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SUMMARY

Reflection seismology aims to estimate the Earth’s subsurface elastic parameters for fur-
ther investigation by geologists and engineers. This involves generating elastic waves
using seismic sources and recording the Earth’s response with receivers. The subsur-
face model is typically considered a combination of a background model and a short-
wavelength reflectivity model. There are two main paths to estimate these parameters:
non-linear waveform inversion to directly compute the elastic parameters or depth mi-
gration to estimate a structural image or reflectivity of the subsurface.

Reverse-Time Migration (RTM) is a common depth migration technique that migrates
recorded wavefields from the space-time domain to the space-depth domain. It utilizes
the Born approximation and the adjoint of the Born operator to produce an RTM image.
However, RTM can suffer from errors, such as noise, temporal and spatial limitations,
and multiple reflections.

Least-Squares Reverse-Time Migration (LSRTM) is used to overcome some of these er-
rors. LSRTM involves resolving the reflectivity model by least-squares inversion, which
is computationally expensive. Gradient-based optimization algorithms are often em-
ployed to reduce the computational burden, but they still require solving the wave equa-
tion and its adjoint for a large model in multiple iterations. One way to reduce the com-
putational cost is by limiting the computational domain to a target region of interest.

Target-oriented LSRTM, known as TOLSRTM, focuses on the wavefield just above the
target by bypassing the overburden. This approach proves beneficial when the overbur-
den generates strong internal multiple reflections that obscure the reflections from the
target area. However, a redatuming method is required to predict all orders of multiples.
Marchenko redatuming is a data-driven technique that predicts the Green’s functions at
the boundary of the target region, incorporating all orders of internal multiples. It allows
for double-sided redatuming, considering both the source and receiver perspectives. By
combining the LSRTM algorithm and Marchenko double-focusing, a target-oriented LS-
RTM algorithm is devised that can predict interactions between the target and overbur-
den and remove the effects of the overburden in the image. Predicting these interactions
results in an artifact-free image, a better convergence rate, and a high-resolution image
of the target.

Target-oriented migration algorithms typically consider only the upper horizontal bound-
ary of the region of interest (ROI), neglecting wavefields entering the ROI from the me-
dium beneath the lower boundary. To address this, a target-enclosed LSRTM algorithm
is proposed, including both the ROI’s upper and lower boundaries. Including the lower

V



VI SUMMARY

boundary provides transmission information and can improve inversion convergence.
In addition, this algorithm is adopted for virtual receivers created by Marchenko reda-
tuming. In the case of physical receivers at the boundaries of the target zone, the target-
enclosed algorithm can incorporate the transmission information emanating from the
lower boundary to the upper one. Consequently, when the initial model is far from the
actual model, the resulting image partly recovers the long wavelength part of the model
in agreement with the Born approximation criteria. Moreover, when an initial model
closer to the actual model is used, the algorithm can partially recover the vertical inter-
faces of the perturbation. In the case of virtual receivers at the boundaries of the target
zone, since the Marchenko redatuming is performed in the initial background model,
the redatumed wavefields at the lower boundary suffer from kinematic errors. There-
fore, the algorithm can not recover the long wavelength part of the model.

The thesis concludes with a discussion of the results obtained from applying the al-
gorithms to marine datasets. The images resulting from the Marchenko double-focusing
based target-oriented LSRTM algorithm show improvements in both resolution and arti-
fact reduction by suppressing the overburden generated internal multiple effects. Moreover,
the double-focusing enables the user to reduce the computational costs of the LSRTM al-
gorithm and choose finer spatial sampling for the image.

An appendix proposes a formulation for integrating the target-oriented algorithms
with non-linear inversion like Full Waveform Inversion (FWI). The results of this pro-
posed algorithm show its effectiveness by reducing the internal multiple related artifacts
and increasing resolution and faster convergence.



SAMENVATTING

Reflectieseismologie heeft als doel de elastische eigenschappen van de ondergrond van
de aarde te schatten voor verder onderzoek door geologen en ingenieurs. Dit omvat het
genereren van elastische golven met behulp van seismische bronnen en het registreren
van de respons van de aarde met ontvangers. Het is gebruikelijk om onderscheid te ma-
ken tussen een achtergrondmodel en een korte-golflengte reflectiviteitsmodel. Er zijn
twee belangrijke manieren om deze parameters te schatten: niet-lineaire golfvorm in-
versie om rechtstreeks de elastische parameters te berekenen, of dieptemigratie om een
structureel beeld of de reflectiviteit van de ondergrond te verkrijgen.

Reverse-Time Migratie (RTM) is een veelgebruikte techniek voor dieptemigratie die
geregistreerde golfvelden migreert van het plaats-tijd domein naar het plaats-diepte do-
mein. Hierbij wordt gebruik gemaakt van de Born-benadering en de adjoint van de Born-
operator om een RTM-beeld te produceren. RTM kan echter te maken krijgen met fouten
zoals ruis, temporele en ruimtelijke beperkingen, en meervoudige reflecties.

Least-Squares Reverse-Time Migratie (LSRTM) wordt gebruikt om enkele van deze fou-
ten te voorkomen. LSRTM houdt in dat het reflectiviteitsmodel wordt geschat door mid-
del van least-squares inversie, wat veel rekenkracht vergt. Optimalisatie-algoritmen die
zijn gebaseerd op gradiëntmethoden worden vaak gebruikt om de rekenlast te verminde-
ren, maar ze vereisen nog altijd het oplossen van de golfvergelijking en de adjoint ervan
voor een groot model in meerdere iteraties. Een manier om de rekentijd terug te dringen
is om het rekengebied te beperken tot een kleiner interessegebied.

Doelgerichte LSRTM, bekend als TOLSRTM, richt zich op het golfveld net boven het
interessegebied door de bovenliggende lagen over te slaan. Deze aanpak is voordelig
wanneer de bovenliggende lagen sterke interne meervoudige reflecties genereren die
de reflecties van het interessegebied verbergen. Er is echter een redatuming-methode
nodig om alle ordes van meervoudige reflecties te voorspellen. Marchenko-redatuming
is een datagedreven techniek die de Greense-functies voorspelt op de grens van het in-
teressegebied, waarbij alle ordes van interne meervoudige reflecties worden meegeno-
men. Hiermee is tweezijdige redatuming mogelijk, vanuit zowel het bron- als ontvanger-
perspectief. Door het LSRTM-algoritme en Marchenko dubbele focussering te combine-
ren, is een doelgericht LSRTM-algoritme ontwikkeld dat de interacties tussen het inte-
ressegebied en de bovenliggende lagen kan voorspellen en de effecten van de bovenlig-
gende lagen in het beeld kan verwijderen.

Doelgerichte migratie-algoritmen houden meestal alleen rekening met de bovenste
horizontale begrenzing van het interessegebied (ROI), waarbij golfvelden die het ROI bin-
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nenkomen vanuit het medium onder de onderste begrenzing worden genegeerd. Om dit
aan te pakken, wordt een doelomsloten LSRTM-algoritme voorgesteld, waarbij zowel de
bovenste als de onderste begrenzingen van het ROI worden opgenomen. Het opnemen
van de onderste begrenzing verschaft transmissie-informatie en kan de convergentie van
de inversie verbeteren. Verder wordt dit algoritme toegepast op virtuele ontvangers die
zijn gecreëerd door Marchenko-redatuming.

Het proefschrift wordt afgesloten met een bespreking van de resultaten die zijn verkre-
gen door de algoritmen toe te passen op mariene datasets. In een appendix wordt een
formulering voorgesteld voor het integreren van de doelgerichte algoritmen met niet-
lineaire inversietechnieken zoals Full Waveform Inversion (FWI).



1
INTRODUCTION

The goal of exploration seismology is to estimate the Earth’s subsurface elastic
parameters and pass them to the geologists and engineers for more investigation.
The first step to estimate these parameters is to generate elastic waves with active
seismic sources and record Earth’s response with receivers. It is common to consider
the model of the subsurface as a superposition of a background model (m0), which
corresponds to the long wavelengths, and a short-wavelength perturbation model
(δm). After preprocessing the recorded wavefields, there are two paths to estimate
the parameters; One path is to directly compute the elastic parameters through
non-linear waveform inversion, where the parameter m = m0 +δm is estimated.
Another path is to estimate a structural image or the reflectivity (δm) of the
subsurface by means of depth migration.

1.1. LEAST-SQUARES REVERSE-TIME MIGRATION
Depth migration is a process in which the recorded wavefields in the space-time
domain are migrated to their origin in the space-space domain [1]. A depth
migration process is based on a linear relationship between the recorded data
and the perturbation model (δm). Since this process includes a time-to-depth
conversion, it requires a velocity model. One of the common depth migration
techniques is called Reverse-Time Migration (RTM) [2–4]. In RTM, the underlying
linear relation is the Born approximation of the Lippmann-Schwinger integral, so
the RTM image is produced by applying the adjoint of the Born operator to the
observed data. As a result of being directly derived from the two-way wave
equation, the RTM formulation gives the an accurate imaging result [5]. However,
this approach may suffer from many errors such as noise [6], temporal band
limitations, limited recording aperture [7], spatial aliasing, and multiple reflections [8].

As mentioned above, RTM uses the adjoint of the Born operator, which is an
approximation of its inverse. One way to compute the inverse of the operator and
reduce some of the named errors is to resolve δm by least-squares inversion. This
approach, known as Least-Squares Reverse-Time Migration (LSRTM), is a common
algorithm for producing a high-resolution perturbation model of the subsurface.

1
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Nevertheless, LSRTM is computationally expensive [9] as it requires computing
the Hessian matrix. To avoid computing the Hessian matrix, researchers opt
for gradient-based optimization algorithms [10]. Nevertheless, these optimization
algorithms require solving the wave equation and its adjoint for a large model in
many iterations and storing large data volumes [7, 11, 12], which is computationally
expensive. Reducing the computational burden of LSRTM is possible by reducing the
computational domain. In other words, limiting ourselves to a relatively small target
region of interest.

1.2. TARGET-ORIENTED LEAST-SQUARES REVERSE-TIME

MIGRATION
The "target-oriented" approach [13–18] divides the medium into two parts: an
overburden and a target. To achieve this, the target-oriented LSRTM, referred to as
TOLSRTM, focuses on the wavefield above the target by bypassing the overburden.
The process of extrapolating the wavefield from its current acquisition surface to
another surface is known as redatuming [19–22].

Aside from its computational advantages, target-oriented LSRTM proves beneficial
in scenarios where the overburden generates strong internal multiple reflections that
obscure the reflections from the target area. However, for this method to function
accurately, a reliable model of the overburden capable of producing reflections of
all orders is required. The inaccuracies in overburden models and the artifacts
caused by internal multiple reflections in LSRTM images have garnered significant
attention from researchers. Guo and Alkhalifah [18, 23], for instance, introduced a
least-squares waveform redatuming technique that redatums the data to the target
boundary and combines it with full waveform inversion.

1.3. TARGET-ORIENTED LEAST-SQUARES REVERSE-TIME

MIGRATION WITH MARCHENKO DOUBLE-FOCUSING
Marchenko redatuming has emerged as a promising data-driven technique for
predicting the Green’s functions at the boundary of the target region, encompassing
all orders of internal multiples [24–28]. This method enables the prediction of
internal multiples by utilizing the reflection response at the surface, in combination
with the direct arrival between the surface and the target boundary in a smooth
background velocity model of the overburden. By solving the Marchenko equations,
we obtain the medium’s response stimulated by virtual sources located at the
target boundary and recorded by receivers at the surface, incorporating all multiple
reflections.

Consequently, the initial step of Marchenko redatuming can be seen as source-side
redatuming within the physical medium, considering reflections in the overburden
that are not accounted for in the background model. Diekmann et al. [29] employed
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Marchenko equations to predict the in-volume Green’s function of a target of interest,
utilizing this wavefield as the incident wavefield in the Lippmann-Schwinger integral.
Similarly, Cui et al. [30] utilized the reciprocity theorem to derive a forward modeling
equation based on Marchenko wavefields for Full waveform inversion.

An additional outcome of the Marchenko integrals is the downgoing component
of the focusing function, which represents the inverse of the transmission response
of the overburden. This focusing function can also be applied on the receiver side
to achieve double-sided redatuming, encompassing both the source and receiver
perspectives. This process, known as Marchenko double-focusing, employs the
Marchenko focusing function to enable double-sided redatuming [31].

1.4. TARGET-ENCLOSED LEAST-SQUARES REVERSE-TIME

MIGRATION

The conventional approach for target-oriented migration typically employs redatum-
ing algorithms that consider only the upper horizontal boundary of the Region
of Interest (ROI) or target [18, 20, 21, 23–25, 27, 32]. This approach overlooks
situations where the ROI is bounded by two boundaries, leading to a situation
where wavefields entering the ROI from the medium beneath the lower boundary of
the ROI are disregarded. This omission hampers the convergence of the inversion
process. Additionally, incorporating the lower boundary in the algorithm can provide
transmission information to the inversion. However, the direct study of including the
lower boundary in the inversion process has been rarely explored.

Notably, Cui et al. [30] present a representation using a reciprocity theorem
and Marchenko redatuming to include surrounding boundaries in target-oriented
Full Waveform Inversion (FWI). Diekmann et al. [33] utilize a Marchenko-retrieved
Green’s function of the ROI and integrate it into the Lippmann-Schwinger integral,
establishing a linear inversion process. Van der Neut et al. [34] devise a
target-enclosed imaging algorithm with the aid of a reciprocity theorem. Among
these papers, only van der Neut et al. [34] directly investigate the consequences of
including the lower boundary in the imaging process, while the others merely imply
its effects implicitly.

Recently, Zheglova et al. [35] introduce a target-enclosed FWI algorithm based on
an interferometric objective function, which solely relies on kinematic information
from the overburden and does not necessitate prior knowledge of the underburden.

1.5. OUTLINE OF THIS THESIS

In this thesis, we address the following question: How to develop a method capable
of predicting the multiple scatterings and integrate it into the formalism of LSRTM
to improve its functionality?
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Chapter 2 of the thesis presents the development of the Marchenko double-
focusing target-oriented LSRTM algorithm. The upgoing Marchenko double-focused
data is considered as the "observed data" and is utilized as input for the LSRTM
algorithm. The TOLSRTM algorithm is completed by formulating a forward modeling
process that matches the Marchenko double-focused data with the predicted data
of the target region. This forward modeling incorporates the downgoing wavefields
from the Marchenko equation and a Born model of the target, utilizing the
Marchenko downgoing wavefield as a virtual source for modeling and inversion. This
algorithm offers the advantage of predicting all interactions between the target and
the overburden, resulting in less degraded and high-resolution images.

Chapter 3 extends the work of [34] and investigates the contribution of the lower
boundary by introducing a target-enclosed LSRTM algorithm. The chapter begins
with a brief explanation of LSRTM and then derives a target-enclosed representation
for Green’s functions on the upper and lower boundaries of the Region of Interest
(ROI) using the reciprocity theorem. This target-enclosed representation is connected
to LSRTM to establish the algorithm. The derived equations are tested using
numerical examples, initially employing physical receivers at the ROI boundaries to
assess the results in an ideal scenario. Additionally, the potential of using virtual
receivers in the algorithm is explored briefly by employing Marchenko redatuming.
Both physical and virtual receiver cases are evaluated using a homogeneous
background and a smooth background velocity model for migration.

Chapter 4 applies the Marchenko double-focusing target-oriented LSRTM algorithm
to generate high-resolution and artifact-free images of a marine dataset from the
Vøring region in the Norwegian Sea.

Chapter 5 presents the concluding remarks of the thesis.

