, 4}

– R
(
a,A

)
= 0 for all other (a,A) ∈ S̄ × B(S)

with λ1 = 0.1, λ2 = 0.08 and S, S̄ as defined in [15].

Variant 2 for case B in the formalism of Lygeros and Prandini Case B can be
modelled as a stochastic hybrid automaton following the syntax and semantics of [15], s.t.
HB = (Q,X ′, Dom′, f ′, g′, Init′, λ′,R′) is a SHA, with

• X ′ = R3 continuous states

• Dom′(ℓ) : Q → 2X is a set valued map assigning to each ℓ ∈ Q an open subset of R:

– Dom′(ℓi) = R3 for i ∈ {0, 1, 3, 4}
– Dom′(ℓ2) = R2 × (−∞, 2)

• f ′ : S → R3 is a vector field:

– f ′(ℓ0, (t, x, y)) = (1, 2, 0)

– f ′(ℓ1, (t, x, y)) = (1, 0, 0)

– f ′(ℓ2, (t, x, y)) = (1, 0, 1)

– f ′(ℓ3, (t, x, y)) = (1, 0, 0)

– f ′(ℓ4, (t, x, y)) = (1,−3, 0)

• g′ : S → R3×1 is a diffusion coefficient: g′(ℓi, (t, x, y)) = (0, 0, 0) for i ∈ {0, 1, 2, 3, 4}

• Init′ : B(S) → [0, 1] is an initial probability measure on (S,B(S)):

– Init′(ℓ0, (0, 0, 0)) = 1

– Init′(a) = 0 for any other a ∈ S

• λ′ : S → R+ is a transition rate function:

– λ′(ℓ0, (t, x)) = λ1 + λ2(t), with λ2(t) =
pNf

(t)∫ ∞
t

pNf
(x)dx

– λ′(ℓi, (t, x, y)) = 0 for i ∈ {1, 2, 3, 4}

• R′ : S̄ × B(S) → [0, 1] is a transition measure:

– R′
((

ℓ0, (t, x, y)
)
,
{(

ℓi, (t, x, y)
)})

= λi(t)
λ1(t)+λ2(t)

for i ∈ {1, 2} and λ1(t) = λ1
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– R′
((

ℓ2, (t, x, y)
)
,
{(

ℓi, (t, x, y)
)})

=

{
1
2 , if y = 2

0, else
for i ∈ {3, 4}

– R′
((

ℓi, (t, x, y)
)
,
{(

ℓi, (t, x, y)
)})

= 1 for i ∈ {1, 2}

– R′
(
a,A

)
= 0 for all other (a,A) ∈ S̄ × B(S)

with λ1 = 0.1, µ = 5, σ = 2, λ2(t) =
pNf

(t)∫ ∞
t

pNf
(x)dx

. Here, pNf
is the PDF of a folded normal

distribution Nf (µ, σ
2). Furthermore, S, S̄ are defined as in [15] and Q is defined in variant 1.

Variant 1 for case B in the formalism of Delicaris et al. Case A can be modelled as a
rectangular automaton with random clocks (RAR) following the syntax and semantics of [3], s.t.
HA = (Loc,VarC ,VarR,Distr , Inv , Init ,FlowC ,FlowR,EdgeC ,EdgeR) is a RAR, with

• Loc = {ℓ0, ℓ1, ℓ2, ℓ3, ℓ4} is a finite set of locations

• VarC = {x, y} is a finite ordered set of variables

• VarR = {r1, r2} is a finite ordered set of random clocks

• Distr : VarR → Fc is a function assigning a distribution to each random clock:

– Distr(r1) = Exp(λ1)

– Distr(r2) = Exp(λ2)

• Inv : Loc → I2 is a function assigning an invariant to each location:

– Inv(ℓ2) = R× (−∞, 2]

– Inv(ℓi) = R2 for i ∈ {0, 1, 3, 4}

• Init : Loc → I2 is a function assigning initial states to each location:

– Init(ℓ0) = [0, 0]2

– Init(ℓi) = ∅ for i ∈ {1, 2, 3, 4}

• FlowC : Loc → I2 is a function assigning a flow to each location:

– FlowC(ℓ0) = ([2, 2], [0, 0])

– FlowC(ℓ2) = ([0, 0], [1, 1])

