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SUMMARY

Personalized designs bring significant added value to the products and the users. How-
ever, they also pose challenges on the product design process. For instance, for prod-
ucts for personalized fit, each may differ subject to each user’s body shape and prefer-
ence. Presently, there exist knowledge and methods which support designing person-
alized products/services, with sample applications in the fields of medical products,
shoes, clothing industry, etc. Meanwhile, the major steps in these methods are man-
ual or semi-automated, thus designing Ultra Personalized Products and Services (UPPS)
can be a tedious and time-consuming task. Furthermore, the design process is usually
not optimized and most applications are employing ad-hoc approaches. Designers need
a systematic approach to designing UPPS.

Project UPPS is targeting a complete human-centered approach that goes beyond
the boundaries of traditional manufacturing industry: it requires adaptation to digi-
tal representations and computation-controlled production systems are essential. The
workflow of developing UPPS is framed in several phases; data collection, data analy-
sis, design, production, and testing. However, it not only encompasses the introduction
of new production technology and organisation, but by its one-on-one customer rela-
tionship, it also requires a profound rethink of current design and market approaches.
Furthermore, UPPS necessitates on-demand production, with little to no stock, creating
opportunities for localised production and reshoring.

With UPPS, we need advanced tools to collect offline and online the needed data e.g.,
3D point cloud, from the involved parties i.e., the user and the product. Next and using
the data, there is a necessary need for more effective and efficient design tools/methods
to understand the geometry of the parties in both 3D space and 4D space i.e., time se-
ries of the 3D space geometries. Finally, a holistic understanding of the constraints and
abilities of the production line, and infrastructure of embedding the user in the frame-
work loop for feed-backing the personalized products for possible future improvements
complete the UPPS cycle requirements.

This Ph.D. project aims at developing a robust mesh registration framework that ac-
counts for addressing the challenges, especially for human body shapes.

The first challenge is how to establish a framework that enables transferring mean-
ingful features from one 3D mesh to another. In the area of 3D geometry processing,
mesh registration comprises the fundamental knowledge that can be used to build the
connections between two meshes, thus by understanding the features of one of the meshes,
we can automatically understand the corresponded features in the other mesh treated
as knowledge transfer between the meshes. One of the most well-known approaches to
addressing knowledge transfer is the non-rigid Iterative Closest Point (ICP) registration
method. Though the method was successfully applied in a vast number of applications,
e.g. statistical shape modeling, computer vision, multimedia applications, 3D deforma-
tion of the human spinal column detection, and 3D human body analysis, the non-rigid

xxi
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registration is a non-trivial and ill-defined problem with a high number of Degrees-Of-
Freedom (DOFs). This caused challenges, e.g. establishing meaningful robust corre-
spondences in the registration process, ensuring the convergence towards the desired
minimum in the optimization, and maintaining the quality of the mesh regarding the
source surface.

The second challenge involves identifying and extracting sequential dynamic 3D fea-
tures from a series of 3D meshes. Human movements usually result in considerable
shape deformation of different body parts. 4D scan, which explains 3D geometric shapes
over time, is a pioneer for understanding dynamic anthropometry in different applica-
tions. For example, 4D scans present important information about human body de-
formation during motion, conducting specific activities with dynamic workloads. This
expresses the need for 4D scanners design and 4D scanning techniques. To acquire 4D
scans, multiple (depth) cameras are usually employed. To do so, arrangement of sev-
eral cameras is a necessary stage in any motion tracking technique. The arrangement
should guarantee the free movement of the users to be able to track the targeted fea-
tures. Apparently, the accuracy and the quality of the 3D reconstructed point-clouds
rely on the number of the used cameras and their configuration. However, the num-
ber is competing with the cost and the complexity of the final product and partly the
speed of the process. Those cameras can be synchronized for capturing continuous im-
ages at a given moment. However, it is challenging to balance the needed resolutions of
the images, the needed time duration, the buffer of the depth cameras, the data trans-
fer rate, the computing power, and the storage. Due to the challenge, an accumulative
delay forms regarding each camera even if all the cameras are synchronised hardware-
based. Therefore, this dissertation aims at finding an automatic method to optimally
define the position and orientation of a set of cameras in a foot scanner, and achieve
software-based synchronisation of the cameras.

Although 3D/4D scanning and parametric design are powerful techniques for the
automation of UPPS design, it does not constitute a framework for explaining designerly
freedom nor does it directly allow for handling all kinds of design and manufacturing
constraints. For the final stage of this Ph.D. project, a new and generic data-enabled and
data-driven design framework is explored in the context of the UPPS project, namely
a computational design framework, that supports the designer in the creative process
while also delivering robust automation.

In conclusion, this dissertation presents a pipeline that effectively automates the
geometry-based designerly knowledge transformation whether in 3D space or 4D space.
Firstly, software programs are developed to address fast and robust 3D point cloud reg-
istration as surface mesh or volumetric mesh. On the other hand, new hardware namely
4D scanners, are designed and manufactured capable to achieve high-speed 4D scan-
ning of a moving object i.e., 30 frames per second. In this regard, a novel time-synchroni-
sation software is implemented on the scanner to maintain time-wise alignment of the
frames. Using the 3D point cloud registration methods, we present a comprehensive
mesh-morphing 4D scan product from the software to the hardware. In the end, the
integration of all the developed software and hardware to design is discussed.



SAMENVATTING

Gepersonaliseerde ontwerpen voegen aanzienlijke meerwaarde toe aan producten en
hun gebruikers. Ze brengen echter ook uitdagingen met zich mee voor het product-
ontwerpproces. Bijvoorbeeld, voor producten met een gepersonaliseerde pasvorm kan
elk product verschillen afhankelijk van de lichaamsvorm en voorkeur van de gebruiker.
Op dit moment zijn er reeds kennis en methoden beschikbaar die het ontwerpen van
gepersonaliseerde producten/diensten ondersteunen, met voorbeelden in de medische
sector, schoenen, kledingindustrie, enz. Echter zijn de belangrijkste stappen in deze me-
thoden handmatig of slechts semi-geautomatiseerd, waardoor het ontwerpen van Ultra
Personalized Products and Services (UPPS) een tijdrovende taak kan zijn. Bovendien is
het ontwerpproces meestal niet geoptimaliseerd en maken de meeste toepassingen ge-
bruik van ad-hoc benaderingen. Ontwerpers hebben een systematische aanpak nodig
voor het ontwerpen van UPPS.

Het UPPS Project richt zich op een volledig op de mens gerichte benadering die de
grenzen van de traditionele productie-industrie overstijgt: het vereist aanpassing aan di-
gitale representaties en digitaal gestuurde productiesystemen zijn essentieel. De work-
flow voor het ontwikkelen van UPPS bestaat uit verschillende fasen: gegevensverzame-
ling, gegevensanalyse, ontwerp, productie en gebruik. Het omvat echter niet alleen de
introductie van nieuwe productietechnologie en organisatie, maar vereist ook een diep-
gaande heroverweging van huidige ontwerp en marktbenaderingen vanwege de per-
soonlijke relatie met de klant. Bovendien vereist UPPS on-demand productie, met wei-
nig tot geen voorraad, wat mogelijkheden biedt voor lokale productie en reshoring.

Voor UPPS hebben we geavanceerde tools nodig om offline en online de benodigde
gegevens te verzamelen, bijv. 3D puntenwolk, van zowel de betrokken gebruiker als het
te produceren product. Vervolgens, met behulp van deze gegevens, is er een noodzaak
voor effectievere en efficiëntere ontwerptools/methoden om de geometrie van deze mo-
dellen in zowel 3D als 4D (tijdreeksen van 3D geometrieën) beter te kunnen interprete-
ren. Ten slotte is er een holistisch begrip vereist van de beperkingen en mogelijkheden
van de productietechnieken en moet er nagedacht worden over de aanpak van het in-
tegreren van de gebruiker in het UPPS raamwerk, ten behoeve van feedback over het
gebruik van de gepersonaliseerde producten voor mogelijke toekomstige verbeteringen.

Dit Ph.D. project heeft tot doel een robuust mesh-registratieraamwerk te ontwikke-
len dat rekening houdt met het aanpakken van uitdagingen, met name voor menselijke
lichaamsvormen.

De eerste uitdaging is hoe een raamwerk op te zetten dat het overdragen van beteke-
nisvolle kenmerken van de ene 3D-mesh naar de andere mogelijk maakt. In het domein
van de 3D geometrie-verwerking omvat mesh-registratie de fundamentele techcniek die
kan worden gebruikt om de correspondentie tussen twee meshes op te bouwen. Door
de kenmerken van een van de meshes te begrijpen, kunnen we automatisch begrijpen
welke overeenkomstige kenmerken er zijn in de andere mesh. Een van de meest bekende

xxiii
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aanpakken voor correspondentie is de niet-rigide Iterative Closest Point (ICP) registra-
tiemethode. Hoewel de methode met succes is toegepast in een groot aantal applicaties,
zoals statistische vormmodellering, computervisie, multimediatoepassingen, 3D defor-
matie van de menselijke wervelkolom en 3D analyse van het menselijk lichaam, is de
niet-rigide registratie een uitdagend en slecht gedefinieerd probleem met een groot aan-
tal vrijheidsgraden. Dit veroorzaakt uitdagingen, zoals het vaststellen van betekenisvolle
robuuste overeenkomsten in het registratieproces, het waarborgen van de convergentie
naar het gewenste minimum in de optimalisatie en het handhaven van de kwaliteit van
de vervormde mesh ten opzichte van de kwaliteit van de mesh van het bronoppervlak.

De tweede uitdaging omvat het identificeren en extraheren van sequentiële dyna-
mische 3D kenmerken uit een reeks 3D meshes. Menselijke bewegingen leiden meestal
tot aanzienlijke vormvervorming van verschillende lichaamsdelen. 4D scans, die 3D-
geometrische vormen in de tijd capteren, zijn baanbrekend voor het begrijpen van dy-
namische antropometrie in verschillende toepassingen. Zo geven 4D scans bijvoorbeeld
belangrijke informatie over de vervorming van het menselijk lichaam tijdens beweging,
bij het uitvoeren van specifieke activiteiten met dynamische werklasten. Hieruit volgt
de behoefte van het ontwerp van 4D scanners en 4D scantechnieken. Om 4D scans te
verkrijgen, worden vaak meerdere (diepte)camera’s gebruikt. Daarbij is de relatieve op-
stelling van de verschillende camera’s een belangrijk onderdeel van bewegingsregistra-
tie. De opstelling moet de vrije beweging van de gebruikers toelaten om de relevante
kenmerken te kunnen volgen. Het blijkt dat de nauwkeurigheid en de kwaliteit van de
3D gereconstrueerde puntenwolken afhankelijk zijn van het aantal gebruikte camera’s
en hun configuratie. De hoeveelheid camera’s concurreert echter met de kost en com-
plexiteit van het eindproduct en ook beinvloed ook deels de efficientie van het opname-
en verwerkingsproces. Deze camera’s kunnen worden gesynchroniseerd om continue
beelden op een gegeven moment vast te leggen. Het is echter uitdagend om het vereiste
niveau van resolutie van de beelden, de benodigde tijdspanne, de buffer van de diep-
tecamera’s, de gegevensoverdrachtsnelheid, de rekenkracht en de opslag in evenwicht
te brengen. Deze uitdaging resulteert in een opstapelende vertraging bij de verschil-
lende camera’s, zelfs als ze allen hardwarematig zijn gesynchroniseerd. Daarom heeft
dit proefschrift tot doel een automatische methode te vinden om de positie en oriënta-
tie van een set camera’s in een voetscanner optimaal te definiëren en de synchronisatie
softwarematig aan te vliegen.

Hoewel 3D/4D scannen en parametrisch ontwerp krachtige technieken zijn voor de
automatisering van UPPS ontwerp, vormt het geen kader voor ontwerpvrijheid, noch
staat het direct toe om alle soorten ontwerp en productiebeperkingen aan te pakken.
Voor het laatste stadium van dit Ph.D. project wordt een nieuw en generiek, op data
gebaseerd en data-gestuurd, ontwerpraamwerk onderzocht in het kader van het UPPS-
project. Met name een computationeel ontwerpraamwerk dat de ontwerper ondersteunt
in het creatieve proces en tegelijkertijd robuuste automatisering oplevert.

In conclusie presenteert deze dissertatie een workflow die de op geometrie geba-
seerde en ontwerpgerichte automatisering effectief uitvoert, zowel in 3D als 4D. Ten eer-
ste worden algoritmes ontwikkeld voor snelle en robuuste 3D registratie van oppervlakte-
of volumemeshes. Aan de andere kant worden nieuwe hardwareopstellingen, namelijk
4D scanners, ontworpen en vervaardigd om in staat te zijn tot snelle 4D-scanning van
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een bewegend object (tot 30 frames per seconde). In dit opzicht wordt een nieuwe tijds-
synchronisatiesoftware geïmplementeerd op de scanner om de tijdsafstemming van de
frames te bewerkstelligen. In conclusie presenteren we uiteindelijk een uitgebreid 4D
scanproduct van de software tot de hardware. Tot slot wordt de integratie van alle ont-
wikkelde software en hardware voor het ontwerpen in een reeks van toepassingen be-
sproken.
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INTRODUCTION

Personalized designs bring added value to the products and the users. Meanwhile, they
also pose challenges to the product design process, with a focus on personalized fit, as each
product may differ for each user’s preference. The first step towards addressing the diffi-
culties is understanding the geometry of both the user and the product. Thus, this thesis
presents methods utilized to automatically extract 3D and 4D features from raw scanned
data, an optimized 4D foot scanner, and a discussion on integrating these methods and
tools into the personalized product design framework. Achieving the methods and the
tools faces several challenges which are presented in three research questions that are ex-
plained in detail and solved in corresponding research cycles. This chapter ends with the
organization of this dissertation.
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I N the midst of mass-produced products, Ultra-Personalized Products and Services
(UPPS) have emerged as a popular choice by embedding added values in the prod-

uct/service for individuals. Among the different types of UPPS, personalized-fit products
address the need for personalized products regarding the physical interactions between
the product and the consumer, the environment, and/or other products that are used
by the consumer. Physical characteristics of the product, such as shape, size, mass, area,
quantity, color palette, etc., and the personalized interactions (e.g., comfort), present the
added values of the personalized-fit products [173].

This dissertation aims at developing tools and methods for designing personalized-
fit products under the influence of disruptive technology in the fourth industrial revolu-
tion [66], e.g., 3D scanning, 3D printing. Currently, there are technologies and knowledge
that support designing personalized-fit products, and they already have many applica-
tions in the fields of medical products, shoes, clothing industry, etc. However, most of
these technologies/methods are manual or semi-automated, therefore designing person−
alized-fit products is often a time-consuming and tedious job. In addition, the design
process is often not optimized and most applications utilize ad-hoc solutions. Design-
ers ask for a systematic approach for designing personalized-fit products and they also
need more effective and efficient design tools/methods to support and accelerate such
an approach. A generic framework is missing to systematically approach personalized-
fit products design and production, taking into account the complexities of customer
variety in shape and preferences, design and production constraints, certification stan-
dards, and mechanisms for continuous feedback throughout the process.

1.1. PERSONALIZATION
For customers, size and shape specifications are among the most important parameters
in choosing a product, e.g. clothes, shoes, spectacles, and sports products. Amongst,
standard sizing and shape systems helped industries and factories to be able to im-
plement mass-production. However, there are some disadvantages with existing solu-
tions. In mass production, a large number of identical or similar products are man-
ufactured which may not be sold and often result in a huge waste of materials [283].
Moreover, rudimentary [283] sizing is another issue that causes a mismatch between
customers’ preferences and mass-produced product(s). Such discrepancies may reduce
comfort, and can even result in not using or discarding the product. These problems re-
veal the missing gaps in the traditional mass-production and highlight the opportunities
of developing a comprehensive methodology to satisfy the needs of the personalized-fit
products in society, e.g. for groups such as obese people, amputees, people with non-
standard body types, etc.

The accelerated development of technologies, especially digital technologies, brings
more possibilities to personalized product design and production [79]. For instance,
contrary to traditional manufacturing, advanced manufacturing methods, e.g. 3D print-
ing, have undergone a revolution in the past decade. The potential for personalized mass
production has motivated manufacturers to incorporate 3D printing technology in pro-
duction, leading to potentially radical changes in the future of personalized product de-
sign and manufacturing [67].

To find a comprehensive approach to leverage these opportunities, an overarching
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view is necessary that encompasses 1) the transition from mass customization to mass
personalization, incorporating the UPPS Model, and 2) the integration of semi/fully-
automated production.

1.1.1. MASS CUSTOMIZATION TO MASS PERSONALIZATION

Wide applications of machinery in manufacturing have resulted in two different pro-
duction principles [283]: First, the continuation of craft production, where machines
are employed to increase the variety of products [124]. Second, mass production, where
the use of machines signifies higher efficiency in production, leading to lower product
prices [198]. However, mass production has its downsides. The concept of the mass pro-
duction feedback loop recognizes that disruptive changes in technology can influence
the acceptance of conventionally produced mass products [122]. To address the hetero-
geneity of customer needs in society, the concept of "mass customization" was intro-
duced in [197], defined as follows: "Mass customization is the new frontier in business
for both manufacturing and service industries. At its core is a tremendous increase in
variety and customization without a corresponding increase in costs. At its limit, it is the
mass production of individually customized goods and services. At its best, it provides
strategic advantage and economic value."

The two aforementioned articles [198, 197] have been published in the 90s when
no one could predict that the technological revolution would bring this fundamental
consideration to a higher level. The different stages of production are visualized in Fig-
ure 1.1, taken from [19], and depict the evolution towards personalized production. The
figure is extracted according to [125], which has been expanded upon in [19] for per-
sonalized production. Mentioning that there are ample attempts regarding personaliza-
tion in the literature (as summarized in [129]). We depict this with several arrows. The
difference between personalization and customization has been explained in [129] as:
"We term personalization in a narrow sense as system-initiated personalization and cus-
tomization as user-initiated personalization." In the figure, the UPPS approach is added
as a distinct subcategory of personalized production. Targeting batch size one, it differs
from other attempts, respectively.

The reason that UPPS does not end up at the same point as craft production does,
is the most important significance of Figure 1.1. Accordingly, the reason is that person-
alizing a product is time-consuming with current methods, resulting in a lower num-
ber of personalized manufactured products. Moreover, the amount of technology usage
should be investigated and the results can be appreciated as the third dimension. As
mentioned in [19] “Thus, the Volume-variety diagram should be treated as a spiral with
a third dimension, rather than as a circle.” Accordingly, the target of UPPS is resumed as
“The development of radical new product propositions for the manufacturing industry
through the innovative use of data and by making products fully customized” [235]. In
this project, we want to emphasize that the visualization of the UPPS model known as
NextUPPS presented in Figure 1.2 towards UPPS project is a broad field that includes
multi-disciplinary knowledge of automation in production, design, and management.
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Figure 1.1: Volume-variety diagram in different stages of production includes craft production between 1850
and 1913, mass production between 1913-1955, mass customization between 1955-1980, personalized pro-
duction, and UPPS from 1980 to the present [19].

1.2. UPPS PROJECT
In 2016, Delft University of Technology (TUD) as Work Package 1 (WP1), Eindhoven Uni-
versity of Technology (TU/E) as WP2, and the University of Twente (UT) as WP3, collab-
orated on the nextUPPS project, which was proposed to the Dutch Creative Industries.
The UPPS theoretical model was initially introduced in the proposal and further refined
through workshops involving the principal investigators (PIs) and Ph.D. students from
the three universities. This model served as an approach to identifying UPPS challenges.
Figure 1.2 provides an overview of the model, highlighting the Analysis, Design, Produce,
and Test/Use stages within the UPPS product/service system [129].

The proposed UPPS model is an integrated concurrent approach toward UPPS prod-
uct design and manufacturing. Starting from the market with the actual needs of the
user, their preferences, sizing, and (working) context will be analyzed utilizing popula-
tion models, resulting in digital twin representations of the customer and their activities
and environment. Together with collected (anthropometric) data/models, manufactur-
ing constraints, and legal requirements, an expert system will make an analysis and pro-
pose design preferences and parameters. These preferences and parameters will be the
input of a design automation system, and the outcome will be a digital twin of the per-
sonalized product to be produced, which will be manufactured and certificated by "ad-
vanced" manufacturing methods. The final stage of the UPPS workflow is also the start
of a new iteration in the UPPS iterative product and process where feedback from the
product usage is used to improve the process and product in an iterative fashion.

Among the three involved knowledge institutes, TU/E focuses on the role of the user
in the process of ultra-personalized product and service creation. They are researching
how to facilitate the exchange of collaborative creation between the designer and the co-
designer while minimizing the perceived and actual risk of sizing and customer comfort
during sizing. UT is investigating: 1. The characteristics of personalization and possible
classification of personalized products with the aim to weigh the level of personaliza-
tion against required effort; 2. The gap between the flexibility of designs of personalized
products and the flexibility of production processes; 3. A possible classification of pro-
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Figure 1.2: UPPS connectivity of different units including four WPs: WP1) Automating UPPS; WP2) Defines
designer and the co-designer relationship; and WP3) Manufacturing considerations of the product digital twin.

cess steps for automation to increase insight into successful automated manufacturing
of personalized products; and 4. Human-Robot collaboration in manufacturing and as-
sembly in the context of personalized products to gain a better insight into using collab-
orative robots in reconfigurable manufacturing systems.

TUD is responsible for the overarching framework of the model and introducing tools
and methods for designing UPPS. In detail, we illustrated the interactions between the
involved units in UPPS concerning TUD (stages 1-4) in Figure 1.2, namely 1: Popula-
tion modeling, 2: Digital twinning, 3: Decision-making system, and 4. Design automa-
tion/product. Accordingly, the UPPS cycle [235] at TUD begins with the analysis stage,
where a 3D digital twin of the customer is generated from a population model based on
some form of digitization (e.g., 3D scanning). In the second step, utilizing an expert sys-
tem and considering customer preferences, activities, and production constraints, such
as costs and certification, the product’s digital twin is designed. Thirdly, the specific
piece of the designed product (including both body shape and preferences) is produced
in a production plant with a batch size of one. In the final steps, the product is delivered
to the customer, who tries and starts using it. Meanwhile, there are possibilities to en-
hance the personalized product for each user in the future, based on feedback collected
from the product’s usage (e.g., sensors or customer responses).

1.2.1. AUTOMATION IN THE SEMI-AUTOMATED PERSONALIZATION

Semi-automated product personalization is a beginning step towards fully-automated
personalization and involves techniques that bridge the knowledge of engineers and de-
signers [181]. By utilizing digital data from scanning and, if necessary, engaging with cus-
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tomers, the physical human form and their preferences can be discerned through data
analysis. Based on the physical form, designers can then proceed to design the products,
select suitable materials, and determine appropriate digital fabrication techniques [84],
such as 3D printing [170]. However, this process often proves to be time-consuming,
requiring several iterations to achieve the desired outcome.

Fully-automated approaches have the potential to expedite this procedure. For ex-
ample, in the clothing industry, Susan et al. [21] studied the process of automated pat-
tern generation using software tools from full-body 3D scanning. As validation, they
compared the fitting quality of the customized jackets prototype with a set of 10 ready-
to-wear jackets, in which 70% of the participants were satisfied with the customized
jacket prototype. In shoe personalisation, Nachtigall [181] introduced a procedure for
creating fully functional shoes and presented a research prototype [183]. Through this
work, he demonstrated that automated software solutions and an understanding of de-
sign practice are prerequisites that support the realization of Ultra Personalized 4D shoe-
making and related digital crafts, thereby partially verifying the feasibility of UPPS goal.
Accordingly, the goal of UPPS is to create a highly individualized and tailored experience
for customers, resulting in increased satisfaction, loyalty, engagement, and ultimately,
business success.

1.3. RESEARCH GAPS
Although many works have investigated UPPS, particularly in the context of personalized-
fit products, there are several research gaps that hinder the realization of fully automated
personalized-fit products. These research gaps include:

• There is a lack of essential methods to extract meaningful 3D features on human
body shapes automatically.

• The robustness of the methods [13, 180, 102] in the presence of artefacts on the
collected 3D data of the human body shapes is still not addressed comprehen-
sively.

• In the area of 3D human body shapes processing, there are limited works inves-
tigating directly extracting time sequences of the internal structure of the human
body from X-ray images. Namely, reconstructing a time-sequential 3D volumetric
human spine from X-ray images to predict pediatric spinal deformity (PSD).

• 4D human body scanners are needed to collect movement and deformation of
human bodies. However, there are limited studies about the optimal design of the
scanners subject to maximum visibility of the dynamic body by each camera.

• 4D scanning of a deformable object is still challenging, extracting 4D features is
rarely reported, as establishing a connection between the 3D extracted features in
a time series of 4D dataset is still unsolved.

• The 4D feature extraction may get more challenging when the cameras of the 4D
scanner are not time-wise synchronized.
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Figure 1.3: The connection between the different components of this thesis and the research questions in the
area of human body shapes investigated in three areas of 3D point cloud processing, 4D data collection and
processing, and design.

• Finally, a framework is lacking capable of integrating the solutions towards the
aforementioned gaps together and expressing how to utilise them in the context
of design automation.

1.4. RESEARCH QUESTIONS
To fill the scientific gaps for developing an integrated design method for designing perso−
nalized-fit products, we frame the Ph.D. research in three inter-connected areas with a
set of research questions as shown in Figure 1.3. In the figure, the first research area is
3D human body shape processing, which forms the basis of the geometric fit of human
body shape. The second area is 4D data collection and processing, addressing dynamic
deformable body shapes. The third area is Design, which highlights the need for design-
ers to formulate an integrated approach to designing personalised-fit products.

In the area of 3D human body shape processing, many tools and methods were de-
veloped, however, with different limitations, e.g. non-rigid Iterative closest points (ICP)
method is only suitable to match scans of a fixed object, which minimizes the distance
of the closest points from the source mesh to the target mesh, thus other features of 3D
points clouds are neglected results in limited accuracy of the pattern matching between
the two meshes. This limitation made it difficult to apply the method to create a statisti-
cal shape model of human which can approach different human body shapes based on
a set of data. The first Research Question (RQ1) is therefore set as:

• RQ1: What type of registration methods can contribute to establish 3D human shape
model and their use as prior knowledge in fitting new subject scans?

One of the most well-known approaches to addressing knowledge transfer is non-
rigid registration methods [7, 71]. Here, non-rigidly registering a point cloud is treated
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as deforming the point cloud to have the best match to a different point cloud, where the
point clouds in this thesis focus on 3D space. In the past decade, non-rigid registration
has been widely applied in many applications such as motion analysis [96], shape anal-
ysis [68], and medical image registration [75]. Among different types of non-rigid sur-
face registration methods, the non-rigid Iterative Closest Point (ICP) registration has at-
tracted much attention, mainly due to its simplicity, efficiency, and effectiveness. Using
the non-rigid ICP method, a source surface is registered to the target surface via two iter-
ative steps, where the goal is to find meaningful correspondences, e.g. match anatomical
equivalent zones/points. First, the correspondence of each vertex in the source surface
to the target surface is established based on a metric, which is usually defined as a type of
distance (e.g., distance between points). Then, a cost function is defined based on those
correspondences and is minimized by finding a non-rigid transformation. In a practical
application, these two steps iterate until a local minimum of the cost function is found
or the iteration steps exceed a threshold.

Though it was successfully applied in many applications, such as gender scoring [89],
statistical shape modeling [100], computer vision [138], multimedia applications [224],
human-computer interactions [162], 3D deformation of the human spinal column de-
tection [257], image face alignment [46], and 3D human body analysis [114], the non-
rigid registration is a non-trivial and ill-defined problem with a high number of degrees-
of-freedom (DOFs). According to Figure 1.3, sub-research question 1.1 refers to chal-
lenges for preserving features of the source surface in the design and implementation of
a non-rigid ICP registration algorithm [268]. Here, features account for salient geomet-
ric features which form compound higher-level descriptors. A salient geometric feature,
or in short, a salient feature, consists of a cluster of descriptors that locally describe a
nontrivial region of the surface [83], such as curvature. These challenges include estab-
lishing meaningful robust correspondences in each step of the iteration [265], ensuring
convergence towards the desired minimum in the optimization [143], and maintaining
the quality of the mesh regarding the source surface. These challenges resulted in sub-
research question (RQ1.1) as:

– RQ1.1: How to integrate a shape descriptor to the nonrigid ICP algorithm to
consider the shape characteristics?

In the context of non-rigid registration, most available methods aim to non-rigidly
align a point cloud to another point cloud, involving deformation. However, the in-
terpretation of the ideal deformation in these methods remains ambiguous as the de-
formation is typically considered as minimizing the geometric error with respect to the
corresponding points, as in the case of the non-rigid ICP algorithm. Nevertheless, such
deformation may result in the loss of certain features in the source mesh and/or a reduc-
tion in the overall mesh quality. The primary challenge lies in the utilization of uniform
parameter values for all points on the source mesh during registration, disregarding the
fact that each point requires a detailed examination based on its specific conditions,
such as the presence of holes or artifacts on the target mesh, in order to determine ap-
propriate parameter values. This challenge gives rise to the formulation of the following
sub-research question:
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– RQ1.2: How to derive a nonrigid ICP-based algorithm that is robust to arte-
facts in a 3D shape?

Finally, RQ1.3 is formulated as follows, based on the challenges associated with the
registration process and the considerations explained in RQ1.1 and RQ1.2, while con-
sidering the utilization of volumetric meshes for human body shapes within the source
and/or target meshes.

– RQ1.3: How to implement the nonrigid-ICP registration method for register-
ing volumetric meshes on each other?

Human movements often result in significant shape deformations of various body
parts. The use of 4D scanning, which captures 3D geometric shapes over time, has
garnered considerable attention in gaining a better understanding of dynamic anthro-
pometry across different applications [35, 39]. For instance, 4D scans provide valuable
insights into human body deformations during motion, particularly when engaging in
specific activities with dynamic workloads. In summary, this technology aids in estab-
lishing a fundamental understanding of human movements and finds applications in
various domains, including building virtual avatars, ergonomics, computer games, per-
sonal protective equipment, workwear, sportswear, and other practical garments [34].