The thesis also includes an Appendix proposing a formulation that can facilitate the
integration of the target-oriented algorithm presented in this thesis with non-linear
inversions, such as Full Waveform Inversion (FWI).
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2
TARGET-ORIENTED LEAST-SQUARES

REVERSE-TIME MIGRATION USING

MARCHENKO DOUBLE-FOCUSING:
REDUCING THE ARTEFACTS CAUSED

BY OVERBURDEN MULTIPLES

Geophysicists have widely used least-squares reverse-time migration (LSRTM) to
obtain high-resolution images of the subsurface. However, LSRTM is computationally
expensive and it can suffer from multiple reflections. Recently, a target-oriented
approach to LSRTM has been proposed, which focuses the wavefield above the target
of interest. Remarkably, this approach can be helpful for imaging below complex
overburdens and subsalt domains. Moreover, this approach can significantly reduce
the computational burden of the problem by limiting the computational domain to
a smaller area. Nevertheless, target-oriented LSRTM still needs an accurate velocity
model of the overburden to focus the wavefield accurately and predict internal multiple
reflections correctly. A viable alternative to an accurate velocity model for internal
multiple prediction is Marchenko redatuming. This method is a novel data-driven
method that can predict Greens functions at any arbitrary depth, including all
orders of multiples. The only requirement for this method is a smooth background
velocity model of the overburden. Moreover, with Marchenko double-focusing, one can
make virtual sources and receivers at a boundary above the target and bypass the
overburden. This thesis chapter proposes a new algorithm for target-oriented LSRTM,

This chapter has been published as A. Shoja, J. van der Neut, and K. Wapenaar. Target-oriented
least-squares reverse-time migration using Marchenko double-focusing: reducing the artefacts caused
by overburden multiples. In: Geophysical Journal International 233.1 (April 2023), pp. 13-32. [1].
Minor modifications have been applied to keep consistency within this thesis.
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which fits the Marchenko double-focused data with predicted data. The predicted data
of the proposed method is modelled by a virtual source term created by Marchenko
double-focusing on a boundary above the target of interest. This virtual source term
includes all the interactions between the target and the overburden. Moreover, the
Marchenko double-focused data and the virtual source term are free of multiples
generated in the overburden. Consequently, our target-oriented LSRTM algorithm
suppresses the multiples purely generated inside the overburden. Our algorithm
correctly accounts for all orders of multiples caused by the interactions between the
target and the overburden, resulting in a significant reduction of the artefacts caused
by the overburden internal multiple reflections and improves amplitude recovery in
the target image compared to conventional LSRTM.
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2.1. INTRODUCTION

In seismic exploration, geophysicists estimate the Earth’s wave propagation paramet-
ers, such as the subsurface velocity and density. To evaluate these parameters, an
array of sources and receivers is deployed at the surface of the Earth to generate and
record seismic waves. A common approach to retrieve the subsurface parameters is
to consider the model of the subsurface as a superposition of a background model
(m0), which corresponds to the long wavelengths, and a short-wavelength reflectivity
model (δm). This scale separation is based on a weak-scattering assumption [2]. In
seismic migration, we aim to obtain a structural image of δm.

Migration is an imaging process based on a linear relation between the
recorded data and the reflectivity model (δm). One of the common migra-
tion techniques is called Reverse-Time Migration (RTM) [3–5]. In RTM, the
underlying linear relation is the Born integral, so the RTM image is produced
by applying the adjoint of the Born operator to the observed data. However,
this approach may suffer from many errors such as noise [6], temporal band
limitations, limited recording aperture [7], spatial aliasing, and multiple reflections [8].

One way to reduce some of these errors is to resolve δm by least-squares
inversion. This approach, known as Least-Squares reverse-time migration (LSRTM),
is the most common algorithm for producing a high-resolution reflectivity model
of the subsurface. Nevertheless, LSRTM is computationally expensive [9] as it
requires solving the wave equation and its adjoint for a large model in many
iterations and storing large data volumes [7, 10, 11]. Reducing the computational
burden of LSRTM is possible by reducing the computational domain. In other
words, by limiting ourselves to a relatively small target region of interest. This
so-called "target-oriented" approach [12–17] divides the medium into two parts: an
overburden and a target. Target-oriented LSRTM (TOLSRTM) achieves this goal by
bypassing the overburden and focusing the wavefield above the target of interest.
This process, in which a wavefield is extrapolated from its current acquisition surface
to another surface, is called redatuming [18–21].

Target-oriented LSRTM, in addition to its lower computational costs, can also be
helpful in cases the overburden produces strong internal multiple reflections that
mask the reflections of the target region. Nonetheless, for this method to work
correctly, a model of the overburden, which can produce all orders of reflections, is
needed. Researchers have shown a strong interest in solving the problems caused
by inaccurate overburden models and the artifacts that internal multiple reflections
can create in LSRTM images. For example, Guo and Alkhalifah [17, 22] introduced a
least-squares waveform redatuming method to redatum the data to the boundary of
the target and combined it with full waveform inversion.

Among different redatuming methods, Marchenko redatuming showed itself as
a promising data-driven tool for predicting the Green’s functions at the boundary
of the target region with all orders of internal multiples [23–26]. The Marchenko
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redatuming can predict the internal multiples by only having the direct arrival
between the surface and the target boundary in a smooth background velocity
model of the overburden. Once we solve the Marchenko equations, we get the
response of the medium stimulated by virtual sources at the boundary of the target
and recorded by receivers at the surface, including all orders of multiple reflections.
Hence, the first step of Marchenko redatuming can be interpreted as source-side
redatuming in the physical medium (including reflections in the overburden that are
not encoded in the background model). Diekmann et al. [27] used Marchenko
equations to predict the in-volume Green’s function of a target of interest and used
this wavefield as the incident wavefield inside the scattering integral. Cui et al.
[28] used the reciprocity theorem to derive a forward modeling equation based on
Marchenko wavefields for Full waveform inversion. Moreover, one of the byproducts
of the Marchenko integrals is the downgoing part of the focusing function, which is
the inverse of the transmission response of the overburden. This focusing function
can also be applied at the receiver side to achieve double-sided (meaning source
and receiver) redatuming [29]. The process of double-sided redatuming with the
help of the Marchenko focusing function is called Marchenko double-focusing.

In this chapter, we consider the upgoing Marchenko double-focused data as the
"observed data" that we feed to an LSRTM algorithm. To complete our TOLSRTM
algorithm, we formulate a forward modeling to match the Marchenko double-focused
data with the predicted data of the target region. This forward modeling is based on
the downgoing wavefields from the Marchenko equation and a Born model of the
target. This Marchenko downgoing wavefield acts as virtual source for the modeling
and the inversion.

The organization of this chapter is as follows: First, we briefly review least-squares
reverse-time migration and target-oriented LSRTM. Second, Marchenko redatuming
and double-focusing are explained. Then, our method of combining target-oriented
LSRTM and Marchenko double-focusing is introduced. In the results section, we
show numerical examples of our method, and we exhibit the consequences of using
an inaccurate velocity model for redatuming and TOLSRTM. Finally, results and
potential future directions are discussed.

2.2. THEORY

2.2.1. LEAST-SQUARES REVERSE-TIME MIGRATION

We start to formulate our target-oriented algorithm by briefly reviewing classical
reverse-time migration with sources and receivers at the acquisition surface. Classical
RTM is based on the Born approximation where the incident wavefield (P i nc ) is
approximated by the background Green’s function

P i nc (x,xs ,ω) ≈G0(x,xs ,ω)W (ω). (2.1)
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Here W (ω) is the wavelet signature, and ω is the angular frequency. Moreover,
x = (x1, x2, x3) is a location inside the medium, xs is the source location, and
G0(x,xs ,ω) is the Fourier transform of the causal solution of the scalar wave equation
in the background velocity model, which in the frequency domain and with a
constant density (ρ0) is equal to the Helmholtz equation:

∇2G0 +k2
0G0 =−iωρ0δ(x−xs ), (2.2)

where k0(x) = ω
c0(x) is the wavenumber, c0 is background velocity, and i is the

imaginary unit.

The reflectivity model is defined as δm = ( 1
c2 − 1

c2
0

), where c is the perturbed velocity.

Here, δm is connected to the scattered data (P scat ) through the following linear
equation [30]:

P scat
pr ed (xr ,xs ,δm,ω) = ω2

ρ0

∫
V

G0(xr ,x,ω)δm(x)G0(x,xs ,ω)W (ω)dx. (2.3)

This integral is taken over the volume of the model (V ). Subscripts "r " and "s" are
used to specify receiver and source, respectively. Equation 2.3 can be written in the
operator form as:

P scat
pr ed (xr ,xs ,δm,ω) =Lδm. (2.4)

Here L is the forward Born operator.

In the standard reverse-time migration method, the reflectivity model is
approximately retrieved by applying the adjoint of L to the observed scattered data:

δmmi g (x) =L †P scat
obs . (2.5)

Green’s functions (G0) which constitute the kernel L , only consider wave propagation
in the smooth background and do not contain reflections from the perturbations.
As a result, this kernel is unable to interpret the multiple-scattered waves correctly.
Moreover, since the adjoint of this kernel is only an approximation of its inverse, the
resolution of the retrieved reflectivity model is low.

To overcome the resolution issue, researchers have utilized a least-squares
approach by replacing the adjoint (L †) with a damped least-squares solution [6, 31]:

δmmi g = [L †L +ϵ]−1L †P scat
obs . (2.6)

However, computing the Hessian matrix (L †L ) and its inverse is prohibitive.
Alternatively, updating the reflectivity model is preferred by an iterative algorithm
that minimizes the L2-norm of the difference between observed and predicted data

C (δm) = 1

2

∥∥P scat
pr ed (δm)−P scat

obs

∥∥2
2. (2.7)
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We can solve this optimization problem for instance by a conjugate gradient
algorithm. Since in least-squares reverse-time migration, the background velocity
model (c0) is kept unchanged, and only the reflectivity model (δm) is updated, the
Green’s functions of Equation 2.3 are only computed once. For an overview of
least-squares reverse-time migration, we refer to Schuster [2].

2.2.2. TARGET-ORIENTED LEAST-SQUARES REVERSE-TIME MIGRATION

Researchers have proposed to implement the imaging and inversion in a target-
oriented manner [12–17]. In this way, the wavefield can be focused below a
complex overburden to produce virtual sources and receivers right above the target
[18–21]. These redatumed wavefields can be used for imaging and inversion. The
advantages of this approach are as follows: 1) The wavefield is focused below specific
structures, such as salt domes, and 2) the computational costs are lower because the
computational domain can be reduced significantly. However, current methods need
a reasonable estimation of the velocity model of the overburden (i.e., the part of the
model above the target of interest), which can predict internal multiple reflections.
Otherwise, these overburden-generated multiple reflections produce artifacts inside
the retrieved image of the target.

Marchenko redatuming enables us to take these overburden-generated multiples
into account and improve the quality of the target-oriented LSRTM images. The
following section gives a brief review of Marchenko redatuming by double-focusing.

2.2.3. MARCHENKO REDATUMING BY DOUBLE-FOCUSING

Marchenko redatuming is a novel data-driven method that can retrieve the
Green’s function at a surface above the target area with all orders of its
multiple-scattered events. The only requirements for this method are the
reflection response at the surface and a smooth background velocity model of the
overburden that can predict the direct arrival from the surface to the redatuming level.

In order to retrieve Green’s functions at the redatuming level, the coupled
Marchenko-type representations are solved iteratively. These equations are [26]

G−
M ar (xv ,xr ,ω) =

∫
Dacq

R(xr ,xs ,ω) f +
1 (xs ,xv ,ω)dxs

− f −
1 (xr ,xv ,ω),

(2.8)

and

G+
M ar (xv ,xr ,ω) =−

∫
Dacq

R(xr ,xs ,ω) f −
1 (xs ,xv ,ω)∗ dxs

+ f +
1 (xr ,xv ,ω)∗.

(2.9)
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In these equations Dacq is the acquisition surface where xs and xr are located, G−
M ar

and G+
M ar are up-going and down-going parts of the Marchenko redatumed Green’s

function (Fig. 2.1a and 2.1b), respectively. Further, f −
1 is the up-going part, and f +

1
is the down-going part of the focusing function, and the subscript "v" stands for a
virtual point, which is located on the redatuming level. We denote this redatuming
level by Dt ar . Moreover, R(xr ,xs ,ω) is the dipole response of the medium at the
acquisition surface. R is related to the upgoing Green’s function (G−) with the
following relation:

R(xr ,xs ,ω) = Ç3,sG−(xr ,xs ,ω)
1
2 iωρ(xs )

, (2.10)

where Ç3,s is the partial derivative in the downward direction taken at xs . Note
that before inserting R(xr ,xs ,ω) into Equations 2.8 and 2.9, we need to remove
horizontally propagating waves and surface-related multiples. For more information
on the derivation of these integrals and their solution for computing the focusing
functions and Green’s functions, please refer to Wapenaar et al. [26] and Thorbecke
et al. [32].

The above-mentioned equations can be interpreted as source-side redatuming, as
the receivers are still located at the acquisition surface. To relocate receivers to the
target level, Staring et al. [29] suggested convolving the up-going and down-going
parts of the Marchenko redatumed Green’s function with the (filtered) downgoing
focusing function in a multi-dimensional sense:

G−,+
d f (xv ,x′v ,ω) =

∫
Dacq

G−
M ar (xv ,xr ,ω)F+

1 (xr ,x′v ,ω)dxr , (2.11)

and

G+,+
d f (xv ,x′v ,ω) =

∫
Dacq

G+
M ar (xv ,xr ,ω)F+

1 (xr ,x′v ,ω)dxr , (2.12)

where

F+
1 (xr ,x′v ,ω) = Ç3,r f +

1 (xr ,x′v ,ω)
1
2 iωρ(xr )

. (2.13)

Here the vertical derivative is taken with respect to xr . In Equations 2.11 and 2.12,
the first superscript on the left-hand side expresses the direction of the propagation
at the receiver location, the second one shows the same at the source location, and
"d f " means "double-focused." The above-mentioned procedure is called "Marchenko
double-focusing."

Through Marchenko double-focusing, we retrieve a down-going Green’s function
(G+,+

d f ) which contains a band-limited delta function and interactions between

target and overburden, and an up-going Green’s function (G−,+
d f ), which is the

up-going response to G+,+
d f from the target at the redatuming level, still including

interactions between target and overburden on the source side (Fig. 2.1c and 2.1d).
In comparison, "conventional double-focusing" is the act of using the inverse of
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the direct arrival of the transmission response of the overburden instead of the
downgoing Marchenko focusing function for double-focusing. Considering that the
inverse of the direct arrival of the transmission response of the overburden does
not contain multiple reflections, it is unable to predict and remove the multiples
generated by the overburden. In the next section, "double-focusing" is a general term
referring to both methods, and it is mentioned wherever a distinction is necessary.
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Figure 2.1.: The Green’s functions resulting from Marchenko redatuming and double-
focusing. a) Downgoing part of the Marchenko Green’s function,
b) upgoing part of the Marchenko Green’s function, c) downgoing
Marchenko double-focused Green’s function and d) upgoing Marchenko
double-focused Green’s function

2.2.4. TARGET-ORIENTED LSRTM BY MARCHENKO DOUBLE-FOCUSING

In this section, I will combine the Marchenko double-focusing scheme with
LSRTM to derive a new forward modeling operator and cost function for the
target-oriented approach. This new forward modeling operator and cost function are
the target-oriented counterparts of Equation 2.3 and Equation 2.7, respectively.
The up-going Green’s function is related to the down-going Green’s function at the
redatuming level with this equation [33]:

G−,+(xvr ,x′v s ,ω) =
∫
Dt ar

R t ar (xvr ,xv s ,ω)G+,+(xv s ,x′v s ,ω)dxv s . (2.14)
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Here xv s and xvr are located at Dt ar , and "vr " and "v s" stand for virtual
receiver/source. In addition, R t ar (xvr ,xv s ,ω) is the dipole reflection response of the
target at the redatuming level with a reflection-free half-space as the overburden.
Substitution of the double-focused Green’s functions into Equation 2.14 lays the
foundation of our target-oriented scheme. However, double-focused data suffers
from limited aperture, meaning we can not retrieve the far-offset section of the data
at the depth (R t ar ) simply because the large propagation angles do not reach the
surface within the limits of the acquisition aperture.

To address this issue, consider we would put actual sources and receivers at the
target boundary. The Green’s functions of this configuration are related to the
double-focused Green’s functions via

G−,+
d f (x′vr ,xv s ,ω) ≈

∫
Dt ar

Γ(x′vr ,xvr ,ω)G−,+(xvr ,xv s ,ω)dxvr . (2.15)

Here

Γ(x′vr ,xvr ,ω) =
∫
Dacq

G+
d (x′vr ,xs ,ω)−1G+

d (xvr ,xs ,ω)dxs (2.16)

is a point-spread function (PSF) with characteristics of a band-limited delta function
that imposes temporal and spatial band limitations to the upgoing Green’s function.
In this equation, G+

d is the first arrival of the Green’s function between the target
boundary and the surface. Γ(x′vr ,xvr ,ω) is a filter that removes high propagation
angles from the data. In other words, Gamma takes the full band reflection response
of the target (R t ar ) once to the surface by applying G+

d to it, and then takes it back to
the focusing level by applying the inverse of the G+

d to the result of the previous step.
In this way, R t ar goes under the same process as the other double-focused wavefields.

To make Equation 2.14 compatible with the double-focused Green’s functions, we
assume

G+,+
d f (xv s ,x′v s ,ω) ≈G+,+(xv s ,x′v s ,ω), (2.17)

and then we convolve both sides of it with the PSF in Equation 4.15 and use
Equation 2.15 to reach

G−,+
d f (x′vr ,x′v s ,ω) =∫
Dt ar

∫
Dt ar

Γ(x′vr ,xvr ,ω)R t ar (xvr ,xv s ,ω)G+,+
d f (xv s ,x′v s ,ω)dxvr dxv s .