– FlowC(ℓi) = ([0, 0], [0, 0]) for i ∈ {1, 3, 4}

• FlowR : Loc → I2 is a function assigning a flow for the random clocks to each location:

– FlowR(ℓ0) = ([1, 1], [1, 1])

– FlowR(ℓi) = ([0, 0], [0, 0]) for i ∈ {1, 2, 3, 4}

• EdgeC = {e3, e4} ⊆ Loc × I2 × I2 × 2VarC × Loc is a finite set of non-stochastic jumps:

– e3 = (ℓ2,R× [2, 2],R× [2, 2], ∅, ℓ3)
– e4 = (ℓ2,R× [2, 2],R× [2, 2], ∅, ℓ4)
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x = 0
y = 0
r1 = 0
r2 = 0

ℓ0

ẋ = 2
ẏ = 0
ṙ1 = 1
ṙ2 = 1

ℓ1

ẋ = 0
ẏ = 0
ṙ1 = 0
ṙ2 = 0

ℓ2

ẋ = 0
ẏ = 1
ṙ1 = 0
ṙ2 = 0
y ≤ 2

ℓ3

ẋ = 0
ẏ = 0
ṙ1 = 0
ṙ2 = 0

ℓ4

ẋ = 0
ẏ = 0
ṙ1 = 0
ṙ2 = 0

r1 r2

y = 2 y = 2

Figure 4: Case B modelled as a rectangular automaton with random clocks (RAR).

• EdgeR = {e1, e2} ⊆ Loc ×VarR × Loc is a finite set of stochastic jumps:

– e1 = (ℓ0, r1, ℓ1)

– e2 = (ℓ0, r2, ℓ2)

with λ1 = 0.1, λ2 = 0.08 and Fc set of continuous distributions and I set of intervals as
defined in [3]. Compare Figure 4 for a graphical representation of this model as a RAR.

Variant 2 for case B in the formalism of Delicaris et al. Case B can be modelled as a
rectangular automaton with random clocks (RAR) following the syntax and semantics of [3], s.t.
HA = (Loc,VarC ,VarR,Distr ′, Inv , Init ,FlowC ,FlowR,EdgeC ,EdgeR) is a RAR, with

• Distr ′ : VarR → Fc is a function assigning a distribution to each random clock:

– Distr ′(r1) = Exp(λ1)

– Distr ′(r2) = Nf (µ, σ
2)

with λ1 = 0.1, µ = 5, σ = 2, and Fc set of continuous distributions and I set of intervals as
defined in [3]. Compare Figure 4 for a graphical representation of this model as a RAR.

4.2.4 Case C

The general idea of case C is similar to case B. However, instead of a fixed time which
is spent between the expiration of the second random variable and the discrete decision,
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another continuous variable has to reach a specific value to trigger the nondeterministic choice.
Additionally, the derivative of that continuous variable is given by a constant plus a normally
distributed disturbance with mean µ and variance σ2.

Again, when modelling this case with [15], the discrete nondeterminism is resolved proba-
bilistically.

Variant 1 for case C in the formalism of Lygeros and Prandini Case C can be
modelled as a stochastic hybrid automaton following the syntax and semantics of [15], s.t.
HB = (Q,X , Dom, f, g, Init, λ,R) is a SHA, with

• Q = {ℓ0, ℓ1, ℓ2, ℓ3, ℓ4} discrete states

• X = R3 continuous states

• Dom(ℓ) : Q → 2X is a set valued map assigning to each ℓ ∈ Q an open subset of R:

– Dom(ℓi) = R3 for i ∈ {0, 1, 3, 4}
– Dom(ℓ2) = R× (−∞, 2)× R

• f : S → R3 is a vector field:

– f(ℓ0, (x, y, z)) = (2, 0, 0)

– f(ℓ1, (x, y, z)) = (0, 0, 0)

– f(ℓ2, (x, y, z)) = (0, 1 + z, 0)

– f(ℓ3, (x, y, z)) = (0, 0, 0)

– f(ℓ4, (x, y, z)) = (−3, 0, 0)

• g : S → R3×1 is a diffusion coefficient:

– g(ℓi, (x, y, z)) = (0, 0, 0) for i ∈ {0, 1, 2, 3, 4}

• Init : B(S) → [0, 1] is an initial probability measure on (S,B(S)):

– Init(ℓ0, (0, 0, 0)) = 1

– Init(a) = 0 for any other a ∈ S

• λ : S → R+ is a transition rate function:

– λ(ℓ0, (x, y, z)) = λ1 + λ2

– λ(ℓi, (x, y, z)) = 0 for i ∈ {1, 2, 3, 4}

• R : S̄ × B(S) → [0, 1] is a transition measure:

– R
((

ℓ0, (x, y, z)
)
,
{(

ℓ1, (x, y, z)
)})

= λ1

λ1+λ2

– R
((

ℓ0, (x, y, z)
)
,
(
{ℓ2} × {x} × {y} × Z)

)
= λ2

λ1+λ2
·
∫
Z

1
σ·

√
2π

· e−
1
2

(
z′−µ

σ

)2

dz′

– R
((

ℓ2, (x, y, z)
)
,
{(

ℓi, (x, y, z)
)})

=

{
1
2 , if y = 2

0, else
for i ∈ {3, 4}

– R
((

ℓi, (x, y, z)
)
,
{(

ℓi, (x, y, z)
)})

= 1 for i ∈ {1, 3, 4}

– R
(
a,A

)
= 0 for all other (a,A) ∈ S̄ × B(S)

with Z ∈ B(R), λ1 = 0.1, λ2 = 0.08, µ = 0, σ2 = 2 and S, S̄ as defined in [15].
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Variant 2 for case C in the formalism of Lygeros and Prandini Case C can be
modelled as a stochastic hybrid automaton following the syntax and semantics of [15], s.t.
HB = (Q,X ′, Dom′, f ′, g′, Init′, λ′,R′) is a SHA, with

• X ′ = R3 continuous states

• Dom′(ℓ) : Q → 2X is a set valued map assigning to each ℓ ∈ Q an open subset of R:

– Dom′(ℓi) = R4 for i ∈ {0, 1, 3, 4}
– Dom′(ℓ2) = R2 × (−∞, 2)× R

• f ′ : S → R4 is a vector field:

– f ′(ℓ0, (t, x, y, z)) = (1, 2, 0, 0)

– f ′(ℓ1, (t, x, y, z)) = (0, 0, 0, 0)

– f ′(ℓ2, (t, x, y, z)) = (0, 0, 1 + z, 0)

– f ′(ℓ3, (t, x, y, z)) = (0, 0, 0, 0)

– f ′(ℓ4, (t, x, y, z)) = (0,−3, 0, 0)

• g′ : S → R4×1 is a diffusion coefficient: g′(ℓi, (t, x, y, z)) = (0, 0, 0, 0) for i ∈ {0, 1, 2, 3, 4}

• Init′ : B(S) → [0, 1] is an initial probability measure on (S,B(S)):

– Init′(ℓ0, (0, 0, 0, 0)) = 1

– Init′(a) = 0 for any other a ∈ S

• λ′ : S → R+ is a transition rate function:

– λ′(ℓ0, (t, x)) = λ1 + λ2(t)

– λ′(ℓi, (t, x, y, z)) = 0 for i ∈ {1, 2, 3, 4}

• R′ : S̄ × B(S) → [0, 1] is a transition measure:

– R′
((

ℓ0, (t, x, y)
)
,
{(

ℓ1, (t, x, y)
)})

= λ1(t)
λ1(t)+λ2(t)

for λ1(t) = λ1

– R′
((

ℓ0, (t, x, y, z)
)
,
(
{ℓ2}×{t}×{x}×{y}×Z)

)
= λ2(t)

λ1(t)+λ2(t)
·
∫
Z

1
σ·

√
2π

·e−
1
2

(
z′−µ

σ

)2

dz′

for λ1(t) = λ1

– R′
((

ℓ2, (t, x, y, z)
)
,
{(

ℓi, (t, x, y, z)
)})

=

{
1
2 , if y = 2

0, else
for i ∈ {3, 4}

– R′
((

ℓi, (t, x, y, z)
)
,
{(

ℓi, (t, x, y, z)
)})

= 1 for i ∈ {1, 2}

– R′
(
a,A

)
= 0 for all other (a,A) ∈ S̄ × B(S)

with Z ∈ B(R), λ1 = 0.1, µ = 5, σ = 2, λ2(t) =
pNf

(t)∫ ∞
t

pNf
(x)dx

. Here, pNf
is the PDF of a folded

normal distribution Nf (µ, σ
2). Furthermore, S, S̄ are defined as in [15] and Q is defined in

variant 1.
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Case C in the formalism of Delicaris et al. In the formalism of Delicaris et al. it is
currently not possible to have derivatives which are influenced by stochastic noise. However, the
normally distributed disturbance could be approximated by an appropriate specification of the
interval describing the flows.