However, the transition from 3D point cloud processing to 4D scanning is accompa-
nied by several hardware and software limitations. As a result, the following Research
Question (RQ2) is formulated:

• RQ2: What type of tools and registration methods can contribute to establish 4D
human shape model and their use as prior knowledge in fitting new subject scans?

To acquire 4D scans, the utilization of multiple depth cameras is often necessary.
Therefore, the arrangement of these cameras plays a crucial role in any motion-tracking
technique, ensuring unrestricted user movement for effective tracking of targeted fea-
tures.

The identification of feature points, which can be detected using either passive or
active landmarks, relies on the camera outputs. Through triangulation between the out-
puts of multiple cameras, the 3D positions of the landmarks are determined [74, 161].
The accuracy and quality of the resulting 3D reconstructed point clouds [92] are inher-
ently dependent on the number of cameras employed and their configuration. However,
this number presents a trade-off between the cost of the final product and the process-
ing speed. The investigation into the complexity of designing an optimal 4D scanner is
addressed in Research Question RQ2.1:

– RQ2.1: How to optimally define the position and orientation of a set of cam-
eras in a 4D foot scanner?

In 4D scanning, each camera generates a set of point clouds corresponding to each
frame, and there are no inherent connections or associations between these point clouds.
Consequently, the absence of point correspondence between frames hinders the ability
to capture and analyze dynamic features across frames. This leads to the formulation of
Research Question RQ2.2:
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– RQ2.2: How to establish meaningful dynamic features between frames of a
camera which guarantees to find the proper corresponded points in a limited
number of iterations from a Source mesh to a Target mesh?

The synchronization of multiple cameras in order to capture continuous images at a
specific moment is possible. However, striking a balance between various factors such as
image resolution, time duration, buffer capacity of the depth cameras, data transfer rate,
computing power, and storage poses significant challenges [33]. For example, capturing
depth images of size 640x576 using six cameras at 30 frames per second would require a
bandwidth of approximately 2 Gb/s. This presents difficulties in the design of a 4D scan-
ning system, particularly for low-cost implementations. As a result, "dropped frames"
can often be observed in the captured data. Moreover, due to the substantial data trans-
fer involved, a nonlinear accumulative delay occurs for each camera, even when they
are hardware-based synchronized [171]. The challenge related to this accumulated de-
lay gives rise to Research Question RQ2.3:

– RQ2.3: How to design a higher level of software-based synchronisation method
between cameras in a 4D foot scanner?

3D/4D scanning and parametric design are powerful techniques for the automation
of UPPS design; however, it does not constitute a framework for expressing designerly
freedom nor does it directly allow for handling all kinds of design and manufacturing
constraints. Thus, a new and generic data-enabled and data-driven design framework
in the context of the UPPS project, namely a computational design framework, is neces-
sary that supports the designer in the creative process while also delivering robust au-
tomation. Expert systems may play a central role here. To this end, bridging from the
tools and methods to the designers’ knowledge guide us to the following third research
equation:

• RQ3: How can we use the 3D/4D human data in the design automation for UPPS ?

We answer these research questions in the following chapters where the structure is
explained in Section 1.5.

1.5. THESIS STRUCTURE
The main body of this Ph.D. thesis consists of seven Chapters that answer the corre-
sponding research questions (RQs) subject to the sub-research questions that were de-
fined in Section 1.4 within the UPPS framework. Figure 1.4 presents an overview of the
thesis. Each RQ is investigated in an individual part, and each sub-research question is
presented and discussed in a separate chapter. The thesis ends with a discussion and
recommendation. Parts II- IV includes several chapters that present the introduction,
related work, theory, results, and conclusion. Short descriptions of each Chapter are
presented in the following paragraphs.

Chapter 2: In Chapter 2, and to address RQ1.1, a novel non-rigid registration method
is presented, making use of a newly defined semi-curvature concept, which draws inspi-
ration from the definition of Gaussian curvature. In the process of establishing point cor-
respondences, a dynamic weighted criterion based on the distance and semi-curvature
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Figure 1.4: An overview of the research cycles and the organization of the thesis, where gray color belongs to
the domain of 3D human body shape processing, green color belongs to 4D human body shape scanning, and
blue color belongs to design automation.

is employed to select the corresponding point on the target surface for each point on
the source surface. The cost function is reformulated to incorporate the semi-curvature,
stiffness, and distance terms, effectively penalizing errors in both the distance and semi-
curvature components within a guaranteed stable region. To facilitate a robust and ef-
ficient optimization process, the semi-curvature term is linearized, defining a region of
attraction and establishing the stability of the approach. Experimental results demon-
strate that the proposed method better preserves features of local areas on the original
surface with higher curvature values, outperforming conventional methods.

Chapter 3: Although Chapter 2 addresses a promising registration method for pre-
serving the features of the source mesh, the challenge outlined in RQ1.2 concerning the
balance between feature preservation and deformation in the presence of mesh arti-
facts remains. Therefore, in Chapter 3, a non-rigid ICP algorithm is presented, which
approaches the challenge as a control problem. An adaptive feedback control scheme
is derived, ensuring global asymptotic stability, to control the stiffness ratio and achieve
maximum feature preservation and minimum mesh quality loss during the registration
process. A cost function is formulated, incorporating the distance term and the stiffness
term. The initial stiffness ratio value is determined using an Adaptive Neuro-Fuzzy In-
ference System (ANFIS)-based predictor, which takes into account the source mesh and
target mesh topology, as well as the distances between the correspondences. Through-
out the registration process, the stiffness ratio of each vertex is continuously adjusted
based on intrinsic information obtained from shape descriptors of the surrounding sur-
face, as well as the progress made in the registration steps. Additionally, the estimated
process-dependent stiffness ratios are utilized as dynamic weights for establishing cor-
respondences in each registration step. Experimental results on both simple geometric
shapes and 3D scanning datasets demonstrate the superiority of the proposed approach
over existing methodologies, particularly in regions where features are not prominent or
where interferences among features exist. This is attributed to its capability to incorpo-
rate the inherent properties of the surface during the mesh registration process.

Chapter 4: Predicting Pediatric Spinal Deformity (PSD) based on X-ray images ob-
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tained during a patient’s initial visit poses a significant challenge. In response to RQ1.3,
Chapter 4 investigates this issue by proposing a volumetric geometry-based bone growth
model that can be applied in various applications to enhance the bio-informed mecha-
nistic machine learning framework. The primary focus is on examining and predicting
spine curvature in PSD cases, specifically adolescent idiopathic scoliosis. The proposed
technique leverages a segmented 3D volumetric geometry of the human spine obtained
from 2D X-ray images. To achieve this, the anteroposterior and lateral views of the X-
ray images are segmented using an active contour model based on gradient vector flow
snakes. These 2D contours surrounding each vertebra are extracted with minimal user
input, and the snake parameters are calibrated and automatically computed across the
dataset, enabling fast image segmentation and data collection. The 2D segmented out-
lines of each vertebra are then transformed into a 3D image segmentation result. To
establish a mesh morphing approach and create a 3D atlas spine model, the Iterative
Closest Point mesh registration technique is employed. This process facilitates the ex-
traction of spinal geometry data from the comprehensive 3D volumetric model, which
can be utilized as inputs to the mechanistic machine learning network. Furthermore, the
proposed bio-informed deep learning network, incorporating the modified bone growth
model, achieves competitive or even superior performance compared to other state-of-
the-art learning-based methods.

Chapter 5: Optical motion capture involves the estimation of three-dimensional
(3D) positions of points by employing triangulation with multiple depth cameras. With
regards to RQ2.1, the success of this technique heavily relies on the visibility of points
from different cameras and the overlap of captured meshes between them. The accu-
racy of the position estimation is largely influenced by the camera parameters, such
as their location and orientation. Consequently, the configuration of the camera net-
work plays a crucial role in the quality of the resulting mesh. In Chapter 5, an optimal
approach for camera placement is proposed based on the characteristics of the D435i
depth camera from Intel RealSense. The optimization problem involves a cost function
that consists of various terms aimed at minimizing or maximizing specific parameters.
The minimization terms include the distance of the cameras to the center of the scan-
ning object, resolution error, and sparsity. On the other hand, the maximization terms
encompass the distance between pairs of cameras, the percentage of captured points
from the object, and the level of overlap between cameras. The accuracy and robustness
of the proposed algorithms are evaluated through experimental measurements, and the
sensitivity to the number of cameras is also investigated. This analysis provides insights
into the performance of the camera placement optimization approach and its effective-
ness in achieving accurate and reliable results in optical motion capture applications.

Chapter 6: In accordance with RQ2.2, 4D scans, which refer to continuous 3D scans
captured at different timestamps, are crucial for the development of garments/apparel
in 4D that can accommodate body movements. In Chapter 6, a semi-automatic work-
flow is proposed for constructing 4D scans of body parts, with a particular focus on align-
ing and registering noisy scans at specific timestamps. The process begins by capturing
continuous 3D scans of the moving body parts from various depth cameras positioned
at different angles. At a given timestamp, the collected 3D scans are roughly aligned to a
template using the rigid ICP algorithm. Subsequently, these scans are further registered
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using a newly proposed non-rigid Iterative Closest-Farthest Points (ICFP) algorithm. The
ICFP algorithm establishes correspondences between the source and target scans by uti-
lizing either the closest or farthest points, based on a newly defined logical distance con-
cept and probability theory. This approach aims to improve the accuracy of registra-
tion while being robust against noise. Experimental results demonstrate that the ICFP
method exhibits strong resilience to noise and achieves acceptable scanning accuracy.
Overall, the proposed workflow and the ICFP algorithm contribute to the construction
of reliable and accurate 4D scans of body parts, facilitating the design and development
of garments/apparel that can adapt to the dynamic movements of the human body.

Chapter 7: Although this chapter is mainly focusing on RQ2.3, it uses promoted
version of methods and tools extracted form Chapter 5 and Chapter 6, namely, next gen-
eration of 4D foot scanner, and mesh-morphing technique. Thus, individually in Chap-
ter 7, we introduce a generic framework that is able to 1) synchronise scans captured by
asynchronous cameras through a novel deep-learning-based network, which is capable
of aligning 3D scans captured by different cameras to the timeline of a specific camera;
and 2) register a high-quality template to synchronised scans at each timestamp to form
a high-quality 3D mesh model using a non-rigid registration method. Using a newly
developed 4D foot scanner, we validate the framework and create the first open-access
data-set, namely the 4D feet.

Chapter 8: This chapter addresses RQ3 and focuses on the feasibility of integrating
the outputs from the previous chapters (Chapter 2 to Chapter 7) into the design pro-
cess. The chapter presents a comprehensive framework that aims to bridge the gap be-
tween personalized design and design practice. First, the general workflow of personal-
ized product design is introduced. Then, different steps in the workflow, such as human
data/parameters acquisition, computational design, design for digital fabrication, and
product evaluation, are presented. Tools and methods that are often used in different
steps in the process are also outlined. Human data acquisition, 3D scanning, and digi-
tal human models are addressed in the context of data acquisition. For computational
design, the use of computational thinking tools such as abstraction, decomposition, pat-
tern recognition, and algorithms is discussed. In design for digital fabrication, additive
manufacturing methods (e.g., Fused Deposition Modeling (FDM)) and their design re-
quirements are highlighted. Regarding product evaluation, both functional evaluation
and usability evaluation are considered, and the evaluation results can serve as the start-
ing point for the next design iteration. Finally, several case studies are presented to en-
hance the understanding of the workflow, emphasize the importance of different steps
in the workflow, and explore variations in the approach based on different contexts. In
conclusion, the aim is to provide designers with a holistic view of the design process for
personalized products and to assist practitioners in generating innovations at each step
of the process.
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2
3D FEATURE-BASED NON-RIGID

REGISTRATION METHOD

Preserving features of a surface as characteristic local shape properties captured e.g. by
curvature, during non-rigid registration is always difficult where finding meaningful cor-
respondences, assuring the robustness and the convergence of the algorithm while main-
taining the quality of mesh are often challenges due to the high degrees of freedom and the
sensitivity to features of the source surface. In this chapter, we present a non-rigid registra-
tion method utilizing a newly defined semi-curvature, which is inspired by the definition
of the Gaussian curvature. In the procedure of establishing the correspondences, for each
point on the source surface, a corresponding point on the target surface is selected using
a dynamic weighted criterion defined on the distance and the semi-curvature. We refor-
mulate the cost function as a combination of the semi-curvature, the stiffness, and the
distance terms, and ensure to penalize errors of both the distance and the semi-curvature
terms in a guaranteed stable region. For a robust and efficient optimization process, we
linearize the semi-curvature term, where the region of attraction is defined and the stabil-
ity of the approach is proven. Experimental results show that features of the local areas
on the original surface with higher curvature values are better preserved in comparison
with the conventional methods. In comparison with the other methods, this leads to, on
average, 75%, 8% and 82% improvement in terms of quality of correspondences selection,
quality of surface after registration, and time spent of the convergence process respectively,
mainly due to that the semi-curvature term logically increases the constraints and depen-
dency of each point on the neighboring vertices based on the point’s degree of curvature.

Parts of this chapter have been published in:
Tajdari F, Huysmans T, Yang Y, Song Y. Feature preserving non-rigid iterative weighted closest point and semi-
curvature registration. IEEE Transactions on Image Processing. 2022 Feb 9;31:1841-56 [251].
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2.1. INTRODUCTION

I N the past decade, non-rigid registration is widely applied in many applications such
as motion analysis [96], shape analysis [68], and medical image registration [75]. Among

different types of non-rigid surface registration methods, the non-rigid Iterative Closest
Point (ICP) registration attracted much attention, mainly due to its simplicity, efficiency
and effectiveness [7]. Using the non-rigid ICP method, a source surface is registered to
the target surface via two iterative steps. First, the correspondence of each vertex in the
source surface to the target surface is established based on a metric, which usually is
defined as a type of distance (e.g. distance between points). Then, a cost function is
defined based on those correspondences, and is minimized by finding a non-rigid trans-
formation [71]. In a practical application, these two steps iterate until a local minimum
of the cost function is found or the iteration steps exceed a threshold.

Though it was successfully applied in many applications, e.g. gender scoring [89],
statistical shape modeling [100], computer vision [138], multimedia applications [224],
human-computer interactions [162], 3D deformation of the human spinal column de-
tection[257], image face alignment [46], and 3D human body analysis [114], the non-
rigid registration is a non-trivial and ill-defined problem with a high number of degrees-
of-freedom (DOFs). Accordingly, there are many challenges for preserving features of the
source surface in the design and implementation of a non-rigid ICP registration algo-
rithm[268]. Here features account for salient geometric features which form compound
higher-level descriptors. A salient geometric feature, or in short, a salient feature, con-
sists of a cluster of descriptors that locally describe a nontrivial region of the surface [83]
i.e. curvature. Those challenges are, e.g. establishing meaningful robust correspon-
dences in each step of the iteration [265], ensuring the convergence towards the desired
minimum in the optimization [143], and maintaining the quality of the mesh regarding
the source surface. A typical example is that in the minimization of distances between
closest points from the target to the source surfaces, the correspondences between fea-
ture points may change when the stiffness term, or the weight of it, is not large enough.
This is especially true when the feature is not prominent, or when there is interference
between/among features.

In the past decades, researchers made considerable progress in tackling those chal-
lenges, for instance, using landmarks (LMs) to improve the accuracy of the correspon-
dences [109, 175, 107, 217], introducing prior knowledge regarding the geometric shapes[104],
integrating more terms in the cost functions [147]. However, problems are not fully
solved. For instance, in matching 3D scans of human feet, it is often found that some
toes are bonded together and/or part of a toe is hidden behind another. Though re-
searchers tried to introduce LMs, either manually or automatically, the limited number
of LMs does not always contribute to establishing the desired correspondences between
source and target surfaces, neither lead to a correct registration result. A better measure,
which synthesizes the intrinsic properties of features of both the source and the target
surface, is needed in establishing the meaningful correspondences as well as defining
the cost function.

In this chapter, we propose a new asymptotically robust approach of non-rigid ICP
by integrating a newly defined semi-curvature in the definition of the metric for estab-
lishing the correspondences as well as the cost function for finding the non-rigid trans-
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formation. Our scientific contributions are:

1. We introduce the semi-curvature, which is monotonically related to the Gaussian
curvature with similar geometric meaning, and has unique mathematical characteristics
of the capability of being linearized;

2. We integrate the semi-curvature in the cost function for establishing correspond-
ing point pairs in two surfaces using a dynamic weighting factor to address intrinsic
properties across the complete surfaces;

3. We linearize the cost function with guaranteed regions of attraction in the min-
imization process for a robust registration process as well as a registration result with
high quality mesh.

The remainder of the chapter is arranged as follows: first recent developments in
the non-rigid ICP registration method regarding the aforementioned three challenges
are presented. Then we propose our approach where the definition and the character-
istics of the semi-curvature are addressed. In Section 7.4, the setup of the experiments
is introduced where in Section 3.5, experimental results on the comparison of the pro-
posed approach and other non-rigid registration methods are presented. Finally, a short
conclusion is drawn and future research directions are highlighted as well.

2.2. RELATED WORK

2.2.1. CORRESPONDENCES

For a better preservation of the features on the source surface, establishing meaning-
ful dense correspondences between the source and the target surface throughout the
registration process is key. Using LMs is a common method to improve the accuracy of
the correspondences in the registration process. Besides manual specification of corre-
sponding points on the two surfaces, pattern recognition algorithms are often deployed
to find those LMs automatically, e.g. [109, 175, 107, 217]. However, those LMs are often
located at the extrema of certain intrinsic properties and they are sparsely distributed
around the surface. The full spectrum of the intrinsic properties of the surface is often
not completely used in the process of establishing correspondences. To embed more
shape information in the registration process, researchers introduced different intrinsic
properties in establishing the correspondence. For instance, Li [141] employed a single
ℓ2-norm optimization framework utilizing confidence weights to improve robustness.
Dai et al. [58] presented an iterative registration method that combines ICP with Co-
herent Point Drift (CPD) to achieve a more stable correspondence establishment. As a
recent improvement, a Bayesian Coherent Point Drift (BCPD) approach was presented
in [102]. The method utilizes the coherent drift in the variational Bayesian inference the-
ory, while keeping the fundamental features of the CPD algorithm. Recently, a rigid ICP
based registration algorithm was presented in [313] which uses curvature feature simi-
larity to find more accurate correspondences. However, the method is sensitive to noise,
and the exponential growth of the computing time regarding the number of points in
the surfaces also prevents its wide application to more complicated geometries. Besides
shape intrinsic properties, prior knowledge can also contribute to establish meaning-
ful correspondence. For instance, Hontani et al. [104] used a reference statistical shape
model (SSM) to find outliers in the non-rigid registration. Guo et al. [97] proposed an
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ℓ0 model for establishing correspondences between deformed body shapes, and this
method had higher accuracy and robustness in dynamic 3D reconstruction and track-
ing. However, the construction of an SSM [310] is always an expensive task regarding
both the manpower and the computing time, and it is not always possible to build an
SSM a priori regarding the shape to be registered.

2.2.2. CONVERGENCE IN THE MINIMIZATION

With meaningful correspondences between the source and the target surfaces, a robust
minimization strategy that is used in each step of the registration is essential for a suc-
cessful registration. A few works addressed this issue regrading the metrics in the cost
function, the initial conditions and the non-rigid transformation. For instance, Sharp et
al. [222] used the Euclidean and topological metrics to reduce the probability of instabil-
ity and possible deviation from the global minimum. The effect of initial condition was
investigated in [227], where a better initial condition was proposed using a novel eval-
uation method based on the genetic algorithm. Regarding the rigid transformation, the
transformation of the surface was restricted to the rotation with the normal vector of the
faces in [134] to guarantee the robustness only for rotation components. To extend the
domain of robustness (following global robustness) of the rotation angles, constraints
of the rotations are proposed in [316] to limit the unnecessary rotational transforma-
tion that leads to instability. Recently, Uttaran et al. [30] presented a fast and locally
robust SE-based (Special Euclidean) methodology that optimizes a cost function based
on motion estimation [93]. Haris et al. [24] introduced the local minimum escape ICP
algorithm, improving the conventional ICP method by proposing local minimum esti-
mation and escape mechanisms. However, the robustness of the minimization strategy
was not yet fully guaranteed.

2.2.3. MESH QUALITY

Preserving mesh quality can be attributed to part of the feature preservation in a local
scale, e.g. details of the shape intrinsic properties might be lost if the resulting surface
of the non-rigid registration is too smooth. Knupp [121] indicated that the mesh quality
can be quantified as “an element quality metric is a scalar function of node positions that
measures some geometric property of the element”. Therefore, to preserve the mesh qual-
ity of the surface after registration, embedding regularization terms, e.g. ℓ2-norm in a
least-squares sense [238], in the formulation of the cost function is a popular choice. For
instance, Amberg et al. [13] introduced an ℓ2-norm cost function where a stiffness term
is embedded to have more logical deformation considering the similarity of the surfaces.
Sumner et al. [240] employed the as-rigid-as-possible term introduced by [233] to the
cost function. In 2009, Liao et al. [150] described a Thin Plate Spline (TPS) based terms
[52], and combined it with graduated assignment algorithm to formulate smoothness
constraints. Rouhani et al. [214] also integrated locally rigid transformations to formu-
late the non-rigid deformation optimization problem. A sparse non-rigid registration
method using an ℓ1-norm cost function is employed by Yang et al. [306]. However, the
position constraints (e.g., near piece-wise rigid deformation) were not sufficiently well
embedded in the model to establish the connectivity of the piece-wise rigid deforma-
tion. Li et al. [143] recruited local affine transformations and orthogonality constraint
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Figure 2.1: Match the source surface to the target surface.

together to capture surface details for preserving local shape in the registration [301,
297]. Different densities in the source and the target meshes also pose challenges to pre-
serving mesh quality in the non-rigid registration. For a better match of similar surfaces
in the source and target surfaces with different point densities, Tazir et al. [264] proposed
the idea of matching points representing the local regions of the source cloud with the
points representing the corresponding local regions in the target. Recently, Ayan [43]
presented a registration method based on an energy function combining the strength of
local and global geometry along with an intermediate level representation of the point
cloud. The method is practical to address uniform deformation and preserve the origi-
nal mesh quality; however, it is very sensitive to the point density, high deformation and
detailed geometry areas.

2.3. METHODOLOGY
This section introduces the proposed non-rigid ICP approach. First, a concise descrip-
tion of the approach is given based on the conventional ICP algorithm [13]. This is
followed by the introduction of the semi-curvature term, the improved corresponding
points search approach, the cost function and the optimization process.

2.3.1. THE APPROACH

In the registration process of the non-rigid ICP, the source surface S = (V ,E ), consisting
of n vertices in V and m edges in E , is registered to the target surface T step by step.
Figure 2.1 illustrates a step of the registration process. In the figure, the meshes are as-
sumed to be triangular meshes, and the vertices are labeled by numbers. In this step,
first, the correspondences between vertices vi in the source surface S (green) and ver-
tices ui in the target surface T (red) are established. Then vi is transformed by locally
affine transformations (Xi ) towards the target surface T (red). The transformed source
surface is S (X ) (blue). This procedure iterates till an optimal stable state is obtained.

Based on the basic concept introduced in Figure 2.1, the flowchart in Figure 3.4 de-
scribes the proposed iterative approach by finding optimal Xi to transform vi to ui

(where ui is comparable with Xi vi ) in each iteration. It is worth mentioning that in the
approach of Figure 3.4 there are two nested loops. In the outer loop (where k is updated),
the weights in the metric for establishing correspondences are automatically updated. In
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Figure 2.2: The proposed registration process.

the inner loop (where j is updated), the cost function for finding the optimal transfor-
mation matrix is continuously being minimized based on the weights till the change in X
is less than a small value of ϵ or j > j max. The two nested loops in each of their iterations
account for addressing different aspects of the measures, e.g. the Euclidean distance and
the difference of semi-curvatures of two corresponding points.

As a final step in the registration, each vertex of V (X ) is projected onto the target sur-
face along the normal vectors of the transformed surface. Keeping the original topology
of the source mesh, the final transformed vertices represent the registered surface of the
original source.

2.3.2. SEMI-CURVATURE
Using the notation from Figure 2.3(a), the Gaussian curvature of a point P on a triangular
mesh can be approximated [304] as:

KG (P ) = 3
(
2π−∑

αi
)∑

A ( fi )
(2.1)



2.3. METHODOLOGY

2

25

(a) (b)

Figure 2.3: (a) Curvature parameters of point P . (b) Relations between αi and π
2 (1− cos(αi )).

where, αi is the angle of the triangle formed by P and its 1-ring neighboring vertices. It
can be calculated as Eq. (2.2).

αi = cos−1


(−→

P i −−→
P

)
.
(−→

P i+1 −−→
P

)
∥−→P i −−→

P ∥∥−→P i+1 −−→
P ∥

 (2.2)

A in Eq. (2.1) is a function to calculate the area of each triangle fi . It can be approached
as:

A ( fi ) = 0.5∥
(−→

P i −−→
P

)
×

(−→
P i+1 −−→

P
)
∥ (2.3)

As the function cos−1 in Eq. (2.2) makes the relationship between Gaussian curvature
values and vectors of P to Pi nonlinear, we replace αi in Eq. (2.1) by π

2 (1− cos(αi )). For
a triangle mesh, 0 ≤ αi ≤ π, therefore the domains of αi is the same as π

2 (1− cos(αi ))
for all vertices. Regarding the values, these two expressions equal to each other at αi =
0, π2 ,and π, however, slightly different in other αi as y1 and y2 is shown in Figure 2.3(b).
Replacing αi by π

2 (1− cos(αi )) in Eq. (2.1), we define the semi-curvature of vertex P as:

K (P ) = 3(2π−∑ π
2 (1− cos(αi )))∑
A ( fi )

(2.4)

The newly defined semi-curvature in Eq. (2.4) and the Gaussian curvature suggested
by Eq. (2.1) are monotonically related as Figure 2.3(b). For acute αi , we have y1 < y2

and when αi is obtuse, y1 > y2 holds. According to Eq. (2.4), if a part of a mesh con-
sists only of acute triangles, the value of semi-curvature on each vertex is larger than
Gaussian curvature and for obtuse triangles, the value is smaller. Therefore, compared
to the Gaussian curvature, semi-curvature might have a larger value when the valence
of the vertex, i.e. the number of one-ring vertices, is large, e.g. ≥5. This transformation
from the Gaussian curvature Eq. (2.4) to the semi-curvature Eq. (2.1), as regulator of cur-
vature, is instigated by increasing the chance of visibility of the features (suggested by
semi-curvature function versus curvature function on saddle points) as it is found, com-
plex models’ features usually are indexed to their saddle points [147]. Thus, enlarging
the deviation spectrum between high curved and low curved points can improve corre-
sponding points selection between the two meshes. To clarify, the Gaussian curvature
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(a) (b)

Figure 2.4: Visualisation of normalised curvature values where yellow color indicates the highest curved area
and blue color indicates the lowest curved area. (a) Using Gaussian curvature. (b) Using the proposed semi-
curvature.

region was further addressed as depicted in Figure 2.4. In the figure, it can be observed
that using the semi-curvature, the yellow region on the face ( Figure 2.4(b)) is larger com-
pared to using the Gaussian curvature ( Figure 2.4(a)). Generally, the saddle points come
into view because of exaggeration in the semi-curvature function. It is expected that
the function would attempt to keep larger deviation of the semi-curvature value differ-
ences to provide a higher chance of detecting the corresponding saddles. This logical
deviation gives more freedom to the deformation with less confliction between several
correspondences. Moreover, increasing the valence of a vertex results in an increase of
the semi-curvature value, the registration will be enhanced to logically exert different
stiffness values for the areas with more features. This concludes to have S with differ-
ent stiffness in different parts based on the the degree of pronouncedness of feature that
exists in the area.

Thus, the new curvature formulation satisfies the goal of this chapter, to emphasize
more on highly curved areas. As an example in Figure 2.4, the location of high curved
(yellow), and low curved (blue) areas are the same comparing Figure 2.4(a) with Fig-
ure 2.4(b), while the area of the domains is different.

2.3.3. ESTABLISH CORRESPONDENCES
In the use of a conventional ICP method, given a point on S , the closest point on T is
considered as its corresponding point. As only the Euclidean distance is used in estab-
lishing the correspondences, the intrinsic properties of the surface are not embedded. To
avoid the loss of intrinsic properties, we introduce a new criterion as Eq. (3.22), which
combines the Euclidean distance and semi-curvature to find the candidate point on T .

H = ζηHd + (1−ζη)Hc (2.5)

Where Hd is the distance term composed of hdi related to Pi , and Hc is the differential
semi-curvature term composed of hci related to Pi . Moreover, in Eq. (3.22), ζ is a linearly
increasing coefficient by k in range of

[
0,1

]
, and η is a constant parameter. The higher

the value over 1 for η, the larger the effect of semi-curvature values is in driving the cor-
responding points selection by H . Accordingly, the smaller the η is than 1, the lower the
effect of semi-curvature values are to select the correspondences by H . In the case that
η is equal to 1, both distance (Hd ) and semi-curvature (Hc ) have equal effect in terms of
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the H for correspondences selection.
In practice, sparse similarities prevent us to search all points in T for establishing

correspondences. Therefore, we only consider candidate correspondence points in a
pre-processed region including Nnor mal number of points in T . Then, Hd and Hc in
Eq. (3.22) can be elaborated as:

[
hci

]
Nnor mal×1 =

K (Pi )
max(K ) −

[
Kt ar g et

]
Nnor mal ×1

max(Kt ar g et )

max

 K (Pi )
max(K ) −

[
Kt ar g et

]
Nnor mal ×1

max(Kt ar g et )

 (2.6)

[
hdi

]
Nnor mal×1

=
vi −

[
U

]
Nnor mal×1

max
(
vi −

[
U

]
Nnor mal×1

) (2.7)

where Kt ar g et consists of the semi-curvature values of the points on the T and arranged
based on correspondences, Hd is a Nnor mal by 1 matrix, consisting of distances of the
Nnor mal points from T to Pi on S . Similarly, Hc is a Nnor mal by 1 matrix, consisting
of deviation of the Nnor mal points on T in terms of the semi-curvature value (Eq. (2.4))
from Pi on S . The pre-processing procedure to find the region with Nnor mal points has
several steps as follows.