(2.18)

In other words, G−,+
d f is related to the G+,+

d f with a temporal and spatial band-limited

version of R t ar (xvr ,xv s ,ω), which we can write as:

R̂ t ar (x′vr ,xv s ,ω) =
∫
Dt ar

Γ(x′vr ,xvr ,ω)R t ar (xvr ,xv s ,ω)dxvr , (2.19)

and subsequently rewrite equation 2.18 as:

G−,+
d f (x′vr ,x′v s ,ω) =

∫
Dt ar

R̂ t ar (x′vr ,xv s ,ω)G+,+
d f (xv s ,x′v s ,ω)dxv s . (2.20)



2

18 2. TARGET-ORIENTED LSRTM USING MARCHENKO DOUBLE-FOCUSING

By taking R̂ t ar as a function of δm of the target, this equation will become
the forward modeling equation for our target-oriented least-squares reverse-time
migration. We take the observed scattered wavefield as

P̂ scat
obs =G−,+

d f (x′vr ,x′v s ,ω)W (ω), (2.21)

and the predicted scattered wavefield as

P̂ scat
pr ed (x′vr ,x′v s ,δm,ω) =∫
Dt ar

R̂ t ar
pr ed (x′vr ,xv s ,δm,ω)G+,+

d f (xv s ,x′v s ,ω)W (ω)dxv s .
(2.22)

Additionally, it is possible to take the G+,+
d f as a function of δm and solve a non-linear

problem for applications where the target is subject to changes [34, 35].

To demonstrate the relation between Equation 2.22 and Equation 2.3, first, consider
Equation 2.19 and insert it into Equation 2.22

P̂ scat
pr ed (x′vr ,x′v s ,δm,ω) =∫
Dt ar

∫
Dt ar

Γ(x′vr ,xvr ,ω)R t ar
pr ed (xvr ,xv s ,δm,ω)G+,+

d f (xv s ,x′v s ,ω)W (ω)dxv s dxvr .
(2.23)

Next, consider

R t ar
pr ed (xvr ,xv s ,δm,ω) = ω2

ρ0

∫
V

G0(xvr ,x,ω)δm(x)
Ç3,v sG0(x,xv s ,ω)

1
2 iωρ0

dx, (2.24)

where we used Equation 2.10 to rewrite Equation 2.3 for reflection response (dipole
response) instead of scattered pressure wavefield (monopole response). Then, we
insert Equation 2.24 into Equation 2.23, and then we rearrange the integrals to reach

P̂ scat
pr ed (x′vr ,x′v s ,δm,ω) =

ω2

ρ0

∫
ν

[∫
Dt ar

Γ(x′vr ,xvr ,ω)G0(xvr ,x,ω)dxvr

]
×δm(x)

[∫
Dt ar

Ç3,v sG0(x,xv s ,ω)
1
2 iωρ(xv s )

G+,+
d f (xv s ,x′v s ,ω)W (ω)dxv s

]
dx.

(2.25)

We redefine the term in the first square bracket as

Ĝ0(x′vr ,x,ω) =
∫
Dt ar

Γ(x′vr ,xvr ,ω)G0(xvr ,x,ω)dxvr , (2.26)

which is the spatial and temporal band limited Green’s function of the target area,
and the term in the second square bracket as

P i nc
d f (x,x′v s ,ω) =∫

Dt ar

Ç3,v sG0(x,xv s ,ω)
1
2 iωρ(xv s )

G+,+
d f (xv s ,x′v s ,ω)W (ω)dxv s ,

(2.27)
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which is the incident wavefield computed by a Marchenko double-focused downgoing
wavefield, so that it includes the interactions between the target and the overburden.
Then we reach the following equation, which has a similar structure as Equation 2.3:

P̂ scat
pr ed (x′vr ,x′v s ,δm,ω) = ω2

ρ0

∫
ν

Ĝ0(x′vr ,x,ω)δm(x)P i nc
d f (x,x′v s ,ω)dx, (2.28)

where ν is the target volume. Finally, the new cost function is

C (δm) = 1

2

∥∥P̂ scat
pr ed (δm)− P̂ scat

obs

∥∥2
2, (2.29)

which we solve with a conjugate gradient algorithm.

It is possible to compute Equations 2.27 and 2.28 in two ways. The first way is
to compute the background Green’s function (G0) with an algorithm of choice, e.g.
finite-difference, and then insert it in Equations 2.27 and 2.28. The second way is
to inject G+,+

d f as a downward radiating dipole line source for each x′v s location in

the target background medium with a numerical PDE solver to compute P i nc
d f . Then

inject ω2

ρ0
δm(x)P i nc

d f as a contrast source to compute P̂ scat
pr ed . The decision of choosing

the appropriate computation method is based on the dimensions of the target and
the number of virtual sources.

2.3. NUMERICAL RESULTS

2.3.1. MARCHENKO DOUBLE-FOCUSING VS. CONVENTIONAL

DOUBLE-FOCUSING

To validate our theory, we use two different synthetic models. We compute the
reflection data sets at the acquisition surface using a finite-difference algorithm [36]
and a dipole (vertical force) source with a flat spectrum wavelet (0 to 100 Hz). The
injection rate is represented as an iω factor in Equation 2.2. Further, we use a
spatial sampling of 2.5 m in both directions and a time sampling of 0.4 ms. To
reduce the data size, we set the receiver temporal sampling to 4 ms. For the sake
of better visualization, we convolve all time-space records with a 30 Hz Ricker wavelet.

For computational simplicity, we define the target area of both models as
a homogeneous background and constant density with an embedded velocity
perturbation (fig. 2.2). Consequently, we use the analytical solution of the Helmholtz
equation for a homogeneous 2D medium to compute the Green’s functions for
TOLSRTM [37, 38]:

G0(x,xs ,ω) = 1

2π
K0

(−iω

c0
|x−xs |

)
. (2.30)

Here K0 is the modified Bessel function of the second kind and zeroth order. In the
TOLSRTM algorithm, the spatial sampling is set to 5 m and the time sampling is 4 ms.
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Note that we do not commit an inverse crime in these examples. As we mentioned
earlier, to compute P̂ scat

obs , we compute the reflection response at the acquisition
surface by a finite-difference algorithm. Then we apply Marchenko double-focusing
to this data set. On the other hand, to compute P̂ scat

pr ed we use Equations 2.30, 2.28,

and 2.27. In all of the mentioned steps, we deal with convolutions that lead to a
loss of resolution. To avoid it, we compute everything with a flat spectrum wavelet
(0 to 100 Hz), and then we convolve both P̂ scat

obs and P̂ scat
pr ed with a 30 Hz Ricker wavelet.

For comparison, we compute the redatuming operator in two different ways for
both models. First, we isolate the direct arrival of the transmission response of
the overburden with a time window and use it as an estimation of the redatuming
operator and redatum the surface data with it. This approach is equivalent to
conventional redatuming of primary reflections [18]. Second, we solve the coupled
Marchenko equations with the help of this direct arrival to compute the redatumed
Green’s and focusing functions [32]. We calculate the direct arrival in this way to
avoid kinematic errors. We discuss the issue of kinematic errors later in section 2.3.3.

SIMPLE MODEL

As a first example, we define a model with a single-layered overburden and a single
small diffractor with dimensions of 5 meters by 5 meters inside a homogeneous
background as the target (Fig. 2.2). The background velocity is set to 1500 m/s, and
the velocity of the overburden layer is 3000 m/s. The density is constant and equal
to 2500 kg /m3 everywhere. For this model, 101 sources and receivers with a spacing
of 10 meters are used. The number and spacing of real and virtual sources and
receivers are the same. In Figure 2.2 blue crosses are the actual source and receiver
locations, and the red dots are the virtual source and receivers locations. Moreover,
the overburden is designed such that a higher-order multiple reflection coincides
with the primary event of the diffractor. We design it in this way to show that our
method can handle the overburden-related multiple reflections correctly.

Figure 2.2.: Velocity model with a single-layered overburden and a small diffractor in
the target.
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In Figure 2.3, the common-source record at the acquisition surface is shown for
this model. The diffractor response of the simple model is visible around 0.5 seconds
in this figure and it partly coincides with a higher-order multiple reflection.

Figure 2.3.: Common-source record at the surface of a source located at lateral
distance = 0 in the simple model. A linear time-varying ( t

d t ) gain is
applied to this record to amplify weaker events.

In Figure 2.4, we show the double-focused data of this model. From here onward,
we use the subscript ’Cdf’ for the data produced by ’conventional double-focusing’,
and ’Mdf’ for ’Marchenko double-focused’ data. In Figure 2.4b, it is visible
that the overburden-related multiple reflections have been suppressed by applying
Marchenko double-focusing, yet the interactions between the overburden and the
target are still present. Moreover, in Figure 2.5, we show the double-focused
down-going Green’s function (Eq. 2.12). The downgoing wavefield of the Marchenko
double-focusing (Fig. 2.5b) contains the higher-order interactions between the
target and the overburden, whereas the downgoing wavefield of the conventional
double-focusing does not include these interactions. Injecting the downgoing
Marchenko double-focused wavefield into the target from the focusing depth
reproduces these high-order interactions in the predicted data of the TOLSRTM
algorithm.
In Figure 2.6 the predicted data of both approaches after 20 iterations are shown.
The predicted data of the conventional double-focusing is not a good fit for the
conventional double-focused data. In contrast, the predicted data of the Marchenko
double-focusing approach is a better fit for Marchenko double-focused data. In
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(a) (b)

Figure 2.4.: Double-focused (upgoing) data of model with a single-layered overburden
corresponding to a virtual source at the middle. a) Conventional double-
focused data (G−,+

C d f ) by applying conventional redatuming operators, and

b) Marchenko double-focused data (G−,+
Md f ). The maximum and the

minimum value of the grey-level scale of both figures are the same and a
linear time-varying ( t

d t ) gain is applied to both records to amplify weaker
events.

Figure 2.6b, the weak multiple reflections generated by interactions between target
and overburden can be seen inside the red box. This confirms that our method
is not only able to suppress multiple reflections generated inside the overburden
significantly but also able to predict the interactions between the target and the
overburden.
Figures 2.7 and 2.8 show the imaging result of these two approaches for the
first iteration and after 20 iterations for the model with single-layered overburden.
Note the horizontal event in Figure 2.7, coming from the overburden multiple,
which overlaps the image of the target. In Figure 2.8, this horizontal event is
strongly suppressed. To demonstrate the resolution improvement of our method, we
compare the horizontal and vertical sections of the image of different approaches in
Figures 2.9a and 2.9b. As these figures are showing, our approach has a superior
resolution. A comparison of the convergence rate of the cost functions of these
approaches is also shown in Figure 2.10.
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(a) (b)

Figure 2.5.: Virtual source wavefield of the model with a single-layered overburden at
the middle virtual source location. a) The conventional double-focused
source (G+,+

C d f ) by applying conventional redatuming operators, and b)

Marchenko double-focused source (G+,+
Md f ). The maximum and the

minimum value of the grey-level scale of both figures are the same and a
linear time-varying ( t

d t ) gain is applied to both records to amplify weaker
events.

SYNCLINE MODEL

As a second example, we design a model with more layers and a syncline-shaped
layer in its overburden (Fig. 2.11a) and a line reflector with a width of 5 meters in
the target region. In this model, the background velocity of the target area is 2400
m/s, and the velocity of the reflector is 2700 m/s. Moreover, density variations are
introduced in the overburden (Fig. 2.11b) to generate substantial internal multiples,
but the density of the target region is constant and equal to 1000 kg /m3. For this
model, 301 sources and receivers with the same spacing as in the first model are
deployed. The number and spacing of real and virtual sources and receivers are the
same. In Figures 2.11a, and 2.11b blue crosses are the actual source and receiver
locations, and the red dots are the virtual source and receivers locations.
Figure 2.12 shows the middle common-source record at the acquisition surface for
the model with the syncline overburden. In Figure 2.13, we show the conventional
double-focused data (Fig. 2.13a), the predicted data in case of conventional
double-focusing (Fig. 2.13c), the Marchenko double-focused data (Fig. 2.13b) and the
predicted data in case of Marchenko double-focusing (Fig. 2.13d) for the model with
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(a) (b)

Figure 2.6.: Predicted data with a virtual source located at the middle of the model
with a single-layered overburden after 20 iterations. a) Conventional
double-focusing, and b) Marchenko double-focusing. Weak multiple
reflections that are predicted by our method can be seen inside the red
box. The maximum and the minimum value of the grey-level scale of
both figures are the same and a linear time-varying ( t

d t ) gain is applied
to both records to amplify weaker events.

the syncline overburden. In Figure 2.13b, it can be seen, compared to conventional
double-focused data (Fig. 2.13a), that the multiples purely generated in overburden
are suppressed by applying Marchenko double-focusing. In addition, by comparing
Figure 2.13c and Figure 2.13d we see that the predicted data of Marchenko
double-focusing not only predicts the primary reflection, but also predicts the
multiples that are generated by interactions between the target and the overburden.
Moreover, in Figure 2.14, we show the double-focused down-going Green’s function
(Eq. 2.12). We see that the virtual source wavefield for the conventional
double-focused predicted data contains only a bandlimited delta function, whereas
the virtual source wavefield for the Marchenko double-focused predicted data
contains additional events to predict the target and overburden interactions in the
Marchenko double-focused data in Figure 2.13b.
Consequently, the conventional double-focusing approach is unable to fit the
predicted data, whereas the Marchenko double-focusing approach can produce
predicted data with an acceptable fit to the Marchenko double-focused data. Note
that the predicted data of our proposed method can predict the interactions between
the target and the overburden, without the knowledge of the overburden reflectivity
model, by taking G+,+

Md f as the virtual source wavefield. This source contains these
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(a) RTM

(b) LSRTM

Figure 2.7.: Retrieved target image of the model with a single-layered overburden by
conventional double-focusing operators. a) RTM, and b) LSRTM after 20
iterations.

(a) RTM

(b) LSRTM

Figure 2.8.: Retrieved target image of the model with a single-layered overburden by
Marchenko double-focusing. a) RTM, and b) LSRTM after 20 iterations.

interactions, as can be seen in Figure 2.14b.

Figures 2.15 and 2.16 show the imaging result of these two approaches for the
first iteration and after 20 iterations for the model with the syncline overburden.
To demonstrate the improvement of vertical resolution and lateral continuity, we
compare the horizontal and vertical sections of the image of different approaches in
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Conventional double-focused LSRTM

Conventional double-focused RTM

Marchenko double-focused LSRTM

Marchenko double-focused RTM

(a) Horizontal cross-section

Conventional double-focused LSRTM

Conventional double-focused RTM

Marchenko double-focused LSRTM

Marchenko double-focused RTM

(b) Vertical cross-section

Figure 2.9.: A comparison of the horizontal and vertical cross-section of the retrieved
image of the simple model with different approaches. a) A horizontal
cross-section at depth of 450 m, and b) A vertical cross section at lateral
distance zero.

Figures 2.17a and 2.17b. As these figures are showing, our approach has a superior
vertical resolution and lateral continuity. A comparison of the cost functions of
these different approaches to TOLSRTM is also shown in Figure 2.18. TOLSRTM
converges faster when Mdf (instead of Cdf) is used for redatuming, since the
multiple reflections are correctly taken into account.

2.3.2. INVESTIGATING THE EFFECT OF THE POINT-SPREAD FUNCTION

In this section, we investigate the effect of the PSF and the necessity of applying it
to the reflection response of the target area. In Figure 2.19, we show the effect of the
PSF (Eq. 4.15) on the true reflection response (as modeled during each iteration of
TOLSRTM) of the target area of the simple model and compare it with Marchenko
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Conventional double-focused LSRTM

Marchenko double-focused LSRTM

Figure 2.10.: A comparison between convergence rate of cost functions of different
approaches to TOLSRM for the simple model.

double-focused data. Figure 2.19a shows the modeled data (Eq. 2.28) in the true
perturbation model without PSF. Figure 2.19b shows the same after the PSF has been
applied. Figure 2.19c shows the Marchenko double-focused data. We can see the
effect of the PSF by analyzing Figures 2.19b and 2.19c. The PSF not only imposes a
band limitation on the data but also dampens the far-offsets such that the predicted
data fits the observed data better. Thus, applying the PSF to the reflection response
is necessary for better convergence. Moreover, in Figure 2.20 the cost function of
TOLSRTM with and without PSF is shown. From this Figure, we conclude that
including the PSF in our formulation successfully improves the convergence.