4.2.5 Case D

The general idea of case D is to model a continuous variable that initially increases and a
race condition between two random variables, where the evolution of the continuous variable is
stopped, if the first random variable wins the race; and the continuous variable is decreased,
if the second random variable wins. Compared to case A, the domain of mode ℓ0 is restricted
which induces a forced leave of this mode. The goal is to find the probability that the continuous
variable reaches a specific value < 0.

We consider two sets of random variables for all cases: 1) both random variables are
distributed exponentially with rates λ1 and λ2, and 2) one variable is distributed exponentially
with rate λ1 and the other follows a folded normal distribution with parameters µ and σ.

Variant 1 for case D in the formalism of Lygeros and Prandini Case D can be
modelled as a stochastic hybrid automaton following the syntax and semantics of [15], s.t.
HA = (Q,X , Dom, f, g, Init, λ,R) is a SHA, with

• Q = {ℓ0, ℓ1, ℓ2, ℓ3} discrete states

• X = R continuous states

• Dom(ℓ) : Q → 2X is a set valued map assigning to each ℓ ∈ Q an open subset of R:

– Dom(ℓ0) = (−∞, 6)

– Dom(ℓi) = R for i ∈ {1, 2, 3}

• f : S → R is a vector field:

– f(ℓ0, x) = 2

– f(ℓ1, x) = 0

– f(ℓ2, x) = −3

– f(ℓ3, x) = 0

• g : S → R1×1 is a diffusion coefficient: g(ℓi, x) = 0 for i ∈ {0, 1, 2, 3}

• Init : B(S) → [0, 1] is an initial probability measure on (S,B(S)):

– Init(ℓ0, 0) = 1

– Init(a) = 0 for any other a ∈ S

• λ : S → R+ is a transition rate function:

– λ(ℓ0, x) = λ1 + λ2

– λ(ℓi, x) = 0 for i ∈ {1, 2, 3}

• R : S̄ × B(S) → [0, 1] is a transition measure:
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– R
((

ℓ0, x
)
,
{(

ℓi, x
)})

=

{
λi

λ1+λ2
, if x < 6

0, else
for i ∈ {1, 2}

– R
((

ℓ0, x
)
,
{(

ℓ3, x
)})

=

{
1, if x = 6

0, else

– R
((

ℓi, x
)
,
{(

ℓi, x
)})

= 1 for i ∈ {1, 2, 3}

– R
(
a,A

)
= 0 for all other (a,A) ∈ S̄ × B(S)

with λ1 = 0.1, λ2 = 0.08 and S, S̄ as defined in [15].

Variant 2 for case D in the formalism of Lygeros and Prandini Case D can be
modelled as a stochastic hybrid automaton following the syntax and semantics of [15], s.t.
HA = (Q,X , Dom, f, g, Init, λ′,R′) is a SHA, with

• X ′ = R2 continuous states

• Dom′(ℓ) : Q → 2X is a set valued map assigning to each ℓ ∈ Q an open subset of R:

– Dom′(ℓ0) = R× (−∞, 6)

– Dom′(ℓi) = R2 for i ∈ {1, 2}

• f ′ : S → R3 is a vector field:

– f ′(ℓ0, (t, x)) = (1, 2)

– f ′(ℓ1, (t, x)) = (1, 0)

– f ′(ℓ2, (t, x)) = (1,−3)

• g′ : S → R2×1 is a diffusion coefficient: g′(ℓi, (t, y)) = (0, 0) for i ∈ {0, 1, 2}

• Init′ : B(S) → [0, 1] is an initial probability measure on (S,B(S)):

– Init′(ℓ0, (0, 0)) = 1

– Init′(a) = 0 for any other a ∈ S

• λ′ : S → R+ is a transition rate function:

– λ′(ℓ0, (t, x)) = λ1 + λ2(t)

– λ′(ℓi, x) = 0 for i ∈ {1, 2}

• R′ : S̄ × B(S) → [0, 1] is a transition measure:

– R′
((

ℓ0, (t, x)
)
,
{(

ℓi, (t, x)
)})