• Briefly, N (lowering value, from Nr n to Nmean) number of closest points on T to
each point on S are chosen, where Nr is a ratio in [0 1] and n is the number of
vertices on target surface.

• Then, Nnor mal (lowering value, from Mnor mal to Nmean , number of vertices with
most similar angle (between normal vector of the vertices on T and current point
on S ) are selected.

• Finally, Nmean number of the candidate vertices with a lower value of H are picked
among the previous step in which the final corresponding point is the average of
these Nmean vertices.

Once the correspondences are selected from the target, we check the number of
aligned vertices from the source to each of the points of the target. For the ones aligned
to more than Nmean number of source vertices, we only select the Nmean of them with
minimum H . At the end, for the source vertices that have less than Nmean connections,
we consider the corresponded point as the transformed point of previous step. This
may avoid conflicts between the correspondences and preserve the original mesh de-
tail (shape of the surface’s faces).

2.3.4. THE COST FUNCTION & MINIMIZATION
In this section, based on the established correspondences (vi ,ui ), a cost function con-
sisting of different terms is defined and then minimized with guaranteed stability, con-
vergence, and robustness. In the following we introduce each term in the cost function
first, then we describe the optimization process based on the linearised cost function.
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CONVENTIONAL TERMS FROM AMBERG [13]
For a non-rigid registration, the distance of the deformed source and the target should be
minimized. Thus, a distance term is selected as the first component of the cost function
to be minimised as,

Ed = ∑
vi∈V

wi∥Xi vi −ui∥2, (2.8)

where, wi is the weight of the distance term, X describes a set of transformations of dis-
placed source vertices V (X ). The transformation matrix Xi for each vertex in the source
is a 3×4 transformation matrix as:

Xi =

rxx rx y rxz dx

ry x ry y ry x dy

rzx rz y rzz dz

 , (2.9)

where r , and d define all afine transformations. The transformation matrix X of all ver-
tices is described in a 4n ×3 matrix as X = [

X1 · · ·Xn
]T .

A canonical form of Eq. (2.8) is addressed in Eq. (2.10), introduced by swapping the
position of transformation matrix, and correspondences (vi ,ui ). The sparse matrix D is
formed to facilitate the transformation of the source vertices with the individual trans-
formations contained in X via matrix multiplication, and denoted as D = di ag (vT

1 , vT
2 , . . . , vT

n ).

The corresponding points are also arranged as U = [
u1 · · ·un

]T and the distance term
can be derived as:

Ed = ∥W
(
D X −U

)∥2
F (2.10)

where W is a diagonal matrix consisting of weights wi . To regularise the deformation, an
additional stiffness term is employed. Using the Frobenius norm ∥.∥F , the stiffness term
penalizes difference of the transformations of neighboring vertices, through a weighting
matrix G = di ag (1,1,1,γ).

Es =
∑

i , j∈E

∥
(

Xi −X j

)
G∥2

F (2.11)

During the deformation, γ is a parameter to stress differences in the skew and rotational
part against the translational part of the deformation. The value of γ can be specified
based on data units and the types of deformation [13].

Addressing the function of the stiffness term to penalise differences of transforma-
tion matrices of the neighboring vertices, the node-arc incidence matrix M (e.g. Dekker
[61]) of the template mesh topology is employed to convert the stiffness term functional
into a matrix form. As the matrix is fixed for directed graphs, the construction is one
row for each edge of the mesh and one column per vertex. To establish the node-arc
incidence matrix of the source topology, the indices (i.e. the subscripts) of edges and
vertices are addressed, for any edge of r which is connected to vertices (i , j ) , in r th row
of M , and the nonzero entries are Mr i = −1 and Mr j = 1. Therefore, we formulate the
stiffness term as

Es = ∥(M ⊗G
)

X ∥2
F (2.12)
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SEMI-CURVATURE TERM

Using distance term only does not fully utilize the intrinsic properties of the surfaces,
e.g. high curvature regions were not addressed, this may lead to suboptimal solutions
of the registration. Moreover, it may cause conflicts between different parts of a shape,
e.g. selecting the same parts on the target as correspondences for different parts on the
source, which are far from the correct corresponding (group of) vertices on the source
surface. Thus, considering an extra term, which is independent of the distance term,
in the cost function to preserve features is necessary to avoid such problems. In the
proposed approach, we embed a new term defined on the semi-curvature to eliminate
the conflations, and to address the intrinsic properties across the surface. It contains the
differences of semi-curvature values of the points on S with the correspondences on T

as follows.
Ec = ∥K −Kt ar g et∥2

F (2.13)

To reveal the connection of K (P ) in Eq. (2.4) with X , here we extend cos(αi ) based on
the transfer matrix

cos(αi ) =
(−→

P i −−→
P

)
.
(−→

P i+1 −−→
P

)
∥−→P i −−→

P ∥∥−→P i+1 −−→
P ∥

=
(
DPi −Dp

)
X X T

(
DPi+1 −Dp

)T

∥−→P i −−→
P ∥∥−→P i+1 −−→

P ∥
(2.14)

where we use DPi+1 , DPi , and DP to denote the corresponding row of D to the points
Pi+1, Pi , and P , respectively. Generally, DPi+1 is a 1×4n row in D with the same index
that Pi+1 has in V . If we define

a fi =
[

(DPi −Dp )

∥−→P i −−→
P ∥∥−→P i+1 −−→

P ∥

]
1×4n

,

c fi =
[(

DPi+1 −Dp

)T
]

4n×1
,

Eq. (2.14) turns to be

cos(αi ) =
[

a fi

]
1×4n

X4n×3X T
3×4n

[
c fi

]
4n×1

(2.15)

Using Eq. (2.15) to replace the αi in Eq. (2.4), the semi-curvature can be calculated as:

K (P )=
(

3π

2

∑
a fi∑

A ( fi )

)
X X T

(∑
c fi

)
−
−6π+ 3π

2

∑
1∑

A ( fi )

 . (2.16)

Let’s consider,

aP = 3π

2

∑
a fi∑

A ( fi )
(2.17)

cP =∑
c fi (2.18)

bP = −6π+ 3π
2

∑
1∑

A ( fi )
(2.19)
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The semi-curvature matrix on S is defined as:

Kn×n =
[

An×4n X4n×3X T
3×4nC 4n×n

]
n×n

−B n×n (2.20)

where A ∈ Rn×4n , which is a sparse matrix composed of elements aP . Similarly, C ∈
R4n×n , which is a sparse matrix composed of elements cP . B ∈ Rn×n is a diagonal ma-
trix composed of elements bP . Similarly, K ∈ Rn×n , is a diagonal matrix composed of
the semi-curvature values of vertices on S. Thus, to minimize the difference of the semi-
curvature between a point on the source and the corresponding point on the target, the
semi-curvature term, in the cost function as Ec is presented as follows

Ec (X ) = ∥K −Kt ar g et∥2
F

= ∥AX X T C − (B +Kt ar g et )∥2
F

= ∥AX 2 − (B +Kt ar g et )C−1∥2
F ∥C∥2

F (2.21)

where, Kt ar g et consists of the semi-curvature values of vertices on T , calculated through
Eq. (2.4) and arranged based on correspondence points. As ∥C∥2

F is a constant matrix in
all iterations, it is considered as part of the weight matrix of Wc , or can be neglected.
Also, note that in Eq. (2.21), C−1 is the Moore-Penrose pseudoinverse of matrix C .

2.3.5. LINEARISE Ec
In order to integrate the semi-curvature term in the cost functions for optimization, it
is necessary to linearise the semi-curvature term toward the forms of other terms, e.g.
Eq. (2.8) . To linearise the semi-curvature term, we assume

f (X ) = AX 2 − (B +Kt ar g et )C−1. (2.22)

If we consider linear format of f (X ) as fl (X ), then

fl (X ) = Al X +Bl

(
−(B +Kt ar g et )C−1

)
. (2.23)

From [113], Al , and Bl are

Al =
∂(AX )

∂X
= A

Bl =
∂
(
−(B +Kt ar g et )C−1

)
∂
(
(B +Kt ar g et )C−1

) =−1

As Al and Bl are independent to X , the linear system is valid around any point. The final
linearised semi-curvature term is

fl (X ) = AX −
(
(B +Kt ar g et )C−1

)
(2.24)

Considering, Ec (X ) = ∥ fl (X )∥2
F , Ac = A, and Bc = (B + Kt ar g et )C−1, the semi-curvature

term can be denoted as:
Ec (X ) = ∥Wc

(
Ac X −Bc

)∥2
F (2.25)
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Stability analysis: As we linearised the curvature term in Eq. (2.21), it is possible
that X , which minimises ∥Ac X −Bc∥2, cannot minimise ∥Ac X 2 −Bc∥2. Thus, here we

investigate the impact of X o = AT
c Bc

Ac
T Ac

on the nonlinear cost function. From Khalil [113,

249], for any system, if E(X ) > 0 and ∂E
∂t ≤ 0, the system is globally stable [246, 248] (in our

formulation, the number of intervals are equal to the effect of time in [113], i.e. t = k).
For the system Ec is always positive, thus we only need to study the effect of X o on ∂Ec

∂k

∂Ec

∂k
(X o) =∂Ec

∂X
(X o)

∂X

∂k
(X o)

=2
(

Ak X o
k

2 −Bck

)(
2Ak X o

k

)T X o
k −X o

k−1

∆k
≤ 0 (2.26)

where ∆k = 1, X o
k = AT

k Bck

Ak
T Ak

, and X o
k−1 =

AT
k−1Bck−1

Ak−1
T Ak−1

then

∂Ec

∂k
(X o) =2

Ak

 AT
k Bck

Ak
T Ak

2

−Bck


2Ak

AT
k Bck

Ak
T Ak

T  AT
k Bck

Ak
T Ak

− AT
k−1Bck−1

Ak−1
T Ak−1

≤ 0

=4

(
Bck

2

Ak
−Bck

)
Bck

T

(
Bck

Ak
− Bck−1

Ak−1

)
≤ 0

=4

(
Bck

Ak
− I

)(
Bck Bck

T
)(

Bck

Ak
− Bck−1

Ak−1

)
≤ 0 (2.27)

Here
(
Bck Bck

T
)

is always positive, thus if

(
Bck
Ak

− I

)(
Bck
Ak

− Bck−1
Ak−1

)
≤ 0, the system is stable.

In this case, we have two scenarios for

(
Bck
Ak

)
and

(
Bck−1
Ak−1

)
: Scenario 1:

Bck−1

Ak−1
≤ Bck

Ak
≤ I (2.28)

and Scenario 2:

I ≤ Bck

Ak
≤ Bck−1

Ak−1
(2.29)

Discussion: For an arbitrary point P , from (2.14), relative A C can be considered as

following, while Bc
A =

(
B+Kt ar g et

)
A C :

(
A C

)
p = 3π

2

∑ (DPi −Dp )(DPi+1−Dp )

∥−→P i−−→P ∥∥−→P i+1−−→P ∥∑
A ( fi )

(2.30)
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(a) (b)

Figure 2.5: Stability boundaries. (a) Lower boundary for Scenario 1. (b) Upper boundary for Scenario 2.

Suppose

rp = ∥−→P 0
i −

−→
P 0∥∥−→P 0

i+1 −
−→
P 0∥

∥−→P i −−→
P ∥∥−→P i+1 −−→

P ∥
(2.31)

where
−→
P 0,

−→
P 0

i , and
−→
P 0

i+1 belong to S before registration, Eq. (2.30) can be denoted as:

(
A C

)
P = 3π

2

∑ (DPi −Dp )(DPi+1−Dp )

∥−→P 0
i −

−→
P 0∥∥−→P 0

i+1−
−→
P 0∥ rp∑

A ( fi )

= 3π

2

∑
cos(α0

i ) rp∑
A ( fi )

(2.32)

whereα0
i belongs to fi in Figure 2.3(a) before registration. Considering

(
B

)
P as in Eq. (2.19)

Bc

A
=

−6π+ 3π
2

∑
1∑

A ( fi ) +Kt ar g etP

3π
2

∑
cos(α0

i ) rp∑
A ( fi )

(2.33)

where Kt ar g etP is the semi-curvature value of the corresponding point for P on T . Thus,

∆

(
Bc

A

)
∝−∆K (2.34)

Scenario 1: The proposed condition in Eq. (2.28) happens only when
Bck−1
Ak−1

≤ Bck
Ak

,

which means Kk−1(P ) ≥ Kk (P ) from Eq. (2.34). And, curvature in point P is decreasing,
according to Figure 2.5(a). Replacing Eq. (2.33) by Eq. (2.28), we will have

−6π+ 3π
2

∑
1∑

A ( fi )
+Kt ar g etP ≤ 3π

2

∑
cos(α0

i ) rp∑
A ( fi )

(2.35)

Adding − 3π
2

∑
cos(αi )∑
A ( fi ) to both sides of the above equation, and from Eq. (2.4)

K (P )−Kt ar g etp ≥ 3π

2

∑
cos(αi )− cos(α0

i ) rp∑
A ( fi )

(2.36)
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This formula indicates that if the semi-curvature in point P is decreasing to reach the
value of the semi-curvature of the corresponding point on T , there is a lower limit for
stability condition which is less than Kt ar g etP .

Scenario 2: Using the same procedure as Scenario 1 and replacing Eq. (2.33) by
Eq. (2.29), we will have

K (P )−Kt ar g etp ≤ 3π

2

∑
cos(αi )− cos(α0

i ) rp∑
A ( fi )

(2.37)

This formula means that if the semi-curvature in point P increases to reach the value
of the semi-curvature of the corresponding point on T , as shown in Figure 2.5(b), there
is an upper limitation for stability condition, which is greater than Kt ar g etp . The sta-
bility discussion in both scenarios explains an asymptotically stable approach for the
optimal problem. According to [113], any system which is asymptotically stable is also
convergent while the states are in their region of attractions which holds for the system
discussed here.

To guarantee the stability, for the points that satisfy the criteria, we consider Wc (P ) =
1, as the semi-curvature term is stable, otherwise Wc (P ) = 0. Thus, the complete quadratic
cost function can be considered as

E(X ) =
∥∥∥∥
λM ⊗G

W D
βWc Ac

 X −

 0
W U
βWc Bc

∥∥∥∥2

F

= ∥AX −B∥2
F (2.38)

Note that to integrate Bc in Eq. (7.28), we change the dimension of C−1 in Eq. (2.24)
from n ×4n to n ×3. Where Bc = (B + Kt ar g et )C−1, as the components are like matrix
D , and accordingly C−1 is a sparse matrix.

Summarizing the process of establishing the correspondence and minimizing the
cost function, that are both defined on the newly introduced semi-curvature, we propose
Algorithm 1 to detail the process presented in Figure 3.4 for describing the proposed
non-rigid ICP approach. In the algorithm, for each iteration with constant number of
corresponding points and optimization parameters, the optimization process continues
in an inner loop, until the changes in new X is less than a threshold of ϵ or the the number
of iterations in the inner loop exceeds a defined number as j max.

2.4. EXPERIMENT SETUP

2.4.1. DATA-SET
In the experiment, besides simple geometrical shapes, the human foot, the lumbar verte-
brae and the full human body are selected as typical geometric shapes for evaluating the
proposed method. Data of those geometric shapes are collected from several data-sets.
The first data-set being used is the SHREC’14 data-set [196], in which we selected the feet
in data-set number 25 as the source surface. Before the experiment, the meshes of both
feet were pre-processed to have a more uniform mesh using ACVD, a freely available
software provided by Valette et al. [271]. Finally, two meshes, each with 5000 vertices,
were used as the inputs of the experiment.
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Algorithm 1 The proposed non-rigid ICP approach

Input: X ∈R4n×3, K ∈Rn×1, and Kt ar g et ∈Rm×1

Output: Xopti mal to minimize E(X ) in Eq. (7.28)
1: Initialization
2: k = 1
3: while k ≤ kmax do
4: j = 1
5: while ∥X k, j −X k, j−1∥ < ϵ or j < j max do
6: N (k) number of closest u on T to v j on S (X k, j ) (

[
N (k) ∈ Nr n : Nmean

]
)

7: Nnor mal (k) number of closest angle (among previous step), between normal
vector of u with v j (Nnor mal (k) ∈ [

mi n(Mnor mal , N (1)) : Nmean
]
)

8: Nmean number of u (among previous step), with lower H in Eq. (3.22)
9: ucor r esponded ( j ) = average of previous step

10: X k, j = AT B
AT A

; (A,B in Eq. (7.28))
11: j = j +1
12: end while
13: X k

opti mal = X k, j

14: k = k +1
15: end while

The second data-set is part of the 3D DINED data-sets [270], consisting of 22 high-
resolution 3D scans of foot (left and right) obtained from 11 people (4 females and 7
males). 3D scans were acquired by two Artec EVA scanners [18]. Before registration,
we re-meshed the scans with the same method used for SHREC’14 and the number of
vertices for each mesh is set as 10000.

To evaluate the proposed approach on more complicated freeform surfaces, two
lumbar vertebrae were extracted from the data-set presented in [29], which includes a
total of 86 models of lumbar vertebrae. In the data-set, lumbar vertebrae are mainly la-
belled by the prefix L and numbered 1 to 5 (e,g,. L4−20 belongs to lumbar number 4 and
case 20). We selected L4−20 as the source surface and L1−17, L1−18, L1−19 and L1−21
as the target surfaces. The source is re-meshed to 20000 vertices through [271], and the
targets are re-meshed to 8000 using the same method.

The full human body scans are selected from the Civilian American and European
Surface Anthropometry Resource (CAESAR) data-set [210] as they are natural scans with
holes, missed parts and natural noise which makes it suitable for assessment. In detail,
the CAESAR data-set contains 3D human full body scans of the civilian populations of
three North Atlantic Treaty Organization (NATO) countries; the United States of America
(USA), The Netherlands, and Italy [210]. In this study, we selected the first 101 scans
from the Dutch population as the target surface and evaluated through the predefined
landmarks in each mesh. 74 landmarks are explained in [210] (from page 17 to page 30),
while we used 73 of them (LM74 as butt block is neglected). For the source mesh, we
used the full body template included in the Wrap 3 software [215].
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Table 2.1: Parameters used in simulation configuration.

Parameter Value Description

λ(k) 1000:1 Stiffness trade-off

β(k) 1000:1 Semi-curvature trade-off

ζ(k) 0:1 Distance gain in Eq.(3.22)

η 1 ζ power in Eq.(3.22)

Nmean 3 Target points averaging size

Nr 0.1 Initial ratio of n points on S

N (k) Nr n:Nmean Target points pool size

Mnor mal 20 Initial number of the middle region members

Nnor mal (k) Mnor mal : Nmean Pool size for points with similar normal

ϵ 0.001 Convergence error threshold

j max 50 Convergence iteration threshold

kmax 20 Number of iteration for the outer loop in Algorithm 1

2.4.2. PARAMETERS OF THE PROPOSED METHOD

Table 6.1 presents parameters used in the experiment. In establishing the correspon-
dence, the algorithm is designed to emphasise on the semi-curvature at the beginning,
and ends on the closest Euclidean distances to find the correspondence point. Thus, ζ
changed from 0 to 1, and 1−ζη changed from 1 to 0, regarding to Table 6.1.

During the minimization of the cost function, γ in G introduced in Section 2.3.4.1,
was chosen to one. λ, named as gradual relaxation of the stiffness constraint, was em-
ployed for each method, decreasing from 1000 to 1. Regarding dependency of λ values
to the dynamic of source surface, this value was manually defined so that only global
deformations were considered in the beginning of registration. On the other hand, the
lower limit of λ also depends on the data type [13]. Accordingly, a small λ may cause
singularity of A in Eq. (7.28), which leads to instability of the solution. Therefore, our
experiments started with a sufficiently high λ. A high value of λ was not problematic as
λ had no effect on quality of the registration results, however more steps were expected,
e.g. in Table 6.1, λ varied from 1000 to 1 in 20 iterations. As we want to have a fine
match for the points with a larger weight on semi-curvature in the beginning but more
emphasis on the distance at the end, we set the values of β using the similar strategy as
in specifying λ, i.e. gradually reducing it from 1000 to 1 as shown in Table 6.1.

To have a smoother registration process, we were averaging a number of points from
a set with size of 3 (Nmean = 3). This Nmean number of points were offered by H in
Eq. (3.22). Emphasizing on the semi-curvature at the beginning and the closest Eu-
clidean distance at the end of simulation, N number of points on T in Algorithm 1,
as a region to search for corresponding point to any vertices on S , changed from 10 %
of the total number of vertices in T to Nmean .

In the implementation of [42], the system of linear equations that arises in each step
was solved with the help of the UMFPACK library [60].
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2.4.3. OTHER METHODS FOR COMPARISON

In the experiment, we compared the performance of the proposed method with existing
methods proposed by Amberg et al. [13], Lee et al. [136], Vestner et al. [274], Andriy et
al. [180] and Hirose [102]. Briefly, Amberg’s method accounts for an optimal step non-
rigid ICP approach capable to employ different regularisations, while they are using a
range of lowering stiffness parameter. However, the semi-curvature is not used. As the
proposed method is based on Amberg’s method, therefore in the implementation of Am-
berg’s method, we removed the semi-curvature information from our method, i.e. the
cost function of Eq. (2.10) and Eq. (3.3) are changed to:

E(X ) =
∥∥∥∥
[
γM ⊗G

W D

]
X −

[
0

W U

]∥∥∥∥2

F
(2.39)

Then Eq. (7.28) is employed for utilizing the semi-curvature in the non-rigid ICP regis-
tration.

Lee’s method is able to establish correspondences between non-rigidly deformed
shapes through mapping the shape to a unit Möbius sphere by centered conformal pa-
rameterization. Ultimately, they exert Fast Fourier Transformation (FFT) to detect the
optimal rotational alignment between sphere meshes and perfect the registration pro-
cess through optical flow. However, their method only works for Genus-zero shapes,
which is a limitation. The executable source code used in this paper, is available in [137].

Vestner’ method presents a methodology to specify the correspondences between
two shapes which may be non-isometric shapes. The method uses kernel instead of
distance as the descriptor, which makes the approach more sensitive to the quality of the
mesh and the triangles size. The executable source code used in this paper, is available
in [275].

Andriy introduced the CPD algorithm [180] employing Gaussian radial basis func-
tions as a replacement for thin-plate splines which addresses a different version of regu-
larizer. In the method, the rigid and non-rigid registrations are covered, while the ap-
proach is ill suited to account for a considerably large amount of outliers and in ex-
ploring among all the possible correspondences which is in general Non-deterministic
Polynomial-time hard (NP-hard). The executable source code used in this paper, is avail-
able in [179].

Hirose proposed the BCPD method [102], using variational Bayesian inference the-
ory to explain the coherent drift. The executable source code used in this paper, is avail-
able in [101]. All algorithms were implemented using Matlab®R2020a on a computing
platform with an Intel® Core-i5TM 9600K 4.6 GHz processor.

2.5. EXPERIMENT RESULTS

2.5.1. EFFECT OF CURVATURE TERM DURING REGISTRATION

In this subsection, through a few experiments using some basic shapes, we investigate
the effect of the semi-curvature term on the feature preservation after registration in
terms of correspondences, and the mesh quality, especially for highly curved area.
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(a)

(b)

(c)

Figure 2.6: Curved shape preservation experiment (a) The initial setup (b) Registration using the proposed
method (With the semi-curvature term). (c) Registration using Amberg’s method (without the semi-curvature
term).

FEATURE PRESERVATION

As we want to observe the effects of with and without the semi-curvature term, only
Amberg’s method and the proposed method were used. When the stiffness term is suffi-
ciently low, in each iteration, the surface can be changed, and consequently the original
curvature of the source surface will be changed. This causes an error in establishing the
correspondences through Eq. (3.22). In this case the semi-curvature term contributes
an additional logical connection between vertices and their neighbors, over the stiff-
ness term to increased smoothness. Apparently, the improvements in high-curved ar-
eas are more visible than the flat areas due to the properties of the semi-curvature. To
show the effect, a shape with ellipsoidal cross-section (gray) is used as S , a shape with
spherical cross-section (green) is employed as T , and a colourful mesh of S is utilized
shown in Figure 2.6. Figure 2.6(a) shows the initial condition, Figure 2.6(b) presents the
registration through Eq. (7.28) and H in Eq. (3.22), and Figure 2.6(c) presents the reg-
istration through Eq. (7.28) without semi-curvature term and the H . A comparison of
Figure 2.6(b) and (c) reveals that the ellipsoidal shape is preserved for all cross-sections
when Ec is used due to both the additional meaningful connections of the neighbour-
ing vertices and more the meaningful correspondences selection. The results are also
more visible in the colorful graphs of Figure 2.6 left column, that the colors on the spher-
ical cross-section without the semi-curvature are stretched and less preserved than the
results with the semi-curvature.



2

38 2. 3D FEATURE-BASED NON-RIGID REGISTRATION METHOD

(a)

(b)

(c)

(d)

Figure 2.7: Missed part experiment (a) The initial setup (b) The proposed method (with the semi-curvature
term). (c) Amberg’s method (without the semi-curvature term) (d) Mesh quality: Amberg’s method (left), The
proposed method (with the semi-curvature term) (right).

MISSING PARTS AND SPARSE / DENSE MESH

Using the proposed method, although we find more constraints for neighboring vertices
of each point on source, extra unnecessary connections are also deleted based on H . Af-
ter finding the correspondences, the number of connections to the corresponding points
on the target is checked and if they are more than Nmean , we choose Nmean of them with
minimum H . This correction avoids registering the points on source which are describ-
ing the missed part on the target. Only, they are wisely deformed based on stiffness
term, and the semi-curvature term guarantees the uniform shape on the borders of the
missed part. This is shown in Figure 2.7. In this experiment, Figure 2.7(a) shows the ini-
tial condition, Figure 2.7(b) defines the effects of curvature term on quality of registra-
tion for the missed part, and 2.7(c) depicts the registration without the semi-curvature
term. Moreover, wisely deleting connections based on H preserves the original mesh
detail (shape of the faces) and uniformity of the surfaces which is addressed by the semi-
curvature term. Thus, the final registered mesh is very different from the target and the
resolution is equal to the original source surface. The results can be explored through the
shaded graphs showing that the semi-curvature term preserved the mesh structure for
the missed part ( Figure 2.7(b)(left)) as the faces with blue color is stretched around the
missing part when the semi-curvature is not used ( Figure 2.7(c)(left)). A comparison of
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(a) (b) (c) (d)

Figure 2.8: Meshes and LMs. (a) Target surface (T ) of left foot. (b) Source surface (S ) of left foot. (c) Target
surface (T ) of right foot. (d) Source surface (S ) of right foot.

(a) (b) (c)

Figure 2.9: The initial setup: (a) Front view, (b) Side view. (c) LMs location on a sample foot.

Figure 2.7(d)(left) with Figure 2.7(d)(right) reveals that without the semi-curvature term
in both H and E , the final mesh is going to be degenerate (i.e. the collapse into zero area
faces) and some points have the same geometry. The degeneration happens when num-
ber of source vertices is higher than number of target vertices, thus many points on the
source have the same corresponding points.

2.5.2. VALIDATION: THE FOOT SCANS

REGISTRATION PROCESS AND RESULTS

Figure 2.8 depicts the source (S ) and the target surfaces (T ) used in the registration. In
the figure, location of manually defined LMs on the right/left foot are highlighted and
those LMs are used to evaluate the registration results of using different methods. In all
experiments, the initial conditions (Figure 2.9) are kept the same for a more accurate
comparison.

The difference between landmarks in the registered S and the corresponding land-
marks in the T represents the accuracy of the registration, which can be highly bene-
fited from a non-rigid ICP method incorporated with a meaningful correspondence se-
lection method and a robust convergence. For this, we defined a series of LM j on all
meshes as depicted in Figure 2.9(c), where j = 1, . . . ,9. The registration results in dif-
ferent steps (i = 1,6,13, and 20) of using the algorithms with/without semi-curvature
(Amberg/our method) are presented in Figure 2.10. In the figure, it can be found that the
proposed method is more robust against the interference of geometries in the toe area,
which is clearly visible after i = 13. In Figure 2.11, the registered T and S using Am-
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Figure 2.10: Registration results. Proposed method (top), Amberg’s method (bottom).

berg’s method, Lee’s method, Vestner’ method, the CPD method, the BCPD method and
our approach are presented with the LMs, respectively. In the figure, green points repre-
sents LMs on T and black ones are LMS on S (only for Vestner’ method, both the green
and black points are on the target, as the approach only defines the correspondences
and does not support any registration). It can be found that at the final stage there is
a considerable distance between final black and green points in Figure 2.11(a)(b)(d)(e),
especially for the tip of mid-toe compared to Figure 2.11(f), which utilizes our method.

Geometry-wise, there are many metrics used in evaluating the performance of the
non-rigid ICP algorithm, such as Mean Absolute Error (MAE) [58], Root Mean Square Er-
ror (RMSE) [86], mean S value [46], average F1-measure (F1) [46] according to different
applications. Among those, we investigate the RMSE metric for all the points on the reg-
istered S , MAE for the landmarks and mesh quality values which allow us to evaluate the
level of geometry preservation and accuracy. The foot registration results and the error of
the LMs are reported in Table 2.2(a), where average Diagonal of the Bounding Box (DBB)
for S for the source mesh is 362.63 mm. These results imply that not only the mean
error of the proposed method is less, the standard deviations (SD) of errors are smaller
as well. Accordingly, the semi-curvature term could offer more accurate corresponding
points which means that the final transformed source points (black) are more close to
the optimal positions (green). The major reason is that the proposed algorithm is more
sensitive for points with higher curvature and usually flat areas (low curved points) are
least likely to have LMs. Finally, the overall error per method in the table leads us to the
conclusion that the proposed method is more accurate with less error and less SD.

Figure 3.10(a) depicts the percentage of correspondences including all 9 selected
landmarks for all the 22 scans (y-axis) that have less distance error than a threshold (x-
axis) [116]. Regarding the figure, our method (green line) detects the correspondences
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(a) (b) (c) (d) (e) (f)

Figure 2.11: LM location comparison. (a) Amberg’s method. (b) Lee’s method. (c) Vestner’s method. (d) CPD
method. (e). BCPD method. (f) Our method.

