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Determining Hamiltonian parameters from noisy experimental measurements is a key task for the con-
trol of experimental quantum systems. An interesting experimental platform where precise knowledge
of device parameters is useful is the quantum-dot-based Kitaev chain. In these systems, the fine tuning
of Hamiltonian parameters is crucial in order to reach the desired regime with stable midgap modes. In
this work, we demonstrate an adversarial machine-learning algorithm to determine the parameters of a
quantum-dot-based Kitaev chain. We train a convolutional conditional generative adversarial neural net-
work (CCGAN) with simulated differential conductance data and use the model to predict the parameters
at which Majorana bound states are predicted to appear. In particular, the CCGAN model facilitates a
rapid, numerically efficient exploration of the phase diagram describing the transition between elastic
co-tunneling and crossed Andreev reflection regimes. We verify the theoretical predictions of the model
by applying it to experimentally measured conductance obtained from a minimal Kitaev chain consist-
ing of two spin-polarized quantum dots coupled by a superconductor-semiconductor hybrid. Our model
accurately predicts, with an average success probability of 97%, whether the measurement was taken in
the elastic co-tunneling or crossed Andreev reflection-dominated regime. Our work constitutes a stepping
stone towards fast, reliable parameter prediction for tuning quantum dot systems into distinct Hamiltonian
regimes. Ultimately, our results yield a strategy to support Kitaev-chain tuning that is scalable to longer
chains.

DOI: 10.1103/PhysRevApplied.20.044081

I. INTRODUCTION

The engineering of topological quantum matter repre-
sents a critical step for bringing theoretical predictions of
exotic physics to the lab. One of the paradigmatic topo-
logical modes are Majorana bound states, associated with
topological superconducting orders [1–3], and have been
studied extensively due to their potential for quantum com-
puting [4,5]. The practical realization of Majorana bound
states has proven to be greatly challenging, which moti-
vated the development of multiple experimental platforms
for their realization, including semiconductors [6], atomic
chains [7], van der Waals heterostructures [8], and heavy-
fermion materials [9]. Majorana bound states are predicted
to appear at the edges of a spinless p-wave supercon-
ductor in one dimension (1D), the so-called Kitaev chain
[1–3,10]. A minimal version of such a Kitaev chain has
been recently experimentally realized in the system of two
quantum dots that are mutually coupled both via crossed
Andreev reflection and elastic co-tunneling [11,12]. The
relative strengths of these two couplings can be tuned to
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drive the system into the so-called sweet spot, where the
electron tunneling and Andreev reflection have the same
strength [13–15]. An arrival into the sweet-spot regime
gives rise to the midgap modes consistent with a “poor
man’s Majorana bound state” [11]. Fine tuning a polarized
quantum dot chain simultaneously presents a significant
experimental challenge and is one of the limiting factors
for scaling this type of quantum experiment [12].

Inferring the description of a quantum system from
available data, a problem known as Hamiltonian learn-
ing, is a central problem in quantum systems [16–21].
Neural network-based algorithms have recently risen to
prominence as a tool for Hamiltonian learning and param-
eter estimation from experimental data [22–30]. While
machine-learning algorithms are by far not a universal
answer to parameter determination challenges in noisy
quantum systems, their generalization properties and fast
evaluation make them suitable candidates to address tech-
nical questions connected to quantum control and parame-
ter estimation. Neural-network algorithms have been suc-
cessfully used in supervised settings for both Hamiltonian
estimation [20,31,32] as well as tuning challenges [33–
36]. More recently, generative models have been shown
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to be powerful simulation and parameter estimation tools
in the context of generic many-body physics problems
[27,37].

Here, we demonstrate that convolutional conditional
generative adversarial networks (CCGANs) allow param-
eter estimation on both simulated and experimental data.
The key advantage of the conditional generative model
is the ability to extract information from (experimental)
data and, what is more, evaluate the ML output as a func-
tion of Hamiltonian parameters. We show that conditional
generative models constitute an alternative figure of merit
of parameter estimation on experimental data. We demon-
strate our adversarial methodology in determining the poor
man’s Majorana sweet spot from differential conductance
measurement. We find that our model is able to produce
full conductance spectra that are effectively indistinguish-
able from real measurement data and to estimate the ratio
of crossed Andreev reflection and elastic co-tunneling rates
with high precision. Incidentally, our algorithm correctly
identified measurement-data instances that were later dis-
covered to be mislabeled due to the large error bar in
an experimental labeling procedure. Overall, the machine-
learning model reached 100% (94%) accuracy on the first
(second) measured data set in distinguishing tunneling-
and Andreev reflection-dominated regimes. The two mea-
sured sets yielded average accuracy of 97% in regime
recognition. The ability to quickly recognize the position
with respect to the sweet spot is key when driving the
Kitaev chain to the fine-tuned point. Our algorithm thus
presents a key stepping stone towards Majorana bound
state tuning.

The work is organized as follows. In Sec. II we explain
key methods used in this work: the physics of a Kitaev
chain, the architecture and the training of conditional gen-
erative adversarial models, and details about experimental
devices and the measurement procedure. In Sec. III we
summarize and explain the results we obtained on both
simulated and experimental data and quantify the pre-
diction power of our model. In Sec. IV we summarize
our results and outline the path of embedding pretrained
neural-network models into the Majorana bound state
tuning workflow.