2.3.3. INACCURATE VELOCITY MODEL

To determine the sensitivity of our algorithm to kinematic errors, we define a model
similar to the model with a syncline in the overburden but with a high-velocity
inclusion in the overburden and a more complex target (Fig. 2.21a). We use a
smooth version of this model (Fig. 2.21b) to estimate the direct arrival between
the surface and the focusing level. In addition, we use the target part of this
smooth velocity model to compute the background Green’s functions with a finite
difference algorithm for the forward and adjoint kernels. The density model is
shown in Figure 2.21c. In Figure 2.22 we show images as obtained by applying
our methodology with the inaccurate velocity model. The yellow arrows and
ellipses in Figure 2.22 indicate discontinuities and depth estimation errors caused
by velocity inaccuracies. Moreover, the red arrows in this figure designate a couple
of artifacts that are removed by our method, and the white arrows and ellipses
show the amplitude improvements resulting from our method. Despite the fact
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(a) Velocity model

(b) Density model

Figure 2.11.: Velocity and density of the model with the syncline overburden and a
line reflector in the target.

that we use a wrong velocity model, our algorithm which is based on Marchenko
double-focusing is still able to correctly predict and reduce the artifacts caused by
the overburden-related multiple reflections and improves the quality and amplitude
recovery of the LSRTM image. The observation that Marchenko imaging is not
sensitive to errors in the velocity model is not new, see for instance Broggini et al.
[39].

2.4. DISCUSSION
Our numerical results suggest that our Marchenko target-oriented LSRTM can recover
a clearer image of the target of interest than conventional TOLSRTM. The retrieved
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Figure 2.12.: Common-source record at the surface of a source located at lateral
distance = 0 in the model with the syncline overburden. A linear
time-varying ( t

d t ) gain is applied to this record to amplify weaker events.

image of the model with single-layered overburden using Marchenko double-focusing
(Fig. 2.8b) has no (or at least a reduced) imprint of the overburden-related spurious
reflector. In contrast, the recovered image using conventional redatuming operators
(Fig. 2.7b) could not handle this spurious reflector even after 20 iterations. A
further investigation into the resolution improvement of our LSRTM algorithm
compared to the conventional double-focused LSRTM, shows that our algorithm
is able to improve the resolution in both horizontal and vertical directions
(Fig. 2.9). The model with the syncline overburden demonstrates the power of
using Marchenko double-focusing for target-oriented LSRTM in removing the strong
overburden-related multiple reflection artifacts. The image that is obtained with the
conventional redatuming operator (Fig. 2.15b) is overwhelmed by artifacts from the
overburden. On the other hand, our algorithm is able to remove these artifacts and
retrieves a clear image of the target area (Fig. 2.16b). In addition, our TOLSRTM
algorithm can model data that can predict the interactions between the target area
and the overburden without the knowledge of the overburden reflectivity model.
Moreover, the Marchenko equation has been derived for elastic media too [40–42].
Hence, we expect that the current methodology can also be extended to elastic LSRTM.

Furthermore, a comparison between Figure 2.4b and Figure 2.19 shows the
necessity of applying the PSF to the modeled reflection data of the target. Without
imposing this PSF on the modeled data, the predicted data (Fig. 2.19a) do not match
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(a) (b)

(c) (d)

Figure 2.13.: A comparison between Double-focused data and predicted data of
the model with the syncline overburden corresponding to the middle
virtual source. a) Conventional double-focused data, b) Marchenko
double-focused data, c) predicted data of conventional double-focusing,
and d) predicted data of Marchenko double-focusing. The first few time
samples are set to zero to mute focusing artifacts. The maximum and
the minimum value of the grey-level scale of all figures are the same.

the observed data (Fig. 2.19c). Hence, the TOLSRTM without PSF converges slowly
compared to the case where the PSF is applied to it (Fig. 2.20).

In our last example, we addressed the issue of velocity inaccuracies in the
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(a) (b)

Figure 2.14.: Virtual source wavefield of the model with the syncline overburden
for the middle virtual source. a) The conventional double-focused
source (G+,+

C d f ) by applying conventional redatuming operators, and b)

Marchenko double-focused source (G+,+
Md f ). The maximum and the

minimum value of the grey-level scale of both figures are the same.

(a) RTM

(b) LSRTM

Figure 2.15.: Retrieved target image of the model with the syncline overburden by
conventional double-focusing operators. a) RTM, and b) LSRTM after
20 iterations

overburden. As Figure 2.22 shows our method is able to improve the quality of
the image by suppressing the overburden-generated multiples and predicting the
interactions between target and overburden, even if the overburden velocity model
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(a) RTM

(b) LSRTM

Figure 2.16.: Retrieved target image of the model with the syncline overburden by
Marchenko double-focusing. a) RTM, and b) LSRTM after 20 iterations.

is inaccurate.

The Marchenko redatuming algorithm used in this chapter requires surface-related
multiples to be removed from the acquired reflection data. However, researchers
exploited the possibility of including the surface-related multiple reflections within
the Marchenko framework [23, 25, 43]. Consequently, it is quite straightforward to
include surface-related multiples in our algorithm.

2.5. CONCLUSION
We have introduced a target-oriented LSRTM algorithm that can correctly handle the
internal multiple reflections generated in the overburden and interactions between
target and overburden. To achieve this, we solved the Marchenko equations to
obtain the Marchenko double-focused data and the downgoing part of the focusing
function. By having these Green’s functions and focusing operators, we can formulate
a Born integral that can be used as the forward modeling operator and an adjoint
modeling operator can also be constructed for target-oriented LSRTM. Importantly,
we have to apply a point-spread function to the reflection response of the target to
account for the finite spatial bandwidth caused by the overburden and the finite
recording aperture at the acquisition surface.

Since LSRTM and full waveform inversion are closely related, the question may
arise: "Can we modify our algorithm for target-oriented full waveform inversion?".
To address this question, in the appendix of this thesis, I propose a method based
on Marchenko target-replacement technique to develop a 1D target-oriented FWI
algorithm. Despite the acceptable performance of the proposed method in the
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Conventional double-focused LSRTM

Conventional double-focused RTM

Marchenko double-focused LSRTM

Marchenko double-focused RTM

(a) Horizontal cross-section

Conventional double-focused LSRTM

Conventional double-focused RTM

Marchenko double-focused LSRTM

Marchenko double-focused RTM

(b) Vertical cross-section

Figure 2.17.: A Comparison of the Horizontal and vertical cross-section of the
retrieved image of the model with the syncline overburden with
different approaches. a) A horizontal cross-section at depth of 1200 m,
and b) A vertical cross-section at lateral distance zero.

appendix for the 1D situation, we have to mention that the double-focused data does
not include the diving waves, so it is dominated by the medium-to-short wavelengths
and does not include long wavelengths. These long wavelengths are crucial for
velocity recovery in the 2D and 3D full waveform inversion process. Moreover,
the evanescent waves, such as refracted waves, are not handled by the current
redatuming methodologies. The aforementioned issues put a limit on modifying
our algorithm to be applied for target-oriented full waveform inversion, which
requires long-to-medium wavelengths. However, recently some advancement has
been made towards including evanescent waves within the Marchenko framework
[44–46]. Nevertheless, the double-focused data contains all target reflections correctly
(but not the other waveforms). Therefore, another possible future direction of
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Conventional double-focused LSRTM

Marchenko double-focused LSRTM

Figure 2.18.: A comparison between convergence rate of cost functions of different
approaches to TOLSRM for the model with the syncline overburden.

this research is to investigate the potential of our method in improving inversion
methods that rely on reflections only, such as joint migration inversion [47] and
reflection waveform inversion [48].

In recent years, the focus of the seismic exploration community has shifted
toward fast and high-resolution imaging and inversion methods. Our proposed
target-oriented LSRTM is able to produce such images in a relatively small target
region and has a relatively faster convergence rate while correctly accounting for
multiple reflections caused by the overburden.
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(a) (b)

(c)

Figure 2.19.: Comparison of the reflection response of target area of the model with
a single-layered overburden. a) Without PSF, and b) With PSF, and c)
double-focused data. The maximum and the minimum value of the
grey-level scale of figures are set to the maximum and the minimum of
the input.
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Figure 2.20.: Comparison of the cost function of the TOLSRTM with and without PSF.
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(a)

(b)

(c)

Figure 2.21.: Velocity model: a) True model, b) smooth model, and c) density model
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(a)

(b)

Figure 2.22.: Target-oriented LSRTM with the Erroneous velocity model. a)
Conventional double-focusing, and b) Marchenko double-focusing. The
red arrows show some overburden artifacts that are removed, the white
arrows and ellipses show amplitude improvement and the yellow ones
show some of the effects of velocity errors. The value of the grey-level
scale is set to 25% of the maximum value.
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3
TARGET-ENCLOSED LEAST-SQUARES

SEISMIC IMAGING

Least-Squares Reverse-Time Migration (LSRTM) is a method that seismologists
utilize to compute a high-resolution subsurface image. Nevertheless, LSRTM is a
computationally demanding problem. One way to reduce the computational costs of
the LSRTM is to choose a small region of interest and compute the image of that
region. However, finding representations that account for the wavefields entering the
target region from the surrounding boundaries is necessary. This chapter confines the
region of interest between two boundaries above and below this region. The acoustic
reciprocity theorem is employed to derive representations for the wavefields at the
upper and lower boundaries of the target region. With the help of these representations,
a target-enclosed LSRTM algorithm is developed to compute a high-resolution image
of the region of interest. Moreover, the possibility of using virtual receivers created by
Marchenko redatuming is investigated.

This chapter is published as A. Shoja, J. van der Neut and K. Wapenaar, "Target-Enclosed
Least-Squares Seismic Imaging," in IEEE Transactions on Geoscience and Remote Sensing, vol. 61,
pp. 1-12, 2023, Art no. 4503612, doi: 10.1109/TGRS.2023.3293725. [1]. Minor modifications have
been applied to keep consistency within this thesis.
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3.1. INTRODUCTION

Wavefield migration is the art of computing the medium reflectivity from the
recorded wavefield passing through the medium. Many migration algorithms are
available, such as Kirchhoff migration [2], one-way wave equation migration [3],
and Reverse-Time Migration (RTM) [4–6]. RTM is one of the common migration
algorithms. RTM is commonly implemented by applying the adjoint of the Born
operator to the recorded data [7]. However, the inverse of the operator is needed
for the true image. Consequently, the migration result suffers from amplitude and
resolution issues [8–10]. One way to address this problem is to solve the migration
problem with a least-squares solution called Least-Squares Reverse-Time Migration
(LSRTM). The least-squares solution is usually applied as an iterative optimization
problem.

However, LSRTM is computationally expensive [9, 11–13]. To reduce the
computation cost of the LSRTM, one can reduce the computation domain by
confining the model to a Region of Interest (ROI) by recording or computing the
wavefields at the boundary of this region. The process of migrating for a ROI is called
target-oriented migration [14–20]. However, deploying receivers on the boundaries
of ROI usually is not possible due to physical obstacles.

Due to the aforementioned accessibility issue, the typical approach for target-
oriented migration is to opt for redatuming algorithms and only consider the upper
horizontal boundary of the ROI or target [19, 21–27]. In cases where the ROI is
enclosed between two boundaries, i.e., when wavefields are entering the ROI from
the underburden through the lower boundary [28, 29], the shortcoming of only
considering the upper boundary is that any wavefield entering the ROI from the
medium below the lower boundary of the ROI is unaccounted for, hindering the
convergence of the inversion process. Moreover, including the lower boundary in the
algorithm can add transmission information to the inversion. However, including
the lower boundary in the inversion process has rarely been studied directly. For
instance, Cui et al. [30] derive a representation with a reciprocity theorem and
Marchenko redatuming to include surrounding boundaries in target-oriented full
waveform inversion (FWI), Diekmann et al. [31] use a Marchenko retrieved Green’s
function of the ROI and insert it in the Lippmann-Schwinger integral to create a
linear inversion process, and van der Neut et al. [32] design a target-enclosed
imaging algorithm with the help of a reciprocity theorem. Of the above-
mentioned papers, only [32] directly studies the consequences of including the lower
boundary in the imaging process, and the others only implicitly imply the effects of it.

This chapter, which is an extension of [32], studies the contribution of the
lower boundary by introducing a target-enclosed LSRTM algorithm. To derive this
algorithm, we start by explaining the LSRTM briefly. Next, we derive a target-enclosed
representation for Green’s functions on the upper and lower boundaries of the ROI by
using the reciprocity theorem. Then, we connect this target-enclosed representation
to LSRTM to complete our algorithm. After deriving the required equations, we
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test our algorithm with numerical examples. First, we use physical receivers at the
boundaries of the ROI to check the results in the ideal situation. Then, we briefly
introduce Marchenko redatuming to explore the possibility of using virtual receivers
in our algorithm. For both physical and virtual receivers cases we use both a
homogeneous background and a smooth background velocity as the velocity model
for migration. Finally, we finish the chapter by discussing the results and providing
a conclusion.

3.2. THEORY
To develop the theory, we start with a brief discussion of LSRTM. Next, a
representation of the target-enclosed Green’s function is given with the help of
the reciprocity theorem. Finally, to derive our target-enclosed LSRTM formulation,
we combine LSRTM with the target-enclosed representations. In the entire theory
section, we are in the frequency-space domain, and for simplicity, we drop the
dependency on angular frequency (ω).

3.2.1. LEAST-SQUARES REVERSE-TIME MIGRATION

We start the explanation of LSRTM by investigating the Born integral for the scattered
wavefield by a scattering potential [7, 33, 34]. Here we follow the convention of [34]:

P scat (x′) =
∫
V
γ2

0(x)G0(x′,x)χc (x)P i nc (x)dx. (3.1)

In this equation, x′ is the observation location, x is a location inside the computation
volume (V ), P scat (x′) is the scattered pressure field at the observation point, P i nc (x)
is the incident pressure field at the computation point and G0(x′,x) is the background

Green’s function between x and x′. Moreover, γ0(x) = −iω
c0(x) and χc (x) = 1− c2

0 (x)

(c scat (x))2 is

the propagation velocity perturbation, where c0(x) and c scat (x) are the background
and scatterer’s velocity, respectively.

It is possible to rewrite this equation in matrix form:

Pscat
pr ed (δm) = Lδm. (3.2)

Here, L is matrix form of the integral operator of equation 3.1 and δm is a vector,
containing the perturbation χc (x).

To obtain an estimation of δm, we can apply the adjoint of L to the observed data:

δmi mg = L†Pscat
obs , (3.3)

where † denotes complex conjugate transposition.
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We can go one step further to obtain a high-resolution estimation of the image by
minimizing the following objective function [35]:

J (δm) = 1

2
‖Pscat

pr ed (δm)−Pscat
obs ‖2

2. (3.4)

Different optimization algorithms, such as conjugate gradient, can minimize this
function. This optimization problem is known as Least-Squares Reverse-Time
Migration (LSRTM).

3.2.2. TARGET-ENCLOSED REPRESENTATIONS

LSRTM is a computationally expensive algorithm. In order to reduce its compu-
tational burden, seismologists usually opt for a target-oriented algorithm, limiting
the medium to a smaller region. As we mentioned in section 3.1, target-oriented
algorithms usually redatum the data to the upper boundary of the target and ignore
any information coming from the lower boundary.

In this section, the idea is to find a representation that can account for a
heterogeneous medium above the upper and below the lower boundary of the target
area. To derive this representation, we follow [32]. The starting point of the
derivation is the acoustic reciprocity theorem of the convolution type [22], which
connects the wavefields of two different states via∫

dVu

ρ−1(p+
A(Ç3p−

B ) + p−
A(Ç3p+

B ))dx =
∫
dVl

ρ−1(p+
A(Ç3p−

B ) + p−
A(Ç3p+

B ))dx. (3.5)

Here, we consider a volume V , which is limited by two infinite horizontal surfaces.
States A and B (Fig. 3.1) are defined in two different media which are identical
inside the volume V with boundaries denoted by dVu (upper) and dVl (lower), and
arbitrary outside of this volume. In addition, p+ and p− are decomposed wavefields
on the boundaries where + means downgoing and − means upgoing, and Ç3 is the
partial derivative in direction x3 (downward).

To continue the derivation we define Green’s function G(x,xs ) as the solution of
the following Helmholtz equation:

∇2G +k(x)2G =−ρδ(x−xs ), (3.6)

where k(x) = ω
c(x) is the wavenumber, and c is the propagation velocity.