=

{
λi(t)

λ1(t)+λ2(t)
, if x < 6

0, else
for i ∈ {1, 2} and λ1(t) = λ1

– R′
((

ℓ0, (t, x)
)
,
{(

ℓ3, (t, x)
)})

=

{
1, if x = 6

0, else

– R′
((

ℓi, (t, x)
)
,
{(

ℓi, (t, x)
)})

= 1 for i ∈ {1, 2}
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– R′
(
a,A

)
= 0 for all other (a,A) ∈ S̄ × B(S)

with λ1 = 0.1, µ = 5, σ = 2, λ2(t) =
pNf

(t)∫ ∞
t

pNf
(x)dx

. Here, pNf
is the PDF of a folded normal

distribution Nf (µ, σ
2). Furthermore, S, S̄ are defined as in [15] and Q is defined in variant 1.

Variant 1 for case D in the formalism of Delicaris et al. Case D can be modelled as a
rectangular automaton with random clocks (RAR) following the syntax and semantics of [3], s.t.
HA = (Loc,VarC ,VarR,Distr , Inv , Init ,FlowC ,FlowR,EdgeC ,EdgeR) is a RAR, with

• Loc = {ℓ0, ℓ1, ℓ2, ℓ3} is a finite set of locations

• VarC = {x} is a finite ordered set of variables

• VarR = {r1, r2} is a finite ordered set of random clocks

• Distr : VarR → Fc is a function assigning a distribution to each random clock:

– Distr(r1) = Exp(λ1)

– Distr(r2) = Exp(λ2)

• Inv : Loc → I1 is a function assigning an invariant to each location:

– Inv(ℓ0) = (−∞, 2]

– Inv(ℓi) = R for i ∈ {1, 2, 3}

• Init : Loc → I1 is a function assigning initial states to each location:

– Init(ℓ0) = [0, 0]

– Init(ℓi) = ∅ for i ∈ {1, 2, 3}

• FlowC : Loc → I1 is a function assigning a flow to each location:

– FlowC(ℓ0) = [2, 2]

– FlowC(ℓi) = [0, 0] for i ∈ {1, 3}
– FlowC(ℓ2) = [−3,−3]

• FlowR : Loc → I2 is a function assigning a flow for the random clocks to each location:

– FlowR(ℓ0) = ([1, 1], [1, 1])

– FlowR(ℓi) = ([0, 0], [0, 0]) for i ∈ {1, 2, 3}

• EdgeC = {e3} ⊆ Loc × I1 × I1 × 2VarC × Loc is a finite set of non-stochastic jumps:

– e3 = (ℓ2, [6, 6], [6, 6], ∅, ℓ3)

• EdgeR = {e1, e2} ⊆ Loc ×VarR × Loc is a finite set of stochastic jumps:

– e1 = (ℓ0, r1, ℓ1)

– e2 = (ℓ0, r2, ℓ2)

with λ1 = 0.1, λ2 = 0.08 and Fc set of continuous distributions and I set of intervals as defined
in [3]. Compare Figure 5 for a graphical representation of this model as a RAR.
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x = 0
r1 = 0
r2 = 0

ℓ0

ẋ = 2
ṙ1 = 1
ṙ2 = 1
x ≤ 6

ℓ1

ẋ = 0
ṙ1 = 0
ṙ2 = 0

ℓ2

ẋ = −3
ṙ1 = 0
ṙ2 = 0

ℓ3

ẋ = 0
ṙ1 = 0
ṙ2 = 0

r1 r2

x = 6

Figure 5: Case D modelled as a rectangular automaton with random clocks (RAR).

Variant 2 for case D in the formalism of Delicaris et al. Case D can be modelled as a
rectangular automaton with random clocks (RAR) following the syntax and semantics of [3], s.t.
HA = (Loc,VarC ,VarR,Distr ′, Inv , Init ,FlowC ,FlowR,EdgeC ,EdgeR) is a RAR, with

• Distr ′ : VarR → Fc is a function assigning a distribution to each random clock:

– Distr ′(r1) = Exp(λ1)

– Distr ′(r2) = Nf (µ, σ
2)

with λ1 = 0.1, µ = 5, σ = 2, and Fc set of continuous distributions and I set of intervals as
defined in [3]. Compare Figure 5 for a graphical representation of this model as a RAR.