II. METHODS

In this section, we review the fundamental methodolo-
gies used in our paper. We first elaborate on the theoretical
description of the Kitaev model and introduce the key
parameters required for sweet-spot tuning. Afterwards, we
provide a description of the CCGAN architecture and the
training process. We also summarize the key components
of our experimental platform and provide details on the
measurement process.

A. Kitaev chain

The model we consider to generate the theoretical train-
ing data is a minimal one-dimensional Kitaev model of
two sites, modeling a two-quantum-dot system with the
Hamiltonian

H = td†
LdR + �d†

Ld†
R+εLd†

LdL + εRd†
RdR + h.c., (1)

where t is the amplitude of elastic co-tunneling (ECT), �

is the amplitude of crossed Andreev reflection (CAR), and
εL (εR) is the on-site energy of the left (right) quantum
dot. Here, ECT is the tunneling of a single electron from
the left quantum dot to the right one. CAR is the reflec-
tion of an electron from the left quantum dot into a hole
to the right quantum dot. Both are virtual tunneling pro-
cesses mediated by the Andreev bound state (ABS) resid-
ing in the hybrid semiconducting-superconducting section
[13,14,38].

The Hamiltonian can be written as

H = 1
2
�†h� + 1

2
(εL + εR), (2)

taking the Nambu spinor with the basis function �T =
(dL, dR, d†

L, d†
R) and the matrix h has the form

h =

⎛
⎜⎝

εL t 0 �

t εR −� 0
0 −� −εL −t
� 0 −t −εR

⎞
⎟⎠ . (3)

To emulate the experimentally accessible regime, we com-
pute the differential conductance that accounts for the
transport measurements through the double-dot system.
Specifically, we consider each quantum dot to be tunnel
coupled to leads of normal metal with the rates �L and
�R for the left and right dot, respectively. We will use the
S-matrix formalism, which describes the transmission and
reflection coefficients of electrons and holes from the leads
to each quantum dot and we can in turn relate these coef-
ficients to the differential conductance. The S matrix can
generally be written as

S(ω) =
(

see seh
she shh

)
= � − iW†

(
ω − H + 1

2
iWW†

)−1

W,

(4)

where W = diag{√�L,
√

�R, −√
�L, −√

�R} is the tun-
nel matrix with the tunnel-coupling strengths �L and �R
between the quantum dots and the normal leads.
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FIG. 1. Workflow of the Hamiltonian learning process with the
CCGAN. The discriminator is trained with simulated data, the
generator, and conditional parameters. The trained discriminator
evaluates the experimental input on a discrete grid of values to
obtain the discriminator-rating function.

With the S matrix at hand, we compute the differential
conductance, G0

αβ in the zero-temperature limit as

G0
αβ = dIα/dVβ = e2

h
(δαβ − |sαβ

ee (ω)|2 + |sαβ

he |2), (5)

where α(β) defines the left or right quantum dot and
sαβ

ij (ω) refers to the matrix elements of the matrices sij as
defined in Eq. (4). Finally, to obtain the finite-temperature
differential conductance we convolve the zero-temperature
conductance with a Fermi-Dirac distribution. This leads to
the expression

GT(ω) =
∫

dE
G0(E)

4kBT cosh2 [(E − ω)/2kBT]
. (6)

In general, we can divide the parameter space and corre-
sponding differential conductance into three regimes. In
the two regimes where either ECT and CAR are the dom-
inating effects, we obtain avoided crossings as depicted
in Fig. 1(b). In the sweet spot, where the magnitude of
ECT and CAR is equivalent, the avoided crossings van-
ish. A more in-depth description of the processes behind
the avoided crossings can be found in Ref. [12]. Example
experimental measurements of each regime can be found
in Figs. 5(c), 5(f), and 5(j).

We use the formalism described above to create the
data for training the machine-learning (ML) algorithm,

described in the next section. For the data generation, we
vary the parameters of Eq. (3) as well as the tunnel rates
�L and �R. In particular, we set the ECT magnitude t = 1
and include � values between 0.3 and 1.7 to include a
wide variety of parameters for the ECT-dominated regime
(t > �), the CAR regime (t < �), as well as the sweet
spot (t ≈ �) [39]. The onsite energies εL/R are chosen ran-
domly in the interval Lε = [−1.5, 1.5] around the center
position ε0, which results in a shift of the center position of
the avoided crossings. Additionally, we are adding back-
ground noise and a bias with the magnitude of 10−3. The
coupling strengths to the leads �L/R are adjusted to match
the experimental measurements.

B. Conditional generative adversarial networks

The key ingredient of our machine-learning approach
to Hamiltonian learning from experimental data is a gen-
erative model conditioned on the experimentally tunable
parameters. By training the generative model to repro-
duce the experimental measurements, we can study the
dependence on successful and faithful data generation on
these conditional parameters and thus determine the best
match. Using a generative model in place of a feed-forward
prediction has the additional advantage of visualizing
the complete underlying parameter distribution and thus
resulting in a more educated parameter estimate.

The ML algorithm we are using in this work for the
Hamiltonian learning is a conditional generative adversar-
ial network (CGAN) [40,41]. The general idea of GANs
is to combine two separate deep neural networks (NNs)
competing against each other in a min-max game during
the training process. In the case of the CGAN, the genera-
tor network G learns to map from a random input vector
z, known as latent space, in combination with a condi-
tional parameter y to the data distribution pdata of input
images of the training set. The discriminator network D
has the task to distinguish between samples of the training
set and generated “fake” samples from the generator, given
as constrains of the conditional parameters.