A representation for Green’s function at the upper boundary of the target (dVu)
can be derived by defining state A in the actual medium and state B in a medium
identical to medium A inside the volume V (target) and homogeneous outside of
it. We denote the Green’s functions of state A with G(x,xs ) and Green’s function of
state B with Gt ar (x,xu). In state A we define p±

A =G±(x,xs ), where xs is a location
at Earth’s surface dV0. For state B we have p±

B =G±
t ar (x,xu). Here, xu is located at

the upper boundary dVu and G±
t ar (x,xu) is stimulated by an impulsive point source
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Figure 3.1.: (a) State A and (b) state B. Black stars depict source locations, and black
reversed triangles depict receiver locations.

at xu . Since the half-space above the target is homogeneous in state B, the vertical
derivative of the G+

t ar (x,xu) at dVu is

lim
xu,3→xu,3+

Ç3G+
t ar (x,xu) =−ρ

2
δ(xH −xu,H ). (3.7)

Here, xu,3 → xu,3+ means the limit from below the boundary, where xH and xu,H

denote the horizontal coordinates of x and xu , respectively. In addition, since in
state B the medium below the target is reflection-free, G−

t ar (x,xu) and its derivative
disappear at the lower boundary dVl . By substituting all of the ingredients into
equation 3.5, the following can be reached:

G−(xu ,xs ) =
∫
dVu

G+(x,xs )
2Ç3

ρ(x)
G−

t ar (x,xu)dx+
∫
dVl

G−(x,xs )
2Ç3

−ρ(x)
G+

t ar (x,xu)dx. (3.8)

This equation is the base for our target-enclosed LSRTM derivation. The first integral
on the right-hand side of Equation 3.8 accounts for anything entering the medium
from the upper boundary, and the second integral accounts for anything that comes
from the lower boundary.

3.2.3. TARGET-ENCLOSED LSRTM
To merge this representation with LSRTM, we use∫

dV
p±

A(x)Ç3p∓
B (x)dx =−

∫
dV

p∓
B (x)Ç3p±

A(x)dx (3.9)
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[36], and we use Green’s function reciprocity:

G−
t ar (x′u ,xu) =G−

t ar (xu ,x′u) (3.10)

G+
t ar (xl ,xu) =G−

t ar (xu ,xl ), (3.11)

where x′u is an element of dVu and xl is an element of dVl . We rewrite Equation 3.8
as follows:

G−(xu ,xs )W (ω) =
∫
dVu

G−
t ar (xu ,x′u)Su(x′u ,xs )dx′u+

∫
dVl

G−
t ar (xu ,xl )Sl (xl ,xs )dxl , (3.12)

where W (ω) is the source signature,

Su(x′u ,xs ) =
2Ç′3,u

−ρ(x′u)
G+(x′u ,xs )W (ω) (3.13)

is the dipole source from the upper boundary of the target, which accounts for
reflections from above the upper boundary of the target. Further

Sl (xl ,xs ) = 2Ç3,l

ρ(xl )
G−(xl ,xs )W (ω) (3.14)

is the dipole source term from the lower boundary of the target, which accounts for
the reflections generated below the target. Fig. 3.2 represents the right-hand side of
Equation 3.12.

As said above, the second integral on the right-hand side of equation 3.12 is the
contribution of the medium below the target to the data. This integral can be split
into two terms: 1) the arrival from the lower boundary to the upper one in the
background, and 2) the forward scatterings inside the target region. In mathematical
terms:∫

dVl

G−
t ar (xu ,xl )Sl (xl ,xs )dxl =

∫
dVl

G−
0,t ar (xu ,xl )Sl (xl ,xs )dxl

+
∫
dVl

G−,scat
t ar (xu ,xl )Sl (xl ,xs )dxl . (3.15)

Here, G−
0,t ar (xu ,xl ) is the Green’s function in the background model of the target,

and G−,scat
t ar (xu ,xl ) is the Green’s function that contains the scattered events. By

substituting equation 3.15 in equation 3.12 and taking the background contribution
to the left-hand side we end up with:

G−(xu ,xs )W (ω)−
∫
dVl

G−
0,t ar (xu ,xl )Sl (xl ,xs )dxl =

∫
dVu

G−,scat
t ar (xu ,x′u)Su(x′u ,xs )dx′u

+
∫
dVl

G−,scat
t ar (xu ,xl )Sl (xl ,xs )dxl . (3.16)

Importantly, the Green’s function G−
t ar (xu ,x′u) in the first integral on the right-hand

side of equation 3.12 is the scattered Green’s function inside the target, so we rename
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Figure 3.2.: (a) The first integral on the right-hand side of Equation 3.12, and (b) the
second integral on the right-hand side of Equation 3.12.

it to G−,scat
t ar (xu ,x′u).

To obtain our target-enclosed LSRTM algorithm, we take three steps: First, we
assign

P scat ,T E
obs (xu ,xs ) =G−(xu ,xs )W (ω)−

∫
dVl

G−
0,t ar (xu ,xl )Sl (xl ,xs )dxl , (3.17)

where "TE" stands for "Target-Enclosed". Second we compute the scattered Green’s
functions (G−,scat

t ar (xu ,x′u) and G−,scat
t ar (xu ,xl )) with equation 3.1

G−,scat
t ar (xu ,x′u) =

∫
V
γ2

0(x)G0,t ar (xu ,x)χc (x)G0,t ar (x,x′u)dx, (3.18)

and

G−,scat
t ar (xu ,xl ) =

∫
V
γ2

0(x)G0,t ar (xu ,x)χc (x)G0,t ar (x,xl )dx, (3.19)

where x is a location inside the target volume. Using this in the right-hand side of
Equation 3.16, we obtain

∫
dVu

G−,scat
t ar (xu ,x′u)Su(x′u ,xs )dx′u +

∫
dVl

G−,scat
t ar (xu ,xl )Sl (xl ,xs )dxl =∫

V
γ2

0(x)G−,scat
t ar (xu ,x)χc (x)P i nc,T E (x,xs )dx, (3.20)
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where

P i nc,T E (x,xs ) =
∫
dVu

G−
0,t ar (x,x′u)Su(x′u ,xs )dx′u +

∫
dVl

G−
0,t ar (x,xl )Sl (xl ,xs )dxl . (3.21)

Finally, we complete our derivation by assigning

P scat ,T E
pr ed (xu ,xs ) =

∫
V
γ2

0(x)G0,t ar (xu ,x)χc (x)P i nc,T E (x,xs )dx. (3.22)

Our approach computes an incident wavefield, which contains all of the information
from the surrounding medium of the target of interest. This means our approach
is not limited to one kind of parametrization, and it can be implemented for any
parametrization choice. Further, It is also possible to inject Su and Sl as dipole
sources using a finite-difference algorithm instead of solving Equations 3.21 and
3.22. Finally, we can solve the following least-squares problem, i.e., minimizing the
objective function:

J (δm) = 1

2
‖Pscat ,T E

pr ed (δm)−Pscat ,T E
obs ‖2

2. (3.23)

3.2.4. MARCHENKO GREEN’S FUNCTION RETRIEVAL

We obtained a target-enclosed LSRTM algorithm in the previous section. Nevertheless,
in most real-world situations, one does not have physical access to the boundaries of
the region of interest. The alternative to physical receivers inside the medium is to
create virtual receivers with redatuming. Marchenko redatuming is a state-of-the-art
data-driven approach that can compute Green’s functions at any depth level with
all orders of multiple reflections from the reflection response at the surface and a
smooth background model of the medium.

To summarise, these redatumed Green’s functions are retrieved by iteratively
solving the Marchenko-type representations. These representations are [22]

G−
M ar (xv ,xs ) =

∫
dV0

R(xs ,x′s ) f +
1 (x′s ,xv )dx′s − f −

1 (xs ,xv ), (3.24)

and

G+
M ar (xv ,xs ) =−

∫
dV0

R(xs ,x′s ) f −
1 (x′s ,xv )∗ dx′s + f +

1 (xs ,xv )∗. (3.25)

Here, dV0 is the surface, xs and x′s are locations at the surface, and xv is a virtual
location on an arbitrary depth. Moreover, f ±

1 are upgoing (-) and downgoing (+)
parts of the focusing function. In addition, R(xs ,x′s ) is the reflection response at the
surface which is related to the upgoing Green’s function of the medium via

R(xs ,x′s ) =
2Ç′3,s

−ρ(x′s )
G−(xs ,x′s ). (3.26)
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Here, Ç′3,s is the vertical partial derivative at x′s . We refer to [37] for a comprehens-
ive explanation of the derivation and numerical algorithms for solving these equations.

Consequently, we can substitute Marchenko Green’s functions with the target
boundaries Green’s functions as follows:

G+(xu ,xs ) ≈G+
M ar (xu ,xs ), (3.27)

G−(xu ,xs ) ≈G−
M ar (xu ,xs ), (3.28)

and
G−(xl ,xs ) ≈G−

M ar (xl ,xs ). (3.29)

Equations 3.27 and 3.29 can be used in equations 3.13 and 3.14 to obtain the source
terms Su and Sl , whereas equation 3.28 can be used in equation 3.17 to obtain the
observed target-oriented scattered response.

3.3. NUMERICAL RESULTS

3.3.1. SINGLE-SIDED ALGORITHM VS. DOUBLE-SIDED ALGORITHM

In this section, we aim to visualize the performance of target-enclosed LSRTM. Here
we use direct modeling of the Green’s functions with receivers inside the medium;
in section B we use the Marchenko method to retrieve these Green’s functions from
the reflection response at the surface. A model with dimensions of 1000 m by 650
m is designed as shown in Fig. 3.3. The spatial grid sampling is 5 m in both
directions. The target region consists of a rectangular velocity anomaly embedded
in a homogeneous background and a constant density. A total of 201 sources are
placed at the surface, and 402 receivers are on the target’s upper (250 m) and lower
(550 m) boundaries. The required Green’s functions and wavefields are computed by
a finite-difference algorithm [38] and a Ricker wavelet with a dominant frequency of
30 H z, where the recording time sampling of the receivers is set to 4 ms. According
to the theory section, the wavefields at the receiver positions are decomposed into
upgoing and downgoing components. Fig. 3.4 shows the upgoing component of the
data at the upper boundary with a source located at xs = (0,0), corresponding to the
first term on the right-hand side of Equation 3.17. We study the effects of including
the lower boundary with two different cases: 1) a homogeneous background velocity
and 2) a smooth background velocity for migration.

HOMOGENEOUS BACKGROUND VELOCITY

In this section, we show the results using a homogeneous background velocity in
the target area. The true perturbation model of this case is shown in Fig. 3.5.
We design two scenarios to demonstrate the performance and consequences of
the target-enclosed algorithm. For the first scenario, we only consider the upper
boundary of the target in the inversion process and completely ignore the lower
boundary contribution. We call this scenario "single-sided algorithm." For this
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(a)

(b)

Figure 3.3.: (a) Velocity model and (b) density model. The blue stars at the surface
are source locations, and the red dots are the boundaries of the target.

scenario, the observed data is the same as Fig. 3.4. For the second one, we include
the lower boundary contribution, which is the "double-sided algorithm" explained
in the previous section. The observed data for this scenario is shown in Fig.
3.6a, which corresponds to the left-hand side of Equation 3.17, whereas Fig. 3.4
shows G−(xu ,xs )W (ω). The black arrows in Figures 3.4 and 3.6a indicate the full
reflection from the reflector below the lower boundary and the forward scattered
part of it, respectively. Figures 3.6b and 3.6c show the predicted data of single-sided
and double-sided algorithms, respectively, after 30 iterations of LSRTM. A detailed
investigation of Fig. 3.6 proves that the double-sided algorithm can predict the
forward scattered event that is passing through the perturbation, which is indicated
by a black arrow in Fig. 3.6c.

To move our investigation further, we show the imaging results of both algorithms
in Fig. 3.7. Figures 3.7a and 3.7b show the RTM images of both approaches. As
we can see, the RTM result of the double-sided algorithm faintly reveals the long
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Figure 3.4.: Upgoing component of data at the upper boundary with a source located
at xs = (0,0). This is the data corresponding to the first term on the
right-hand side of Equation 3.17. The black arrow indicates the total
event generated by the reflector below the target region described by the
left-hand side of Equation 3.15.

Figure 3.5.: True perturbation model in a homogeneous background.

wavelength part of the model. Moving to the LSRTM results in Figures 3.7c and
3.7d, we observe an interesting outcome. The LSRTM result of the single-sided
algorithm shows that it cannot recover the long wavelength part of the model (Fig.
3.7c). In contrast, the double-sided algorithm can incorporate the information
embedded inside the forward scattered field (Fig. 3.7d), and it recovers the long



3

54 3. TARGET-ENCLOSED LEAST-SQUARES SEISMIC IMAGING

(a) (b)

(c)

Figure 3.6.: Homogeneous background velocity case, data domain: (a) Upgoing
component of double-sided observed data at the upper boundary
(Equation 3.17), (b) predicted data of single-sided algorithm after 30
iterations of LSRTM, and (c) predicted data of double-sided algorithm
after 30 iterations of LSRTM. All wavefields are recorded at the upper
boundary of the target (250 m). The black arrow indicates the scattered
event generated by the reflector below the target region described by the
second term on the right-hand side of Equation 3.15.
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wavelength parts of the volume perturbation. Moreover, Fig. 3.8 shows the
horizontal cross-section of the retrieved perturbation. In this figure, we can see
the double-sided approach can recover the vertical boundaries of the perturbation.
Nevertheless, since the background velocity for the migration is not updated during
LSRTM, the fit of the reflected event from below the target is not accurate.

(a)

(b)

(c)

(d)

Figure 3.7.: Homogeneous background velocity case, image domain: (a) RTM image
of the single-sided algorithm, (b) RTM image of the double-sided
algorithm, (c) LSRTM image of the single-sided algorithm after 30
iterations, and (d) LSRTM image of the double-sided algorithm after 30
iterations.

To conclude this section, we compare the cost functions of both approaches in



3

56 3. TARGET-ENCLOSED LEAST-SQUARES SEISMIC IMAGING

Single-sided LSRTM

Single-sided RTM

Double-sided LSRTM

Double-sided RTM

Perturbation

Figure 3.8.: Horizontal cross-section at the depth of 400 m of the retrieved
perturbation with a homogeneous migration velocity.

Fig. 3.9. The cost function of target-oriented LSRTM shows a slow convergence
rate. In comparison, the target-enclosed approach includes the extra information
coming from the lower boundary, so its cost function converges faster and to a lower
minimum.

Single-sided LSRTM

Double-sided LSRTM

Figure 3.9.: Cost function comparison of homogeneous background velocity case.

SMOOTH BACKGROUND VELOCITY

This section uses a smooth background velocity for migration. The setup is exactly
the same as before, except for the background velocity. The perturbation model for
this case is shown in Fig. 3.10. Again, we do the same two scenarios as before, i.e.,
"single-sided" and "double-sided." For the single-sided scenario, the observed data
is the same as before (Fig. 3.4). However, since the right-hand side of the equation
3.17 is computed in a different background velocity, the last primary in the observed
data for the double-sided approach (Fig. 3.11a) is slightly different.

Comparing the results of both approaches shows (Fig. 3.11) that the double-sided
approach (Fig. 3.11c) can predict the reflected event coming from the lower
boundary. Since we use a smooth background velocity here, this prediction is more
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Figure 3.10.: True perturbation model in a smooth background.

accurate than the previous section’s results (Fig. 3.6c). In the image domain (Fig.
3.12), the double-sided approach recovers a faint image of the vertical sides of the
rectangular perturbation (Fig. 3.12d) whereas the single-sided results in a more
standard image (Fig. 3.12c). Moreover, Fig. 3.13 shows the horizontal cross-section
of the retrieved perturbation. In this figure, we can see the double-sided approach
can recover the vertical boundaries of the perturbation. The double-sided image is
more comparable to the true perturbation in Fig. 3.10. Finally, investigating the
cost functions (Fig. 3.14) of these approaches shows that the double-sided approach
converges better since it can predict the event coming from below the target.

3.3.2. VIRTUAL RECEIVERS

Here, we use the same setup as before but replace the Green’s functions at the
boundaries with their Marchenko counterparts. In other words, we create virtual
receivers with the help of Marchenko redatuming. For a study about the benefits of
using Marchenko redatuming instead of a more conventional redatuming algorithm
for target-oriented LSRTM we refer to [27]. In this section, we only focus on
including the lower boundary by utilizing virtual receivers created by Marchenko
redatuming, and instead of using "double-sided", we use the "target-enclosed" term.
Moreover, we show the results for both homogeneous and smooth background
velocities in this section.

HOMOGENEOUS BACKGROUND VELOCITY

Fig. 3.15 shows the data obtained by Marchenko redatuming. In Fig. 3.16 the
observed data calculated by Equation 3.17 (Fig. 3.16a) and the predicted data after
30 iterations (Fig. 3.16b) are shown. A comparison between Fig. 3.16b and Fig.
3.6c shows that even in the presence of redatuming error, such as limited aperture
and lack of certain parts of the wavelength spectrum, our algorithm can predict
acceptable data.

