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TREASURE

 Funded by the European Union’s Horizon 2020 Research and Innovative Programme.

 Objective: Development of a new service that will improve the current and introduce 

advanced models and algorithms to provide real-time positioning accuracy of a few 

centimetres using multi-GNSS data.
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Motivation
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Motivation – PPP-RTK (1/2)

 Precise Point Positioning (PPP)

 Both code and carrier phase measurements are used.

EGU General Assembly 2018

 Solution: model the phase biases in the parameter domain.

-system theory (Teunissen, 1985)1. Integerness of ambiguities is recovered.

2. Single-receiver ambiguity fixing is achievable.

 Use of satellite orbit and clock offset information (e.g. IGS products).

 Inability to resolve the integer carrier-phase ambiguities.
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Motivation – PPP-RTK (2/2)

Satellite clock offsets

Satellite phase biases

Other parameters

PPP-RTK userPPP-RTK network

Precise orbit
products

GNSS data PPP-RTK corrections

 Higher positioning accuracy and shorter convergence time
compared to PPP

 A great shortening in the convergence time is expected if precise 
ionospheric corrections are available to users.

weak in terms of integer ambiguity resolution.
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Methodology
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Methodology – Design computations (1/2)
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 How precise does the ionosphere model need to be to enable faster PPP-RTK ?

 Assess the ionospheric corrections precision required to enable a

shorter Time-To-First-Fix: time to achieve successful integer ambiguity

resolution based on a pre-defined success ratio (99.5%).

 Simulated GPS PPP-RTK user environment:

Measurement noise: 20 cm for code, 2 mm for phase
 Elevation-dependent weighting (mask 10o) 
Orbit precision: 2.5 cm
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Methodology – Design computations (2/2)
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Methodology – Background on ionosphere modeling
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 Basic requirements for a precise ionosphere map:

 Ionospheric observable

 Mathematical representation of ionosphere

Various combinations with different
interpretation and precision

Spherical harmonics
for global modeling

 Basic requirements for a precise ionosphere map:

 Ionospheric observable

 Mathematical representation of ionosphere

Various combinations with different
interpretation and precision

Spherical harmonics
for global modeling

 Traditional approach for TEC extraction:

 Geometry-free (GF) code and phase
 Carrier-to-Code-Levelling

Proven inaccurate due
to levelling errors
Formal errors can be
up to several TECUs

 Traditional approach for TEC extraction:

 Geometry-free (GF) code and phase
 Carrier-to-Code-Levelling

Proven inaccurate due
to levelling errors
Formal errors can be
up to several TECUs

 Recent approaches:

 Precise Point Positioning (Zhang, 2016)
 Network processing (Nie et al., 2018)

* TEC: Total Electron Content
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Methodology – Ionosphere modeling for PPP-RTK (1/2)
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 PPP-RTK network-derived ambiguity-fixed ionospheric slant delays

Once the ambiguities are resolved, PPP-RTK is able to provide 
high-precision ionospheric corrections than can be modelled and 
predicted at the user’s location.

 Mathematical VTEC representation: Generalized Trigonometric Series functions

 Single-layer model approximation

Differential Code Biases (DCB)
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 Rank-deficiency if both receiver and satellite DCBs need to be estimated.

 Solution: Lumping a minimum set of parameters as the    -basis (Teunissen,1985) 

 Advantage: Real-time satellite DCBs are required to improve PPP-RTK as well.
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Methodology – Ionosphere modeling for PPP-RTK (2/2)

 Parameter estimation: Kalman Filter

 States are updated every epoch (30s)

Random-walk process
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 GNSS data (DOY 046/2014) from a CORS network

Methodology – Data used for ionosphere modeling

 Undifferenced and uncombined PPP-RTK processing 

 Ionospheric (biased) slant delays serve as input in the
ionosphere modeling step.

 Formal errors of 1-2 cm (0.06-0.12 TECU) are achieved.

 Pre-processing to eliminate small observational arcs.
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 Self-consistency test: quality metric to assess the modelled STECs

RMS of variations between STECs along a continuous arc over a single 

station between 2 epochs (Orus et al., 2005)

 The reference epoch is the one where the satellite is at its highest elevation

(Hernandez-Pajares et al., 2017) 
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Methodology – Assessment of ionospheric corrections

 External validation: CODE Global Ionosphere Maps

 Linear interpolation of VTEC both in space and time at all formed IPPs.
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Results

EGU General Assembly 2018



www.fugro.com16

Results - Ionosphere

 Self-consistency test for every receiver-satellite link:

 Most of the RMS values are below 1.5 TECU.

 Overall RMS is 1.1 TECU.
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 External validation with CODE GIM:

 RMS of VTEC differences is 2.1 TECU.
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Results – Satellite DCBs
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 Validation with IGS DCBs (C1C-C2W)
Common -basis is needed.

0 5 10 15 20

Time [hr]

-10

-5

0

5

10

15

20

25

Sa
te

llit
e 

D
C

Bs
 [n

s]

 = 0.36 ns,  = 0.85 ns, RMS = 0.91 ns

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

GPS PRN

-2

-1

0

1

2

Sa
te

llit
e 

D
C

B 
er

ro
r w

rt 
IG

S 
D

C
B 

[n
s]



www.fugro.com18

Results – Receiver DCBs
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Stability analysis
Mean STD: 0.09 ns

 = 0.09 ns
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Conclusions
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Conclusions

 Conclusions
 Faster PPP-RTK solutions are expected if precise ionospheric corrections 

are available to the users.
 PPP-RTK can provide high-precision ionospheric delays for ionosphere 

modeling.
 The proposed methodology can be used for reliable regional ionosphere 

modeling and satellite DCB estimation.

 Outlook
 A two-layer model and alternative ionosphere representation models

will be employed to better model the structure of ionosphere.
 Large-scale investigation is required to validate the performance of the 

proposed methodology.
 Assessment of ionosphere-weighted PPP-RTK achieved convergence 

time using precise ionospheric corrections.

EGU General Assembly 2018
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