The CGAN value function V(D, G) is defined as

minG max
D

V(D, G) = Ex∼pdata(x)[log D(x|y)]

+ Ez∼pz(z)[log(1 − D(G(z|y))],
(7)

where x is the input data, pz(z) is the noise distribution of
the latent space, and log [1 − D(G(z|y))] and log[D(x|y)]
are the corresponding terms for the generator and dis-
criminator, respectively. In comparison of the original
GAN value function [40], the additional conditional labels
appear only in the terms corresponding to G and D. During
the training, the parameters of both networks get updated
simultaneously by minimizing the generator term and max-
imizing the discriminator term. If trained successfully, the
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generator is able to randomly create other samples indis-
tinguishable from the data distribution pdata. In contrast,
the discriminator becomes very accurate in determining if
a given input belongs to pdata or is a “fake” sample.

Adding conditional Hamiltonian parameters to the GAN
architecture allows us to control the physical parameters of
the conductance maps created by the generator, which in
the case of the original GAN would be purely random. In
the following, we focus on the ratio between � and t of the
Hamiltonian of Eq. (7) as the continuous conditional label,
which allows us to explore the complete phase space of the
two-site Kitaev chain. Due to the fact that we are dealing
with input data with high spatial correlations among pix-
els, we choose an architecture for G and D consisting of
convolutional neural networks (CNNs) (see Appendix A
for more details).

After the training process, both the generator and dis-
criminator networks are trained equally well. For the
Hamiltonian learning process, we exploit the trained dis-
criminator to estimate parameters of a given measurement.
It is worth noting that, the generation of conductance maps
could be carried out with other generative algorithms such
as diffusion models or autoencoders [42], but the exis-
tence of a discriminator in CGANs allows to part of the
trained architecture to be directly used for Hamiltonian
learning. In general, the discriminator provides the rating
in the range between 0 and 1 of a given input array, with
the corresponding label, to be from the real data set or the
“fake” one. To use the discriminator for the Hamiltonian
learning process and to extract the most-likely parame-
ter, we developed the following workflow, which can be
divided into three basic steps, which are also shown in
Fig. 1. First, we define a landscape for the parameter range
we want to estimate (here �/t ∈ I = [0.3, 1.7]). Second,
we feed the input spectrum, simulated or measured, into
the discriminator in combination with every possible value
of the parameter we want to extract. Finally, the discrim-
inator returns a score characterizing the likeliness that the
input data provided corresponds to each possible parameter
set. Combining all the outputs, we obtain a discriminator-
rating (D-rating) function, estimating which Hamiltonian
parameter is most likely belonging to the input image. In
comparison to feed-forward NNs, this procedure gives us
an uncertainty estimation of the maximum predicted value,
and can naturally account for situations in which different
parameter sets are consistent with the data.

C. Experiments: Two-quantum-dot system

The experimental data was obtained using the device
sketched in Fig. 2. An InSb nanowire (NW) is placed on an
array of bottom gates, which can change its electrochemi-
cal potential locally. Afterwards, the middle section of the
NW is contacted by a thin (approximately 8-nm) aluminum
shell, which is kept grounded throughout the experiment.

(a)

(b)

FIG. 2. (a) Sketch of the experimental InSb nanowire setup
containing two spin-polarized quantum dots (QDs) and a hybrid
hosting Andreev bound states (ABSs). Two Cr/Au normal leads
allow for measuring the local and nonlocal differential conduc-
tance. We give more details about the device and measurement
process in Sec. II C. (b) Sketch of the avoided crossings in the
(local) differential conductance for the three different regimes of
the Hamiltonian. At the sweet spot (middle panel), the avoided
crossings vanish.

The leftmost and rightmost three bottom gates are used to
define quantum dots (QDs), whose electrochemical poten-
tials are controlled by VLM/VRM, respectively. The NW is
contacted by two normal, Cr/Au leads at its ends. These
can be biased with a voltage VL/R with respect to the
grounded Al. For more details on device fabrication, see
Refs. [43,44]. The middle gate VH is used to tune the elec-
trochemical potential of the hybrid InSb-Al section [45].
This changes the energy of Andreev bound states in the
hybrid, which mediate ECT and CAR between the two
QDs [46]. As a result, ECT and CAR rates are modu-
lated by VH through their dependence on the ABS energy
[14,38].

The QD excitations are spin polarized by applying
an external magnetic field [47–49]. We include in our
analysis measurements for both BZ = 150 mT and BZ =
100 mT applied along the NW axis. The measurements
to be classified by the CGAN are taken with both nor-
mal leads grounded (VL = VR = 0). The �/t ratio is
determined using finite bias measurements. We set VL =
−VR = 25 µeV to ensure only ECT occurs at a finite rate,
which is maximum when εL = εR. In turn, we use a sym-
metric bias VL = VR = 25 µeV to have only CAR, which
is maximum when εL = −εR. The ratio between CAR
and ECT can be estimated from finite bias experimental
measurements through �/t ≈ I CAR

max /I ECT
max [38]. These mea-

surements are taken for different values of VH , together
with VL = VR = 0 QD-QD scans, to benchmark the CGAN
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predictions for different �/t ratios. See Fig. 10 for an
example determination of I CAR

max , following the method of
Wang et al. [50].