Table 2.2: Foot registration results.

a) Overall LM mean error ± Standard Deviation (SD) (mm) result.
Mean DBB of S = 362.63 mm

(lr)2-7 Amberg [13] Lee [136] Vestner [274] CPD [180] BCPD [102] Our method
LM 1 5.9±4.4 20.3±14.5 29.4±23.3 41.4±18.1 24.1±19.3 3.5±2.3
LM 2 6.1±4.7 23.3±15.8 21.3±10.5 33.2±21.4 25.8±10.8 2.9±3.1
LM 3 5.1±4.1 26.4±18.2 20.3±10.6 28.5±22.5 25.6±11.9 2.3±1.5
LM 4 5.4±3.4 25.9±16.1 23.8±22.4 16.3±12.6 23.3±20.1 3.0±1.9
LM 5 6.7±5.2 18.9±12.1 39.1±31.9 54.7±27.9 14.1±9.9 3.0±2.2
LM 6 6.5±4.6 21.6±9.4 27.9±13.9 35.3±14.3 23.2±12.4 3.3±2.1
LM 7 7.6±5.3 21.5±8.1 25.9±9.7 22.8±16.6 21.1±8.5 3.1±1.8
LM 8 8.3±5.3 19.9±10.1 28.1±16.2 10.9±8.3 24.2±16.1 3.7±3.6
LM 9 6.0±2.9 7.3±4.1 21.3±22.8 8.9±6.2 12.9±7.7 4.8±2.6
Overall 6.4±4.5 20.6±13.6 26.3±19.2 30.5±15.3 21.6±8.9 3.3±2.5

b) Mesh quality mean value ± Standard Deviation (SD).
Original
mesh

Amberg [13] Lee [136] Vestner [274] CPD [180] BCPD [102] Our method

0.92±0.07 0.51±0.48 0.65±0.33 NaN 0.71±0.25 0.78±0.16 0.83±0.13

c) The complete process computing time (s).
Amberg [13] Lee [136] Vestner [274] CPD [180] BCPD [102] Our method

Time (s) 9.3 32.7 28.4 1266.5 680.3 17.1

earlier than the other five methods, and the errors are lower than 10 mm, while for Am-
berg (red line), Lee (blue line), Vestner (cyan line), CPD (purple line), and BCPD (yellow
line), they are 25 mm, 68 mm, 88 mm, 75 mm, and 43 mm, respectively. The results
confirm that the proposed methodology has better accuracy and robustness compared
to other methods. Figure 3.10(b) shows the probability density based on the RMSE of
each point on the registered S and the closest point on the T along the 22 scans. As
can be seen Amberg (red) has the least spread and CPD has the largest sparsity in terms
of closest point, this is because Amberg has no term to keep the original geometry of
S . Besides the error, our method has the least error of correspondences and acceptable
level of the source mesh geometry preservation.

MESH QUALITY

Deformations of the computational mesh arising from optimization routines usually
lead to a decrease of mesh quality or even destruction of the mesh [158]. Mesh quality
is representative for various quality metrics for the shape of mesh elements [45], such as
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(a) (b)

Figure 2.12: (a) Percentage correspondences according to registration error. (b) RMSE distribution.

dihedral angles [81], the longest edge over the in-radius [88], and shape of the elements
and smoothness [70]. Among various methods, we employ Liu and Joe’s parameter ap-
proach [152] to compare the quality of meshes. The approach defines the quality per
vertex (average of the mesh quality of the faces incident to the vertex) with a number be-
tween 0 and 1, in which 1 is the best quality and zero is the least quality. The mesh quality
of a mesh is calculated as the mean of the quality of all vertices in the mesh. Accordingly,
the mesh quality of registration results is reported in Table 2.2(b), where the mean and
SD of the mesh quality of 22 original scans, and the mesh quality of the registration re-
sults using six methods are presented, respectively. The table defines 44%, 29%, 23%
15%, and 10% mesh quality loss for Amberg’s method, Lee’s method, the CPD method,
the BCPD method and our approach respectively. As the output of Vestner’ method is
only the set of corresponded vertex ids, the mesh quality is not applicable.

RUN TIME DISCUSSION

The computing speed is used as the criterion to evaluate the efficiency of each men-
tioned method. Accordingly, here we report the average of computing time of the whole
process for all the experiments in Table 2.2(c). The proposed method is slower than Am-
berg’s methods for the complete process, which is mainly caused by the extra computing
needed for the introduced semi-curvature term in Eq. (2.39). However, the needed com-
puting times for minimizing the cost function are similar, 6.48 (s) for Amberg’s method
and 6.19 (s) for our method. It can be inferred that using the proposed method re-
duces 48% of the error at the cost of nearly same computing time for minimization. As
Lee’s method, Vestner’ method, CPD, and BCPD take more computing time and the re-
sults are less accurate, it indicates that the proposed method is acceptable regarding the
computing time, mainly due to the improved accuracy.

SENSITIVITY ANALYSIS

We initially perform a set of experiments using the 3D DINED data-sets of foot in [270]
to investigate the sensitivity of the parameters λ, β, Nr and Nnor mal , and η for selecting
the proper range of parameters [242]. As can be seen from Figure 3.5, which shows how
the obtained LM error varies by altering, in pairs, the weights used in the cost function
Eq. (7.28), the method is capable of obtaining a low the error value (blue areas) for a wide
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(c) (d) (e)

Figure 2.13: Sensitivity analysis showing error of the LMs for: (a) a domain of λ and Nnor mal , while Nr = 0.1;
(b) a domain of Nnor mal and Nr , while λ= 1000; (c) a domain of λ and Nr , while Nnor mal = 20; (d) a domain
of λ and β, while Nnor mal = 20, Nr = 0.1. (e) Sensitivity of error the LMs on η.

range of those parameters. This indicates the robustness level of the method, as it is less
sensitive to the choice of the range of parameters. Theoretically, the robustness is ex-
pected as discussed in Section 2.3.5, the system is stable for the region of Eq. (2.36) and
(2.37), which are infinite from one side. The robustness is desirable for practical appli-
cations, since it implies there is no need for fine tuning in order to achieve satisfactory
results.

To investigate the effect of η, we show the average error of LMs for the all foot scans
in Figure 3.5(e) based on MAE error of LMs and the SD. The error is minimal when η is
equal to 1. If the value of η is in other regions, the errors might increase, however, it is
still stable.

2.5.3. VALIDATION: THE LUMBAR VERTEBRA & THE FULL BODY
In line with Subsection 2.5.2, to evaluate the performance of the proposed method, we
implement the method on the lumbar vertebrae data set and the full body explained in
section 7.4.1.

THE LUMBAR VERTEBRA

Using the same method in the previous section, we register the lumbar vertebra of L4−20
in section 7.4.1 on the lumbar vertebrae of L1 − 17, L1 − 18, L1 − 19 and L1 − 21 using
Amberg’s method, the CPD method, the BCPD method and the proposed method. Lee’s
method is excluded since it is limited to genus 0 topology.

In all three experiments, the initial conditions for the four methods are the same.
As an example, the initial condition of the L4 − 20, and the L1 − 17 is presented in Fig-
ure 2.14. For the assessment, we used 16 landmarks as shown in Figure 2.15. The reg-
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(a) (b) (c)

Figure 2.14: Lumbar initial condition.

(a) (b) (c)

Figure 2.15: LM location in lumbar. (a) Top view. (b) 3D view (c) Bottom view.

istration results of using the four methods are compared in Figure 2.16, where in the
target column of Figure 2.16, the quality of correspondences of LMs can be visualized
with four highlighted areas. In the initial conditions, the foramen on the source sur-
face is much smaller than the target and located on top of the target’s foramen, and as
Amberg’s method uses closest distance to find the correspondences, the points may get
stuck there and the hole disappears. However, the semi-curvature term can distinguish
the differences as the curvature values are different. For the other two selected areas
on the left-middle vertebra, the proposed method also outperforms Amberg’s method in
preserving regions with high curvature.

Errors between corresponding landmarks are reported in Table 2.3(a) where our method
outperforms Amberg’s method, CPD method, and BCPD method by 58% , 87%, and
81% respectively regarding the mean absolute error. Moreover, our approach, the CPD
method, and the BCPD method preserved the same mesh quality with only 2% quality
loss comparing to the original mesh reported in Table 2.3(b). However, Amberg’s method
lost 23% of the original mesh quality during the registration. Table 2.3(c) indicates that
using the CPD method is very time consuming as the time duration for the experiment
is about 8700%, 13400%, and 212% more than our method, Amberg’s method, and the
BCPD method.

THE FULL BODY

Similar to the lumbar vertebra registration, we repeated the experiments with full human
body with more valid landmarks as validation. The initial condition and the landmarks
of both the target and source meshes are depicted in Figure 3.9. The registration results
are shown in Figure 3.12 and discussed in more detail in Table 3.4 for different numbers
of points in the source mesh. The original source mesh contains 19882 vertices, and
the registration results are reported employing the remeshed source mesh with 100%,
80%, 60%, 40%, and 20% of the total vertices of the original source mesh. According to
Table 3.4(a), our method presents on average 62%, 86% and 66% less landmark errors
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Figure 2.16: Lumbar registration.

Table 2.3: Lumbar vertebra registration results.

a) Overall LM mean error ±Standard Deviation (SD) (mm) result.
DBB of S = 90 mm

Landmark ID Amberg [13] CPD [180] BCPD [102] Our method
LM 1 6.9±4.4 8.5±2.1 10.5±3.7 3.2±0.5
LM 2 3.8±2.7 8.3±3.9 10.2±4.4 0.8±0.4
LM 3 2.5±0.7 7.9±4.1 5.7±3.8 1.2±0.4
LM 4 2.3±1.4 10.3±1.1 5.9±2.1 1.1±0.5
LM 5 2.0±1.5 9.5±2.5 8.8±3.1 2.3±0.9
LM 6 3.2±1.3 8.2±2.3 7.3±1.9 1.1±0.9
LM 7 2.5±0.5 10.9±3.3 12.8±2.7 1.1±0.9
LM 8 1.9±1.2 8.8±3.6 5.1±1.5 1.1±1.6
LM 9 5.4±2.3 9.2±3.9 7.4±2.5 0.9±0.4
LM 10 3.9±1.6 11.1±1.5 5.9±2.2 2.8±2.6
LM 11 3.3±3.1 11.8±3.5 6.6±1.8 1.4±0.3
LM 12 3.9±3.5 8.8±3.4 8.2±4.8 1.7±0.7
LM 13 2.2±1.9 7.9±0.9 8.2±1.1 0.8±0.2
LM 14 4.1±2.9 7.9±0.7 6.5±1.1 1.4±1.5
LM 15 2.4±0.9 8.6±2.6 5.1±1.3 0.9±1.1
LM 16 4.8±2.4 10.2±4.9 9.3±3.6 1.5±0.6
Overall (mm) 3.4±2.5 9.2±4.3 7.7±2.9 1.4±1.2

b) Mesh quality mean value ±Standard Deviation (SD).
Original mesh Amberg [13] CPD [180] BCPD [102] Our method
0.8 ±0.14 0.61±0.32 0.77±0.16 0.78±0.17 0.78±0.16

c) The complete process computing time (s).
Amberg [13] CPD [180] BCPD [102] Our method

Time (s) 14.1 1895 869 21.6
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(a) (b)

Figure 2.17: Full body initial condition. (a) Front view. (b) Back view.

(a) (b) (c) (d)

Figure 2.18: Full body registration. (a) Amberg. (b) CPD. (c) BCPD. (d) Our method.

comparing to Amberg’s method, CPD method, and BCPD method respectively. More-
over, as in Table 3.4(b), the observed mesh quality loss comparing to the original source
mesh is on average about 44% for using Amberg’s method, 9% for using the CPD and
the BCPD methods, and 15% for using our method. Again, Table 3.4(c) indicates that
using the CPD method costs more computing time, accounting for 4820%, 6970% and
92% more of using our method, using Amberg’s method and using the BCPD method,
respectively. Also, the time for our approach and Amberg’s approach is increasing lin-
early with the number of vertices, while the computing time of using the CPD and BCPD
method is increasing exponentially, which often lead to large SD values. Figure 2.19
presents the boxplots of the registration results of using 100% the vertices of the source
surface regarding the three criteria. In Figure 2.19(a), the landmark errors of 7373 sam-
ples (101 scans × 73 LMs) for each method are shown where our method has the smallest
error. Figure 2.19(b) depicts the mesh quality with 101 samples per method. The results
of using our method, the CPD, and the BCPD are in the same range. In terms of the com-
puting time for registering the 101 scans ( Figure 2.19(c)), registering scans by our and
Amberg’s methods are in the same range, both are much faster than using the CPD and
the BCPD methods.
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Table 2.4: Full human body registration results.

a) Overall LM mean error ± Standard Deviation (SD) (mm).
DBB of S = 2167.6 mm

Total vertices % Amberg [13] CPD [180] BCPD [102] Our method
100 31.2±18.9 76.8±98.5 27.7±22.3 10.6±7.6
80 31.7±20.0 74.8±100.8 38.4±31.5 12.4±8.6
60 31.7±25.9 92.2±104 42.7±28.9 13.1±12.3
40 42.5±41.1 135.6±110.8 48.1±34.4 16.7±12.2
20 51.9±54.7 190.4±125.6 52.6±50.3 17.5±20.0

b) Mesh quality mean value ± Standard Deviation (SD).
Total vertices % Original mesh Amberg [13] CPD [180] BCPD [102] Our method
100 0.80±0.15 0.51±0.21 0.67±0.22 0.69±0.25 0.68±0.26
80 0.74±0.18 0.49±0.25 0.74±0.16 0.71±0.24 0.68±0.25
60 0.72±0.20 0.41±0.29 0.73±0.20 0.73±0.24 0.64±0.30
40 0.71±0.21 0.33±0.38 0.67±0.22 0.62±0.29 0.61±0.29
20 0.70±0.22 0.31±0.38 0.55±0.25 0.59±0.31 0.51±0.42

c) The complete process computing time ± Standard Deviation (SD) (s).
Total vertices % Amberg [13] CPD [180] BCPD [102] Our method

100 18.3±1.1 1567±825 746±393 21.9±2.2
80 16.7±1.7 1221±1001 593±408 21.7±1.4
60 12.5±0.9 836±758 443±341 19.6±1.3
40 10.6±1.1 555±318 342±330 16.5±1.8
20 7.9±0.4 489±362 299±271 15.1±0.7

(a) (b) (c)

Figure 2.19: Boxplots of (a) Landmark error, (b) Mesh quality, and (c) Computing time regarding the full body
registration with 100% of the source vertices.

2.6. CONCLUSION
This chapter presents a non-rigid ICP approach based on a newly defined semi-curvature.
With similar properties to the Gaussian curvature, the semi-curvature has different math-
ematical and geometric characteristics. Based on these characteristics, we use the semi-
curvature as part of the metric in establishing the correspondences and in the cost func-
tion, where the distance and the stiffness terms are embedded as well. Moreover, by in-
creasing the logical dependency of vertices on their neighbors, the semi-curvature term
preserves the features of a surface in a guaranteed stable region during the registration
process, emphasising on mesh quality and convergence. Experimental results indicate
that the proposed non-rigid ICP approach outperforms existing methods in the area
where features are not prominent or there are interferences between/among features, as
it is able to use the intrinsic properties of the complete surface during the registration.
As the approach introduces a general methodology to integrate any number of linear or
nonlinear terms (as long as they are linearisable) in the cost function with guaranteed
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stable region, we will study the extension of the cost function to other new terms in our
future work. Moreover, establishing a logical balance between the deformation and the
feature preservation via a time-varying adaptive stiffness term is another future direc-
tion. In addition, the semi-curvature is defined based on the 1-ring neighboring points,
and the effect of including more rings and robustness to the noise on the target mesh
will also be studied in the future research.



3
NON-RIGID REGISTRATION VIA

INTELLIGENT ADAPTIVE FEEDBACK

CONTROL

Preserving features or local shape characteristics of a mesh using conventional non-rigid
registration methods is always difficult, as the preservation and deformation are com-
peting with each other. The challenge is to find a balance between these two terms in
the process of the registration, especially in presence of artefacts in the mesh. We present
a non-rigid Iterative Closest Points (ICP) algorithm which addresses the challenge as a
control problem. An adaptive feedback control scheme with global asymptotic stability
is derived to control the stiffness ratio for maximum feature preservation and minimum
mesh quality loss during the registration process. A cost function is formulated with the
distance term and the stiffness term where the initial stiffness ratio value is defined by
an Adaptive Neuro-Fuzzy Inference System (ANFIS)-based predictor regarding the source
mesh and the target mesh topology, and the distance between the correspondences. Dur-
ing the registration process, the stiffness ratio of each vertex is continuously adjusted by the
intrinsic information, represented by shape descriptors, of the surrounding surface as well
as the steps in the registration process. Besides, the estimated process-dependent stiffness
ratios are used as dynamic weights for establishing the correspondences in each step of
the registration. Experiments on simple geometric shapes as well as 3D scanning datasets
indicated that the proposed approach outperforms current methodologies, especially for
the regions where features are not eminent and/or there exist interferences between/among
features, due to its ability to embed the inherent properties of the surface in the process of
the mesh registration.

Parts of this chapter have been published in:
Tajdari F, Huysmans T, Song Y. Non-rigid registration via intelligent adaptive feedback control. IEEE Transac-
tions on Visualization and Computer Graphics. 2023 Jun 8;1-17 [243].
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3.1. INTRODUCTION

I N the past decades, non-rigid registration is widely used in many applications like
motion and shape analysis [96, 68], image registration for medical purposes [75, 258],

etc. Although there are many forms of non-rigid mesh registration algorithms, the non-
rigid Iterative Closest Point (ICP) registration drew more attention, as it is simple in the
implementation with high efficiency and effectiveness regarding different types of ap-
plications [7]. Currently, non-rigid ICP was employed in a number of applications, e.g.
statistical shape analysis [100], computer vision [138], multimedia applications [224],
and 3D geometry of human body analysis [114, 250].

The non-rigid ICP registration is presented as a non-trivial and ill-defined problem,
which contains a high number of Degrees-Of-Freedom (DOFs) where preserving fea-
tures of the source surface during the registration process in the formulation of the algo-
rithm [268] with respect to the topology of the target surface are always challenges. For
example, creating meaningful robust correspondences in each step of the iteration [265],
defining the unique time-varying stiffness level per vertex to maximize feature preserva-
tion and minimize mesh quality loss, and establishing the convergence regarding the
suited minimum in the process of optimization [143]. Here, the features are defined as
salient geometric characteristics [83], e.g. curvature.

Researchers utilized different approaches to tackle those challenges, i.e., utilizing
landmarks (LMs) to enhance the corresponding selection [185, 109, 107, 217], embed-
ding adaptive template [58], adding more terms representing shape characteristics in the
cost functions [147], and using controlled point-based transformation, e.g. generalizing
the affine model from linear to non-linear case [172] to have a more reasonable deforma-
tion. Although the aforementioned approaches could accurately determine the pattern
of non-linear deformation among meshes to be registered, the challenges are not fully
addressed, mainly due to the difficulty in balancing the desired non-rigid deformation
and the preservation of salient features across the complete registration process.

To address the balance of several competing terms, researchers developed different
methods capable of simultaneously controlling and identifying the unknown parame-
ters of a system online (see, e.g., [229]), which could be integrated into the non-rigid
registration methods as a controller scheme controls the feature preservation and mesh
quality by identifying the level of "stiffness per vertex". "Stiffness per vertex" is the stiff-
ness degree that a vertex has with its one-ring neighboring points. Therefore, the chal-
lenge can be formulated as a control problem in the scenario where the model structure
is assumed known and parameters’ values are unknown. A possible method to solve the
problem is the Model Reference Adaptive Control (MRAC), which is designed to exploit
conventional controllers while the controllers’ parameters are updated based on model
parameters identification. Though such methods have been widely used in controlling
robotic systems [111, 241], online identification [85, 244], and noise filtering [281], etc.
the use of MRAC in the area of non-rigid registration, e.g., mesh registration, is rare.

This chapter presents a novel globally robust approach for estimating the level of
stiffness per vertex in each iteration of the non-rigid ICP via an intelligent MRAC frame-
work to maximally preserve features with minimized mesh quality loss. In fact, here, we
are addressing the establishment of a direct compromise between the level of deforma-
tion and preserving features per vertex; however, our previous work in [251] elaborates
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on first introducing a nonlinear shape descriptor to distinguish corresponding points,
namely semi-curvature term, and then establishing a framework to solve a nonlinear
problem with a linear optimizer, and was ill to address the optimum registration in ver-
tex level, especially for the missed parts of the target surface. The main scientific contri-
butions of this chapter are:

• We introduce an adaptive stiffness ratio estimator utilizing the intrinsic informa-
tion of the surface to establish the correspondence as well as adjust the stiffness
term in each step of the non-rigid ICP registration for better preservation of the
shape properties;

• We prove that the estimator is globally asymptotically stable through a Lyapunov
function;

• We integrate a data-driven ANFIS-based method to suggest the initial stiffness ra-
tio values of the estimator to further improve the effectiveness and efficiency.

3.2. RELATED WORK
In non-rigid ICP registrations, the relationships between similar features on the source
and the target surfaces are often used to establish meaningful dense correspondences.
Besides manual labelling, pattern recognition techniques are also employed to auto-
matically specify LMs, e.g. [185, 109, 107, 217]. However, those LMs are mostly posi-
tioned at the extrema of specific shape descriptors which are scarcely scattered across
the surface and cannot describe the complete spectrum of the inherent properties of
the surface. To embed extra features inside the registration algorithms, researchers in-
vestigated various inherent properties in the selection of correspondence. An iterative
registration approach introduced in [58] combined ICP with Coherent Point Drift (CPD)
to have a more robust correspondence selection. Recently, a Bayesian Coherent Point
Drift (BCPD) method in [102] integrated the coherent drift in the variational Bayesian
inference theory, while maintaining the rudimentary characteristics of the CPD method.
In [313], a rigid ICP registration technique was introduced, employing curvature value
resemblance to establish correspondences. However, the approach is sensitive to noise,
and the computing time is exponentially growing regarding the number of vertices in the
surfaces. Recently, a new semi-curvature term is introduced in [251] which considerably
improved the corresponding selection accuracy. However, it was sensitive to the border
shapes of an open mesh.

Shape characteristics may disappear when the output of non-rigid registration is very
smooth, e.g. due to the inclusion of a smoothness functional in the cost function. For
preserving the mesh quality of the surface, integrating regularization terms, e.g. ℓ2-norm
term[238], in the structure of the cost function helps. For example, Amberg et al. [12] pre-
sented an ℓ2-norm cost function integrated with a stiffness term to maintain local mesh
quality. Yang et al. [306] also used a sparse non-rigid registration scheme through an
ℓ1-norm cost function for feature preservation. However, the constraints of the position
(e.g. adjacent piece-wise rigid deformation) were not adequately integrated with the
model to incorporate the association with the piece-wise rigid deformation. Recently,
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Ayan [43] proposed a registration methodology utilizing an energy function incorporat-
ing the strength of local and global geometry through an middle level depiction of the
point cloud. However, the approach is sensitive to the point density areas with detailed
geometry features.

During an iterative non-rigid registration process, once the corresponding points are
defined in each iteration, the path from the current condition of the points on the source
mesh to the corresponded points on the target mesh is very challenging as the level of
deformation to the corresponding point and level of the mesh quality are in contrast
with each other. Thus, an optimal path should be capable to be adaptively updated
in each iteration to allow for sufficient deformation per vertex while safeguarding the
mesh quality of faces. As the solution is feedback-based, adaptive feedback control ap-
proaches might be a problem solver. Adaptive solutions have vast applications such as
3D meshing [110, 54], and mesh refinement [17]; however, there is no prior work about
adaptive feedback solutions or adaptive control for 3D mesh registration. Instead, there
are limited research works regarding adaptive image registration. In the area, non-rigid
registration employing Radial Basis Functions (RBFs) [168, 299, 226] are interesting as
they are meshless. In theory, knots can be located optimally and adaptively for a defor-
mation area to reach the acceptable accuracy. Zhou et al. [62] proposed a RBF-based
approach to address non-correspondent point-clouds registration. Recently, Zhang et
al. [317] presented an implementation of RBF non-rigid registration with iterative knot-
placement to adaptively decrease registration local error. However, quantitative evalua-
tion of accuracy was lacking in RBF-based methods.

3.3. METHODOLOGY

3.3.1. PROBLEM FORMULATION

In the context of non-rigid registration, most of the available methods try to non-rigidly
align a point cloud to the other point cloud in which this alignment accompanies defor-
mation. However, in those methods, the meaning of the ideal deformation is vague and
usually defined as reaching the least geometry error with the corresponding points; how-
ever, the deformation can destroy some features in the source mesh and/or reduce the
quality of the source mesh. The biggest challenge here is that the methods use similar
parameter values for all the points on the source mesh during registration, while each
point in fact needs an advanced investigation based on its condition, to set those val-
ues. Thus, online parameter tuning for each vertex based on the course of registration
for the vertex is a key to the challenge. To this end, a method that can optimize the de-
gree of deformation in order to minimize the geometry error and maximize the degree
of feature preservation is a breakthrough. In this paper, we introduce a novel method to
adjust those parameters per-vertex online and implement it on the most simple regis-
tration method of ICP to study the impact of our method on the quality of registration.
Instead of using the same values for the stiffness term value, we propose an adaptive
estimator for generating proper vertex-wise stiffness values for the source surface. The
procedure is depicted in Figure 3.1, and the used variables and parameters are reported
in TABLE 3.1. According to the figure, in each iteration of the optimization process in the
non-rigid ICP algorithm, the feedback-based adaptive estimator defines the proper stiff-
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Figure 3.1: Non-rigid ICP and the adaptive estimator integration diagram. The feedback-based estimator ad-
justs the proper stiffness ratio per vertex, to minimize the mesh quality loss, and preserve the maximum pos-
sible feature of the source mesh.

Figure 3.2: Non-rigidly registering the source surface to the target surface.

ness ratio per vertex using the geometry properties of the source surface, namely shape
descriptor value and average of mesh quality, to maintain the highest possible deforma-
tion with the least source surface feature loss.

3.3.2. NON-RIGID ICP REGISTRATION

During the non-rigid ICP registration, S = (V ,E ) as the source surface, includes n ver-
tices in V and m edges in E , is iteratively registered to the target surface T . Figure 3.2
demonstrates one step of the registration process. Regarding the figure, the triangular
meshes are used, and the vertices are indexed by numbers. In the step, first, the corre-
spondences from vertices vPi in the source surface S (red) to vertices uPi in the target
surface T (gray) are selected. Then vPi is transformed via locally affine transformation
(XPi ) towards the target surface T . Here, the transformation matrix XPi for each vertex
in the source mesh is a 3×4 transformation matrix which includes all possible transla-
tion and rotation transformations. Thus, the transformation matrix X of all vertices is
defined in a 4n×3 matrix as X = [

XP1 · · ·XPn

]T . The transformed source surface is S (X ).
This procedure iterates until an optimum state is achieved.

Here, according to a defined correspondence set, namely (vPi ,uPi ), a cost function
based on Amberg [13] is determined and then the adaptive estimator is embedded ac-
cordingly. Amberg [13] proposed the non-rigid registration formulation as a combina-
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tion of distance and stiffness terms summarised in the following formula

Ē(X ) = ∥
[

M ⊗G
W D

]
X −

[
0

W Ũ

]
∥2

F (3.1)

where the sparse matrix D is formed to facilitate the transformation of the source points
with the individual transformations in X through matrix multiplication and defined as
D = di ag (vT

P1
, vT

P2
, . . . , vT

Pn
). W explains a diagonal matrix composed of weights wi . In

addition, Ũ ∈U includes the corresponding points from S to T which is a n ×3 matrix,

where U =
[

uP1 ,uP2 , . . . ,uPn

]T
. To regularise the deformation, an extra stiffness term

is utilized. Employing the Frobenius norm ∥.∥F , the stiffness term minimizes changes in
the transformations of adjacent vertices, via a weighting matrix G = di ag (1,1,1,γ). In
the deformation process, γ contains a value to stress changes in the skew and rotational
part against the translation part of the deformation. The value of γ can be determined
according to data units and the types of deformation [12]. The node-arc incidence ma-
trix M (e.g. Dekker [61]) of the source mesh topology is used to turn the stiffness term
functional into a matrix form. As the matrix is unchangeable for directed graphs, the
construction is one row for each edge of the mesh and one column per vertex. To define
the node-arc incidence matrix of the source topology, the indices (i.e. the subscripts) of
edges and vertices are addressed, for any edge of r which is linked to vertices (i , j ), in r th

row of M , and the nonzero entries are Mr i =−1 and Mr j = 1.