In the image domain, Fig. 3.17 shows the RTM (Fig. 3.17a) and LSRTM (Fig. 3.17b)
image resulting from Marchenko redatumed data. Comparing Fig. 3.17b with Fig.
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(a) (b)

(c)

Figure 3.11.: Smooth background velocity case, data domain: (a) Upgoing component
of double-sided observed data at the upper boundary (Equation 3.17),
(b) predicted data of single-sided algorithm after 30 iterations of LSRTM,
and (c) predicted data of double-sided algorithm after 30 iterations of
LSRTM. All wavefields are recorded at the upper boundary of the target
(250 m).

3.7d reveals our target-enclosed algorithm with redatumed data as input can not
recover the long wavelength part of the model. This is due to the fact that the direct
arrival of the Marchenko-based Green’s function is incorrect since it is computed in
the background model. Consequently, the forward-scattered waveforms responsible
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(a)

(b)

(c)

(d)

Figure 3.12.: Smooth background velocity case, image domain: (a) RTM image of the
single-sided algorithm, (b) RTM image of the double-sided algorithm,
(c) LSRTM image of the single-sided algorithm after 30 iterations, and
(d) LSRTM image of the double-sided algorithm after 30 iterations.

for the long wavelength updates in Figure 7d can no longer be utilized.

SMOOTH BACKGROUND VELOCITY

In Fig. 3.18 the observed data calculated by Equation 3.17 (Fig. 3.18a) and the
predicted data after 30 iterations (Fig. 3.18b) are shown. Similar to the homogeneous
case, a comparison between Fig. 3.18 and Fig. 3.11 shows that our algorithm
successfully predicts the data.

In the image domain, Fig. 3.19 shows the RTM (Fig. 3.19a) and LSRTM (Fig.
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Single-sided LSRTM

Single-sided RTM

Double-sided LSRTM

Double-sided RTM

Perturbation

Figure 3.13.: Horizontal cross-section at the depth of 400 m of the retrieved
perturbation with a smooth migration velocity.

Single-sided LSRTM

Double-sided LSRTM

Figure 3.14.: Cost function comparison of smooth background velocity case.

3.19b) image resulting from Marchenko redatumed data. Comparing Fig. 3.19b with
Fig. 3.12d shows that redatumed data reveals an acceptable perturbation model.
However, the faint recovered vertical interfaces are not presented in Fig. 3.19b since
forward-scattered waveforms are not processed correctly in the retrieved Marchenko
Green’s function at the lower boundary.

LSRTM RESULTS FOR THE ENTIRE MEDIUM

To make a fair comparison, we include the results of standard LSRTM for the entire
medium with the smooth background model in this section. Figure 3.20 shows the
LSRTM image after 30 iterations. Figure 3.20a shows the image of the entire medium
and Figure 3.20b singled out the target area of it.

3.4. DISCUSSION
In Section 3.2, we develop a theory for target-enclosed LSRTM that can limit the
computation domain by confining the target between two boundaries. Equations
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Figure 3.15.: Marchenko redatumed data with virtual receivers at the upper boundary
(250 m) and a source located at xs = (0,0).

(a) (b)

Figure 3.16.: Homogeneous background velocity case with virtual receivers, data
domain: (a) Upgoing component of Marchenko redatumed data at the
upper boundary (Equation 3.17), (b) predicted data of target-enclosed
LSRTM after 30 iterations at the upper boundary. All wavefields are
redatumed to the upper boundary of the target (250 m).

3.17 and 3.22 enable us to account for any wavefield entering the target region by
including the upper and lower boundaries in the inversion process.
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(a)

(b)

Figure 3.17.: Homogeneous background velocity case with virtual receivers, image
domain: (a) RTM image of the target-enclosed algorithm with Marchenko
wavefields, (b) LSRTM image of the target-enclosed algorithm with
Marchenko wavefields after 30 iterations.

Further, in section 3.3.1, several numerical tests are designed to demonstrate the
advantage of incorporating the lower boundary in the conventional target-oriented
LSRTM. From the data point of view, our double-sided target-enclosed LSRTM,
compared to a conventional single-sided target-oriented LSRTM, not only removes
the background arrival from the lower boundary to the upper boundary but also can
predict the forward scattered field inside the target (Fig. 3.6, Fig. 3.11, and Fig. 3.16).
Additionally, a comparison between the resulting images of both algorithms with a
homogeneous migration velocity (Fig. 3.7), shows that single-sided target-oriented
LSRTM can not update the long wavelength part of the model. In contrast,
the double-sided target-enclosed LSRTM updates the image according to the Born
inversion criteria by integrating the forward scattered wavefield information. In
the case of a smooth migration velocity, our algorithm recovers a higher-resolution
image and a faint estimation of the vertical sides of the rectangular perturbation
(Fig. 3.12).

Moreover, in section 3.3.2, we investigate the possibility of using virtual receivers
created by Marchenko redatuming in our target-enclosed algorithm. Fig. 3.17 shows
that in the case of a homogeneous background migration velocity, it is hardly
possible to update the long wavelengths with virtual receiver data, and only short
wavelength parts of the perturbation are recovered. Moreover, for the smooth
background case, our algorithm increases the image’s resolution by updating the
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(a) (b)

Figure 3.18.: Smooth background velocity case with virtual receivers, data domain:
(a) Upgoing component of Marchenko redatumed data at the upper
boundary (Equation 3.17), (b) predicted data of target-enclosed LSRTM
after 30 iterations at the upper boundary. All wavefields are redatumed
to the upper boundary of the target (250 m).

short wavelengths in this case.

Ultimately, we show the standard LSRTM image for the entire medium. Comparing
Figure 3.20 with previous cases shows that our method is superior in imaging
the target area in any case. Our method adds valuable information by explicitly
incorporating transmitted wavefields. Further, with our setup and hardware, the
computational time of a single iteration of LSRTM for the entire medium, which has
201 by 131 grid points, is about 45 seconds, and a single iteration of target-enclosed
LSRTM, which has 201 by 61 grid points, is about 25 seconds. We do not consider
the computational cost of the Marchenko redatuming method here since we only do
it once and compared to the total time of LSRTM it is negligible. One disadvantage
we can mention is saving the extra redatumed wavefields and focusing functions on
the disk. However, relative to the reduction of the memory need by the reduction of
the target dimensions, this can be neglected.

3.5. CONCLUSION

This chapter proposes a target-enclosed seismic imaging algorithm that can account
for the wavefields entering the target region from the upper and lower boundaries
of the region. The three main advantages of this chapter’s algorithm are 1) It
significantly reduces the computational domain by limiting it to a smaller domain,
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(a)

(b)

Figure 3.19.: Smooth background velocity case with virtual receivers, image domain:
(a) RTM image of the target-enclosed algorithm with Marchenko
wavefields, (b) LSRTM image of the target-enclosed algorithm with
Marchenko wavefields after 30 iterations.

2) it removes interactions with the part of the medium above the upper boundary,
and 3) it can incorporate the transmission information from the lower boundary to
the upper one.

Nevertheless, our algorithm has also some limitations. First, we need access to
the lower boundary of the target to deploy receivers at the boundaries of the target.
Second, we need a background model of the target that can predict the arrival time
from the lower boundary to the upper. It is possible to overcome the first limitation
by using virtual seismology methods such as Marchenko redatuming to create virtual
receivers around the target region [22, 25, 27, 39–43] as we showed in a numerical
example in section 3.3.2. To address the second limitation, a reformulation of
the target-enclosed LSRTM is possible to make it compatible with full waveform
inversion to update the background velocity model [44].

The need for high-resolution images is increasing daily, which demands more
computational power. This chapter’s proposed target-enclosed LSRTM can produce
less computationally demanding high-resolution images by focusing on a relatively
small target of interest and including all the interactions between this region and the
outside environment.
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(a)

(b)

Figure 3.20.: Standard LSRTM with smooth background velocity for entire medium,
image domain: (a) LSRTM image of the entire medium, (b) magnified
target area of (a).
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4
TARGET-ORIENTED LEAST-SQUARES

REVERSE-TIME MIGRATION WITH

MARCHENKO REDATUMING AND

DOUBLE-FOCUSING: FIELD DATA

APPLICATION

Recently, the focus of reflection seismologists has shifted to applications where a
high-resolution image of the subsurface is required. Least-Squares Reverse-Time
Migration (LSRTM) is a common tool used to compute such images. Still, its
high computational costs have led seismologists to use target-oriented LSRTM for
imaging only a small target of interest within a larger subsurface block. Redatuming
the data to the upper boundary of the target of interest is one approach to
target-oriented LSRTM. Still, many redatuming methods cannot account for multiple
scatterings within the overburden. An algorithm for target-oriented least-squares
reverse time migration that integrates Marchenko redatuming and double-focusing is
presented. This redatuming method accounts for all orders of multiple scattering in
the overburden, thus improving the accuracy of target-oriented LSRTM. Moreover, the
effectiveness of a double-focusing algorithm in reducing the data size by decreasing
both spatial and temporal dimensions is demonstrated. The algorithm’s performance
is evaluated using field data acquired in the Norwegian Sea. The numerical results
show that our target-oriented LSRTM algorithm can reduce the internal multiple
effects and increase the resolution of the resulting image.

This chapter has been submitted as A. Shoja, J. van der Neut, and K. Wapenaar. "Target-oriented
least-squares reverse-time migration with Marchenko redatuming and double-focusing: Field data
application" to Geophysics. Minor modifications have been applied to keep consistency within this
thesis.
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4.1. INTRODUCTION

Seismic imaging and inversion are a set of techniques used by geophysicists to
estimate parameters related to wave propagation, such as reflectivity, velocity, and
density, within the Earth’s subsurface. A network of sources and receivers is
positioned on the Earth’s surface to produce and record seismic waves, from which
these parameters are determined. Geophysicists typically assume a subsurface model
that consists of a background model (m0) for long wavelengths and a perturbation
model for short wavelengths (δm), based on a weak-scattering assumption [1, 2].
The primary objective of seismic imaging is to generate a structural image of the
short-wavelength perturbation model (δm).

Reverse-Time Migration (RTM) is a popular method among different imaging
techniques since it can produce high-resolution images and better handle com-
plex geological structures [3–6]. RTM creates images by cross-correlating the
forward-propagated wavefield and its back-propagated counterpart based on the
Born approximation. However, improving the resolution and quality of RTM images
is still possible by inverting the Lippmann-Schwinger integral under the Born
approximation for the perturbation model with a least-squares algorithm [7–11]. This
inversion process is known as Least-Squares Reverse-time migration (LSRTM).

However, LSRTM is a computationally expensive algorithm [8, 12–14]. To reduce
the computational cost of LSRTM, one can restrict the model’s dimensions by
focusing on a small area inside the big block of the subsurface model. To compute
the image of this smaller region, the wavefield on the upper boundary of this region
is needed at least. The process of computing the wavefield on the boundary of
this target from surface recorded data is called redatuming [15–23]. One prominent
redatuming technique is Marchenko redatuming [24–26].

Marchenko redatuming [24, 25, 27–30] can create virtual receivers on the boundary
of the target of interest while accounting for all orders of internal multiple scattering
effects and reflections. Since Marchenko redatuming and Green’s functions retrieval
are powerful tools, researchers use them to address seismic imaging and inversion
issues [6, 31–33]. Moreover, it is possible to perform a double-sided redatuming using
Marchenko focusing functions. Double-sided redatuming creates virtual sources in
addition to virtual receivers at the boundary of the target. The process of double-sided
redatuming is called double-focusing [34, 35]. Marchenko double-focused wavefields
account for all orders of internal multiples generated inside the overburden,
enabling us to create images with less impact from internal multiples. Moreover,
Marchenko double-focusing compacts the data’s time axis, reducing its size even more.

This chapter combines the Marchenko double-focusing and target-oriented LSRTM
algorithm to create high-resolution artifact-free images of a marine data set from the
Vøring region in the Norwegian Sea. First, we review the theory of target-oriented
LSRTM with Marchenko double-focusing, which is fully developed and is validated
with synthetic models by Shoja et. al, 2023[35]. Second, we apply this algorithm to a
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marine dataset, and finally, we discuss the results and conclude the paper.

4.2. THEORY

4.2.1. LEAST-SQUARES REVERSE-TIME MIGRATION

[12] show that classical RTM can be derived from the Born approximation of
seismic reflection data. In the Born approximation, the incident wavefield (P i nc )
can be estimated using the background Green’s function. The perturbation model is
expressed as δm = ( 1

c2 − 1
c2

0
) where c represents the medium velocity and c0 represents

the background velocity. This equation links δm to the scattered data (P scat ) through
a linear equation [1, 36, 37]:

P scat
pr ed (xr ,xs ,δm,ω) = ω2

ρ0

∫
V

G0(xr ,x,ω)δm(x)G0(x,xs ,ω)W (ω)dx. (4.1)

The integral in Equation 4.1 is computed throughout the model’s volume (V ). Here,
P i nc (x,xs ,ω) ≈ G0(x,xs ,ω)W (ω). Moreover, ω is the angular frequency, W is the
source signature, G0 is the Green’s function computed in the background model
(c0), ρ0 is the background density, and P scat

pr ed is the scattered predicted data. The

subscripts "r " and "s" indicate the receiver and source, respectively. This equation
can be expressed in an operator format as follows:

P scat
pr ed (xr ,xs ,δm,ω) =Lδm. (4.2)

Here L is the forward Born operator.

The standard method of reverse-time migration involves obtaining an approximate
reflectivity model by taking the adjoint of L and applying it to the observed
scattered data:

δmmi g (x) =L †P scat
obs . (4.3)

Since the adjoint of this kernel is merely an approximation of its inverse, the
resolution of the perturbation model obtained through this process is limited.

To tackle the problem of limited resolution, scholars have adopted a least-squares
strategy in which the adjoint operator (L †) is substituted with a damped
least-squares solution [7, 12, 38]:

δmmi g = [L †L +ϵ]−1L †P scat
obs . (4.4)

Here, L †L is the Hessian matrix, and ϵ is a damping factor. Unfortunately,
calculating the Hessian matrix (L †L ) and its inverse is computationally infeasible.
As an alternative, an iterative algorithm that minimizes the L2-norm of the
discrepancy between the observed and anticipated data is often used to update the
reflectivity model:

C (δm) = 1

2

∥∥P scat
pr ed (δm)−P scat

obs

∥∥2
2. (4.5)
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One potential way to tackle this optimization problem is by utilizing a conjugate
gradient algorithm [39]. In least-squares reverse-time migration, the background
velocity model (c0(x)) is not changed, and only the reflectivity model (δm) is updated,
resulting in the Green’s functions of Equation 4.1 being calculated only once. To
learn more about least-squares reverse-time migration, please see [1].

4.2.2. MARCHENKO REDATUMING AND DOUBLE-FOCUSING

Marchenko redatuming is an innovative data-driven technique that can recover
the Green’s function above the target area’s surface, including all orders of
multiple-scattered events. This method only requires the reflection response at the
surface and a smooth background velocity model of the overburden capable of
predicting the direct arrival from the surface to the redatuming level.

The following coupled Marchenko-type representations are solved iteratively to
retrieve the Green’s functions at the redatuming level [24]:

G−
M ar (xv ,xr ,ω) =

∫
Dacq

R(xr ,xs ,ω) f +
1 (xs ,xv ,ω)dxs − f −

1 (xr ,xv ,ω), (4.6)

and

G+
M ar (xv ,xr ,ω) =−

∫
Dacq

R(xr ,xs ,ω) f −
1 (xs ,xv ,ω)∗ dxs + f +

1 (xr ,xv ,ω)∗. (4.7)

In these equations, Dacq represents the acquisition surface where xs and xr are
situated. G−

M ar and G+
M ar denote the up-going and down-going components of

the Marchenko redatumed Green’s function, respectively (see Fig. 4.1a and 4.1b).
Additionally, f −

1 (xs ,xv ,ω) and f +
1 (xs ,xv ,ω) denote the up-going and down-going parts

of the focusing function, respectively, with the subscript "v" denoting a virtual point
situated on the redatuming level denoted by Dt ar . Furthermore, R(xr ,xs ,ω) refers to
the dipole response of the medium at the acquisition surface, and it is related to the
up-going Green’s function (G−) via the following relationship:

R(xr ,xs ,ω) = Ç3,sG−(xr ,xs ,ω)
1
2 iωρ(xs )

, (4.8)

The partial derivative in the downward direction taken at xs is denoted by
Ç3,s . This partial vertical derivative is computed in the frequency-wavenumber
domain by multiplying the wavefield by i kz , where kz is the vertical wavenum-
ber. ρ(xs ) is the density at xs . It is important to remove horizontally
propagating waves and surface-related multiples before inserting R(xr ,xs ,ω) into
Equations 4.6 and 4.7. The detailed derivation of these integrals and their solution for
computing the focusing functions and Green’s functions can be found in [24] and [40].