III. RESULTS AND DISCUSSION

This section is divided into two parts. First, we focus on
the predictions of the �/t ratio of the CCGAN for the sim-
ulated data of the Kitaev model. Second, we analyze the
results and predictions for the experimental measurements
of the two-quantum-dot system in the InSb nanowire [12].

A. Simulated data

In this section, we apply the CCGAN, in particular, the
trained discriminator, to predict the exact value of the �/t
ratio of the simulated test set, consisting of 10 000 sam-
ples. Figure 3 shows the predicted versus real values of the
whole test set. The training set consists of 140 000 samples
for �/t ∈ [0.3, 1.7]. The computed conductance images
mimic the experimental measurements shown in the next
section (more information about the training parameters
can be found in Appendix A). Taking all data points into
account leads to a mean error (δ) of δtest = 0.087. In gen-
eral, the predictions of the CCGAN for the test set are
very accurate and follow the ideal match (dotted orange
line) closely. The deviations from the line are related to
the intrinsic randomness of the CGAN algorithm as well
as the added noise in the creation of the data set. The
missing one-to-one correspondence of the �/t parame-
ter for a given conductance image and the added noise
leads to uncertainty when inferring the Hamiltonian. We
observe in Fig. 3 that the discriminator predicts the outer
boundaries, especially �/t = 0.3, with higher probability
than other values in the vicinity close to the boundaries.
This might be related to an undersampling of the bound-
ary regions compared to parameters closer to the center.
We also observe a general bias towards smaller ratios in
Fig. 3, which can be explained by a large overlap between
the distributions within the sweet-spot regime for different
parameter values in the vicinity of �/t ≈ 1. The differen-
tial conductance becomes degenerate and it is (visually)
difficult to distinguish between the ECT and CAR regime.
A similar behavior can be found in Ref. [51] for the Ising
model at low temperatures.

We divide the �/t ratio into the two regimes, the CAR
and ECT regime above and below the sweet spot, and use
the CCGAN as a classifier leads to an overall accuracy to
predict the regime of 95.3% for the test set data. Taking
into account that we predict the absolute values of �/t, the
parameter values directly around �/t = 1.0 lead to most
of the classification errors and, therefore, the accuracy
of 95% shows the predictive power of the CCGAN. The
classification is done by regression into larger or smaller
�/t = 1 and then used to classify the regime, this leads to
some errors around �/t = 1. If we add a sweet-spot zone

FIG. 3. CCGAN predictions vs. real values of the �/t-ratio for
the full test set consisting of 10 000 samples in the interval range
from 0.3 to 1.7. The orange line shows the ideal prediction case.

between 0.95 and 1.05 we increase the accuracy to 97%. In
this case, we consider it as a third regime and do not count
it in the accuracy of the previous two-regime classification,
i.e., excluding small regression errors around �/t = 1.

Figure 4 shows three examples of conductance images,
one for each parameter regime, randomly taken from the
test set. The panels of Figs. 4(a), 4(c), and 4(e) show
the generated conductance image with the corresponding
D-rating function [panels Figs. 4(b), 4(d), and 4(f)], as
explained in Sec. II B. For all three cases, the D-rating
function has a maximum at or in the near vicinity of the
real maximum value. However, in the vicinity of the sweet
spot [Figs. 4(c) and 4(d)] the “D-rating function” does
not decay as fast as for the other two cases with param-
eter values further away from the sweet spot. Therefore,
the discriminator is more confident in determining the
maximum value in Figs. 4(b) and 4(f), showing a higher
uncertainty for the predictions around the sweet spot in
(d). This uncertainty cannot be determined with supervised
NNs using CNNs, which just predict an absolute value.
The reason for the increased accuracy can be related to the
blurred conductance image without a clear avoided cross-
ing, which is characteristic when approaching the sweet
spot from both the ECT and CAR regime.

In addition to the Hamiltonian inference with the dis-
criminator, the generator of the CCGAN can generate
high-quality conductance images for a given �/t ratio.
In Fig. 5, we used the generator to create images for
�/t = 0.7, 0.95, 1.15, which can be compared with exper-
imental measurements with the same or similar measured
parameter shown in Figs. 5(c), 5(f), and 5(j). The generated
images for the ECT regime, illustrated in Figs. 5(a) and
5(b), show the expected behavior of the avoided crossings
as depicted in Fig. 2(b). The differences between Figs. 5(a)
and 5(b) are related to the intrinsic randomness of the
CCGAN, which relates to noise and uncertainties in the
experimental measurements as well as differences between
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(a) (b)

(c) (d)

(e) (f)

FIG. 4. Predictions for the Kitaev model with the CCGAN for
the three regimes of the Hamiltonian. Examples are taken from
the test set. (a),(b) show an example for the t > � regime, (c),(d)
the “sweet spot” around t ≈ �, and (e),(f) the t < � regime.
(a),(c),(e) are plots of the differential conductance G, (b),(d),(f)
show the D-rating function corresponding to each image.

the Kitaev model and real-world data. The same effects can
be seen in the sweet-spot regime in Figs. 5(d) and 5(e), as
well as in the CAR regime in Fig. 5(h) and Fig. 5(i), where
we obtain the expected avoided crossings with a similar
magnitude and width.