3.3.3. ADAPTIVE ESTIMATOR DESIGN
A key objective in this research is to estimate and reconstruct a weighting matrix includ-
ing ratios known as stiffness ratio (ĝPi ) per vertex Pi on S , comprising G in Eq. (6.7).
For this, we will define an Ordinary Differential Equation (ODE) based on the shape de-
scriptor and the average of mesh quality where ĝPi will be its solution. To integrate the
estimated ĝ in the stiffness term in Eq. (6.7), we define the ratio in the form of a matrix
as:

Ĝ4n×4n = diag(ĝPi I4×4, · · · , ĝPn I4×4) (3.2)

which is embedded in the stiffness term

Js = ∥(M ⊗G
)

Ĝ X ∥2
F . (3.3)

Thus Eq. (6.7) is changed to:

J (X )= ∥
[

(M⊗G)Ĝ
W D

]
X−

[
0

W Ũ

]
∥2

F= ∥AX−B∥2
F , (3.4)

The non-rigid registration can be achieved by optimizing the cost function in Eq. (3.4).
In this section, we first introduce the preliminary including the derivation of the

ODE, the assumptions, the error system definition, and its stability and convergence
in Section 3.3.3.1. In Section 3.3.3.2, we present the process of deriving the rules for es-
timating ĝPi using control theory that guarantees the asymptotic stability of the error
system. In Section 3.3.3.3, we discuss the properties of estimation rules, and finally, we
integrate the estimation rules into the non-rigid ICP scheme as Section 3.3.3.4.
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PRELIMINARY

For formulating the estimator states per vertex, we use the integral error states [246, 242]
for Eq. (3.5), as they are robust to uncertainty and are able to accommodate for zero error
convergence [22]

es =
∫ t

0
k t

s −k0
s dτ, eq =

∫ t

0
q t −q0 dτ, (3.5)

where k t
s and q t are the shape descriptor value and the average of mesh quality value of

the faces incident an arbitrary vertex Pi on the source at time t , respectively. Accordingly,
k0

s and q0 are the values before registration, i.e. at time 0. Among different algorithms,
Joe-Liu’s parameter method [152] is used to juxtapose the meshes quality in this paper.
The method determines the quality value per vertex may vary in a range among 0 and 1,
where 1 defines the highest quality and zero explains the lowest quality. Following (3.5),
the integral error system is considered as

ės = k t
s −k0

s , ėq = q t −q0, (3.6)

which is denoted in the matrix form as

ẋ = Be ue + re , (3.7)

where

x=
[∫

k t
s d t∫

q t d t

]
,ue=

[
u1

u2

]
,Be=

[
1 0
0 1

]
,re=

[
k0

s
q0

]
. (3.8)

u1 and u2 are shown to declare the dimension of the control input (ue ) which is a 2×1
matrix. We aim at controlling the state-space Eq. (7.12) through Model Reference Adap-
tive Control (MRAC) [229], which leads to penalisation of the tracking error. Accord-
ingly, we assume a Proportional-action (P-action) feedback control law (see e.g., chapter
1 in[277]) that tries to penalise the error of tracking between the variable x, and the de-
sired variables re with unknown gains as

ue =−ĝPi (x − re )

=−ĝPi x + ĝPi re , (3.9)

where ĝPi is an unknown scalar of the stiffness ratio for the point Pi that needs to be

estimated. By assuming ã =
[
−ĝPi ĝPi

]
, then,

ue = ã

[
x
re

]
. (3.10)

A model reference state is considered as

ẋM =−AM xM +BM re , (3.11)
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where the optional predefined matrices AM and BM are used to establish a stable model
reference in each iteration. Accordingly, the error is considered as the differences be-
tween the integral states (x), and the model reference states (xM ), where

ė = ẋ − ẋM

= Be (−ĝPi x+ĝPi re )+re + AM xM−BM re+AM x−AM x

=−AM (x −xM )+Be (−ĝPi +
AM

Be
)x+Be (ĝPi −

BM+I

Be
)re

=−AM e+Be (−ĝPi +
AM

Be
)x+Be (ĝPi −

BM + I

Be
)re . (3.12)

This results in the following error dynamic system equation explained in Laplacian do-
main.

e = Be

sI + AM

[
−ĝPi + AM

Be
ĝPi − BM+I

Be

][
x
re

]
, (3.13)

where s is the Laplace variable and I is the identity matrix. As AM can be selected to guar-
antee that the reference model becomes stable inherently i.e., AM has negative eigenval-
ues therefore (sI +AM ) is stable, the error dynamic of Eq. (7.18) is, then, stable in domain
of time, if ã is bounded (or ã is converging).

DERIVATION OF THE ESTIMATION RULE

Accordingly, to demonstrate that the ã is converging in the integral error dynamic in
Eq. (7.18), a Lyapunov function for each of the vertex Pi is employed as follows:

V = xP xT + ãΓ−1
Pi

ãT , (3.14)

where P ≥ 0 and ΓPi > 0 imply that V > 0. Then, to prove the stability it would be suffi-
cient to prove that V̇ ≤ 0 [113]. As

dV

d t
= ẋT P x +xT P ẋ + ˙̃aTΓ−1

Pi
ã + ãTΓ−1

Pi
˙̃a. (3.15)

Based on Eq. (3.10) and considering θPi =
[

x
re

]
, then uT

e = θT
Pi

ãT , thus

dV

d t
= 2P Be xθT

Pi
ãT +2 ˙̃aΓ−1

Pi
ãT . (3.16)

Following the assumption P Be = c, ePi = cx, and dV
d t = 0, then from Eq. (7.22) we obtain

−2 ePi θ
T
Pi

ãT = 2 ˙̃aΓ−1
Pi

ãT ; (3.17)

Accordingly, to meet the stability criterion, the variation of ã by the time must follow the
estimation rule as

˙̃a =− ePi θ
T
Pi
ΓPi , (3.18)
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where ΓPi is the growth rate of the estimation rule. To define the estimation rule for ĝPi ,
by multiplying Ī T to both sides of Eq. (7.24), and knowing that Ī Ī T = 2I and ã = ĝPi Ī , we
will have

˙̂gPi I =−0.5 ePi2×1
θT

Pi4×1
ΓPi 4×4

Ī T
2×4 (3.19)

To extend Eq. (3.19) to all vertices of the source mesh, we consider the matrix form as

˙̂Π2n×2n =−0.5 E2n×n ΘT
4n×n Φ4n×4n Ψ4n×2n , (3.20)

where Φ is a diagonal matrix composed of each ΓPi as Φ = diag(ΓP1 ,ΓP2 , . . . ,ΓPn ). Ψ is
a diagonal matrix where each component on the diagonal of the matrix is Ī T . In addi-
tion, E is a diagonal matrix composed of each ePi as E = diag(eP1 ,eP2 , . . . ,ePn ) and Θ is

a diagonal matrix composed of each θPi as Θ = diag(θP1 ,θP2 , . . . ,θPn ). As a result, ˙̂Π is a

diagonal matrix composed of each ˙̂gPi as ˙̂Π= diag( ˙̂gP1 I , ˙̂gP2 I , . . . , ˙̂gPn I ).

THE GROWTH RATE (ΓPi ) DESIGN

To simplify the Eq. (3.19), we design ΓPi = Γ̄Pi I4×4, where Γ̄Pi is a scalar. Empirical ob-
servations indicate that under condition of | ˙̂gPi | > 1, high fluctuations in the estimation
of ĝPi values are expected, which may lead to a decrease in the convergence level of the
estimator. To prevent this, Γ̄Pi is formulated in the form below to guarantee Γ̄Pi ≤ 1 for a
smoother converging towards the true values.

Γ̄Pi =


1

| ˙̂gPi |ζ
, if | ˙̂gPi | > 1,

| ˙̂gPi |ν, if | ˙̂gPi | ≤ 1.
(3.21)

Discussion I: In Eq. (3.21), ζ and ν are very effectual on the changes of Γ̄Pi by the
time. And large values of Γ̄Pi can lead the system to an unstable condition as the system
and control scheme are very dependent on the estimated stiffness ratio. Thus, Γ̄Pi should
be chosen so that the estimator is fast enough with the least overshoot. For the possible
domain of ζ and ν, we list four conditions as follows.

1. ζ< 0 and ν< 0: This condition is unstable as Γ̄Pi would be greater than 1 especially
when ˙̂gPi → 0 results in Γ̄Pi →∞.

2. ζ < 0 and ν > 0: In this condition, for some cases where | ˙̂gPi | > 1, Γ̄Pi would be
comparatively a large value, which increases the chance of having overshoots.

3. ζ ≥ 0 and ν ≥ 0: Only here, some stable points may be found via numerical trial
and error methods as in this condition Γ̄Pi is bounded (Γ̄Pi ≤ 1).

4. ζ> 0 and ν< 0: Here and similar to condition 1, for | ˙̂gPi | < 1, Γ̄Pi has a large value
which increases the probability of instability more than the condition 2.

In this research, condition 3 is selected for the possibility to guarantee the stability of
the system. The ranges of ζ and ν will be studied in Section 3.4.4.



3

58 3. NON-RIGID REGISTRATION VIA INTELLIGENT ADAPTIVE FEEDBACK CONTROL

Table 3.1: Used variables and parameters.

Symbol Description

The ICP method

S Source surface

T Target surface

n Number of vertices on S

nT Number of vertices on T

Pi An arbitrary point on S

vPi Geometry of Pi on S

uPi Geometry of Corresponding point to vPi on T

XPi Transformation matrix for Pi

D A matrix including geometry of all points on S

U A matrix including all the points on T

Ũ A matrix including corresponding points from S to T

G Stiffness weighting matrix

The adaptive Estimator

es Integral error of shape descriptor for Pi

eq Integral error of average of mesh quality for Pi

k t
s Shape descriptor value at time t

k0
s Shape descriptor value before registration

q t Average of mesh quality value at time t

q0 Average of mesh quality value before registration

t Index of time (iterations)

ã Vector of unknown parameters

ĝPi Estimating unknown stiffness ratio at point Pi

θPi Estimator variables for point Pi

ePi Error of estimator variables for point Pi

ΓPi Growth rate of the estimator for Pi

Π̂ Matrix of all estimating unknown stiffness ratio

Ψ Constant matrix

Φ Matrix of all growth rate values

E Matrix of all error of estimator variables

Θ Matrix of all estimator variables

Ĝ Matrix form of the estimated stiffness ratio

Correspondence selection and implementation via the estimator

l Index of updating the estimated stiffness ratio

r ĝ (Pi ) A time-varying weight

hDi A N by 1 matrix, including closest distance of points from T to Pi

hKi A N by 1 matrix, including closest shape descriptor value of points from T to Pi

HD A matrix including hDi

HK A matrix including hKi

The simulation configuration

ĝ max Maximum stiffness

ĝ min(k) Stiffness trade-off

Nmean Target points averaging size

Nr Initial ratio of n points on S

N (k) Target points pool size

ϵ Convergence error threshold

j max Convergence iteration threshold

kmax Number of iteration for the outer loop
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Figure 3.3: Closed-loop diagram of the proposed estimation and registration method integration framework.

THE ESTIMATOR FRAMEWORK

The estimator framework presented in this paper, shown in Figure 3.3, includes an es-
timator for each point Pi on S to predict the unknown stiffness ratio ĝPi during the
registration process. It is expected that such a design can balance the two competing
factors, shape deformation and feature preservation (k t

s and q t ), in the non-rigid regis-
tration process.

The estimator framework is composed of two main parts: a) adaptive growth rate
estimation (dark blue part), and b) the adaptive estimator (medium blue part). The
dark blue part essentially defines a conservative time-varying growth rate (Γ̄Pi ) value
in Eq. (3.21) used in forming matrix ΓPi employed in the estimation rule Eq. (3.19). The
medium blue part represents the estimation process of ĝPi which is the output of the
estimator. The set of all ĝPi is then used in the correspondence selection (orange part)
directly, and in the non-rigid ICP cost function (green part) via Ĝ in Eq. (3.4).

3.3.4. CORRESPONDENCE SELECTION AND IMPLEMENTATION VIA THE ES-
TIMATOR

The flowchart in Figure 3.4 presents more details of the presented process for obtaining
the optimal XPi from vPi to uPi (where uPi is comparable with XPi vPi ) in each itera-
tion. In Figure 3.4, two nested loops are embedded: regarding the outer loop (where
k is updated, counts the outer loop iterations), the weighting parameters related to the
correspondence selection scheme are automatically updated; for the inner loop (where
j is updated), the cost function for obtaining the optimal transformation matrix is in-
cessantly being minimized according to the weights until the variation of the last two
consequential X s is less than a small value of ϵ or j > j max. As the ĝ is never reset after
each update in k, it is updated with index l = (k −1) j max + j . The nested loops in each
of their iterations aim at referring various aspects of the measures, e.g. the Euclidean
distance and the difference of curvature values of two corresponding points are affected
by the estimated stiffness ratio ĝ .
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Figure 3.4: The proposed registration process consists of two nested loops. In the outer loop (where k is up-
dated), the weighting parameters related to the correspondence selection and the adaptive estimator schemes
are automatically updated; for the inner loop (where j is updated), the stiffness ratios are estimated and then
the cost function for obtaining the optimal transformation matrix is incessantly being minimized to finally find
the best solution for Xopti mal .

ESTABLISH CORRESPONDENCES

In the context of establishing correspondences in an ordinary ICP method, the corre-
sponding point for a vertex on S is the closest vertex on T if only the Euclidean distance
is considered as the only criterion, and the inherent properties of the mesh are not con-
sidered. To embed the inherent properties, a novel formulation as Eq. (3.22) is proposed
balances distance and shape similarity using the estimated ĝPi . The formulation inte-
grates both the Euclidean distance and the descriptor to determine the corresponding
vertex on T as:

r ĝ (Pi ) = ĝPi −min(ĝ )

max(ĝ −min(ĝ ))
(3.22)

H = (1− r ĝ )HD + r ĝ HK . (3.23)
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Here, HD belongs to the distance measures including hDi allied to Pi , and HK belongs to
the differential form of the shape descriptor term containing hKi allied to Pi . In addition,
in Eq. (3.22), r ĝ (Pi ) is a time-varying weight allied to Pi in the range of

[
0,1

]
inspired by

the corresponding estimated value of Pi as ĝPi ∈ ĝ , e.g. it has a large value when the bal-
ance between the mesh quality and preserved shape descriptor value is low. Larger val-
ues of ĝ define a higher stiffness requiring more convenient preservation of the features
at the point location. The high values result in more emphasis on the shape descrip-
tor term and vice versa. Practically, sparse similarities prohibit us to detect all points in
T for establishing correspondences. Thus, only candidate correspondence points are
used, considered in a pre-processed region containing N number of points in T . Next,
HD and HK in Eq. (3.23) can be elaborated as:

[
hKi

]
N×1 =

ks (Pi )
max(Ks ) − [KT ]N×1

max(KT )

max

(
ks (Pi )

max(Ks ) − [KT ]N×1
max(KT )

) (3.24)

[
hDi

]
N×1 =

norm

(
vT

Pi
−

[
Ū

]
N×3

)
max

(
norm

(
vT

Pi
−

[
Ū

]
N×3

)) (3.25)

where KT is composed of the shape descriptor values of the vertices on the T , hDi is
composed of a N by 1 matrix, including distances of the N vertices from T to Pi on S

known as Ū ∈ U . Likewise, hKi is composed of a N by 1 matrix, including divergence
of the N vertices on T in terms of the shape descriptor value from Pi on S . The pre-
processing strategy to detect the area with Nmean vertices follows two procedures:

• N (decreasing value), initiates from Nr nT and ends with Nmean number of closest
points on T to each point on S are selected, in which Nr represents a ratio with
domain of [0 1] and nT defines the number of points on T .

• Nmean number of the candidate vertices with a decreasing value of H are selected
from the previous step where the corresponding point is the average of these Nmean

vertices’ geometry.

After the correspondence points are established from the T , we investigate the number
of corresponding points from the S to each of the points of the T . For the vertices
corresponding to more than Nmean number of source points, we only pick the Nmean of
them with minimum H .

DISCRETE TIME IMPLEMENTATION

In the implementation, we discretize the parameter estimation process by considering
˙̂Π(l ) = Π̂(l )−Π̂(l−1)

∆l ; then, knowing that ∆l = 1 as l is a sequentially increasing index, the
estimation rule Eq. (3.20) turns into

Π̂(l ) = Π̂(l −1)−0.5 E(l −1)Θ(l −1)Φ(l −1)Ψ. (3.26)
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Similarly, by considering ˙̂gPi (l ) = ĝPi (l )−ĝPi (l−1)
∆l , the discrete form of Eq. (3.21) will be

Γ̄Pi (l ) =


1

|ĝPi (l )−ĝPi (l−1)|ζ , if |ĝPi (l )− ĝPi (l −1)| > 1,

|ĝPi (l )− ĝPi (l −1)|ν, if |ĝPi (l )− ĝPi (l −1)| ≤ 1.
(3.27)

3.4. EXPERIMENT SETUP

3.4.1. DATASET

MAIN DATASET: FULL HUMAN BODY

In the experiment, realistic 3D scans of the full human body, including holes and spikes,
are chosen as geometric shapes for assessing the presented method, as the holes are al-
ways challenges for mesh quality preservation. The full human body scans are chosen
among the Civilian American and European Surface Anthropometry Resource (CAESAR)
dataset [210]. Here, we selected the first 101 scans from the Dutch population as the tar-
get mesh and assessed via the pre-selected LMs in each mesh. 74 landmarks are defined
in [210] (from page 17 to page 30), while we employed 73 of them (LM74 on the butt block
is neglected). Regarding the source mesh, we recruited the full body mesh included in
the Wrap 3 software [215]. To unify the inputs, we remeshed the source mesh in [215] to
the same number of vertices as the original source mesh.

ASSESSMENT DATASET: THORACIC VERTEBRA

To evaluate the performance of the proposed approach on more complicated freeform
surfaces, the twelve thoracic vertebrae in a complete spine in [257] which is extracted
from [228] are employed. All the surface meshes are re-meshed to 8000 vertices [271],
resulting in uniform triangle surface meshes, to have a ground truth for comparing the
mesh quality variation between different methods. In the dataset, thoracic vertebrae
are mainly labelled by the prefix T and numbered 1 to 12 (e,g., T 7 belongs to thoracic
number 7). We selected T 7 as the source surface and the rest of the eleven vertebrae
as the target surfaces. 25 Landmark Points (LMPs) for a thoracic vertebra are defined
in [195], while we employed 12 of the LMPs with index 2, 3, 4, 5, 10, 19, 20, 21, 22, 23, 24,
and 25.

3.4.2. PARAMETERS OF THE PROPOSED METHOD
TABLE 6.1 reports values of the parameters employed in the experiment which are ex-
plained in Table 3.1. During the minimization of the cost function, γ in G presented in
Section 2.3.4, was selected as 1. To avoid large changes in the value, we defined a time-
varying bound for the parameter with a gradual relaxation saturation operator as:

sat(ĝPi (l )) =


ĝ min(k), if ĝPi (l ) < ĝ min(k)

ĝ max, if ĝPi (l ) > ĝ max

ĝPi (l ), otherwise,

(3.28)

where ĝ min(k) is the decreasing lower and ĝ max is the constant upper bound for the input
ĝPi (l ). In the experiments ĝ max is 1000 and ĝ min is gradually decreased from 1000 to 1.



3.4. EXPERIMENT SETUP

3

63

Table 3.2: Parameters used in simulation configuration.

Parameter ĝ max ĝ min(k) Nmean Nr

Value 1000 ĝ max:1 3 0.1

Parameter N (k) ϵ j max kmax

Value Nr nT :Nmean 0.001 50 20

This indicates that in this case, ĝ min and ĝ max were specified independent of the source
mesh defined and only global deformations were allowed at the beginning of registra-
tion. In addition, the lower limit of the boundaries relies on the type of data [13]. Thus, a
small value of ĝ max may result in a singularity of A in Eq. (3.4), which falls into instability
condition during solving the optimal problem. Consequently, our experiments began
with a considerably high ĝ max. To maintain a smoother registration process, we used the
mean of a number of points from a set with size of 3 (Nmean = 3). This Nmean number
of points regarding H in Eq. (3.22). N number of points on T , as an area to explore for
the corresponding point to any vertices on S , varied from 10 % of the total number of
vertices in T to Nmean . In the implementation of [42], the system of linear equations
that arises in each step was solved with the help of the UMFPACK library [60].

3.4.3. REFERENCE MODEL DYNAMICS
Following the discussion presented in Section 3.3, a stable reference model (Ar e f ,Br e f )
must be established, in which two of the states are considered as the integral of the other
two states. Accordingly, a four-state dynamic system is utilized as the reference model
which its states (xr e f ) are proposed as below

ẋr e f = Ar e f xr e f +Br e f re (3.29)

Ar e f =


0 1 0 0

−10 −10 0 0
0 0 0 1
0 0 −10 −10

 ,Br e f =


0 0

10 0
0 0
0 10

 , (3.30)

where xM =
[

xr e f 1,1
xr e f 1,3

]T
in Eq. (3.11). The system is globally stable to re as all the

eigenvalues of Ar e f are negative, and pair (Ar e f ,Br e f ) is stabilisable (see Chapter 2 of
[140]), which can be verified through, e.g, the Hautus-test [288, 245]. Please note that, in
this chapter, for all the experiments that use the reference model we use the parameters
in Eq. (3.30).

3.4.4. SENSITIVITY ANALYSIS REGARDING DIFFERENT SHAPE DESCRIPTORS
A set of experiments in the stable domain introduced in Discussion I are initially per-
formed employing the scans from the Dutch population of the CAESAR dataset [210] to
study the sensitivity of the parameters ν, and ζ per different shape descriptor aimed at
selecting the proper range of the parameters and the descriptor. To this end, we select
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.5: Sensitivity analysis showing for a domain of ν and ζ while Nr = 0.1, (left) Overall LM mean error;
(right) SD of Overall LM mean error based on: (a, b) MC formulation; (c, d) GC formulation; (e, f) SI formula-
tion; (g, h) CI formulation.

four shape descriptors (KG ) as Mean Curvature (MC), Gaussian Curvature (GC), Shape
Index (SI), and Curvature Index (CI) from [262] with the following formulations:

MC : µ1+µ2
2 ,

GC : µ1 µ2
2 ,

SI : 2
π tan−1 µ2+µ1

µ2−µ1
,

CI :

√
µ2

1+µ2
2

2 ,

(3.31)

where µ1 and µ2 are the principal curvatures at point P .
According to Figure 3.5, which demonstrates how the achieved error and Standard

Deviation (SD) of error vary by altering, in pairs, the weights employed in the Γ func-
tion Eq. (3.21), the algorithm is able to achieve a low error value (blue areas) for a wide
range of those parameters regarding each of the descriptor. Looking at the Overall LM
mean error of the figure, all the descriptors have stable performance around ζ = 2, and
ν= 2 which is visible with blue region; however, the area of the region explains the degree
of robustness is changing. The robustness is theoretically expected because the system
is globally asymptotically stable as investigated in Section 3.3, and here the expectation
was proved as there was limited sensitivity regarding the choice of the range of parame-
ters, and no fine-tuning is further needed to obtain the desirable results.

According to the figure, GC has the highest sensitivity as the color variation is the
fastest and CI has the least sensitivity due to slow changes in the color. Meanwhile, MC
has the biggest area with the least error (dark blue area), thus we choose MC formula for
our calculation.

3.4.5. ANFIS INITIAL CONDITION PREDICTOR
Following Discussion II in Section 2.3.4, the main challenge of designing an ANFIS model
is determining the proper inputs and output [255]. Firstly, the stiffness ratio is esti-
mated through Mean curvature and mesh quality values (both explain the topology of
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Table 3.3: Average RMSE and R2 results of ANFIS performance for different MF types via the test data.

MF type psigmf dsigmf pimf gaussm2f

RMSE 0.71 0.70 1.87 0.73

R2 0.77 0.78 0.71 0.76

MF type gaussmf gbellmf trapmf trimf

RMSE 0.69 0.72 1.94 0.77

R2 0.89 0.78 0.69 0.81

the mesh) explained in Section 3.3 and 3.4.4. Second, the distance between the point
on S and its correspondence on T affects the level of stiffness i.e., when the distance
is high, the stiffness should be high as well for being able to transfer the features and
then register on the target. Thus, we consider the normalised distance (input 1) and the
differences between the normalised the Mean Curvature (MC) values (input 2) of each
point on the S and its correspondences on T before registering as the inputs of the
ANFIS model. Consequently, we consider the initial stiffness ratio as the output of the
model. We used the final results of the adaptive estimator in Figure 3.5 regarding the MC
formulation in Eq. (3.31) as the label of the model, where ζ= 2, and ν= 2 consists of 101
registered meshes.

We considered the source mesh before registration as S and the registered source
mesh via the adaptive estimator as T to generate the inputs of the training data of the
model and the final estimated ratios as the ANFIS outputs. Therefore, the dataset in-
cludes 101 scans, and each scan contains 19882 vertices. 70 scans (equal to 70% of the
dataset) are used as the train dataset and 31 (equal to approximately 30% of the dataset)
are employed as test dataset [248, 252].

Eight different membership functions (MF) mentioned in Table 3.3 and explained in
[165] were examined in the ANFIS model. The Root Mean Square Error (RMSE) and the
correlation coefficient (R2) between the anticipated values (initial stiffness ratio) and the
true training values were employed to assess the performance of each MF, according to
the lowest modeling RMSE and highest correlation coefficient. The results of averaging
the RMSE and accuracy are reported in Table 3.3, where the experiments are based on
ten runs over 500 training epochs with linear MF type for output, and three MFs for each
input. Regarding the modeling results reported in Table 3.3, between the examined MFs,
gaussmf performs to the highest accuracy and the smallest RMSE. Guassmf employs the
general form of a gaussian function. The ANFIS rules were selected to predict the proper
initial stiffness ratio due to the normalized topology of S and estimated normalized
travel distance that resulted in 9 fuzzy rules. Figure 3.6(a) depicts these rules.

To investigate the sensitivity of the model’s inputs variation to its output variation,
the level of prediction is shown in Figure. 3.6(b). According to the figure, the level of
the model’s inputs through its output shows a smooth area around the employed range
of the output, and inputs reached steady, which conveys the acceptable level of design
relationships, sensitivity, and robustness of the predictor output to its inputs.
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(a) (b)

Figure 3.6: ANFIS model. (a) Fuzzy rules. (b) Fuzzy surfaces for the intelligent estimator.

3.4.6. EMPLOYED METHODOLOGIES FOR COMPARISON

For the experiment, the performance of the proposed approach is compared to sev-
eral existing non-rigid registration methods presented by Amberg et al. [12], Andriy et
al. [180], and Hirose [102], where the executable source code for each method is avail-
able in [42], [179], and [101] respectively, and Tajdari et al. [251].

Briefly, Amberg’s method introduced an optimal step non-rigid ICP methodology
utilising a variety of regularisations, while employing a range of lowering stiffness pa-
rameter equals for all the vertices.

Andriy account for the CPD algorithm [180] utilising Gaussian radial basis functions
as a substitution for thin-plate splines which investigates another type of regularizer.
Through the approach, the rigid and non-rigid registrations are considered, although
the method is not optimal in identifying a large number of outliers and in establish-
ing all the possible correspondences, which is generally identified as Non-deterministic
Polynomial-time hard (NP-hard). The executable source code employed in this paper is
achievable in [179].

Hirose proposed the BCPD method [102], using variational Bayesian inference the-
ory to convey the coherent drift. The executable source code employed in this paper is
achievable in [101].

Tajdari introduced a novel geometry feature as semi-curvature for better classifica-
tion and corresponding point selection performance. Also, he linearized the term and
integrated to the Amberg’s solver and showed the linear version is globally stable; how-
ever, the method was ill to preserve the mesh quality for the boundary of missed parts,
e.g holes.

As both Amberg’s method and Tajdari’s method are using the same stiffness term
integrated with the weighting matrix G same as Eq. (6.7), we are able to apply the esti-
mator to both methods. We named these two variants as adaptive Amberg’s method and
adaptive Tajdari’s method. Comparing our both proposed methods with the adaptive
Amberg and the adaptive Tajdari may reveal the generalizability and extendability of our
estimator for a variety of applications.
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All methods were implemented by Matlab®R2020a on a computing platform with an
Intel® Core-i5TM 9600K 4.6 GHZ processor.

3.5. EXPERIMENT RESULTS

3.5.1. EFFECT OF THE ADAPTIVE SCHEME DURING REGISTRATION
Here, we study the impact of the adaptive controller on the level of feature preservation
after registration, via a few experiments employing some basic shapes, in terms of quality
of mesh and the degree of followed topology, especially for highly curved areas, missed
areas, disconnected areas, and misaligned areas.

FEATURE PRESERVATION

As we would like to investigate the impact of the estimator on the performance of the
registration process only the methods with similar mechanisms are included.

To show the effect, a shape with three spherical cross-sections (gray) is used as S and
a shape with three ellipsoidal cross-sections (green) is recruited as T depicted in Fig-
ure 3.7(a). Figure 3.7(b) shows the initial condition and the different regions for assess-
ment as feature matching (part 1) to evaluate the accuracy of corresponding selection
of points with similar normalized Mean curvature values, missed area (part 2), discon-
nected area (part 3), and misaligned part (part 4). We introduce a new measure named
percent of mesh quality loss (Q l oss ) for the evaluation as

Q l oss = 100×
1− Qend

S

Q0
S

 (3.32)

where Q0
S and Qend

S are the mesh quality of the source mesh for a region in the first and
last intervals respectively. Figure 3.7(c) presents the performance of Amberg’s method
in the four regions where it loses 80%, 82%, 90%, and 85% of mesh quality for part 1,
part 2, part 3, and part 4 respectively. Figure 3.7(d) figures the performance of Tajdari’s
method in the four regions with 15%, 18%, 20%, and 16% mesh quality loss for part 1,
part 2, part 3, and part 4 respectively. Our adaptive method and our ANFIS adaptive
method outputs are drawn in Figure 3.7(e) and (f) which report the same performance
in terms of mesh quality loss of 7%, 8%, and 7% for the first three regions. In addition,
our adaptive method has 2% less mesh quality loss than our ANFIS adaptive method for
the part 4.

LEVEL OF CONVERGENCE TO THE TARGET MESH TOPOLOGY

Preserving the mesh quality and following the topology of the target mesh during reg-
istration are competing with each other. As the mesh quality preservation needs more
rigidity and following the topology requires less rigidity. To investigate the level numeri-
cally we figured the histogram graph, mean value (m̄), and standard deviation (σ) of the
closest distance population from target mesh points to source mesh points in Figure 3.8
per part 1, part 2, part 3 and part 4, regarding each of the compared methods in Fig-
ure 3.7. According to Figure 3.8(a) where the part 1 is studied, Amberg’s method has the
highestσ, and our ANFIS adaptive method has the leastσ. This shows our method could
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(a) (b) (c)

(d) (e) (f)

Figure 3.7: Curved shape preservation experiment: Front view on top, and the prospective view on bottom. (a)
Target and source meshes (b) The initial condition (c) setup Registration using Amberg’s method. (d) Registra-
tion using Tajdari’s method method. (e) Our adaptive method. (f) Our ANFIS adaptive method.

successfully reach the far points on the target mesh from the source mesh. However, as
there is no missed area in the part 1, Tajdari’s method has similar m̄ and σ to our both
methods.

Figure 3.8(b) investigates the performance of the method in presence of missed ar-
eas in the part 2. In this experiment, Amberg still has the highest m̄ and σ values, while
our both methods have better performance than Tajdari’s method. Both of the pro-
posed methods could follow the target mesh topology for about 28% better than Tajdari’s
method, which was expected due to better preservation of the source mesh feature close
to the borders of missed area.