5 Friendly Competition Results

5.1 Package Delivery (extended)

The tool SySCoRe has been applied to the updated version of the package delivery benchmark
described in Sec. 4.1. The tool generates a satisfying controller in 15.5 seconds. Fig. 6 displays
the obtained satisfaction probability as a function of the initial state.

5.2 Minimal examples results

For the computation of results for the minimal examples, two variants for the stochastic
component are proposed. The parameters for those variants are as follows:
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Figure 6: Comparison of the lower bound on the satisfaction probability obtained using SySCoRe
(in cyan) and the actual satisfaction probability approximated using Monte Carlo simulation
with a confidence of 90% (in magenta) as functions of the initial state for the extended package
delivery study.

1. λ1 = 0.1, λ2 = 0.08,

2. λ1 = 0.1, µ = 5, σ2 = 2.

If random variables are used to model the stochastic delays, in variant 1, one random variable
that follows a exponential distribution with parameter λ = λ1 + λ2 = 0.9 is sufficient.

The results for HYPEG, ProbReach and RealySt are presented in Table 3 (variant 1) and
Table 4 (variant 2). Note that no results for case C have been included, since all participating
tools are not able to deal with stochastic noise in the evolution of continuous variables.

Each row in the table gives results for one tool with one specific method of execution. In
column Method, the different modes are indicated with keywords, which are explained separately
for every tool. Also, the handling of the nondeterminism in the model is indicated here: “max”
and “min” refer to an optimization of the nondeterminism, i.e. probabilities are maximized
resp. minimized; and “prob” means, that all nondeterminism is resolved probabilistically.

Computation To compute results with the tool HYPEG, the models are transformed into
the formalism of hybrid Petri nets with general transitions [5]. In the default setting of HYPEG
(indicated by “SMC”), nondeterminism is resolved uniformly, if existent (as in case B). By
applying Q-learning (indicated by “Q-learn”), nonprophetic memoryless schedulers are trained
to maximize or minimize the reachability probability. We performed 20000 training runs with a
discretization truncating the continuous variables after the first decimal place, which is required
and used for learning only. Afterwards, we used statistical model checking with the learned
scheduler to estimate the probability. Since cases A and D do not exhibit nondeterminism,
applying Q-learning results in the same method as the default setting (indicated by “SMC”)
and hence we omitted these computation results. In all cases, the confidence level was set to
95% with a half interval width of 0.005.
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Table 3: Results for minimal example cases A, B and D in variant 1. Results contain the
computed probability, enclosures, error(s) or confidence interval if available, and computation
times.

Tools Case / Time bound

Tool Method A / 10 B / 10 B / 12 D / 10

HYPEG

SMC,

prob

0.289936
±0.005 @ 95%

0.268s

0.123475
±0.005 @ 95%

0.168s

0.146434
±0.005 @ 95%

0.213s

0.185348
±0.005 @ 95%

0.195s

Q-learn,

max

0.250857
±0.005 @ 95%

0.474s

0.289416
±0.005 @ 95%

0.547s

Q-learn,

min

0.000000
±0.005 @ 95%

0.289s

0.000000
±0.005 @ 95%

0.313s

ProbReach
encl,
max

[0.28632,0.29105]
45.1s

[0.24884,0.25357]
39.5s

[0.28632,0.29105]
67.6s

[0.18456,0.18850]
118.2s

CI

0.287113
±0.005 @ 99%

211.4s

0.249984
±0.005 @ 99%

172.9s

0.290366
±0.005 @ 99%

214.3s

0.185633
±0.005 @ 99%

155.6s

RealySt max

0.288236
estat: 4.651 · 10−4

e∞: 3.808 · 10−4

0.0305276s

0.250016
estat: 3.239 · 10−4

e∞: 3.808 · 10−4

0.0649537s

0.288236
estat: 4.651 · 10−4

e∞: 3.808 · 10−4

0.0643815s

0.185280
estat: 2.061 · 10−4

e∞: 3.808 · 10−4

0.0305565s

ProbReach was used to compute rigorous enclosures (i.e., numerically sound intervals) that
are guaranteed to contain the sought reachability probability (indicated by “encl”). Specifically,
we asked for enclosures of width of no more than 0.005. Case B features a nondeterministic choice
in location 2: for this model ProbReach computes an enclosure for the maximum reachability
probability. Similarly, we computed confidence intervals (indicated by “CI”) using the Bayesian
estimation algorithm of ProbReach with the half width of the intervals at 0.005 and confidence
level (in fact, posterior probability) at 99%.