In Fig. 5, we observe good agreement with our simula-
tions for the CAR regime (�/t = 1.15) when comparing
Figs. 5(h) and 5(i) with Fig. 5(j). For the ECT-dominated
regime (a)–(c), we observe differences in our model with
the measurement Fig. 5(c) in the shape and size of the
avoided crossings. The differences can be related to the
approximation of t = 1 = const, which is usually not the
case in the experimental setup where t varies among differ-
ent measurements, which has an effect on the size and dis-
tance of the avoided crossings. For the experimental sweet
spot in Fig. 5(f) we picked the conductance image where
the avoided crossings vanish and therefore visually can
be determined as �/t ≈ 1. However, the current-inferred
ratio is �/t = 0.85, which hints at some difficulties in
experimentally determining the �/t ratio. We find that by
picking �/t = 0.95, the generator is able to reproduce the
image of Fig. 5(f) accurately.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 5. Generated images with the CCGAN for the three
parameter regimes in comparison to measurements. (a)–(c) show
the ECT-dominated regime for �/t = 0.7, (d)–(f) the vicinity of
the sweet spot for �/t = 0.95 (0.85 from current measurements),
and the CAR regime in (h)–(j) for �/t = 1.15. The experimental
images have been cut to 28 × 28 pixels around the center of the
avoided crossings.

The individual analysis of the discriminator and gen-
erator in Figs. 4 and 5 are a strong indication that the
CCGAN is trained properly. Furthermore, we want to high-
light at this point again that the overall goal is to create
an algorithm that works for both, theory as well as for
experimental data, which will be analyzed in the next
section.

B. Experimental data

The same CCGAN used in the previous section is now
applied to the local differential conductance measurements
on the experimental two-quantum-dot system described in
Sec. II C. We take the parameter range of �/t ∈ [0.3, 1.7],
covering a wide range of values. As explained in Sec. II C,
changing the hybrid electrochemical potential with gate
VH leads to a wide variety of behavior in the conductance
measurements of the quantum dot system, ranging from the
CAR to the ECT-dominated regime, including the sweet-
spot condition of � ≈ t where the “poor man’s Majorana”
modes are predicted to appear. During the tuning process
of the two-quantum-dot system into different Hamiltonian
regimes, it is possible to experimentally extract values for
the ratio �/t (see Sec. II C).

044081-6
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The experimental conductance measurements can be fed
into the ML workflow as explained in Appendix C. In this
work, we consider two conductance measurements series
containing 29 and 39 measurements with the experimen-
tally extracted values for �/t ∈ [0.3, 1.7], measured at a
magnetic field of BZ = 150 mT and BZ = 100 mT, respec-
tively. The results of the 68 measurements are shown in
Figs. 7(a) and 7(b) and directly compare the CCGAN pre-
dictions with the experimentally current-inferred values.
We analyze both measurement series separately and show
the (averaged) CCGAN prediction versus the current-
inferred �/t ratio for 29 and 39 measurements. The stan-
dard deviation of the CCGAN predictions are obtained via
the workflow described in Appendix C, the error for the
current-inferred parameters as described in Sec. II C. Ana-
lyzing the 68 measurements, some of the current-inferred
parameters in the parameter range between �/t = 0.8 and
�/t = 1.2 show some inconsistencies between the current-
inferred value and the appearance of the avoided crossings
in the conductance measurements. For the first measure-
ment series [Fig. 7(a)], we detect three experimentally
wrongly labeled measurements, where the avoided cross-
ings are visually in a different regime than determined
by the current-inferred �/t value. These three mislabeled
conductance measurements are shown in Figs. 6(a)–6(c),
in which the avoided crossings appear in the CAR-
dominated regime of �/t > 1 even though the measured
parameters are smaller than 1, i.e., in the ECT regime.
These measurements can visually be classified in the CAR.
The predictions of the CCGAN predict the correct regime
for these three mislabeled measurements correctly. This
is the first hint about the accuracy of the experimentally
extracted values and that our algorithm can also be used
for outlier detection. The averaged mean error between
the measurement values and predictions of the CCGAN,
excluding the mislabeled measurements, is δtotal1 = 0.164
(δtotal1 = 0.148) for the first 29 measurements. The classifi-
cation into the correct regime leads to a classification accu-
racy of 89.7% taking all 29 measurements into account and
100% when neglecting the wrong labels shown in Fig. 6.
The predictions of the CCGAN follow the trend of the
“ideal match” with the experimentally current-inferred val-
ues well taking into account the huge error bars of the
experimental values of 20–30% and the CGAN uncertain-
ties. Particularly for the ECT-dominated regime of �/t <

1 the predictions follow the “ideal-matching” trend well
opening the possibility for tuning the system towards the
sweet-spot conditions.

Figure 7(b) shows the results for the second measure-
ment series, including 39 measurements at a Zeeman field
of BZ = 100 mT. Similar to the first series, some diffi-
culties arise around the sweet spot of �/t ≈ 1. For five
of the measurements, the noise levels are exceptionally
high (orange dots) and the classification into the three dif-
ferent regimes becomes difficult since it is not possible

(a) (b) (c)

FIG. 6. Shown are the three mislabeled differential conduc-
tance images of Fig. 7 with their corresponding �/t ratio (a)–(c).
The current-inferred parameter ratios of the measurements pre-
dict the avoided crossings visually to be in the wrong regime [see
Fig. 1(b)].

for us to visually or experimentally verify the assigned
label. Moreover, the CCGAN predicts the wrong regime
for two measurements (purple dots) and for one sample,
the experimental current-inferred value is clearly in the
wrong regime (red dot). Excluding the noisy samples, we
obtain a mean error of δtotal2 = 0.154, whereas including
the noisy samples leads to δtotal2 = 0.191. The accuracy to
predict the correct regime is 94% when we consider the 34
measurements, excluding the five noisy ones.