In addition, Figure 3.8(c) presents the results regarding the experiment of having dis-
connected areas as part 3. Although the conclusion for this part is similar to part 2, the
advantage of our both methods is more visible here. Accordingly, our both methods out-
performed for about 52% better than Tajdari’s method in terms of m̄, which shows the
power of the adaptive estimator to face more borders of missed areas.

Furthermore, Figure 3.8(d) may highlight more clearly the importance of the AN-
FIS predictor than the other experiments. As the ANFIS adaptive method has 13% and
16% less m̄ compared to the adaptive method for the part 3 and part 4 experiments re-
spectively. This shows the ANFIS adaptive method has 23% improvement based on the
adaptive method, which resulted from more chance of freedom by having logically lower
stiffness values in the initial condition of the registration process for the ANFIS adaptive
scheme.

Overall, comparing Figure 3.8(a), (b), (c), and (d) shows our ANFIS adaptive method
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(a) (b)

(c) (d)

Figure 3.8: Histogram graph of closest distance from target mesh points to source mesh points where the
Diameter of the Bounding Box (DBB) is 691 (mm). (a) Part 1: feature matching. (b) Part 2: missed part. (c) Part
3: disconnected part. (d) Part 4: Misaligned part.

has slightly better performance than our adaptive method in terms of m̄ and σ values,
this is because the ANFIS predictor is employed to avoid the stiffness ratio saturation
meaning more flexibility for correct deformation of each point on the source mesh to
follow the topology of the target mesh as rigid as possible. This is numerically investigat-
able by comparing Figure 3.8(a), (b), (c), and (d), where the ANFIS adaptive method has
on average 6% and 13% less value of the σ and m̄ than the adaptive method respectively.

Discussion III: Using gradually decreasing uniform stiffness level for all the points in
each interval of the registration process used in Amberg et al. [12], and Tajdari et al. [251]
may cause mesh quality loss by converging several points on S to one point on T . The
mesh quality loss especially happens in the final intervals of the registration process
where the stiffness term is sufficiently low then the surface can be deformed unfavor-
ably and the source face features can be lost. Although Tajdari’s method could partly
solve the challenge by improving the accuracy of corresponding selection and avoiding
the confliction contrary to Amberg’s method, Tajdari’s method was ill to preserve the
features and mesh quality of the source mesh on the boundaries of missed areas and
disconnected areas.

3.5.2. FULL HUMAN BODY

In terms of validation, we use the CAESAR test dataset in Section 3.4.5 and the predefined
landmarks introduced in Section 3.4.1. Visually, the initial condition and the selected
landmarks are shown in Figure 3.9 for both the target and source meshes. The CEASAR
dataset is suitable for assessment, as they are natural scans with holes, missed parts and
natural noise e.g., a few examples are visually highlighted in Figure 3.9(a). In terms of val-
idation, the registration results are reported employing the remeshed source mesh with
100%, 60%, and 20% of the total vertices of the original source mesh. The experiment
results of the registration are reported in detail in Table 3.4, shown in Figure 3.12. Please
note that for the experiments that the ANFIS predictor is employed, ĝ min in Table 6.1
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(a) (b)

Figure 3.9: Full body initial condition for one example among the test dataset. (a) Top-view. (b) Perspective
view.

considered as constant and equal to 1.

LANDMARK ERROR

Based on the Table 3.4(a) where the length of the diagonal line of the Bounding Box
(DBB) for S for the source mesh is 2167.6 mm, our both methods indicate on average
about 78%, 91%, 75%, 30%, 80%, and 15% less landmark errors comparing to the Am-
berg’s method, CPD method, BCPD, Tajdari’s method, Adaptive Amberg’s method, and
adaptive Tajdari’s method respectively. Figure 3.10(a) presents the percentage of cor-
respondences for the case with 100% of the total vertices of the original source mesh
including all 73 selected landmarks for all the 26 scans (y-axis) from the test data, that
have less distance error than a threshold (x-axis) [116]. According to the figure, the pro-
posed two methods (black and brown lines) find all the correspondences earlier than the
other four methods, and the errors are less than 21 mm, while for Amberg (red line), CPD
(purple line), and BCPD (yellow line), Tajdari (green line), adaptive Amberg (blue line),
and adaptive Tajdari (cyan line), the errors are 91 mm, 371 mm, 98 mm, 40 mm, 66 mm,
and 30 mm, respectively. The results prove that the presented two methods are more
accurate and robust compared to other methods.

MESH QUALITY AND Q loss

Based on Table 3.4(b), the observed mesh quality preservation improvement of the pro-
posed two methods is on average about 48% better than Amberg’s method, 12% than
the CPD method, 9% than the BCPD method, 11% with Tajdari’s method, 6% than the
adaptive Amberg’s method, and 2% with adaptive Tajdari’s method.

Moreover, in terms of Q l oss (in Table 3.4(b)) for the proposed two methods, one can
be observed that they have on average 3% the quality loss while it is 44% for Amberg’s
method, 12% for CPD method, 10% for BCPD method, 14% for Tajdari’s method, 7% for
adaptive Amberg’s method, and 6% with adaptive Tajdari’s method.

Figure 3.10(b) presents the sorted mean final value of ĝ per vertex on S , it can be in-
ferred that the adaptive method tried to exert rigid registration on the Amberg’s method
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Table 3.4: Results of registration regarding the full human body dataset.

a) Overall LM mean error ± Standard Deviation (SD) (mm).
Total vertices % Amberg

[12]
CPD [180] BCPD

[102]
Tajdari[251] Adaptive

Amberg
Adaptive
Tajdari

Our adap-
tive

Our AN-
FIS dap-
tive

100 31.3±17.5 77.1±99.3 28.2±23.3 11.2±7.7 33.5±10.1 8.1±6.9 7.4±3.9 7.2±4.2
60 31.9±29.7 93.3±101 44.1±27.4 13.9±13.3 39.9±14.6 11±8.1 10.2±5.6 9.1±4.4
20 50.8±55.2 189.1±127.3 53.5±51.6 18.3±22.1 40.1±14.8 17.4±18.1 21.3±9.7 16.8±7.5

b) Mesh quality mean value ± Standard Deviation (SD); Percent of mesh quality loss mean value (Q loss ) % in Eq. (3.32).
Total
ver-
tices
%

Original
mesh
(Q0

S )

Amberg
[12]

CPD [180] BCPD
[102]

Tajdari[251] Adaptive
Amberg

Adaptive
Tajdari

Our adap-
tive

Our AN-
FIS dap-
tive

100 0.80±0.150.53±0.24; 360.67±0.23; 160.69±0.27; 140.68±0.29; 150.71±0.3; 11 0.74±0.17; 7 0.75±0.1; 6 0.74±0.13; 7
60 0.72±0.200.40±0.27; 430.71±0.22; 1 0.71±0.20; 1 0.65±0.31; 110.68±0.11; 5 0.68±0.14; 5 0.70±0.16; 3 0.70±0.18; 3
20 0.70±0.220.30±0.40; 560.57±0.24; 210.58±0.33; 160.53±0.45; 270.66±0.17; 6 0.66±0.2; 6 0.69±0.13; 1 0.68±0.11; 3

c) The run time mean value ± Standard Deviation (SD) (s).
Total vertices % Amberg

[12]
CPD [180] BCPD

[102]
Tajdari[251] Adaptive

Amberg
Adaptive
Tajdari

Our adap-
tive

Our AN-
FIS dap-
tive

100 18.3±1.2 1571±831 755±383 21.3±2.4 18.5±1.2 21.9±2.5 18.4±0.9 18.4±0.9
60 12.5±0.9 851±738 456±344 19.6±1.5 12.5±1.0 19.7±1.5 12.6±0.9 12.8±0.9
20 8.0±0.4 491±357 302±277 15.2±0.6 8.0±0.7 15.3±0.8 8.2±0.8 8.3±1.8

d) Mean distance between each point on T to the its closest point on registered S ± SD (mm).
Total vertices % Amberg

[12]
CPD [180] BCPD

[102]
Tajdari[251] Adaptive

Amberg
Adaptive
Tajdari

Our adap-
tive

Our AN-
FIS dap-
tive

100 3.7±5.5 17.7±12.5 6.1±3.2 13.1±3.7 16.1±11.9 18.7±5.4 9.3±3.7 6.2±3.1
60 3.8±5.5 19.2±13.8 6.8±3.9 16.3±5.2 16.3±11.6 20.3±7.8 10.1±3.6 7.1±3.0
20 3.6±5.9 20.1±13.5 7.4±4.1 19.1±7.1 16.4±11.7 24.7±9.9 10.6±3.7 7.5±3.3

as the correspondences are mainly selected incorrect, thus the mesh quality should be
decreased (toward zero area faces). Accordingly, the estimated ĝ is very high. Adaptive
Tajdari, Our adaptive and ANFIS adaptive methods achieved way lower the estimated
values than the Adaptive Amberg method, while still the ratio for our adaptive method
stays less than adaptive Tajdari for more vertices (for about 15000 vertices over 19882
vertices), which means the correspondences are selected more accurate thus less de-
formation and less mesh quality loss is needed. Although our ANFIS adaptive method
presents the same high quality registration as our adaptive method, the estimated stiff-
ness ratios are considerably lower, which gives the opportunity to follow the topology of
the target more accurately. This also can be observed visually by comparing the shown
examples in Figure 3.11, and 3.12 for one example.

RUN TIME DISCUSSION

The computing speed is also a criterion to assess the performance of each mentioned
method. Table 3.4(c) presents the computation time of all methods. Comparing the
proposed two methods against other methods, the computing time reduction is about
0% less than Amberg’s method, 99% less than CPD method, 97% less than BCPD method,
15% less than Tajdari’s method, 0% less than adaptive Amberg’s method, and 15% less
than adaptive Tajdari’s method. The results show our both methods have acceptable
performance in terms of computing time regarding Amberg’s method, however, both of
them present relatively higher quality of registration regarding landmark error and mesh
quality preservation.
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(a) (b)

Figure 3.10: Registration results via the test dataset for the case with 100% of the total vertices of the original
source mesh. (a) Percentage correspondences according to registration error. (b) Sorted mean estimated stiff-
ens (ĝ ) per each vertex.

(a) (b) (c) (d)

Figure 3.11: Estimated final stiffness ratio color map. (a) Adaptive Amberg. (b) Adaptive Tajdari. (c) Our
adaptive method. (d) Our ANFIS adaptive method.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 3.12: Geometry of the full body registration results. (a) Amberg. (b) CPD. (c) BCPD. (d) Tajdari (e)
Adaptive Amberg. (f) Adaptive Tajdari. (g) Our adaptive method. (h) Our ANFIS adaptive method.

TARGET-SOURCE DISTANCE DISTRIBUTION

TABLE 3.4(d) explains the mean distance of each point on the T and the closest point
on the registered S along the test data. According to the table, Amberg shows the least
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Figure 3.13: The used thoracic dataset for assessment, including T1 as the target mesh, T7 as the source mesh,
and their initial condition before non-rigid registration.

sparsity and CPD shows the largest sparsity in terms of the closest point. This happens as
Amberg did not embed sufficient terms to keep the original geometry of S . In addition
to the error comparison, our both methods perform with the least error of correspon-
dences and highest level of the source mesh geometry preservation. While, our ANFIS
adaptive method presents 34% less error than our adaptive method, which allows us to
perform more logical registration resulting in better following the topology of the target
with similar quality of LM errors and surface quality.

3.5.3. THORACIC VERTEBRA

Using the same method in the previous section, we register the thoracic vertebra of T 7
with DBB of 42 (mm), from the dataset in Section 3.4.1.2 on the thoracic vertebrae of
T 1, . . . ,T 12 excluding T 7 (eleven vertebrae in total) using the methods in Section 3.4.6.

In all eleven experiments, the initial conditions for the eight methods are the same.
As an example, the initial condition of the T 7, and the T 1 is presented in Figure 3.13.
Please note that we manually made some artefacts in the target meshes shown in Fig-
ure 3.13 i.e., holes and disconnected parts, in order to investigate the challenges dis-
cussed in Section 3.1. In addition, the dataset is supposed to be able to highlight the ad-
vantages and disadvantages of each method as the variation of the topology of the verte-
bra from T 1 to T 12 is comparatively high [286]; however, all the vertebrae monopolize all
the features belonging to a thoracic vertebra. For the used dataset in Section 3.4.1.2, the
value of Cranial Endplate Depth (EPD), over spinous process length (SPL) introduced in
[286] are varying from 0.68 to 2 which highlights the topology variation. For the assess-
ment, we used the 12 landmarks explained in Section 3.4.1.2 and shown in Figure 3.13
with black dots (for S ) and green dots (for T ).

The registration results of using the eight methods are visually compared in Fig-
ure 3.14 through an example of registering the T 7 on the T 1, and numerically investi-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.14: Geometry of the thoracic vertebra registration results. (a) Amberg. (b) CPD. (c) BCPD. (d) Tajdari
(e) Adaptive Amberg. (f) Adaptive Tajdari. (g) Our adaptive method. (h) Our ANFIS adaptive method.

gated in Table 3.5 for all eleven registration results.

Errors between corresponding landmarks are reported in Table 3.5(a) where our meth-
ods outperform Amberg’s, CPD, BCPD, Tajdari’s, adaptive Amberg’s, and adaptive Taj-
dari’s methods by an average of 87%, 82%, 74%, 56%, 87%, and 53% respectively regard-
ing the mean absolute error. In addition, our ANFIS adaptive method presents 12% less
error than our adaptive method.

Regarding the mesh quality of the source mesh after registration, Table 3.5(b) shows
that our methods present on average 7.5% the mesh quality loss, in which the value is
about 48%, 25%, 14%, 18%, 2%, and 14% for Amberg’s, CPD, BCPD, Tajdari’s, adaptive
Amberg’s, and adaptive Tajdari’s methods. According to the table, our methods have
lower efficiency in terms of mesh quality only compared with adaptive Amberg’s method,
which comes from the fact that the adaptive solution found Amberg’s algorithm path to-
wards non-rigid registration, unfavorable and thus exerted as rigid as possible transfor-
mation. In other words, the adaptive Amberg’s method presented high mesh quality as
the registration was rigid mostly and thereby failed to match the target mesh. Further-
more, our ANFIS adaptive method presents 3% more mesh quality loss than our adaptive
method.

In Table 3.5(c), it can be found that using the CPD method is very time-consuming as
the time duration for the experiment is about 6810%, 87%, 4191%, 6480%, 4139%, 6015%,
and 5755% more than Amberg’s, BCPD, Tajdari’s, adaptive Amberg’s, adaptive Tajdari’s,
our adaptive, and our ANFIS adaptive methods.

In Table 3.5(d) contrary to the comparison using the full human body in Section 3.5.2.4,
we compare the distance from the target meshes without the artefacts (T ′ in Figure 3.13)
to the registered source mesh for the eight methods. Note that this comparison was not
possible for the full human body experiment as the original data of the CAESAR had the
holes, missed parts, and natural noise. According to Table 3.5(d), our methods outper-
form Amberg’s, CPD, BCPD, Tajdari’s, adaptive Amberg’s, and adaptive Tajdari’s methods
by an average of 88%, 72%, 65%, 42%, 92%, and 52% respectively regarding the distance
from the T ′ to the registered source mesh.

To have a holistic conclusion on the performance of the methods, we consider four
matrices as Bi i.e., i = 1, . . . ,4 where each of the matrices includes the mean values of
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Figure 3.15: Energy values box-plot per each method.

Table 3.5: Results of registration regarding the thoracic vertebra dataset.

Original
mesh (Q0

S )
Amberg
[12]

CPD [180] BCPD
[102]

Tajdari[251] Adaptive
Amberg

Adaptive
Tajdari

Our adap-
tive

Our AN-
FIS dap-
tive

a) Overall LM mean error ± Standard Deviation (SD) (mm).
– 5.9±4.1 4.3±3.6 2.9±3.2 1.7±1.1 6.1±4.9 1.6±1.1 0.8±0.9 0.7±0.9
b) Mesh quality mean value ± Standard Deviation (SD); Percent of mesh quality loss mean value (Q loss ) % in Eq. (3.32).
0.84±0.11 0.44±0.29; 480.63±0.22; 250.68±0.19; 140.69±0.20; 180.82±0.20; 2 0.72±0.19; 140.79±0.12; 6 0.76±0.16; 9

c) The run time mean value ± Standard Deviation (SD) (s).
– 10.1±0.9 691±328 369±252 16.1±1.7 10.5±1.1 16.3±2.2 11.3±1.0 11.8±1.1

d) Mean distance between each point on T ′ (without artifacts) to its closest point on registered S ± SD (mm).
– 0.95±0.81 0.39±0.33 0.32±0.29 0.19±0.15 1.4±1.8 0.23±0.21 0.12±0.13 0.10±0.09

the four features used in Table 3.5. The mean value of each feature is named as Bi (z)
i.e., z = 1, . . . ,8 where z is corresponding to the number of the compared method, in
the Table 3.5 with the same order of the methods. For example, B3 includes the mean
run time values for all methods, where B3(4) = 16.1 (corresponded to Tajdari’s method
in Table 3.5(c)). Note that from Table 3.5(b), we only considered the percent of mesh
quality loss mean value e.g, B2(4) = 18. Then, an energy function of Jz for each of the
methods can be calculated as:

Jz (i ) = Bi (z)

max(Bi )
(3.33)

The values of each Jz are drawn in Figure 3.15, which shows that the overall per-
formance by considering all matrices of comparison, our adaptive and ANFIS adaptive
methods have the lowest value of the energy function which means the methods have
the best performance. In addition, the median of the ANFIS adaptive method is slightly
lower than our adaptive method, showing the positive impact of the ANFIS predictor on
the overall performance of the method.

3.6. LIMITATIONS
The presented methods address the feature preservation during a non-rigid registration
via controlling the stiffness per vertex term in each iteration. Though using both meth-
ods can achieve higher quality of mesh and less landmark errors, they have several limi-
tations. The source and target mesh should have similar normalized curvature values for
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matching otherwise the adaptive estimator compels a rigid registration e.g., registering
a human body on a dog body. This also prevents the method to tackle the challenges of
high-frequency deforming objects e.g., a deforming cloth where the similar features of
the target mesh to the source mesh are highly varying. Moreover, a weakness of using
curvature values in establishing correspondences, is that the value is very sensitive to
the noise, thus using mesh smoothing algorithms, e.g. Laplacian filter, is recommended
prior to the registration. In addition, the global stability of (6.7) after integration of Ĝ in
(3.4) is not investigated, as in Amberg [13], to prove the global stability of the solver.

3.7. CONCLUSION
In this chapter, we introduce a non-rigid ICP approach integrated with a novel adaptive
feedback control scheme to estimate the stiffness ratio utilizing the gradient of the mesh
quality and Mean curvature values per vertex. To facilitate the convergence procedure
of estimation towards the true values, an ANFIS-adaptive-based predictor is integrated
with the estimator. The ANFIS predictor proceeds based on the topology of both the
source and the target meshes to anticipate the initial values for the adaptive estimator
to facilitate the procedure of the estimation. Then, we embedded the estimated ratio as
part of the metric in establishing the correspondences and in the cost function, where
the distance and the stiffness terms are integrated as well. Furthermore, by adjusting
the connectivity level of vertices on their neighbors (equal to stiffness), the ANFIS based
adaptive estimator elaborates on preserving the features of a surface in a globally asymp-
totically stable region during the process of registration, stressing mesh quality and con-
vergence. Experimental outcomes show that the presented non-rigid method outper-
forms the aforementioned approaches, especially in the highly curved areas, missed ar-
eas, disconnected areas, and misaligned areas. This highlights the ability of the proposed
method to employ the inherent characteristics of the complete surface during the pro-
cess of registration.
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SPINAL DEFORMITIES

Predicting pediatric spinal deformity (PSD) from X-ray images collected on the patient’s
initial visit is a challenging task. This work builds on our previous method and provides a
novel bio-informed framework based on a mechanistic machine learning technique with
dynamic patient-specific parameters to predict PSD. We provide a geometry-based bone
growth model that can be utilized in a range of applications to enhance the bio-informed
mechanistic machine learning framework. The proposed technique is utilized to examine
and predict spine curvature in PSD cases such as adolescent idiopathic scoliosis. The best
fit of a segmented 3D volumetric geometry of the human spine acquired from 2D X-ray
images is employed. Using an active contour model based on gradient vector flow snakes,
the anteroposterior and lateral views of the X-ray images are segmented to derive the 2D
contours surrounding each vertebra. Using minimal user input, the snake parameters are
calibrated and automatically computed over the dataset, resulting in fast image segmen-
tation and data collection. The 2D segmented outlines of each vertebra are transformed
into a 3D image segmentation result. The Iterative Closest Point mesh registration tech-
nique is then used to establish a mesh morphing approach and creates a 3D atlas spine
model. Using the comprehensive 3D volumetric model, one can automatically extract
spinal geometry data as inputs to the mechanistic machine learning network.

Parts of this chapter have been published in:
Tajdari, M., Tajdari, F., Shirzadian, P., Pawar, A., Wardak, M., Saha, S., Park, C., Huysmans, T., Song, Y., Zhang,
Y.J. and Sarwark, J.F., 2022. Next-generation prognosis framework for pediatric spinal deformities using bio-
informed deep learning networks. Engineering with Computers, 38(5), pp.4061-4084 [258].
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4.1. INTRODUCTION

D Eformities in the spine may cause pain, numbness, tingling sensation, loss of func-
tion, and even pulmonary and cardiac difficulties. If the spine loses its usual, grace-

ful S-shape (when seen from the side), or if the spine loses its straightness, deformi-
ties may arise (viewed from front to rear). The term Pediatric Spinal Deformity (PSD)
refers to such malformations of the spine in children, namely, scoliosis, kyphosis, and
spondylolisthesis [285]. Scoliosis and kyphosis are conditions characterized by aberrant
curvature of the spine, while spondylolisthesis is characterized by the displacement of
vertebrae. PSD is caused by a variety of factors, the most important of which is bone
growth, which controls the curvature and advancement of the deformity. There is still
more to learn about the underlying etiology of PSD. Affecting roughly 7 million people
in the United States, scoliosis is one of the most prevalent spinal abnormalities. Ado-
lescent Idiopathic Scoliosis (AIS) is used to describe the condition in children and ado-
lescents. AIS accounts for around 80% of all pediatric scoliosis cases, while affecting
approximately 3% of adolescents under the age of 16 in the United States [123].

The treatment of scoliosis is mainly reliant on the shape and extent of spinal curva-
ture, and specific treatment choices are usually determined by the surgeon’s expertise.
As a result, the development of a clinically validated, patient-specific model of the spine
to assist surgeons in the prognosis of early-stage PSD would guide optimum surgical and
non-surgical treatment options. For both screening and monitoring in present clinical
practice, the lack of an appropriate safe, inexpensive, and accurate measuring technol-
ogy is a major bottleneck. To track the evolution of deformities throughout adolescent
growth, frequent imaging is essential [90] and the extracted features from medical im-
ages such as Cobb angle determine the severity of spinal deformity. The Cobb angle is
the most often utilized measurement for determining the severity of spinal deformities.

It is common practice in spine surgery to use computer-aided procedures, such as
determining the best path for the insertion of pedicle screws [120, 174, 91], as well as
improved surgical navigation and a more comprehensive pre-operative surgical plan
[177, 151]. One of the greatest barriers to incorporating these technologies into clinical
practice is the time and effort necessary to generate patient-specific functional models
from medical imaging. It entails a number of manual procedures and is time intensive,
even for seasoned specialists [219, 40]. For example, image segmentation is both time-
consuming and user-dependent [14, 145] because it requires to locate and segment ver-
tebrae ahead of time [27]. Generating 3D detailed geometry of the spine from a 2D set
of X-ray images is also a challenging task. Various manual processes are required to seg-
ment the obtained volumetric mesh in order to detect hard and soft tissue once the 3D
model has been formed.

Machine learning (ML) approaches need a large amount of data to be trained and
provide reliable results [255, 252]. The absence of reliable medical data for a given in-
dividual over time is one of the challenges in implementing ML for prognosis spinal de-
formity. Furthermore, these models are referred to as “data-hungry” approaches since
they cannot forecast outside of the range of the training data [247]. Recent publica-
tions show that by including physics into the system, one may enhance the model’s pre-
dictability range [206]. However, for spinal curve progression including bone formation,
patient-specific governing physical equations with time-varying and geometric-based
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Table 4.1: Contributions of proposed framework with respect to previous framework [257].

Steps of Framework
Limitations of

Previous Framework
Contributions of Current

Framework

1
2D image

segmentation
Manual parameter

adjustment

Calibrated parameters
and semi-manual

adjustment to expedite
the process

2

3D reconstruction
from bi-planar data

and Volumetric
mesh generation

Labor intensive Fast and robust

3

Mechanistic deep
learning method

using bone growth
model

Constant
parameters which
are independent of
time and position

Patient-specific,
position-sensitive and
dynamic bio-informed

mechanistic deep
learning parameters

coefficients are unavailable.

Previously published research from our group has used X-ray imaging data to de-
velop a prognostic framework for AIS [257]. This framework predicted spine morphol-
ogy by combining clinical data acquired from X-ray images with mechanistic features
such as stress distribution on the growing surface of the vertebrae extracted from a spine
surrogate model along with the bone growth model. Although this unique framework
used mechanistic data science for forecasting spine deformity, the previous method had
a number of limitations that impede deploying this framework in real-world scenarios.
One restriction is the manual parameter adjustment for image segmentation of each ver-
tebra. The presented 3D reconstruction and geometry generation technique requires
considerable labor since each tissue is generated separately and all tissues are assem-
bled together. Moreover, the bone growth model has constant parameters throughout
all patients and time steps. However, these assumptions are unrealistic since bone for-
mation differs across ages and vertebrae.

The proposed framework (Figure 4.1) in this chapter builds on our previous work [257],
with each step in the framework improved to meet real-world needs. Both the limitations
of the previous framework and the contributions of the current framework are summa-
rized in Table 4.1.

The organization of the chapter is as follows: After discussing related works in Sec-
tion 4.2, we describe the framework to create the patient-specific 3D geometry from X-
ray images in Section 3. In Section 4, we present our novel bio-informed mechanistic
machine learning model for prognosis of pediatric spinal deformity. Lastly, we end with
some conclusions and discuss future directions of this work.

4.2. RELATED WORKS

4.2.1. VERTEBRAE IMAGE SEGMENTATION

Precisely segmenting the vertebrae is critical for subsequent analysis in an injury detec-
tion system. Statistical shape model (SSM)-based techniques have dominated previous
work in vertebral segmentation [209, 10]. Based on a training set, these approaches cap-
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Figure 4.1: The overall workflow of the proposed framework. The geometric data of vertebrae is retrieved from
2D X-ray time-series images using an image segmentation algorithm whose parameters are calibrated through
sensitivity analysis. The 2D data is then translated to 3D data where patient-specific features are extracted. The
imaging data (clinical) and the mechanistic aspects such as the dynamic patient-specific bone growth model
are passed through the bio-informed mechanistic neural network to predict spinal deformity.

ture statistical information on the shape and/or appearance of the vertebra. The mean
shape is then manually or semi-automatically set close to the real vertebra, and a search
process is used to converge the shape on the true vertebral boundaries. Latest evidence
has used random forest-based machine learning (ML) models to achieve shape conver-
gence [55, 10, 38, 208]. These approaches, however, are only efficient and accurate for
the restricted data reported in the literature and cannot be applied to patient-specific
datasets.

4.2.2. 3D MODEL DEVELOPMENT AND COMPUTATIONAL SIMULATION

Compared to MRI and computational tomography (CT) scanners, X-ray images are more
commonly employed due to their accessibility, lower cost, shorter scanning time, and
lower ionizing radiation levels particularly for adolescent patients. Statistical Shape Mod-
els (SSM) [56, 131, 80, 73] or Statistical Shape and Intensity Models (SSIM) were used to
reconstruct bones from X-ray images. To prevent local maxima while optimizing the de-
formable model parameters, it is important to select a reasonable starting point [115,
207]. Recent years have seen the use of deep learning to recognize landmarks and trian-
gulate them [115]. However, performing 3D reconstruction from two or more 2D photos
using a deep learning technique remains a tough problem due to the complexity of de-
scribing a dimensional expansion in multi-view circumstances. The EOS imaging system
(formerly, Biospace Med, Paris, France), the DIERS formetric scanner, and ultrasonogra-
phy are examples of recent breakthroughs in diagnostic imaging for AIS [90]. The EOS
imaging system is made up of two orthogonal pairs of X-ray tubes and detector units
that allow for the simultaneous capture of anteroposterior (AP) and lateral (LAT) X-ray
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pictures while standing. EOS imaging can quickly scan the spine in 8–15 seconds, de-
pending on the patient’s height. From the EOS anteroposterior and lateral pictures, the
software system sterEOS (EOS Imaging, Paris, France) can generate a highly accurate 3D
model of the spine [63, 133, 69]. However, this technology is unable to divide distinct
tissues in order to account for the many biological organs. Due to its expensive cost, it is
not widely available in many medical centers.

To gain a better knowledge of load distribution and other mechanical features, the 3D
generated patient-specific geometry may be utilized to construct a finite element model.
There is no comprehensive automated workflow for anatomically correct FE simulations
of the spine based on 2D X-ray data. A lot of work has been done on parametric FE mod-
els or a mix of statistical and FE models [25, 26]. However, those models either ignore
essential patient-specific features or require a lot of manual labor, which necessitates a
certain level of operator experience. Although efforts to automate the construction of FE
models of the healthy spine have been performed [23, 40], the technique has never been
integrated with deep learning-based segmentation algorithms or applied to diseased sit-
uations.

4.2.3. IMPLEMENTING ML FOR STUDYING SPINAL DEFORMITY
The application of ML in medical research has skyrocketed in recent decades. When
it comes to applying ML for medical image analysis, there has always been the chal-
lenge on how to accurately integrate ML for disease diagnosis, prognosis, and therapy.
A framework with such characteristics should always be able to capture the biological
governing equation in order to offer extra information to the lacking training data. Re-
cent studies have attempted to use AI to predict spinal deformities [190, 194, 148, 48].
These frameworks, however, cannot be applied to other disciplines. Recently, research
has shown that by incorporating the system’s underlying physical equations, the frame-
work may forecast data outside of the projected range [257, 216]. Nevertheless, there are
certain processes in between that need manual parameter adjustment and, as a result,
cannot be implemented for real-time prognosis framework.