RealySt is specifically designed to resolve nondeterminism prophetically in rectangular au-
tomata with random clocks (RAR), while also able to compute fully stochastic models. The
minimal examples can all be modelled as singular automata with random clocks (a subclass of
RAR), where case B exhibits discrete nondeterminism via a choice between two transitions and
cases A and D are fully stochastic. While reachability is computed exactly in convex polytope
representation, the integration method takes a number of integration samples as well as an
integration bound as parameters. The number of integration samples affects the statistical error
that is indicated by “estat” (more samples result in a smaller error). The integration bound
limits the integration domain; all exceeding probability mass is cut off. The maximum cut
off probability mass is given by “e∞” (note that this is an overapproximation of the actual
cut off probability mass). For the computations, we chose 100000 integration samples and an
integration bound of 100.

Platforms Computation of results have been performed with different machines. HYPEG has
been executed on a machine with an AMD Ryzen 7 PRO 5850U CPU and 32 GB of RAM.
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Table 4: Results for minimal example cases A, B and D in variant 2. Results contain the
computed probability, enclosures, error(s) or confidence interval if available, and computation
times.

Tools Case / Time bound

Tool Method A / 10 B / 10 B / 12 D / 10

HYPEG

SMC,

prob

0.446308
±0.005 @ 95%

0.373s

0.153738
±0.005 @ 95%

0.195s

0.225403
±0.005 @ 95%

0.298s

0.129474
±0.005 @ 95%

0.161s

Q-learn,

max

0.308441
±0.005 @ 95%

0.586s

0.448878
±0.005 @ 95%

0.669s

Q-learn,

min

0.000000
±0.005 @ 95%

0.35s

0.000000
±0.005 @ 95%

0.334s

ProbReach
encl,
max

[0.44651,0.45027]
87.8s

[0.30758,0.31087]
82.4s

[0.44651,0.45027]
88.1s

[0.12907,0.13260]
41.8s

CI

0.452306
±0.005 @ 99%

439.1s

0.310493
±0.005 @ 99%

232.7s

0.446794
±0.005 @ 99%

343.2s

0.131399
±0.005 @ 99%

121.1s

RealySt max

0.448211
estat: 8.292 · 10−5

e∞: 2.061 · 10−9

0.02541s

0.308558
estat: 5.221 · 10−5

e∞: 2.061 · 10−9

0.0596879s

0.448211
estat: 8.292 · 10−5

e∞: 2.061 · 10−9

0.059773s

0.130280
estat: 1.766 · 10−5

e∞: 2.061 · 10−9

0.0320397s

ProbReach was run on a Linux virtual machine with an Intel Skylake CPU (six cores, 16MB
cache, 2.6GHz) and 8GB of RAM; the computation time reported is the elapsed real (wall-clock)
time using six cores. RealySt was executed on a machine with an AMD Ryzen 7 PRO 5850U
CPU and 32 GB of RAM via WSL.

Discussion Generally, the results of the different tools align well for all cases. In the fully
stochastic cases A and D, all tools (approximately) compute the same probability for both
variants. In the presence of nondeterminism (case B), however, it can be obtained that naturally
the results for different tools diverge. Here, all maximizing approaches agree on a probability
of ≈ 0.25 (time bound of 10) resp. ≈ 0.28 (time bound of 12) for variant 1. The approaches
that resolve nondeterminism probabilistically result in a smaller probability for the same variant
(≈ 0.12 for a time bound of 10 and ≈ 0.14 for a time bound of 12, as expected). Analogously,
this also holds for variant 2. Note that the results for case A match the results of case B with
the time bound of 12: this is expected due to the time delay of two time units.

For a more detailed discussion of the results, in particular comparing computation times off
the different tools, we refer to [1].

6 Conclusion

The evaluation of benchmarks this year featured six tools, among these a novel tool (SySCoRe).
Following the initiative of last year, which was focusing on the development of a set of minimal
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benchmarks, we observe that a substantial effort in this thread of research was done by the
group members. This led to a refined version of the collection of minimal benchmarks with an
extended description that features multiple formalisms. Furthermore, an updated version of last
year’s novel benchmark on the package delivery system was featured this year.
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