The above-mentioned equations correspond to single-sided redatuming. To
perform a double-sided redatuming, a convolution operation on the up-going and
down-going parts of the Marchenko redatumed Green’s function is proposed by
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[34]. This operation involves filtering the down-going focusing function in a
multi-dimensional manner:

G−,+
d f (xv ,x′v ,ω) =

∫
Dacq

G−
M ar (xv ,xr ,ω)F+

1 (xr ,x′v ,ω)dxr , (4.9)

and

G+,+
d f (xv ,x′v ,ω) =

∫
Dacq

G+
M ar (xv ,xr ,ω)F+

1 (xr ,x′v ,ω)dxr , (4.10)

where

F+
1 (xr ,x′v ,ω) = Ç3,r f +

1 (xr ,x′v ,ω)
1
2 iωρ(xr )

. (4.11)

Here the vertical derivative is taken with respect to xr . Equations 4.9 and 4.10
use superscripts to indicate the direction of propagation at the receiver and source
locations, respectively. The term "d f " stands for "double-focused." This process is
referred to as "Marchenko double-focusing."

The Marchenko double-focusing technique yields two Green’s functions, namely
a down-going (G+,+

d f ) and an up-going (G−,+
d f ) Green’s function (fig. 4.1c and 4.1d).

The down-going Green’s function consists of a band-limited delta function and
interactions between the target and the overburden. G−,+

d f can be interpreted as

the continuation of propagation of G+,+
d f through the target and recording the

up-going part of it at the redatuming level. This up-going wavefield includes
interactions between the target and the overburden on the source side. In contrast,
the conventional double-focusing approach involves using the inverse of the direct
arrival of the transmission response of the overburden instead of the down-going
Marchenko focusing function. However, this approach cannot predict and remove
the multiples generated by the overburden. In subsequent sections, the term
"double-focusing" is a general expression that refers to both approaches, and it is
explicitly mentioned where a distinction between the methods is necessary.

4.2.3. TARGET-ORIENTED LSRTM BY MARCHENKO DOUBLE-FOCUSING

I fully developed this theory in Chapter 2. The following integral is the base for
target-oriented LSRTM by Marchenko double-focusing:

P̂ scat
pr ed (x′vr ,x′v s ,δm,ω) = ω2

ρ0

∫
ν

Ĝ0(x′vr ,x,ω)δm(x)P i nc
d f (x,x′v s ,ω)dx. (4.12)

Here, ν is the target volume, x is a point inside the target, and x′v s and x′vr are the
virtual source and virtual receiver locations on the upper boundary of the target,
respectively. Moreover,

P i nc
d f (x,x′v s ,ω) =

∫
Dt ar

Ç3,v sG0(x,xv s ,ω)
1
2 iωρ(xv s )

G+,+
d f (xv s ,x′v s ,ω)W (ω)dxv s , (4.13)
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Figure 4.1.: The Green’s functions resulting from Marchenko redatuming and double-
focusing. a) down-going part of Marchenko Green’s function, b) up-going
part of Marchenko Green’s function, c) down-going Marchenko double-
focused Green’s function, and d) up-going Marchenko double-focused
Green’s function.

and

Ĝ0(x′vr ,x,ω) =
∫
Dt ar

Γ(x′vr ,xvr ,ω)G0(xvr ,x,ω)dxvr , (4.14)

where

Γ(x′vr ,xvr ,ω) =
∫
Dacq

G+
d (x′vr ,xs ,ω)−1G+

d (xvr ,xs ,ω)dxs (4.15)

is a point-spread function that acts as a band limitation filter on the predicted data.
In Equation 4.15, G+

d is the first arrival of the Green’s function between the target
boundary and the surface. For a complete derivation of the above equations and
an analysis of the effects of the point-spread function (Γ(x′vr ,xvr ,ω)), we refer to
Chapter 2. Thus, the new cost function is:

C (δm) = 1

2

∥∥P̂ scat
pr ed (δm)− P̂ scat

obs

∥∥2
2, (4.16)

which we solve with a conjugate gradient algorithm.
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4.3.1. FIELD DATA EXPLANATION

This part of the chapter shows the results of the Marchenko-based target-oriented
LSRTM on a field dataset provided by Equinor, which was acquired in the Norwegian
Sea in 1994. The depth of the water bottom is 1.5km, which is deep enough to
separate the free-surface multiple reflections from the primary and internal multiple
reflections. The field dataset contains 399 shot gathers with 180 traces per gather, and
the spatial sampling of sources and receivers is 25m. The field dataset was processed
according to [41] methodology, which involved muting the direct wave, estimating
near-offset traces through the parabolic Radon transform [42], compensating for 3D
effects by multiplying with

p
t , and deconvolving the source wavelet. Source-receiver

reciprocity is also applied to create offsets in the positive direction to prepare the
dataset for the Estimation of Primaries through the Sparse Inversion (EPSI) method
to remove free-surface multiples [43]. After source-receiver reciprocity, each gather
contains 371 receivers. Table 4.1 shows the acquisition parameters, and Figure 4.2
shows the acquisition geometry of this dataset. We apply a gain of 1.73e1.3t to the
reflection response as recommended by [44] to compensate for the absorption effect.
However, with this scaling function, the Marchenko redatuming procedure does not
sufficiently reduce the multiple reflections energy for imaging. A wrong scaling
function can result in more artifacts [27]. Thus, we multiplied the reflection response
already scaled with the aforementioned scaling function, with a range of values to
adjust it for imaging. Then, we measured the L2-norm of the double-focused gather
to find the value which produces the minimum energy [29, 45]. Figure 4.3 shows
the L2 norm of the double-focused gather against the values we use. According
to Figure 4.3, we choose value 10, which results in an adjusted scaling factor of
17.3e1.3t for a non-scaled reflection response.

Table 4.1.: Acquisition Parameters for the dataset

Parameter Value
Number of source positions 399

Source spacing 25 m
First source position 5,000 m
Final source position 14,950

Number of receiver positions per source 180
Receiver spacing 25m

Minimum source-receiver offset 150 m
Maximum source-receiver offset 4,625 m

Number of time samples 2001
Sampling rate 0.004 s

High-cut frequency 90 Hz

Figure 4.4 shows the surface reflection response after preprocessing, with a source
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Figure 4.2.: The acquisition geometry of the data set. Blue crosses show the source
locations, red crosses show the receivers’ locations and green crosses
show the dummy traces added after source-receiver reciprocity to have
an equal number of receivers per shot. The receivers on the left side of
the sources are the real ones, and the receivers on the right side are
added by source-receiver reciprocity.

Figure 4.3.: L2 norm of the gather shown in Figure 4.6a against different scaling
values.

located at xs = (5000m,0m). We choose two different targets inside the medium.
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Figure 4.4.: Reflection response with a source located at xs = (5000m,0m).A Ricker
wavelet with a dominant frequency of 30H z is convolved with the data
for better visualization.

4.3.2. LSRTM WITH DOUBLE-FOCUSING

We choose two targets of interest below a complex overburden that produces strong
internal multiples, and we aim to show that our algorithm can handle these internal
multiples correctly and reduce the artifacts imposed by them in the image.

TARGET OF INTEREST 1

Figure 4.5 shows the smooth velocity model provided by Equinor for migration. The
red rectangle inside the velocity model indicates the target area and the virtual
sources and receivers’ positions are at the upper boundary of this target area.

We apply the double-focusing algorithm to the field data for this target. For this,
we define 241 virtual sources and 241 virtual receivers with a spacing of 12.5m at
2500m depth extending from 9000m to 12000m over the upper boundary of the
first target area. The up-going wavefield resulting from double-focusing is used as
input for LSRTM and is called ’observed data’ in the following. Figure 4.6 shows
the observed, and predicted data, and the residuals of Marchenko double-focusing
target-oriented LSRTM. Moreover, Figure 4.7 shows the same but for a conventional
double-focusing approach. Conventional means using the inverse of the direct
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Figure 4.5.: The smooth velocity model provided by Equinor for migration. The red
rectangle inside the velocity model indicates the first target area. The
virtual sources and receivers’ positions are at the upper boundary of this
target area.

arrival between the target and the surface as the redatuming operator instead of the
Marchenko focusing functions. The non-physical noises inside the data are mostly
caused by imperfect surface multiple elimination in this part of the data and 3D
effects in 2D gathers. The computational advantage of target-oriented LSRTM with
double-focused data is twofold. First, this algorithm reduces the spatial dimension
of the problem, and second, it reduces the temporal dimension of the problem as
well. The original recording time of the data at the surface is 8 seconds, whereas the
temporal length of the double-focused data is 0.5 seconds.

Figure 4.8 compares the LSRTM images of using Marchenko and conventional
double-focused data as input. Figure 4.8 shows some improvements from using
Marchenko double-focused wavefields compared to conventional double-focused
ones.

Moreover, Figure 4.9 compares the RTM and LSRTM images of Marchenko
double-focused data as input. The LSRTM algorithm improved the quality of the
image.

TARGET OF INTEREST 2

Here we choose another target. This target is located between depths of 2100m and
2600m and lateral extension from 7000m to 10000m as shown in Figure 4.10. Virtual
sources and receivers are located at the upper boundary of this target area.

Figure 4.11 shows the observed, and predicted data, and the residuals of
the Marchenko double-focusing approach. Figure 4.12 shows the same for the



4.3. FIELD DATA EXAMPLE

4

81

(a) (b) (c)

Figure 4.6.: Marchenko double-focused data with a virtual source located at
xv s = (10500m,2500m) and virtual receivers at the same depth as virtual
sources. a) observed data, b) predicted data after 35 iterations of LSRTM,
and c) residuals after 35 iterations of LSRTM.

(a) (b) (c)

Figure 4.7.: Conventional double-focused data with a virtual source located at
xv s = (10500m,2500m). a) observed data, b) predicted data after 35
iterations of LSRTM, and c) residuals after 35 iterations of LSRTM.

conventional double-focusing approach.

Moreover, Figure 4.13 shows the LSRTM images of the target-oriented algorithm
with Marchenko and conventional double-focusing. The red arrows, rectangle, and
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(a)

(b)

Figure 4.8.: Comparison of images obtained with Marchenko target-oriented LSRTM
(a) and Conventional target-oriented LSRTM (b). Red lines in panel
(a) delineate some trends that are not visible in panel (b), and the
red arrows and rectangles in panel (b) show some events that may be
internal multiple reflection artifacts that are suppressed in panel (a).

(a)

(b)

Figure 4.9.: Comparison of images obtained with Marchenko target-oriented RTM (a)
and LSRTM (b) of the first target.

ellipse indicate the internal multiple reflections that are suppressed by our method.
Figure 4.14 shows the RTM and LSRTM images of the target-oriented algorithm with
Marchenko double-focusing. The quality and resolution of the image are increased
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Figure 4.10.: The smooth velocity model provided by Equinor for migration. The red
rectangle inside the velocity model indicates the second target area and
the virtual sources and receivers’ positions are at the upper boundary.

(a) (b) (c)

Figure 4.11.: Marchenko double-focused data with a virtual source located at
xv s = (8500m,2100m) and virtual receivers at the same depth as virtual
sources. a) observed data, b) predicted data after 35 iterations of
LSRTM, and c) residuals after 35 iterations of LSRTM.

by the LSRTM algorithm.
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(a) (b) (c)

Figure 4.12.: Convetional double-focused data with a virtual source located at
xv s = (8500m,2100m). a) observed data, b) predicted data after 35
iterations of LSRTM, and c) residuals after 35 iterations of LSRTM.

(a)

(b)

Figure 4.13.: Comparison of images obtained with Marchenko target-oriented LSRTM
(a) and Conventional target-oriented LSRTM (b). The red arrows,
rectangle, and ellipse in panel (b) indicate some of the internal multiple
reflection artifacts that are suppressed in panel (a)

4.4. DISCUSSION

In section 2 of this chapter, we derive a target-oriented LSRTM algorithm based on
double-focusing that can significantly reduce the dimensions of the problem, which
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(a)

(b)

Figure 4.14.: Comparison of images obtained with Marchenko target-oriented RTM
(a) and LSRTM (b) of the second target.

also reduces the computational costs of the LSRTM algorithm. We also integrate the
Marchenko double-focusing algorithm with our target-oriented LSRTM algorithm to
reduce the artifacts caused by internal multiple reflections.

To demonstrate the advantages of our proposed algorithm, we applied it to a
dataset acquired by Equinor in the Norwegian Sea in 1994. We chose two different
target zones. Figures 4.5 and 4.10 show our targets of interest embedded in the
entire domain of the region. This spatial dimension reduction is to validate the
first advantage we mentioned above. Figures 4.6a, 4.7a, 4.11a, and 4.12a show the
double-focused data with a recording duration of 0.5s, whereas the recording time
of the original data is 8s.

To move forward with our investigation, we showed the imaging results with
double-focusing for both targets. Figure 4.8 compares the imaging results of the
conventional and Marchenko double-focusing target-oriented LSRTM. The first panel
(fig. 4.8a) shows the LSRTM result of our proposed algorithm with Marchenko
double-focused data, and the second panel (fig. 4.8b) shows the LSRTM results
with conventional double-focused data. Comparing these two panels reveals that
using Marchenko wavefields leads to better visualization of true events and fewer
artifacts due to internal multiples, delineated by the lines and arrows in those panels.
Moreover, Figure 4.9 shows the resolution and quality improvement of target-oriented
LSRTM compared to target-oriented RTM with Marchenko double-focusing.

The same discussion stands for the second target. Figure 4.13 shows a
comparison between conventional and Marchenko double-focusing target-oriented
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LSRTM images where the internal multiple suppression is visible and indicated
by arrows and an ellipse, and Figure 4.14 shows the RTM and LSRTM images of
Marchenko double-focusing target-oriented LSRTM. The quality and resolution of
the image are increased noticeably. The internal multiple suppression results of this
chapter are in agreement with the findings of [41] and [46].

In both target areas, the double-focused gathers experience multiple flawed
preprocessing stages that cannot be adequately explained by the forward modeling
or the Marchenko approach. The non-physical artifacts within the data primarily
arise from incomplete surface multiple removal and the impact of 3D effects in 2D
datasets. These spurious elements in the data have led to a substantial residual
vector.

4.5. CONCLUSION
This chapter discusses a target-oriented LSRTM algorithm based on double-focusing.
The advantages of this algorithm are: 1) reduction of the spatial dimensions of the
problem by choosing a smaller target of interest, and 2) reduction of the temporal
dimension of the problem by creating both virtual sources and receivers at the
boundary of the target, which leads to lower computational costs. One can also
opt for more sophisticated redatuming algorithms such as Marchenko redatuming
and double-focusing to create virtual sources and receivers. The advantage of using
Marchenko double-focusing compared to a more conventional redatuming algorithm
is the ability to predict the internal multiple reflections inside the overburden and a
reduction of artifacts due to these multiple reflections.

The reason for choosing double-focusing instead of multidimensional deconvolu-
tion (MDD) is to avoid another inversion step in our algorithm. MDD is an inversion
process with its own uncertainties and associated errors. On the other hand, the
double-focusing is a multidimensional convolution process with a unique output. As
it is shown in [35] and this paper, the predicted data, which uses the double-focused
down-going wavefield at the boundary of the target, can predict the interactions
between the target and the overburden and fit them to the double-focused observed
data.

Present-day seismic imaging and inversion applications need more accurate and
higher-resolution images. Computing higher-resolution images demands significant
amounts of computational power and time. Thus, devising algorithms that can
reduce this computational burden is essential. Our proposed target-oriented
algorithm is not only able to greatly reduce the spatial and temporal dimensions of
the problem but also can reduce the artifacts due to internal multiple reflections by
integrating Marchenko double-focusing with LSRTM algorithm. Consequently, our
algorithm enables us to create higher-resolution images with fewer artifacts at a
lower computational cost.
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5
CONCLUSION AND FUTURE

OUTLOOK

5.1. CONCLUSION
This thesis introduces target-oriented algorithms for seismic imaging and inversion. The
proposed LSRTM algorithm effectively handles internal multiple reflections and inter-
actions between the target and overburden, resulting in high-resolution images with
reduced artifacts. The thesis discusses the advantages of a target-oriented LSRTM al-
gorithm based on double-focusing, which reduces the spatial and temporal dimensions
of the problem, leading to lower computational costs. Additionally, The target-enclosed
seismic imaging algorithm accounts for wavefields entering the target region from the
upper and lower boundaries, significantly reducing the computational domain while in-
corporating transmission information. Overall, these target-oriented algorithms provide
practical solutions for achieving fast and high-resolution imaging in seismic exploration.