4.3. PATIENT-SPECIFIC IMAGE SEGMENTATION AND DATA GEN-
ERATION

4.3.1. IMAGE SEGMENTATION AND PARAMETER FITTING
Image segmentation of clinical X-ray images is carried out to extract features for the
prognosis framework [319]. The corner points of each vertebra are identified and used
as reference points to monitor variations in spine shape and bone formation over time.
We implement semi-automated image segmentation using active contour, also known
as, the snakes method [112]. A rectangular contour consisting of four corner points is
initialized manually around each vertebra and evolved to capture the shape. We define
the four corner points of each vertebra as landmarks. These are the key points which
help in describing the spine geometry. The segmentation is carried out in 2D for both
AP and LAT images. The evolution of the active contour is carried out iteratively through
minimization of image energy, allowing it to converge at the edges of features. Snakes
are considered energy-minimizing splines which are defined in a parametric form. The
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Figure 4.2: (a) Approximating length and width of vertebrae by picking reference corner points of T1 and L5;
and (b) the approximation of angle of rotation for each vertebra.

total energy functional proposed in [112] considers both image and external constraint
energy terms.

Active contour model is fast and is able to accurately segment each vertebra in the X-
ray images. However, there are a few drawbacks. The accuracy of segmentation depends
on how accurately the active contour is initialized. The energy functional which is mini-
mized consists of many weighting parameters which are set empirically at the beginning
of the segmentation. The optimized parameters of the snakes method which provides
the contour around each vertebra are generally obtained through a trial and error pro-
cess, which is time-consuming. We propose an improved technique to obtain optimum
parameters for the accurate segmentation of clinical X-ray images. The parameters of
the Snake algorithm are categorized into two groups: geometric parameters and fitting
parameters.

Geometric Parameters: For each vertebra, we initialize the active contour as a rect-
angle and define geometric parameters such as the width (wn), height (hn) and rotation
angle (θn) from the horizontal axis. n is the vertebra level number where n = 1 ∼ 12 cor-
responds to the thoracic vertebra (T1, T2, · · · , T12) and n = 13 ∼ 17 represent lumbar
vertebra (L1, L2, · · · , L5). From the T1 to the L5 vertebra, we assume a linear relationship
between each vertebra size and vertebra level, with L5 vertebra having the largest size.
The length and width of T1 and L5 can be used to determine the corresponding length
and width of other vertebrae. The user chooses three reference corner points (top right,
bottom right and bottom left) for T1 (w1 and h1) and L5 (wm and hm) vertebrae as shown
in Figure 4.2(a), and the parameters for the remaining vertebrae are computed using

hn = h1 + (
hm −h1

N −1
)(n −1),

wn = w1 + (
wm −w1

N −1
)(n −1).

(4.1)

For each vertebra, the user manually selects the center point. The rotation angle can
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be obtained by

θn = cos−1(
φ⃗n .⃗x

|φ⃗n |.|⃗x|
) (4.2)

where θn is the rotation angle of the vertebra n, x⃗ is the vector of horizontal axis and
φ⃗n is the bisector of the vector that connects the two adjacent vertebrae as shown in
Figure 4.2(b). It is worth noting that the framework may be used for any number of ver-
tebrae in any regions of interest, including cervical, thoracic, lumbar, or a combination
of all three. By estimating geometric parameters for the lumbar spine, Figure 4.3 com-
pares the ground truth and the modified snake method. The findings are in excellent
accord with the ground truth, as shown. The ground truth segmentation result is eval-
uated using the snakes method in which the parameters are manually adjusted and the
initialization of the contour is done manually for each vertebra.

Figure 4.3: Segmentation of the X-ray images. (a) Lateral (LAT) and (b) anteroposterior (AP) view of the image
obtained from X-ray data. Comparison between two segmented lumbar spine: (c) ground truth (the output of
the snakes algorithm in which the parameters are manually adjusted) and (d) by estimating geometric param-
eters (angle of rotations, length and width of each vertebra).

Fitting Parameters: The weighting coefficients in the active contour model are set in
order to move the contour around each vertebra. α and β are the weights associated
with the first-order and second-order regularizing terms of the internal spline energy
(Eq. (2) in [112]) that control the tension and rigidity of the snake, respectively. γ is the
step size associated with the iterative update of the active contour and κ is the weight-
ing coefficients associated with the derivatives of the external force terms (Eq. (17) in
[112]). wl , we and wt are the weighting coefficients associated with the image, edge and
terminal energy functionals, respectively [112]. By identifying the optimal sets of these
parameters, one may precisely determine the curvature of the spine.

A sensitivity analysis [245, 242] is performed on each pair of fitting parameters, namely
α-β,γ-κ, wl -we and wt -iterations, as illustrated in Figure 4.4 (a)-(d), to provide a better
estimate on the optimized parameters. Here, for a particular pair of fitting parameters,
the segmentation result is compared with the ground truth result and the average value
of the normalized mean squared error is calculated for all the images in the dataset. The
normalized mean squared error is given as

1

∥Ns∥.∥Nv∥.∥Nℓ∥
Ns∑

s=1

Nv∑
v=1

Nℓ∑
ℓ=1

(
(xs

v,ℓ− x̄s
v,ℓ)2 + (y s

v,ℓ− ȳ s
v,ℓ)2

)
(4.3)
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where Ns , Nv and Nl are the number of images, number of vertebra and number of
landmarks associated with each vertebrae. xs

v,l and y s
v,l are the positions of landmarks

obtained by the current approach whereas x̄s
v,l and ȳ s

v,l are the positions of the land-
marks obtained from ground truth result.

To obtain the optimized parameters throughout the dataset, each pairwise parame-
ter with the least normalized mean squared error is the initial value in the Simplex op-
timization. The final set of optimized parameters are used to segment the images, as
shown in Figure 4.4 (e). We observe that the method is not very sensitive to the param-
eter values, which is desirable for practical applications, since there is no need for fine
tuning of parameters in order to achieve satisfactory results.

Figure 4.5 shows the segmented spine in AP view, taking into account both the geo-
metric and fitting parameters. First, the reference points of the T1 and L5 vertebrae will
be identified and then the program will identify the contour around each vertebra.

Figure 4.4: (a)-(d) Sensitivity analysis on the fitting parameters of the snakes algorithm to be provided as initial
values for multi-variable optimization. (e) Optimized multi-variables of the snakes method for the lumbar
spine. The dashed line denotes the ground truth manually picked four corner points of the vertebrae and solid
lines are the optimized configuration. The normalized mean square error is 0.0187 corresponding to α= 0.25,
β= 0.25, γ= 12, κ= 0.2, wl = 0.5, we = 0.5, wt = 0, and i ter ati on = 50.

4.3.2. 3D SHAPE RECONSTRUCTION FROM BI-PLANAR 2D DATA

Serial X-ray images from two orthogonal perspectives known as Anteroposterior (AP)
and lateral (LAT) are used in this study to gather patient-specific data (Figure 4.3). Patient-
specific characteristics are retrieved from X-ray images to assess spinal deformity prog-
nosis. After performing segmentation and obtaining the contours from AP and LAT im-
ages, we perform 3D reconstruction from the 2D segmented contours in order to get
the volumetric spine geometry. The different coordinate systems associated with the AP
and LAT images present a challenge that needs to be addressed. Furthermore, it is chal-
lenging to keep track of the various coordinate systems of these images that have been
longitudinally taken over time.
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Figure 4.5: Three steps for image segmentation. (a) Picking the reference points of each vertebra, (b) picking
the center points of all vertebrae and (c) segmented data by implementing optimized geometric and calibrating
parameters using the snakes algorithm.

The initial step should be to calibrate the camera location in order to make all data
consistent and comparable in scale. Here are the assumptions for the camera calibration
step:

• Reference of the coordinate system: The coordinate system’s reference point in AP
and LAT perspectives is the center point of L5 (5th lumbar vertebra).

• Angle between AP and LAT views: the angle between AP and LAT views is 90◦.

• Scaling criterion: The images are taken with different scales. Images need to be
scaled such that the heights of the spine in these two X-ray views are the same. It is
assumed that AP view is fixed and the LAT view will be calibrated accordingly. The
scaling factor between two pairs of images is calculated as

s = z AP
max − z AP

mi n

zL AT
max − zL AT

mi n

, (4.4)

where z AP
max and z AP

mi n are the maximum and minimum of z coordinates of land-

marks in AP, respectively. Similarly, zL AT
max and zL AT

mi n are the maximum and mini-
mum of z coordinates of landmarks in LAT, respectively.

As seen in Figure 4.6, the scaled data is subsequently fed into a 3D reconstruction
procedure. The size of the bounding box for each vertebra is calculated by identifying
the minimum and maximum in each direction, and the nodes in 3D space correspond-
ing to that region are identified. The nodes on the boundary will also be detected using
the MATLAB convhull function [166]( Convex hull of the 3D reconstructed region). The
3D reconstruction geometry will be obtained as well as the boundary points for every
vertebrae by performing the described technique and utilizing the scaled landmarks re-
ceived from the X-ray images (Figure 4.7).
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Figure 4.6: Flowchart of 3D reconstruction of vertebrae using 2D data.

Figure 4.7: 3D reconstruction of vertebrae using 2D data. The camera parameters are calibrated before recon-
struction based on the explanation in 4.3.2. (a) The segmented data of the AP and LAT views, (b) the 3D recon-
structed geometry shaded in blue (obtained from the multiple inner volume blue points) using the bounding
box algorithm; the magenta points denote the boundary (outer) surface and the blue points denote the inner
volume, (c) and (d) zoomed-in views of the inner and boundary points of the third thoracic vertebra (T3).

4.3.3. VOLUMETRIC MESH GENERATION

The 3D reconstructed shape shown in Figure 4.7 cannot be directly used in to generate
3D volumetric mesh of an estimated spine from the 2D views, we use a twisting regis-
tration for the spine on the source mesh introduced in [256]. In our previous work [257],
we used free-form deformation based on truncated hierarchical B-splines (THB-splines)
for registration [191, 192, 193]. During registration, the detailed source geometry is taken
from the atlas 3D geometry model which includes 128,205 vertices as explained in [257].
The 3D volumetric mesh composes of three components: intervertebral discs, lumbar
vertebrae and thoracic vertebrae. The volumetric mesh of each vertebra is then seg-
mented into growth plate, cortical bone and cancellous bone regions. Similarly, the vol-
umetric mesh of each intervertebral disc is partitioned into Annulus Fibrosus and Nu-
cleous Pulposus regions.

The employed registration method is based on the Iterative Closest Point (ICP) tech-
nique [13].In this method, we use the central points of each estimated vertebra and 8
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(a) (b) (c) (d)

Figure 4.8: Volumetric mesh registration on a point cloud including reconstructed landmarks from X-ray im-
ages. Before registration: (a) center line, (c) volumetric mesh; After registration: (b) center line, (d) volumetric
mesh.

corner points of the corresponding bounding box as the target points. Then we define
the point cloud as a surface and perform the nonrigid registration method with high stiff-
ness ratio [251] , to register the mentioned corresponded points from source mesh (the
Atlas 3D geometry in [257]) to the target mesh (generated in Section 4.3.2). The stiffness
term prohibits the unfavourable rotation and causes in logical twisting instead. After
finding the limited number of the transformation matrix as outcome of the registration
method (17 (vertebra) × 8 (bounding box) + 17 (central of vertebra) = 153 transforma-
tion matrices in total), each point on the source mesh among the 128,205 vertices will be
transformed based on the transfer matrix of each of the 153 points which is the closest to
the vertex before registration. As shown in Figure 4.8 (a-b), the central points of the ver-
tebra on the target spine and the source spine are depicted before and after registration
respectively. Using the found transformation matrix of these 153 points, the complete
volumetric spine is deformed from Figure 4.8 (c) to Figure 4.8 (d) which matches all the
8 landmarks of each vertebra.

Practically, the registration method allows us to generate a time-series mesh morph-
ing of a patient’s spine using the output of Section 4.3.2. Where, the X-ray images are
serial images taken at different time steps from the spine. Through the approach intro-
duced in Section 4.3.2, we have a low-quality time-series 3D point clouds of the spine.
Here, we use each of the reconstructed spines in each time interval as a template for the
mesh registration method explained in Chapter 2, which gives us a mesh morphing 4D
(3D + time) [250, 253] data of the spine.

4.4. BIO-INFORMED MECHANISTIC MACHINE LEARNING

In this section, we propose our bio-informed mechanistic machine learning model that
incorporates clinical data as well as mechanistic knowledge such as bone growth model
and finite element results. We propose three machine learning models for prognosis
of PSD: 3D-Clinical Neural Network; Bio-informed Clinical Neural Network; and Bio-
informed Mechanistic Neural Network. The Bio-informed Clinical Neural Network is a
stand-alone model that utilizes only the clinical data (i.e., X-ray images). Each of the lat-
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ter two models is divided into two parts where both of them share the first part, called
Center Point Predictor Neural Network. The Center Point Predictor Neural Network re-
turns the center point of each vertebra and this output is fed into the second part of the
respective model.

The major difference between the Bio-informed Clinical Neural Network and the Bio-
informed Mechanistic Neural Network is the loss function of the second part. The former
uses the bone growth parameters in the loss function whereas the latter takes both geo-
metric features (position of landmarks and center points) and bone growth parameters
into the loss function. This will be explained in detail in the following Section 4.3.

4.4.1. INTRODUCTION TO BONE GROWTH MODEL

One way to address the scarcity of patient-specific data is to incorporate the governing
physical equation since it provides insights into the expected data. There are several
aspects to consider when employing governing physical equations. The model must be
validated over a large population, and some patient-specific time dependent constants
must be calibrated for each individual patient at each time step if these models are used
in computational simulations as well as ML frameworks.

The underlying physical equation that governs the progression of the spine is the
bone growth model, because the AIS occurs during adolescence when bone growth is at
its peak [47]. It is believed that bone formation is a consequence of the stress imposed
on each vertebra’s growth plate [234] located on the top and bottom of each vertebra.
This assumption, however, may not be adequate to correctly depict bone growth, since
other factors such as age, sex, and bone mineral density also affect bone formation. In
the presented approach, we describe bone growth as follows:

G = A +B σ̄ (4.5)

where G = [GX ,GY ,GZ ] are the growth rates along three normal directions and σ̄ is the
von Mises stress. There are two advantages of implementing von Mises stress. First,
all stress components are taken into account and second, the definition of the stress is
independent of the coordinate system. Vectors A and B are patient-specific parameters
that should be calibrated for each patient, where A = [AX , AY , AZ ] are considered as
growth rate for non-scoliotic spine and B = [BX ,BY ,BZ ] are the regulating growth model
parameters.

4.4.2. MODIFIED GROWTH MODEL

We aim to make the most use of all available data by exploiting medical features acquired
from X-ray data, mechanistic features extracted from computational models, and ad-
dressing data scarcity while leveraging the underlying physical equation. The objective
of the bio-informed mechanistic machine learning method is to reconstruct the curva-
ture of the spine throughout time. However, the calibrated parameters generated by the
system may be implemented into a computational model for monitoring and assessing
bone formation on a local level.
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FRAMEWORK EXPLANATION AND NOTATION

The parameters of the physical growth equation are patient-specific, time-dependent,
and position-dependent. Thus, Eq. (4.5) for any arbitrary landmarks on the growth plates
for time t and vertebra v can be rewritten as

G t v = At v +B t v σ̄t v (4.6)

where At v = [At v
X , At v

Y , At v
Z ] and B t v = [B t v

X ,B t v
Y ,B t v

Z ] are patient-specific time depen-
dent, position dependent parameters that should be calibrated for each patient at a
given time to calculate growth rates G t v = [G t v

X ,G t v
Y ,G t v

Z ] using the von Mises stress at
time t for vertebra v using the von Mises stress field from the surrogate finite element
model explained in [257]. The loads, boundary conditions and material properties are
the function of time t and is updated accordingly based on the age of the patient. The
finite element model’s output will contain the von Mises stress that corresponds to the
growth landmarks’ position. Indices X ,Y and Z correspond to the global coordinate
system shown in Figure 4.7. In plain terms, the modified growth equation describes the
directional growth of a specific vertebra of a particular patient over a span of time. The
spatiotemporal parameters of the equation track the co-ordinates of the vertebra over
the time. One can imagine a bounding box around a vertebra that deforms in three di-
mensions. The growth equation tracks the three orthonormal components of the growth
through the parameters. Hence, once solved, the modified growth equation can specify
the later position of the bounding box.

Local and global coordinate systems: To obtain the growth model parameters that
correspond to the growth deformation of the vertebrae without taking into account the
rigid body motion caused by the movement of the bottom vertebrae, a local coordinate
system is set up at the center point of each vertebra. The axes of the local coordinates
have the same direction as the axes of the global coordinate system (as mentioned in
Section 3, the center of global coordinate system is at the center point of L5 (the fifth
lumbar vertebra)). Figure 4.9 (a) shows the global coordinate systems corresponding to
the time t and the local coordinate system for the vertebra L3 at the same time (Figure 4.9
(b)). The landmarks that surround each vertebra are divided into two categories: those
that are positioned on the growth plates (XG ) and those that dictate the vertebra’s side
shape (XS ) as shown in Figure 4.9 (c).

Growth parameters: The growth landmarks with comparable motion directions (due
to growth) within the same vertebra should be analyzed together to represent the growth
deformation of XG landmarks. In the first step, nodes that behave similarly in each di-
rection will be grouped together, as indicated in Table 4.2.

Table 4.2: Landmarks with the same growth behavior are clustered into the same group. The numbers are
clarified in Figure 4.9 (d).

Local Growth Direction Clustered Landmarks

x F = [1,2,3,4] B = [5,6,7,8]
y R = [1,3,5,7] L = [4,2,6,8]
z U = [1,2,5,6] D = [3,4,7,8]

In the y-axis, for example, landmarks 1, 3, 5 and 7 have the same growth order (posi-
tive local y), whereas landmarks 3, 4, 7 and 8 have the same growth direction in the z-axis
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Figure 4.9: Description of the coordinate systems and landmarks. (a) Global coordinate system in AP view,
(b) labeling landmarks to growth (XG ) and side (XS ), (c) local coordinate system of the vertebra L3 in AP view
(the yellow dots are the 16 landmarks and the blue dots are the 4 corner landmarks), (d) labeling of the growth
landmarks on vertebrae in local coordinate system in 3D view and (e) labeling of the growth landmarks on the
L3 in local coordinate system in 2D view using the 4 corner points.

(negative local z) as visualized in Figure 4.9. The growth equation of each landmark ( j )
in local coordinates (x, y, z) for time (t ) and vertebra (v) can be written as:

G t v
j = At v

j +B t v
j σ̄t v

j (4.7)

where At v
j = [At v

x j , At v
y j , At v

z j ] and B t v
j = [B t v

x j ,B t v
y j ,B t v

z j ] are patient-specific time depen-

dent, position dependent parameters for landmark ( j ) that should be calibrated for each
patient at a given time for every vertebra. Indices x, y and z represent the three direc-
tions of local coordinate system shown in Figure 4.9. It should be noted that σ̄t v

j is the

von-Mises stress on landmark j which is independent of the coordinate system.

CALCULATING GROWTH PARAMETERS

Nodes with comparable growth behavior have the same growth parameters, as listed in
Table 4.2. These parameters are considered to be the same for each vertebra. The first
step in determining growth parameters for each vertebra v is to create growth equations
for all nodes as presented in Eq. (4.7).

The equations are rewritten to represent the clustered label in each direction, using
the same growth parameter assumption as mentioned before as
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G t v
x j =

At v
xF +B t v

xF σ̄
t v
j x t v

j < 0,

At v
xB +B t v

xB σ̄
t v
j x t v

j ≥ 0,
(4.8)

G t v
y j =

At v
yR +B t v

yR σ̄
t v
j y t v

j < 0,

At v
yL +B t v

yLσ̄
t v
j y t v

j ≥ 0,
(4.9)

G t v
z j =

At v
zU +B t v

zU σ̄
t v
j z t v

j < 0,

At v
zD +B t v

zD σ̄
t v
j z t v

j ≥ 0
(4.10)

where x t v
j , y t v

j and z t v
j are the coordinates in the local system of landmark j for the

vertebra v at time t . The vectors A t v and Bt v for a vertebra v at time t will be defined
as

A t v = [At v
F , At v

B , At v
R , At v

L , At v
U , At v

D ],
Bt v = [B t v

F ,B t v
B ,B t v

R ,B t v
L ,B t v

U ,B t v
D ],

(4.11)

to define the patient-specific, time-dependent, and position-dependent scalar value of
growth parameters for each vertebra. To discretize the growth parameters in each direc-
tion, the vectors 

A t v
x = [At v

F , At v
F , At v

F , At v
F , At v

B , At v
B , At v

B , At v
B ],

A t v
y = [At v

R , At v
L , At v

R , At v
L , At v

R , At v
L , At v

R , At v
L ],

A t v
z = [At v

U , At v
U , At v

D , At v
D , At v

U , At v
U , At v

D , At v
D ],

Bt v
x = [B t v

F ,B t v
F ,B t v

F ,B t v
F ,B t v

B ,B t v
B ,B t v

B ,B t v
B ],

Bt v
y = [B t v

R ,B t v
L ,B t v

R ,B t v
L ,B t v

R ,B t v
L ,B t v

R ,B t v
L ],

Bt v
z = [B t v

U ,B t v
U ,B t v

D ,B t v
D ,B t v

U ,B t v
U ,B t v

D ,B t v
D ],

(4.12)

are defined corresponding to the growth parameters in each direction for all the growth
landmarks. In the presented frame work, the number of growth landmarks is XG = 8,
corresponding to 8 corner points shown in Figure 4.9. The post-processed data of serial
X-ray images (described in Section 4.3.2) are used to directly assess the growth parame-
ters by monitoring the locations of the growth landmarks in the two consecutive images.
To represent the matrix form of growth parameters for each vertebra, matrices A and B
are developed as

At v = [[A t v
x ]T [A t v

y ]T [A t v
z ]T ], and Bt v = [[Bt v

x ]T [Bt v
y ]T [Bt v

z ]T ]. (4.13)

The dimension ofAt v and Bt v are 8×3 corresponding to 8 growth landmarks and 3 local
coordinate directions (x, y and z).

4.4.3. SPINAL DEFORMITY PROGNOSIS FRAMEWORK
A bio-informed machine learning framework is introduced by incorporating our knowl-
edge from clinical data (X-ray images) and the modified bone growth computational
model explained in section 4.4.2. The landmark position X is related to the features I
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at a given time by an unknown bio-physics equation which can be generically defined
as a mapping. Note that I is referring to general features for now. It will be specified in
the following sections depending on the choice of the model. The overall structure of a
neural network can also be described as a mapping, i.e.:Unknown bi o −phy si cs equati on : X = FUnknown−Bi oPhy (I )

Neur al net wor k mappi ng : X = FF F N N (I )
(4.14)

where FF F N N is the feed forward neural network (FFNN) that uses clinical and mech-
anistic features I as input, and generates landmark coordinates X as the output. The
notation used throughout this section is defined in Table 4.3. To predict the position of
a landmark, the input neurons would be clinical and mechanistic features, the hidden
neurons would act as a multiplicative, functional decomposition of the unknown bio-
physics equation that estimates the unknown function required to map input features
to coordinates in the output neurons. In this project, MATLAB is used to build the FFNN
and to train the neural network parameters [167].

Each neuron within every layer of a generic FFNN receives the output value from
each neuron in the previous layer as input and produces a single output. This proce-
dure is carried out for each layer. For an arbitrary number of layers and neurons per
layer, the value of the j th neuron in layer l for the sth sample (either a training sample or
prediction) may be written as:

al
j ,s =


I j ,s , if l = 1 (input layer)

A(bl
j +

∑NN (l−1)
i=1 W l−1

j i al−1
i ,s ), if 1 < l < NL (hidden layers)

bl
j +

∑NN (l−1)
i=1 W l−1

j i al−1
i ,s , if l = NL (output layer)

(4.15)

where A is an activation function. In the training part, this research uses ReLU (Recti-
fied Linear Unit) function defined as the positive part of its argument, [4]: f (x) = x+ =
max(0, x), and each neuron is computed using a different weight W l=1

i j and bias bl=2
j ,

where i is the neuron in the previous layer. Finally, the overall response – the predicted
landmark coordinates – is given by:

X predicted
j ,s = aNL

j ,s . (4.16)

The FFNN can learn the unknown governing bio-physics equation based on the loss
function and input and output features. The loss function may be constructed to train
the FFNN to offer accurate estimates while also supplying patient-specific parameters
that can be considered as the network’s hyperparameter. Multiple FFNN approaches are
presented in the next section, each with a distinct loss function and input-output fea-
tures.

MACHINE LEARNING FRAMEWORK EXPLANATION

3D-Clinical Neural Network (F F N NC L): Given the coordinates of a vertebra’s landmarks
at time t , the clinical neural network attempts to predict the vertebra’s landmark coor-
dinates at time t +∆t ; see Figure 4.10. The input vectors are I t

s = [X̄ t
s ,αt

s , t ,∆t ], where
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Table 4.3: Notation table of variables used in the feed forward neural network.

t Counting index for number of time steps
I t

s Vector of input , s = 1, ..., NT

I j ,s jth entry of I vector of input , s = 1, ..., NT

Ot
s Vector of output , s = 1, ..., NT

s Counting index for number of samples (training or validation, depending
on context)

m Counting index for number of landmarks on each vertebra
Nm Number of landmarks on each vertebrae

l Counting index for number of layers
i Counting index for neurons in a given layer
j Counting index for neurons in another layer

NT Number of training samples
NL Number of layers in the neural network

NN (l ) Number of neurons in layer l
al

j ,s Neuron value for j th neuron in l th layer and for s th sample

W l
j i Weight connecting the i th neuron in layer l to the j th neuron in layer l +1

bl
j Bias of the j th neuron in layer l

A Activation function
FF F N N Feedforward neural network function

H The height of the spine

X̄ t
s indicates the landmark coordinates of sample s at time t and αt

s denotes the global
angles (described in [257]) characterizing the 3D shapes of the spine at that time. The
outputs are vectors Ot

s = [X t+∆t
s ], where X t+∆t

s denotes the expected 3D coordinates of
the vertebra’s corner points at time t +∆t .

The relative approximation error for this model is calculated as

δC L = 1

H .NT .Nm

NT∑
s=1

Nm∑
m=1

∥∥∥X t+∆t
sm − X̄ t+∆t

sm

∥∥∥2
, (4.18)

where δC L denotes the relative error of the clinical neural network, X t+∆t
sm is the coordi-

nates of the landmark m of vertebra s predicted by the neural network, and X̄ t+∆t
sm is from

clinical dataset.

3D-Clinical neural network (FFNNCL):

Input: I t
s = [X̄ t

s ,αt
s , t0, t ].

Output: Ot
s = [X t+∆t

s ].

Find W l
i j (l ∈ {1,2,3}),bl

j (l ∈ {2,3,4}) for each patient to minimize

l oss t
C L = 1

NT

1

Nm

NT∑
s=1

Nm∑
m=1

∥∥∥X t+∆t
s − X̄ t+∆t

s

∥∥∥2
, (4.17)

where Ot
s = [X t+∆t

s ] =
[

bl=4
q +∑NN [l=3]

k=1 W l=3
qk A

(
al=3

k,s

)]NN [l=4]

q=1
,

al=3
k,s = bl=3

k +∑NN [l=2]
j=1 W l=2

k j A
(
al=2

j ,s

)
,

al=2
j ,s = bl=2

j +∑NN [l=1]
i=1 W l=1

j i I t
i ,s ,

X̄ t+∆t
s is from clinical dataset.
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Figure 4.10: The structure of the 3D-clinical feed-forward neural network F F N NC L developed to predict the
coordinates of the landmarks at time t +∆t .

Center Point Predictor Neural Network (F F N NC R ): Given the set of landmarks’ co-
ordinates X̄ t

s , global anglesαt
s , and von Mises stress σ̄t

s at landmarks at time t , F F N NC R

predicts the coordinates of the center of the sample at time t +∆t ; see Figure 4.11. More
formally, the input to F F N NC R is I t

s = [X̄ t
s ,αt

s , t ,∆t ,σ̄t
s ] and its output vector is Ot

C R,s =
[C t+∆t

s ], where C t+∆t
s denotes the center coordinates of the sample s at time t +∆t . The

results of this network are used in the following neural networks.

Bio-informed Clinical Neural Network (F F N NBC ): Using the clinical data to pre-
dict bone growth parameters, F F N NBC predicts the parameters of the physical growth
equation given the set of landmark coordinates, global angles, and von Mises stress at
the landmarks; see Figure 4.12. Input vectors are I t

s = [X̄ t
s ,αt

s , t ,∆t ,σ̄t
s ], where X̄ t

s is the
landmarks’ coordinates at time t , αt

s is the set of global angles, and σ̄t
s is the set of von

Mises stress. The outputs of the network are vectors Ot
s = [A t+∆t

s ,Bt+∆t
s ] predicting the

growth model parameters in 3D for each landmark. Combining the results of F F N NBC

with the center points resulted from F F N NC R , we are able to predict the coordinates of
the landmarks of the sample at time t +∆t .