(a)

(b)

FIG. 7. Predictions of the CCGAN versus current-inferred
labels of the �/t ratio for the two measurement series with
a magnetic field of BZ = 150 mT in (a) and BZ = 100 mT in
(b). The dotted green line shows the ideal match and the gray
line marks the phase classification of the CCGAN. The stan-
dard deviation of each measurement is given as an error bar in
the x-y direction and the prediction workflow is described in
Appendix C.
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For the second measurement series, we observe that the
CCGAN predicted values are following the “ideal match”
line with the current-inferred parameter and we obtain
similar results for the mean error and for the classifica-
tion accuracy. Particularly for the ECT-dominated regime
(�/t < 1) we clearly observe the linear trend towards the
sweet spot. In the vicinity of the sweet spot (�/t ≈ 1) the
magnitude of the errors increases, and therefore it is more
difficult to make predictions or infer parameters close to
the sweet spot. In the CAR-dominated regime (�/t > 1)
the upwards trend is not as clear as for the ECT regime
and almost constant and the CCGAN-predicted values
are generally of smaller magnitude as the current-inferred
values.

However, these results have to take into account dif-
ferent potential error sources: (i) general prediction errors
of the CCGAN discriminator due to the limited amount
of training data and intrinsic randomness as discussed for
Fig. 4, (ii) differences between the Kitaev model approach
and real-world data considering the simplicity of the model
as well as the approximations we used, and (iii) errors in
determining the values experimentally by current measure-
ments considering the huge error bars for these values. As
mentioned earlier, in the Kitaev Hamiltonian, we set t = 1
and vary only �, which is a simplified view compared
to the experimental conditions where t can vary during
a measurement series. Therefore, by considering only the
relation between t and �, our model does not consider dif-
ferences in the avoided crossings related to the absolute
magnitude of t. This could be a reason for the higher differ-
ences in the CAR-dominated regime in this measurement
series. Furthermore, in our analysis, we do not consider
the “quality” of each individual measurement, which is
related to the noise and visibility of the avoided cross-
ings. Images with very high noise magnitudes deviate from
the theoretical model and the training data too much and,
therefore, the CCGAN cannot make as accurate predictions
about them as for “perfect” measurements. Considering
the experimentally wrong-labeled measurements and rela-
tively high error bars, the current-inferred values cannot be
taken as ground truth parameter, but rather be used to give
us an idea about the accuracy of the CCGAN predictions.
For most of the mislabeled measurements, the CCGAN
predicts the correct parameter regime.

Another reason why the vicinity of the sweet spot is
harder to predict is that there are only very small visual
differences on each side of the sweet spot in the local
conductance. The absence of clear avoided crossings and
higher noise levels lead to higher uncertainties in the pre-
diction. Therefore, to predict the sweet-spot regime accu-
rately, very clean or additional measurements such as the
nonlocal conductance are required.

Following the previous discussion, we do not expect that
the CCGAN predictions with the current-inferred extrac-
tion will yield an ideal match line since the experimental

values can not be seen as perfect values. Furthermore, cor-
rections beyond the minimal model considered can lead
to deviations when applying the algorithm to real-world
data. Nonetheless, we observe an overall good agreement
between our ML algorithm trained on the Kitaev model
and the experimental data, the strength of our approach
to classify the correct regime and detect outliers in the
current-based parameter extraction.

The procedure of predicting the �/t value with the
CCGAN is illustrated in Fig. 8 for two example measure-
ments. The measurement data, shown in Figs. 8(a) and
8(b), is cropped to 28 × 28 pixels Figs. 8(c) and 8(d),
which is the input size of the CCGAN. The cropped and
normalized image is then fed into the discriminator lead-
ing to the D-rating function Figs. 8(e) and 8(f) for each
measurement. The cropping of the image can be done
arbitrarily around the center, which, however, leads to
slightly different results. The averaging process to extract
the Hamiltonian parameter for the results in Fig. 7 is
explained in more detail in Appendix C. Due to the men-
tioned variation in the training data around the imaginary
crossing of the differential conductance, the cropping of the
images can also vary up to five pixels away from the center
in x and y direction, as, e.g., seen in Figs. 8(c) and 8(d). We
use this variation around the center with arbitrary chosen
crossing to give a standard deviation for our prediction by
averaging over 100 configurations. Furthermore, this vari-
ation allows us to automate the centering process with a
nonperfect center-finding algorithm.

The fact that our method is not affected by small vari-
ations of the actual center is a possible advantage over
classical fitting methods, which might lead to very different
results when choosing different center positions. Consider-
ing that in reality the symmetry of the (avoided) crossings
in the differential conductance does not exist due to, e.g.,
negligible capacitive coupling between the plunger gates
of the quantum dots. If this is non-negligible, the avoided
crossing lines become tilted and cross over to other quad-
rants as seen in Ref. [52]. These issues can be overcome
by our CCGAN algorithm.