In Chapter 2, a target-oriented LSRTM algorithm is introduced, specifically designed
to handle internal multiple reflections in the overburden and interactions between the
target and overburden. By solving the Marchenko equations, we obtain the Marchenko
double-focused data and the downgoing part of the focusing function. Utilizing these
Green’s functions and focusing operators, we formulate a Born integral, which serves as
the forward modeling operator. Additionally, an adjoint modeling operator is construc-
ted for target-oriented LSRTM. To accurately account for the finite spatial bandwidth
caused by the overburden and the finite recording aperture at the acquisition surface, we
apply a point-spread function to the reflection response of the target. This formulation
results in a target-oriented LSRTM algorithm that can predict the interactions between
the target and the overburden and greatly suppress the artifacts caused by these interac-
tions in the target image. Numerical tests with synthetic models show that even in the
presence of high-velocity inclusions in the overburden and kinematic errors in the velo-
city model, our target-oriented LSRTM algorithm is successful in retrieving an artifact-
free high-resolution image.

In Chapter 3, a target-enclosed seismic imaging algorithm is proposed, which effect-
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ively considers wavefields entering the target region from both upper and lower bound-
aries. This algorithm offers three key advantages:

1. A significant reduction in the computational domain by limiting it to a smaller
region.

2. The elimination of interactions with the portion of the medium above the upper
boundary.

3. The ability to incorporate transmission information from the lower boundary to
the upper boundary.

However, certain limitations exist in our algorithm. Firstly, it requires access to the
lower boundary of the target in order to deploy receivers at the target boundaries. To
overcome this, virtual seismology methods such as Marchenko redatuming can be util-
ized to create virtual receivers around the target region, as demonstrated in a numerical
example. Secondly, a background model of the target is needed to accurately predict the
arrival time from the lower boundary to the upper boundary. The redatumed wavefields
at the lower boundary suffer from kinematic errors, which hinder the recovery of the
long wavelength part of the LSRTM image. Addressing this limitation involves reformu-
lating the target-enclosed LSRTM to ensure compatibility with full waveform inversion,
enabling the update of the background velocity model.

In Chapter 4, the target-oriented LSRTM algorithm based on double-focusing is ap-
plied to a dataset acquired by Equinor in the Norwegian Sea in 1994. The advantages of
this algorithm are:

1. Reduction of the spatial dimensions of the problem by choosing a smaller target
of interest.

2. Reduction of the temporal dimension of the problem by creating both virtual sources
and receivers at the boundary of the target, which leads to lower computational
costs.

One can opt for more sophisticated redatuming algorithms such as Marchenko redatum-
ing and double-focusing to create virtual sources and receivers. The advantage of using
Marchenko double-focusing compared to a more conventional redatuming algorithm
is the ability to predict the internal multiple reflections inside the overburden and a re-
duction of artifacts due to these multiple reflections. Another critical aspect of working
with field data that needs to be carefully taken care of is preprocessing. Marchenko reda-
tuming requires the surface-related multiples to be eliminated. Additionally, we need
to scale the reflection response to compensate for an unknown source amplitude and
absorption effects. As we showed in the numerical examples section of Chapter 4, an im-
perfect elimination of surface-related multiples will result in non-physical errors in the
double-focused data.

The appendix shows that Marchenko-based target-oriented Full Waveform Inversion
can compensate for the need for Hessian matrix inversion by reducing the nonlinearity
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due to overburden effects. This is achieved by exploiting Marchenko-based target re-
placement to remove the overburden response and its interactions with the target zone
from residuals and inserting the response of the updated target zone into the response
of the entire medium. With a 1D model, we also show that this method is more robust
with respect to prior information than the standard gradient FWI. Similarly to standard
Marchenko imaging, the proposed method only requires knowledge of the direct arrival
time from a focusing point to the surface and the reflection response of the medium.

In recent years, the seismic exploration community has shifted its focus towards fast
and high-resolution imaging and inversion methods, aiming to produce accurate and de-
tailed images while accounting for multiple reflections caused by the overburden. How-
ever, computing higher-resolution images requires significant computational power and
time, necessitating the development of algorithms that can reduce this burden. Our pro-
posed target-oriented LSRTM algorithm addresses these challenges by effectively redu-
cing the spatial and temporal dimensions of the problem, resulting in higher-resolution
images with fewer artifacts. By integrating Marchenko double-focusing with LSRTM,
our algorithm not only reduces the computational cost but also mitigates the artifacts
caused by internal multiple reflections. With the increasing need for high-resolution im-
ages, our target-enclosed LSRTM approach provides a practical solution by focusing on
a smaller target region of interest and considering all interactions with the surrounding
environment.

5.2. FUTURE OUTLOOK
There are numerous directions for advancing the integration of the Marchenko Green’s
function retrieval scheme with imaging and inversion problems. The following outlines
a few potential directions:

1. One promising direction involves exploring the method’s potential to enhance in-
version techniques reliant on reflections, such as Full wavefield migration (FWM)
and joint migration inversion (JMI). Given that FWM depends on an estimated re-
flection response to update the model, our suggested target-oriented algorithm in
this thesis can be instrumental in devising a target-oriented FWM algorithm that
accounts for internal multiple reflections generated by the overburden. This ap-
proach could also enhance the velocity estimation process in JMI.

2. Another direction for study is to utilize Marchenko wavefields as input for the JMI
or Full waveform inversion process and attempt to match observed data with pre-
dicted data computed using Marchenko-retrieved Green’s functions. Achieving
this requires updating Marchenko Green’s functions iteratively with the evolving
velocity model. Utilizing Marchenko Green’s functions can reduce the nonlinear-
ity of the inverse problem since they already incorporate higher-order scattering
events.

3. An additional research focus could be on investigating the role of the Marchenko
focusing function as a backward propagator operator as a basis for estimating the
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Hessian matrix. The Marchenko focusing function is the inverse of the transmis-
sion response between the surface and the focal point within the subsurface. This
property offers researchers the advantage of using them as backward propagator
operators in imaging problems, potentially reducing the reliance on the Hessian
matrix. Like in the case of Marchenko Green’s functions, the focusing function
needs to be updated after each velocity update.

4. Lastly, there is potential to extend the proposed method outlined in the appendix
to accommodate 2D and 3D scenarios. This expansion of the method could en-
hance its applicability.
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The Hessian matrix plays an important role in correctly interpreting the multiple
scattered wave fields inside the FWI framework. Due to the high computational
costs, the computation of the Hessian matrix is not feasible. Consequently, FWI
produces overburden-related artifacts inside the target zone model due to the lack of
the exact Hessian matrix. We have shown that Marchenko-based target-oriented Full
Waveform Inversion can compensate for the need for Hessian matrix inversion by
reducing the non-linearity due to overburden effects. This is achieved by exploiting
Marchenko-based target replacement to remove the overburden response and its
interactions with the target zone from residuals and inserting the response of the
updated target zone into the response of the entire medium. We have also shown
that this method is more robust with respect to prior information than the standard
gradient FWI. Similarly to standard Marchenko imaging, the proposed method only
requires knowledge of the direct arrival time from a focusing point to the surface and
the reflection response of the medium.

This appendix has been published as A. Shoja, G.A. Meles, and K. Wapenaar. "A Proposal for
Marchenko-Based Target-Oriented Full Waveform Inversion" in proceedings of EAGE 2020 Annual
Conference & Exhibition Online, Dec 2020, Volume 2020, p.1-5. DOI: https://doi.org/10.3997/2214-
4609.202011020. Minor modifications have been applied to keep consistency within this
thesis.
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A.1. INTRODUCTION
Nowadays, the interest in the inversion of a relatively small target zone of the
subsurface, especially for reservoir monitoring applications, is increasing. One of
the main inversion techniques for this purpose is full waveform inversion (FWI).
The Hessian matrix plays an important role in correctly interpreting the multiple
scattered wave fields inside the FWI framework [1]. Due to the high computational
costs, the computation of the Hessian matrix is not feasible. Consequently, FWI
produces overburden-related artifacts inside the target zone model due to the lack
of the exact Hessian matrix.

Different target-oriented approaches have been proposed to compensate for the
lack of the exact Hessian: Data redatuming techniques [2] and model domain cost
functions [3], to name but a few.

Recently, Marchenko-based target replacement has been introduced as a method
to predict the response of the overburden and remove the response of the target
zone and insert the response of a new one into the response of the medium. This
method only needs a smooth model of the overburden and surface reflection data [4].
With this, one can do target-oriented FWI without data redatuming or computing
model domain cost functions.

First, a short description of full waveform inversion is given, followed by a
short explanation of Marchenko-based target replacement. Next, we combine these
methods to obtain Marchenko-based target-oriented FWI. Finally, this method is
validated through a numerical test.

A.2. FULL WAVEFORM INVERSION
In general, full waveform inversion is formulated as a partial differential equation-
constrained optimization problem in which a data-driven cost function is minimized
with the constraint of solving the wave equation [1]. This cost function is defined as
the square of the L2 norm of the data residuals:

C (m) = 1

2

∥∥dpr ed (m)−dobs
∥∥2

2. (A.1)

Here, dpr ed (m) is the predicted data vector and dobs is the observed data vector.
To minimize this cost function, gradient-based optimization methods are used. The
gradient of this cost function with respect to the model parameters is [5]:

∇C (m) =−R
[

J†∆d
]

. (A.2)

Here, † symbol means complex conjugate transpose, J is the Fréchet derivative
matrix, ∆d is the data residuals vector, and R denotes the real part. It is possible
to find an expression for the Fréchet derivative matrix entries in terms of Greens
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functions by considering the Born approximation and taking the slowness (s(x) as
the model parameter [6]:

Çdpr ed (xr ,xs ,ω)

Çs(x)
= 2ω2s(x)G(xr ,x,ω)G(x,xs ,ω)W (ω), (A.3)

where G(x,xs ,ω) and G(xr ,x,ω) are Greens functions from source to the scatterer
and from scatterer to the receiver location, respectively, and W (ω) is the source
wavelet. Therefore, the gradient at the position of a model parameter can be
rewritten as:

∇C (m) = 2R

[
s(x)

∫
ω2G(xr ,x,ω)G(x,xs ,ω)W (ω)∆d∗dω

]
, (A.4)

where ∗ means complex conjugate.

A.3. MARCHENKO-BASED TARGET REPLACEMENT
Wapenaar and Staring (2018) [4] devised a method to remove the effects of a target
zone inside the medium from the reflection response of the entire medium and
insert a changed target zone inside the medium response.

To this end, they employed the one-way reciprocity theorem to derive a
representation for the reflection response of the entire medium in terms of responses
to the overburden and the target zone:

R∪
B (xr ,xs ,ω) = R∪

A (xr ,xs ,ω)+
∫

S1

∫
S1

T −
A (xr ,x′,ω)R∪

b (x′,x,ω)G+,+
B (x,xs ,ω)dxdx′ (A.5)

Here, A, B, and b refer to overburden, entire medium, and target zone, respectively.
R∪ is the reflection response of the specified medium from above, T − denotes
the upward propagating transmission response and G+,+

B (x,xs ,ω) is the downward
propagating Greens function of a downward emitting source. xs and xr are located
just above the surface (S0). x and x′ are at S1, a transparent boundary between the
overburden and the target zone.

In order to find the responses of overburden, i.e., medium A, one can apply
the Marchenko method to reflection response R∪

B to find the so-called focusing
functions and use Multi-dimensional deconvolution (MDD) to resolve the responses
of medium A. The Greens function G+,+

B (x,xs ,ω) can be retrieved by inverting the
following equation:

T +
A (x",xs ,ω) =

∫
S1

C Ab(x",x,ω)G+,+
B (x,xs ,ω)dx (A.6)

where

C Ab(x",x,ω) = δ(x"H −xH )−
∫

S1

R∩
A (x",x′,ω)R∪

b (x′,x)dx′. (A.7)
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Here, R∩
A (x",x′,ω) is the reflection response of the overburden from below, and

δ(x"H −xH ) is a delta function. Moreover, x, x′ and x" are at S1 and H denotes the
horizontal coordinates.

A.4. MARCHENKO-BASED TARGET-ORIENTED FULL

WAVEFORM INVERSION
In each iteration of FWI, a new updated model of the target zone is generated. Using
Equation A.5 and modeling just inside the target zone, it is possible to insert the
response of the updated target zone into the reflection response of the medium (R∪

B )
and use its result as the new predicted data. Let’s explain it in more detail. Consider
bi as the updated model of the target zone in i th iteration and denote changed
quantities with an overbar. By modeling inside the target zone in each iteration,
the reflection response of bi , R̄∪

bi
, is generated. Then, by applying the Marchenko

method and Multi-dimensional deconvolution and inverting Equations A.6 and A.7,
one can calculate Ḡ+,+

B (x,xs ,ω), T −
A (xs ,x′,ω) and R∪

A (xr ,xs ,ω) with x and x′ at S1, and
xs and xr at S0. Thus:

dpr edi = R̄∪
Bi

(xr ,xs ,ω), (A.8)

and
∆di = R̄∪

Bi
(xr ,xs ,ω)−dobs (xr ,xs ,ω). (A.9)

Since the first term of the Equation A.5 is the response of the overburden, and it
also exists inside the observed data, by computing the data residuals, the response
of the overburden is completely removed, and the data residuals only contain the
response of the target zone in each iteration.

Up to this point, a method has been presented for making the predicted data
without knowing the overburden model and removing the overburden effects from
the data residuals. Since the gradient of the cost function needs the Greens functions
inside the target zone with a source at S0 (see Equation A.4, for the next step, these
Greens functions need to be calculated.

Let’s call the Greens functions inside the target zone with x′ at S1 and x variable
inside bi , Ḡp,+

bi
(x,x′,ω), and the Greens functions inside the target zone with xs

at S0, Ḡp,+
Bi

(x,xs ,ω), where superscript p means the whole Greens function, i.e.,

Gp,+ = G−,++G+,+. By inverting Equation A.6, it is possible to find Ḡ+,+
Bi

(x′′,xs ,ω)

where x′′ is at S1. Finally, by using Ḡp,+
bi

(x,x′,ω) as a propagator, one can calculate

Ḡp,+
Bi

(x,xs ,ω) as follows:

Ḡp,+
Bi

(x,xs ,ω) =
∫

S1

Ḡp,+
bi

(x,x′,ω)Ḡ+,+
Bi

(x′′,xs ,ω)dx′. (A.10)

Considering the Greens functions reciprocity, this Greens function, i.e., Ḡp,+
Bi

(x,xs ,ω),
is used for both Greens functions inside the Equation A.4. Ultimately, we will end
up with the following expression for the target-oriented gradient (∇C (m)t ar ):
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∇C (m)t ar = 2R

[
s(x)

∫
ω2Ḡp,+

Bi
(xr ,x,ω)Ḡp,+

Bi
(x,xs ,ω)W (ω)∆d∗dω

]
, (A.11)

A.5. NUMERICAL EXAMPLES
To confirm the effectiveness of the proposed method in this appendix, a comparison
between FWI for the entire medium and Marchenko-based target-oriented FWI with
a one-dimensional acoustic model with a constant density (Fig. A.1) was done. For
this purpose, a gradient descent algorithm is used. A delta function with a time
sampling of 10−2 seconds is used as the source signature, and the depth sampling
is set to 10 meters. For the Target-oriented case, a focusing depth of 2800 meters
is chosen. In Figure A.2, a comparison between the retrieved velocity models is
shown, and in Figure A.3, residual vectors are compared. In addition, Figure A.4 cost
functions are illustrated.

True model

Initial model

Figure A.1.: True and initial model

These results clearly show that this proposed method can remove the overburden
multiple reflection artifacts from the updated model of the target zone. It also
produced a more accurate model of the target zone regarding amplitude and reflector
positioning.

A.6. CONCLUSION
We have shown that Marchenko-based target-oriented Full Waveform Inversion can
compensate for the need for Hessian matrix inversion by reducing the non-linearity
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Figure A.2.: Comparison between FWI for the entire medium and Marchenko-based
target-oriented FWI. The internal multiple of the overburden created an
artifact inside the target zone, but it disappeared from the results of the
Target-oriented FWI.
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Figure A.3.: Comparison between a) Observed data, b) the residual vector of
Target-oriented FWI, and c) the residual vector of FWI for the entire
medium. The overburden response is removed from the residuals of the
target-oriented FWI by the Marchenko-based target replacement method.
Whereas it is still presented in FWI for the entire medium. For better
visualization, traces are convolved with a Ricker wavelet with a dominant
frequency of 40 Hz.
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Figure A.4.: Comparison between cost functions

due to overburden effects. This is achieved by exploiting Marchenko-based target
replacement to remove the overburden response and its interactions with the target
zone from residuals (see figure A.3) and inserting the response of the updated target
zone into the response of the entire medium. With a 1D model, we have also shown
that this method is more robust with respect to prior information than the standard
gradient FWI. Similarly to standard Marchenko imaging, the proposed method only
requires knowledge of the direct arrival time from a focusing point to the surface
and the reflection response of the medium.
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