Let us conclude this section with a benchmark com-
parison to a standard feed-forward model. We used the
same Kitaev chain model, described in Sec. II, and train-
ing data used for the CCGAN to train a supervised CNN
network and make predictions for the same 68 experimen-
tal data points. In Fig. 9, we show the CNN-predicted
�/t value compared with the current-inferred value for
the two measurement series at BZ = 150 mT in Fig. 9(a)
and BZ = 100 mT in Fig. 9(b). In general, the classifica-
tion accuracy of the CNN is 92 and 94% and, therefore,
slightly lower compared to the CCGAN value. The mean
error for both measurement series is δCNN−1 = 0.150 and
δCNN−2 = 0.170. Furthermore, the predictions for the ECT-
dominated regime, are almost constant and not following
the trend of the “ideal match” as it was the case before.
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(a) (b)

(c) (d)

(e) (f)

FIG. 8. Predictions for the experimental measurements of the
two-quantum-dot system with the CCGAN trained on the full
data set for two examples of the measurement series. The original
measurements are shown in (a),(b). (c),(d) are the corresponding
cropped images, which are the inputs to the CGAN. (e),(f) show
the discriminator-rating function predicted by the discriminator
of the CCGAN.

More details can be found in Appendix B. In general, we
find that the CCGAN yields better results than the sim-
ple supervised-learning approach with CNNs when esti-
mating the ECT-CAR amplitude ratio as well as for the
classification of the regimes.

IV. CONCLUSION

In this work, we show a demonstration of CGANs for
Hamiltonian learning of simulated and real experimental
measurements in quantum-dot-based Kitaev chain systems
that host poor man’s Majoranas in a parameter sweet
spot. We show that our algorithm is capable of predict-
ing both simulated and experimental measurements with
good accuracy as well as giving an estimation about the
uncertainty of each prediction via the discriminator-rating
function. This is a clear advantage over supervised neu-
ral networks predicting just a single value for each input.
This work can be seen as the first proof of principle that
CGANs can be a powerful tool to support experimental
measurements and extract underlying Hamiltonians from
real-world problems. It is worthwhile to note that, taking

(a)

(b)

FIG. 9. Predictions of the CNN (supervised) versus experi-
mental labels of the �/t-ratio for the two experimental measure-
ment series. The standard deviation of the prediction is given as
an error bar for each data point. Panel (a) shows the 29 mea-
surements at BZ = 150 mT and (b) 39 measurements at BZ =
100 mT.

into account all sources of error and the still existing diffi-
culties in training GANs, there is room for improvements
in the training of the GAN as well as pre- and postpro-
cessing of especially the experimental data. Interestingly,
we show that even when training the CGAN on the rela-
tively simple theoretical model yields robust Hamiltonian
prediction and in the case presented here outperforms
previously known labeling methods for the experimental
measurements.

Our ML tuning approach can relatively easily be embed-
ded into an experimental tuning workflow, run directly in
the laboratory, and is generally independent of the exper-
imental setup. We also give a possible prospect of our
approach for the application to longer chains. This is inter-
esting because a long chain of quantum dots is required for
a Kitaev chain to be considered topological, which consti-
tutes a much more complex system. To observe Majorana
zero modes at the ends of a Kitaev chain, t = � has to
be satisfied locally for neighboring quantum dots. In other
words, an N -site chain can be tuned to host Majoranas
at its ends by tuning one pair of quantum dots at a time,
as shown in Ref. [53]. Therefore, we believe that our
present CCGAN can be applied to Kitaev chains of arbi-
trary lengths, provided that the density of states can be
probed locally. We thus put forward an alternative figure
of merit for experimental tuning up Kitaev-chain systems
into the t = � sweet spot.
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CODE AND EXPERIMENTAL DATA
AVAILABILITY

This paper is supplemented by a GitLab repository with
all the code and data necessary to reproduce our results
https://gitlab.com/QMAI/papers/adversarialkitaevchain.
The raw experimental data, as well as code used for label-
ing, are available at https://zenodo.org/record/7798010.
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APPENDIX A: ARCHITECTURE AND TRAINING
OF THE CCGAN

1. Architecture

The code for the CCGAN and for the CNN can be found
in Ref. [54]. The code uses Tensorflow [55] and Keras
[56]. The generator architecture of the CCGAN is shown
in Table I, consisting of eight layers and in total 995 329
(trainable) parameters. The layers include an input con-
catenation of the latent vector (dimension 100) with the
continuous conditional parameter, a dense layer followed
by deconvolutional layers (C2DT) with dropout of 25%
between deconvolutional layers. The output dimension is
(28, 28, 1) since are using “gray-scale” images with the
size of 28 × 28 pixels.

The discriminator network is shown in Table II and con-
sists of 11 layers and 878 721 total parameters. The input
layer with dimension (28, 28, 1) is followed by 2 times
the combination of a convolutional layer (C2D), a max
pooling operation (i.e., down-sampling along its spatial
dimensions), and a dropout layer. The result is flattened
to a one-dimensional array and concatenated with the con-
ditional parameter, before being fed into two dense layers.
We are using the ReLU activation function [57] for hidden
layers and a sigmoid function for the last layers. We are
using the Adam optimizer [58] for the training of the total
CCGAN with a learning rate of 0.00001. For the generator,

TABLE I. Architecture of the generator network of the
CCGAN.

Generator
Layer Output shape

Concatenation 101
Dense 6272
Reshape (7, 7, 128)
C2DT (14, 14, 128)
Dropout (14, 14, 28)
C2DT (28, 28, 64)
Dropout (28, 28, 64)
C2DT (28, 28, 1)
Total parameters 995 329

we use the MSE as a loss metric, for discriminator binary
cross-entropy.

2. Training

The training set consists of 140 000 conductance
images, generated with the Kitaev model introduced in
Sec. II. The batch size is set to 32 and we trained the net-
work for a total number of 40 epochs. The training was
performed on a Nvidia GeForce GTX 1070 GPU, which
takes approximately 5 h.

APPENDIX B: RESULTS: SUPERVISED CNN
BENCHMARK

Figure 9 shows the results of the (supervised) CNN
for the Hamiltonian inference process. Similar to Figs. 7
and 9 shows the predictions of the CNN versus current-
inferred values of �/t for the first measurement series
at BZ = 150 mT in panel Fig. 9(a) and for the second at
BZ = 100 mT in panel Fig. 9(b).

For the first measurement series, we obtain with the
CNN approach a mean error of δCNN−1 = 0.172 and

TABLE II. Architecture of the discriminator network of the
CCGAN.

Discriminator
Layer Output shape

Input (28, 28, 1)
C2D (28, 28, 64)
MaxPooling2D (14, 14, 64)
Dropout (14, 14, 64)
C2D (14, 14, 128)
MaxPooling2D (7, 7, 128)
Dropout (7, 7, 128)
Flatten 6272
Concatenate 6273
Dense 100
Dense 1
Total parameters 878 721
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δCNN−1 = 0.150 when neglecting the three mislabeled val-
ues. The classification accuracy, neglecting these three
measurements is 92% (24/26 measurements). Compared to
the predictions of the CCGAN (see Fig. 7), the CNN pre-
dictions show a step-function-like behavior and a plateau
in the ECT and CAR phase, not following the “ideal
match.”

The CNN predictions of the second series are shown in
Fig. 9(b). Excluding the noisy measurements (orange dots)
we obtain a mean error of δCNN−2 = 0.170 and a classi-
fication accuracy of 94%. As for the CCGAN, the CNN
predicts for two out of 35 measurements the wrong regime.
The deviation from the “ideal match” is larger compared to
the CCGAN in Fig. 7(b), especially for the ECT-dominated
regime. However, we observe the general upwards trend,
following the “ideal match” line mostly within the range
of the experimental error bars.

APPENDIX C: EXPERIMENTAL DATA
PREPROCESSING AND WORKFLOW

The workflow of the predictions for experimental data
with the CCGAN consists of five steps and is also shown
in Fig. 8 for two example measurements. First, the orig-
inal image [e.g., Figs. 8(a) and 8(b)] of the differential
conductance has to be cropped from 52 × 52 to 28 × 28
pixels [see Figs. 8(c) and 8(d)] to match the dimension the
CCGAN is trained on. Second, the cropped image has to
be scaled according to the training data, which is normal-
ized to values between 0 and 1 with an average maximum
value of 0.88. Therefore, we normalize all experimental
measurements to 0.88 to be consistent. Then, we define a
parameter grid for the �/t ratio by splitting up the interval
between 0.3 and 1.7 in 100 steps. Afterward, the discrim-
inator evaluates the cropped image with each point on the
parameter grid, giving a “discriminator rating” for each
�/t ratio yielding a probability distribution as shown in
Figs. 8(e) and 8(f) for two example measurements. The
maximum value corresponds to the �/t-ratio with the
highest probability to belong to the corresponding differ-
ential conductance. Finally, the first four steps are repeated
100 times for arbitrary croppings around the center posi-
tion to obtain a standard deviation for the predictions of
the discriminator network [59].

APPENDIX D: EXTRACTION OF THE
EXPERIMENTAL LABELS

Figure 10 depicts a three-terminal measurement of cor-
related current as a function of the plunger gate voltages
of two quantum dots arranged in a Kitaev chain config-
uration. The bias is set antisymmetrically VL = −VR to
ensure that only elastic co-tunneling (ECT) can occur.
The graph shows a positive slope indicating that current
arises only when both dots are on resonance, indicative
of ECT. By taking the maximum of Icorr for each value

FIG. 10. (Left) The correlated current Icorr = √−min(IL × IR)

as measured on the left and right lead respectively, for varying
QD plunger gates VLM and VRM at an antisymmetric bias con-
figuration VL = −VR = 25 µeV. (Right) The maximum of Icorr
for every linecut of VRM. The mean 〈Icorr〉 and standard deviation√〈I 2

corr〉 are calculated from the points above the FWHM indi-
cated by the black dashed line. 〈Icorr〉 is taken to be I ECT

max due to
the bias configuration allowing only ECT processes.

of VRM, we can estimate I ECT
max , which is proportional to

t [38]. Repeating this for a symmetric bias configuration
VL = VR yields I CAR

max , which is proportional to �. Then,
a charge-stability measurement is done for VL = VR = 0,
which shows the (un)avoided crossings associated with
CAR and ECT. These are labeled according to the �/t ratio
obtained from the finite bias measurements.
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