For any sample s and any landmark m on s, define the landmark X t+∆t
BC predicted by

F F N NBC as

X t+∆t
BC = X̄ t

BC +∆C t
s + (At+∆t

BC +Bt+∆t
BC σt

BC )∆t , (4.21)

where At+∆t
BC and Bt+∆t

BC are obtained from A t+∆t
s and Bt+∆t

s , which are the outputs of

the second model, X̄ t
BC is the coordinates of landmark m of sample s at time t obtained

from clinical dataset, and ∆C t
s is the change in the center of sample s from time t to

time t +∆t , obtained from the results of the first neural network. By this definition, this
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Figure 4.11: The structure of the center point prediction feed-forward neural network F F N NC R developed to
predict the location of the center point of the vertebra at time t +∆t .

model’s relative approximation error, δBC , is calculated as

δBC = 1

H .NT .Nm

NT∑
s=1

Nm∑
m=1

∥∥∥X t+∆t
sm − X̄ t+∆t

sm

∥∥∥ . (4.22)

Bio-informed Mechanistic Neural Network (F F N NB M ): Similar to F F N NBC , in the
first step of this model, F F N NC R predicts the coordinates of the center point of the ver-
tebra at time t +∆t , followed by computing the transition vector from the center point
of the sample from time t to t +∆t . The neural network F F N NB M then predicts the set
of growth model parameters as an output using a mechanistic loss function; see Figure
4.12. The input vectors are I t

s = [X̄ t
s ,αt

s , t ,∆t ,σ̄t
s ] with the same definitions for X̄ t

s ,αt
s ,

and σ̄t
s . The output of F F N NC R is Ot

C R,s = [C t+∆t
s ] which remains the same and the

output vectors to the second step is Ot
s = [A t+∆t

s ,Bt+∆t
s ], with A t+∆t

s and Bt+∆t
s repre-

senting the parameters of the physical growth equation.
Similar to the F F N NBC , we define the predicted landmark m of sample s, for each m

and s, as
X t+∆t

B M = X̄ t
B M +∆C t

s + (At+∆t
B M +Bt+∆t

B M σt
B M )∆t . (4.25)

The definitions are identical to those stated in the F F N NBC formulation. The relative
approximation error for F F N NB M model, represented by δB M , is calculated using

δB M = 1

H .NT .Nm

NT∑
s=1

Nm∑
m=1

∥X t+∆t
B M − X̄ t+∆t

B M ∥2. (4.26)
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Bio-informed-Clinical neural network:
Step 1 (FFNNCR):

Input: I t
s = [X̄ t

s ,αt
s , t ,∆t ,σ̄t

s ].

Output: Ot
C R,s = [C t+∆t

s ].

Find W l
i j (l ∈ {1,2,3}),bl

j (l ∈ {2,3,4}) for each patient to minimize

loss t
C R = 1

NT

NT∑
s=1

∥∥∥C t+∆t
s −C̄

t+∆t
s

∥∥∥2
, (4.19)

where Ot
C R,s = [C t+∆t

s ] =
[

bl=4
q +∑NN [l=3]

k=1 W l=3
qk A

(
al=3

k,s

)]NN [l=4]

q=1
,

al=3
k,s = bl=3

k +∑NN [l=2]
j=1 W l=2

k j A
(
al=2

j ,s

)
,

al=2
j ,s = bl=2

j +∑NN [l=1]
i=1 W l=1

j i I t
i ,s ,

C̄
t+∆t
s is from clinical dataset.

Step 2 (FFNNBC):

Input: I t
s = [X̄ t

s ,αt
s , t ,∆t ,σ̄t

s ].

Output: Ot
s = [A t+∆t
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IMPLEMENTING BIO-INFORMED MECHANISTIC MACHINE LEARNING FRAMEWORKS

Data collection and feature selection: The database is comprised of clinical X-ray im-
ages. The snakes algorithm is capable of generating an infinite number of landmarks
around each vertebra using X-ray images. Landmarks are classified into two types: those
located on growth plates (XG ) and those that determine the vertebral sides (XS ), as illus-
trated in Figure 4.9. The number of XG landmarks on each 2D plane in this application
is four, signifying the corner points that are expected to be on the growth plates. As a
result, in the 3D framework presented (XG = 8 and XS = 8) as shown in Figure 4.13. At
t0 = 124 months, the patient’s first X-ray image is obtained. The next four X-ray images
are obtained at t = 139,149,156,168 months and used to train the neural network. The
remaining three X-ray images, collected at t = 160,179,187 months, are utilized to com-
pare with the neural network findings as shown in Table 4.5. Each X-ray image depicts
the form of the patient’s spine at a specific age. Based on the explained machine learn-
ing framework explained in section 4.4.3.1 F F N NC L , F F N NC R−BC and F F N NC R−B M

are setup as explained in Table 4.4. The number of training samples, 68, corresponds to
the 4 training datasets (Table 4.5), with each dataset containing 17 vertebrae. Depend-
ing on the NN methodology, each sample has a different size. The three test datasets
listed in Table 4.5 are represented by the number of test samples (17×3 = 51) in Table
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Bio-informed-Mechanistic neural network:
Step 1 (FFNNCR):
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Table 4.4: Neural network setup for neural networks.

NN Components
3D-Clinical Bio-inf. Clinical Bio-inf. Mechanistic

FFNNCL FFNNCR FFNNBC FFNNCR FFNNBM

# training samples 68 68 68
Size of training samples 31 39 39

# test samples 51 51 51
Size of test samples 24 3 12 3 12

# Hidden layers 2 2 2 2 2
Neurons in layer 1 20 20 20 20 20
Neurons in layer 2 10 10 10 10 10

Activation function ReLU function

4.4. It should be noted that the growth landmarks are tested for each framework, and
the relative approximation error indicated in Table 4.6 is determined for all landmarks,
including growth and side landmarks. The data is normalized before being fed to the
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Figure 4.12: The architecture of a neural network for predicting the physical growth equation parameters. This
structure is used in both F F N NBC and F F N NB M by defining two separate loss functions (one mechanistic
and one non-mechanistic).

Table 4.5: Data collection for F F N NC L , F F N NC R−BC and F F N NC R−B M for a single patient whose X-rays
images were collected serially over time.

Identification of X-ray Images Age of Patient (Months)

Initial X-ray Image 124
Output training X-ray images {139,149,156,168}
Output testing X-ray images {160,179,187}

model since the range and units of the input matrix are not the same.

4.4.4. RESULTS AND CROSS VALIDATION ON THE DATA

The findings obtained from the patient described in Table 4.5 are presented here to
illustrate the accuracy of the bio-informed mechanistic neural network prediction. The
NN reconstruction process is the same as that explained in section 4.4.3.1. A breakdown
of the data used for training and testing can be seen in Table 4.5. Figure 4.14 shows a
comparison of the ground truth (actual data acquired from X-ray scans) and F F N NC L

for the age of 160 months which is inside of the range of the training data and 179 and
187 for the outside of the range of the training data. The results are visualized for the
eight corner points signifying the growth landmarks. Due to the 3D-Clinical NN’s na-
ture, the framework fails to forecast the ground truth. This framework is built on inter-
polation, and when it comes to the patient-specific prediction, where the available data
is insufficient, the model cannot learn from the available data, hence it fails to predict
the outcomes. Figure 4.15 shows the results for the F F N NC R−BC framework applied on
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Figure 4.13: Illustration of the growth landmarks and side landmarks. There are 8 growth landmarks (XG = 8)
and 8 side landmarks (XS = 8).

the same dataset. The results are 3D reconstructed based on the growth parameters ob-
tained by F F N NC R−BC (Figs. 4.15 a, c and e) and the corresponding AP views are visual-
ized in Figs. 4.15 b, d and f respectively. Because the findings are recreated using the bone
growth model, this framework delivers a more accurate prediction than F F N NC L . The
data are next examined for the F F N NC R−B M , as illustrated in Figure 4.16. Due to the im-
plementation of the mechanistic loss function, the results are the best when compared
to the F F N NC L and F F N NC R−BC and are compatible with the ground truth obtained
from X-ray images.

A cross validation study is carried out to see how the input and output data impact
the framework error, as shown in Table 4.6. The term “cross validation” refers to the
process of determining how well a prediction model will work in practice [236]. We pre-
serve the past two ages as test cases and rotate the test case inside the prior age span
since we are more interested in prediction outside of the range. We can see from Ta-
ble 4.6 that the prediction error of F F N NC R−B M is always lower than that of F F N NC L

and F F N NC R−BC , and that it can predict future spine curvature with a small error. The
relative errors are calculated based on the Eqs. (4.18), (4.22) and (4.26) for F F N NC L ,
F F N NC R−BC and F F N NC R−B M respectively. This observation can be explained by the
fact that F F N NC L operates as an interpolation function and cannot provide accurate
prediction when there is insufficient training data. Since F F N NC R−BC employs the bone
growth equation to reconstruct the expected geometry, as explained in Eq. 4.20, it per-
forms better than F F N NC L . Finally, F F N NC R−B M performs the best since it modifies
the loss function as mentioned in Eqs. 4.23 and 4.24 while also rebuilding geometry us-
ing the biological bone growth model. Table 4.7 refers to the cross validation on the 2D
data using the existing Mechanistic framework [247] and F F N NC R−B M . As it is shown,
for each testing case, the present structure is more efficient as the parameters for bone
growth are calibrated taking into account the effects of time and position. The suggested
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Figure 4.14: Differences between pure data science prediction (F F N NC L ) and ground truth (the results ob-
tained by X-ray images) at age of (a) 160 Months (inside of the range of the trained data), (b) 179 Months
(outside of the range of the trained data) and (c) 187 Months (outside of the range of the trained data). The
landmarks are eight corner points of each vertebra. It is obvious that F F N NC L cannot predict the ground
truth.

Table 4.6: Cross validation study for three different neural networks. The table lists the relative approximation
error of the predicted landmarks (XG and XS as shown in Figure 4.13) of each vertebra using the different
neural networks. Datasets are categorized by age (in months) of the tracked patient. For each trial case, the
testing data is shown in blue cells and the training data is shown in white cells.

NN
Age Prediction Error

139 149 156 160 168 179* 187*

F F N NC L 74.33 52.57 50.31
F F N NC R−BC 1.09 0.10 0.18
F F N NC R−B M 0.68 0.02 0.04

F F N NC L 66.49 52.34 50.10
F F N NC R−BC 0.19 0.05 0.13
F F N NC R−B M 0.10 0.02 0.03

F F N NC L 59.92 52.65 50.38
F F N NC R−BC 0.090 0.091 0.16
F F N NC R−B M 0.08 0.02 0.032

F F N NC L 57.64 52.51 50.26
F F N NC R−BC 0.03 0.08 0.18
F F N NC R−B M 0.01 0.02 0.03

F F N NC L 57.35 52.50 50.25
F F N NC R−BC 0.03 0.09 0.13
F F N NC R−B M 0.015 0.018 0.02

* Prediction at age outside of the range of trained data.

F F N NC R−B M enhances prediction accuracy by 40% for the inside of the range and 84.3%
for the outside of the range.

4.5. DISCUSSION AND CONCLUSION
In this study, we trained a bio-informed mechanistic deep learning model for prognosis
of pediatric spinal deformity. The training data consists of clinical data and mechanis-
tic features. The clinical data are extracted from anteroposterior and lateral views of
the X-ray images using the active contour image segmentation model whose parame-
ters are calibrated through sensitivity analysis. Next, the personalized 3D spine models
are established through the mesh morphing technique which consists of registering a
volumetric atlas spine model on each of the extracted clinical data. Thus, any geometry-
dependant feature within the patient-specific models is detectable and trackable to cal-
ibrate the bone growth model parameters. The mechanistic features are obtained from
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Figure 4.15: Differences between Bio-informed Clinical prediction (F F N NC R−BC ) and ground truth (the re-
sults obtained by X-ray images) at age of 160 Months (inside of the range of the trained data, a-b), 179 Months
(outside of the range of the trained data, c-d), and 187 Months (outside of the range of the trained data, e-f).
Subpanels (a, c, e) show the 3D view and subpanels (b, d, f) show the 2D view on AP plane. The landmarks are
eight corner points of each vertebra. It is obvious that F F N NC R−BC can predict the results close to ground
truth.

the bone growth model which takes the stress distributions of the spine as inputs. A dy-
namic patient-specific bone growth model is proposed to enhance the accuracy of the
model. To measure the stress distribution, a patient-specific 3D finite element model is
generated based on the 2D clinical data and the 3D reconstruction algorithm. By merg-
ing medical data with a mechanistic model, the presented framework can address the
problem of limited data for the patient-specific study. The proposed model is capable of
predicting the spinal curve of a single patient, either inside or outside the training range.
This study is unique in that it provides patient-specific, time-dependent, and position-
dependent parameters that can be calibrated throughout the dataset. In addition, the
proposed bio-informed deep learning network with the modified bone growth model
was shown to achieve competitive or even superior performance against other state-of-
the-art learning-based methods.

In conclusion, the workflow described in this article can be a useful and innovative
guide for the early detection and treatment planning of spinal illnesses such as scoliosis,
lordosis, and kyphosis. Furthermore, the framework may be used for dynamic finite el-
ement analysis of various tissues at a smaller scale. It can also be potentially extended
to other image-based studies, including tumor progression and cardiovascular applica-
tions. Future research will look at the same framework over a larger dataset to construct a
real-time, patient-specific, optimal treatment plan based on the first patient visit. More-
over, a virtual reality application will be developed to visualize the spine in 3D and guide
surgical training in orthopaedic surgery.
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Figure 4.16: Differences between Bio-informed Mechanistic predictions (F F N NC R−B M ) and ground truth (re-
sults obtained by X-ray images) at age of 160 Months (inside of the range of the trained data, a, b and g), 179
Months (outside of the range of the trained data, c, d and h) and 187 Months (outside of the range of the trained
data, e, f and i). Subpanels (a, c, e) show the 3D view, subpanels (b, d, f) show the 2D view on AP plane and
subpanels (g, h, i) show the 3D reconstructed detailed geometry. The landmarks are eight corner points of each
vertebra. F F N NC R−B M can clearly predict outputs that are close to ground truth.

Table 4.7: Cross validation study for two different neural networks on 2D data for AP view. The relative ap-
proximation error of the predicted landmarks (XG and XS as shown in Figure 4.13) of each vertebra was calcu-
lated using the different neural networks. Datasets are categorized by age (in months) of the tracked patient.
For each trial case, the testing data is shown in blue cells and the training data is shown in white cells. The
mechanistic framework F F N NME is borrowed from [248]. For each trial case, the Bio-informed Mechanistic
approach (F F N NC R−B M ) had better performance.

NN
Age Prediction Error

139 149 156 160 168 179* 187*

F F N NC R−B M 0.14 0.08 0.03
F F N NME 0.30 0.12 0.67

F F N NC R−B M 0.05 0.07 0.02
F F N NME 0.07 0.3 0.53

F F N NC R−B M 0.03 0.06 0.03
F F N NME 0.04 0.17 0.20

F F N NC R−B M 0.04 0.08 0.03
F F N NME 0.08 0.24 0.32

F F N NC R−B M 0.04 0.06 0.03
F F N NME 0.03 0.24 0.44

* Prediction at age outside of the range of trained data.
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5
OPTIMAL POSITION OF CAMERAS

DESIGN IN A 4D FOOT SCANNER

Optical motion capturing explains the three-Dimensional (3D) position estimation of points
through triangulation employing several depth cameras. Prosperous performance relies
on level of visibility of points from different cameras and the overlap of captured meshes
in-between. Generally, the accuracy of the estimation is practically based on the camera
parameters e.g., location and orientations. Accordingly, the camera network configura-
tions play a key role in the quality of the estimated mesh. This chapter proposes an opti-
mal approach for camera placement based on characteristics of a depth camera D435i -
Intel RealSense. The optimal problem includes a cost function that contains several min-
imisation and maximisation terms. The minimisation terms are distance of the cameras
to the center of the scanning object, resolution error, and sparsity. And the maximisation
terms are distance between each two pair of cameras, percent of captured point from an
object, and the level of overlap between cameras. The object is designed based on prac-
tical experiments of human walking and is a bounding box around one step of dynamic
foot work-space from heel strike posture to toe-off posture. The accuracy and robustness of
the algorithms are assessed via experiment measurement, and sensitivity to the number of
cameras is investigated. Accordingly, the experiment results determined that the scanning
accuracy can be as high as 2.5 % based on a reference scan with a high-end scanner (Artec
Eva).

Parts of this chapter have been published in:
Tajdari, F., Eijck, C., Kwa, F., Versteegh, C., Huysmans, T. and Song, Y., 2022, August. Optimal position of
cameras design in a 4D foot scanner. In International design engineering technical conferences and computers
and information in engineering conference (Vol. 86212, p. V002T02A044). American Society of Mechanical
Engineers. [253].
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5.1. INTRODUCTION

F Oot shape is recognized as a very diverse character among the population, contain-
ing sex [298, 126, 127], and age [267]. This diversity may not be considered in footwear

sizing, as available footwear fitting standards require only length and width of foot, and
arch length to adjust to standardized shoe sizes [36]. Such diversity challenges the users
to define a proper fit, leading to non-suited footwear in terms of comfortable and fit-
ting increase the chance of occurring injury during ambulation [65]. Comfort-based
footwear fit has determined direct positive impact on enhancing biomechanical perfor-
mance [200], decreasing the chance of movement-related injury [178], and practical-
wise it is the most important factor for users to choose footwear [163]. Thus, Footwear
should be fully/semi personalised fit to satisfy any customer in terms of comfort, safety
and fitting [173].

Available approaches of designing footwear established on employing static lasts,
which supposes the foot includes rigid segments. Due to the fact that the foot is a de-
formable part of the body [246, 242], the assumption usually leads to failure investigating
the dynamic movements in the foot morphology, specifically for a loaded foot in estima-
tion of ankle joint mechanics [315, 276]. Proofs have been studied on articular motion
through the loaded foot [159, 290], which impacts linear foot measurements, especially
during transitioning between postures i.e., from sitting to standing [302] or during the
stance phase of gait [94]. The measurements of the dynamic foot recommend morpho-
logical variations happening, which are not reachable via static linear and circumfer-
ential measurements. Accordingly, characteriing the diverse population of foot shapes
would be challenging within individuals in presence of different loading scenarios e.g.,
gait. One solution to the challenge may be recruiting motion tracking techniques for
capturing the foot deformation for shoe penalisation.

Due to the inherent connection between virtual reality systems and naturalistic ap-
plications, motion tracking techniques as the key component of the systems should be
sufficiently robust and accurate [132]. Partly, motion tracking has been employed to es-
timate the position and direction of the viewing gate to define the eyepoint to be able
to render the most accurate perspective of images. Furthermore, body motion track-
ing [249, 248] is usually deployed to establish avatars which virtually models the human
to the viewer. Meanwhile, optical motion tracking, as a well-known technique, may cover
the eyepoint estimation and the dynamic avatar generation. To do so, arrangement of
several cameras is an undeniable part of any motion tracking technique. The arrange-
ment should guarantee the free movement of the users to be able to track the targeted
features. The feature points (generally detectable via passive or active landmarks) are
identified from camera outputs which give the 3D position of the landmarks through
triangulation between the multiple camera outputs [74, 161, 251]. Apparently, the accu-
racy and the quality of the 3D reconstructed point-clouds [92, 257] rely on the number
of the employed cameras and their configuration. However, the number is competing
with the cost of the final product and partly the speed of the process. Thus, this chapter
focuses on an automatic method to optimally define the position and orientation of a
set of cameras in a foot scanner.

Recent research investigating the cameras’ configuration have mainly addressed two
main challenges that may result in inaccurate reconstruction: (1) Locating the finite



5.1. INTRODUCTION

5

107

number of cameras to maximally penalize the accuracy error of the final triangulation
performance and (2) Locating the cameras to establish the optimum views with exis-
tence of occlusion.

The accumulative error was analyzed by Sanders-Reed [218] in 3D position estima-
tion via two-camera triangulation. According to the analysis, the configuration of cam-
eras plays a key role on the level of the accumulative error which defined a 90 degree
angle between the sensors as the optimal configuration. The accumulative error is max-
imised when the sensors have the same orientation (either 0 or 180 degree). Olague and
Mohr [186] studied the properties of the accumulative error in the process of the triangu-
lation and validated the outputs practically. They proposed a metric of the accumulative
error via extracting the component with maximum value through the diagonal of co-
variance matrix of the 3D point reconstruction. The maximum value indicates the high-
est accumulative error regarding a certain configuration (position and orientation). To
achieve a global optimal solution to the optimal problem, a genetic algorithm is applied.
To simplify the problem, Olague et al. considered a constraint that cameras must be lo-
cated on a plane with a constant distance from the target point. Cowan and Kovesi [57]
specified a group of constraints impacting the quality of the cameras’ network to cir-
cumvent the time-consuming trial-and-error method for designing the configuration of
the cameras’ network (locations). They mapped the captured object into its surfaces.
Then, the solution regarding each surface was extracted individually and independently
according to a group of predefined constraints and next, each of the local solutions were
integrated. The integration presented a global solution to the optimal problem. For each
constraint e.g., resolution loss, sparsity, and occlusion, they determined a valid 3D vol-
ume that guarantees any point in that area fulfil the related constraint. Then, they con-
sidered the overlap area of those individual 3D volumes as checking area(s) where all
constraints are satisfied. Mason [164] continued the idea of Cowan and Kovesi [57] with
extended constraints and offered a novel model to determine the optimal placement.
The model introduced by Cowan and Kovesi only covers sedentary occlusion known as
self-occlusion. Mason’s heuristic approach defines a solution for a specific target, how-
ever, the result can be a non-optimal output regarding too much simplifications of the
target. Moreover, moving targets are big restrictions for Mason’s approach. To avoid fac-
ing the object surfaces, Wu, Sharma, and Huang [294] contemplate the overlap of the
mapped pyramids instead of dealing with a computationally expensive numerical mea-
surement to tackle with the unknown bounds. Chen and Davis [44] assumed a prob-
abilistic model for the occlusion, where a vertical plane was supposed as the occluder
next to the target point. The model anticipates the visibility of a target point by at least
two cameras considering all valid orientations of the occluder around the vertical axis.
Though the Chen and Davis’ model perfectly tackles the dynamic occlusion regarding
the error metric, the convergence angles of the cameras are not addressed. As a result,
the method proceeds to define configurations leading to comparatively large errors in
target points alignment outperformed by poor triangulation regarding locating nearly
parallel cameras.

The limited space, the number of cameras and the intrinsic and extrinsic properties
of the cameras restrict the positioning of the tracking cameras especially for foot scan-
ning as the bottom of the foot is very complicated to be scanned. Generally, the cameras
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configuration considering the space constraint and having maximum overlap between
cameras and maximum visibility of the foot to the cameras is very challenging. This
chapter proposes an optimal approach to locate a group of depth cameras D435i - Intel
RealSense for a pre-defined box-shape work-space to maximize the percentage of ob-
served points of a target object with minimum accuracy error of the 3D reconstruction in
the existence of dynamic occlusion. Generally, work-space location of the target objects
is known in many augmented and virtual reality systems. For instance, Rahimian et al.
requested the participants to walk across a single-lane road [205], and after some itera-
tions the valid work-space would be identified for a single step of walking. The approach
we present estimates the optimal positions and orientations of a group of cameras for a
predefined set of target points. Where the best set considers, first, all possible locations
of occluders and specifies the cameras’ locations in order to have the maximum visibility
of the target points between at least two triangulable views i.e., the views’ that have the
maximum distance with each other and the maximum overlap of capturing the target
points. Secondly, the placements should consider that the targets are visible from the
widest range of viewpoints to have an acceptable level of overlap for alignment.

We propose a method to define the optimal positions for 2 to 7 cameras regarding
the motion tracking, where always one of the cameras is located on the bottom of the
work-space.

5.2. METHODOLOGY
In order to derive the equations of modeling a depth camera, a number of simplified as-
sumptions were considered and the rest of the parameters are optimally designed based
on the desired work-space and related constraints.

5.2.1. ASSUMPTIONS
To model the camera, we convey the camera parameters based on the distance to a de-
tected point. The parameters that are considered in this chapter are the spatial error, the
resolution, and the acceptable viewing angle for Depth Camera D435i - Intel RealSense.
The error of a 3D point location is the distance between the real measurement and the
location estimation by the camera. Practically, the fixed resolution of the camera might
lead to sparsity when the distance between the object and the camera becomes large
and the error also increases by the distance. According to [9], the error has a parabolic
relation with the distance as shown in Figure 5.1(a), where the error has the following
equation.

Er r orr esoluti on(di s) = p1 di s2 +p2 di s +p3; (5.1)

where di s unit is in meter, and p1, p2, and p3 are the parameters of the fitted curve as
follows.

p1 = 0.009458; p2 =−0.002578; p3 =−0.000655; (5.2)

Moreover, the viewing angle of the camera is assumed as a constant and equal to 60◦
based on [9].

With the same approach for the resolution error and from [9], the sparsity variation
has also a parabolic relation with the distance as shown in Figure 5.1(b), where the func-
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(a) (b)

Figure 5.1: Camera parameter.

tion has the following equation.

Er r orspar si t y (di s) = p4 di s2 +p5 di s +p6; (5.3)

where p4, p5, and p6 are the parameters of the fitted curve as follows.

p4 =−0.006931; p5 = 0.03473; p6 =−0.005851; (5.4)

5.2.2. WORK-SPACE DEFINITION

Currently the assumption is made that the participants place their feet in the middle of
the walkway. However, in practice, a slight variance of location will happen due to the
fact each person is unique. To capture the location of the heel strike of each participant,
we invited 8 participants (3 females and 5 males), 6 within the age range of 20 and 30,
2 around 60 years, with a varying height between 1.6m and 2.1m and Body Mass Index
(BMI) between 21 and 28.7. Paint was applied to their feet and they were instructed to
walk across in several manners shown in Figure 5.2(a) to see if it is possible to reduce the
variance of the location of the heel strike while ascertaining a natural walk. The resulting
paintings where digitally overlayed to show where the average foot location was of each
participant. Several runs were conducted with different commands. During one walk
the participants were instructed to place their foot in the middle of a drawn box. The
next walk the participants were instructed to place their feet in a certain position from
the edge and were given the command to just walk to the other side.

Both results of the test were digitized and overlaid to show where the participants
placed their feet. These images can be seen in Figure 5.2(b) and (c). It was found that
the users, with the proper instruction and foot placement, were able to land their feet
naturally in the same area. The area is shown as a bonding box in Figure 5.2(d). Con-
sidering the right foot, the left foot and both feet these three scenarios of scanning, we
extracted three bounding boxes reported in Table 5.1 where we considered the biggest
box for our calculation regarding finding the optimal camera positioning. It worth men-
tioning that the measured maximum height of the foot/ankle during walking belongs to
toe-off posture. See the reported height in the table.
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(a)

(b)

(c)

(d)

Figure 5.2: (a) Participants were instructed to try to land their feet in the middle without further instructions.
(b) Participants were instructed to where to place their feet and to walk to the other side. (c) Average foot
position participants. (d) the practical test-bed.

5.2.3. OPTIMAL DESIGN OF THE FOOT SCANNER
As the future application of the scanner is to scan feet during walking, the work-space of
any dynamic foot is considered as predefined as discussed in the previous section and
equal to a rectangular box. According to Figure 7.2, ri is the distance between i th camera
to the center of the box, di j belongs to the distance between i th camera and j th camera,
and G is the center of the object. In addition, the (xi , yi , zi ) corresponded to the location
of i th camera are optimized through the following cost function.

Jtot =
Mi ni mi zi ng : Jr , Je , Js

M axi mi zi ng : Jd , Jv , Jo
(5.5)

where Jtot is the total cost function including both minimization and maximization terms.
Regarding the minimization, Jr explains a term regarding the distance of each camera to
the center of the work-space, denoted as ri in Figure 7.2, and is considered as follows
where n is the number of cameras.

Jr =
n∑

i=1
|ri |2 (5.6)
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Table 5.1: The choice of options.

Parameter
Cases

Left foot Right foot Both feet

Width (cm) 15.5 13.2 25.5
Height (cm) 17.5 17.5 17.5
Length (cm) 30.5 29.8 34.5

Figure 5.3: Camera parameter.

Je is explaining the error of resolution calculated from (5.1) where we considered ri as
the di s in (5.1) for each camera to simplify the calculations. Accordingly, Je would be
extracted as follows

Je =
n∑

i=1
|Er r orr esoluti on(ri )|2 (5.7)

The last minimization term as Js defines the sparsity of the points in (5.3) and is denoted
as follows.

Js =
n∑

i=1
|Er r orspar si t y (ri )|2 (5.8)

Regarding the maximization, we have three terms of Jd , Jv and Jo which refer to the
distance between each two cameras (e.g., 10 distances for 5 cameras), the number of
the captured points on the box through all the cameras, and the overlap level between
cameras, respectively. These teams should be maximised to have the maximum visible
area of the object with the cameras and avoid having too close cameras to each other.
The Jd is calculated as follows.

Jd =
n∑

i=1

n∑
j=i

|di j |2 (5.9)
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where di j is the distance between i th camera and j th camera. Accordingly, Jv is calcu-
lated as

Jv =
(

Nv

Ntot

)2

(5.10)

where Nv is the number of points captured with at least one camera and Ntot denotes
the total number of the points on the rectangular shape box. Moreover, Jo is generated
as

Jo = 1

N 2
tot n2

Ntot∑
i=1

n2
oi

(5.11)

where noi defines the number of cameras that could capture the point i th . Thus, the
optimal problem is finding a set of optimal design camera positions in X as follows

X =
[

x1 y1 z1 . . . xn−1 yn−1 zn−1 zn

]
(5.12)

such that
min Jtot =α1 Jr +α2 Je +α3 Js −α4 Jd −α5 Jv −α6 Jo (5.13)

subject to

Camera classification :



−z1 ≤ 0
...

−zn−1 ≤ 0

zn ≤ 0

Walking way :


−|y1|+0.3 ≤ 0
...

−|yn−1|+0.3 ≤ 0

Allowed work-space of cameras :


|y1|−0.5 ≤ 0
...

|yn−1|−0.5 ≤ 0

Bottom camera :

yn = 0

xn = 0
(5.14)

By applying the algorithm in [130], the optimal parameters are designed and for each of
the cases the values related to the both feet will be obtained.

5.3. RESULTS
Here, we perform several experiments with differing number of cameras to find the opti-
mum position of the cameras. Also we investigate the effects of the number of cameras in
terms of the overlap percentage of pairs of cameras for the minimum number of cameras
as well as the maximum overlap to maximise the performance of any mesh registrations
methods.
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Table 5.2: The optimal positions as [x,y,z] in cm and percent of captured area of the box (
p

Jv ).

Camera ID
Number of cameras on top

1 2 3 4 5 6

i [92,31,49] [-91,50 49] [-29,50,50] [100,50,17] [100,50,17] [28,48,26]
ii [92,-32,49] [-100,-50,50] [-100,50,17] [-69,50,29] [-22,43,25]
iii [100,-50,17] [-100,-50,50] [-100,-50,17] [-65,30,23]
iv [100,-49,49] [-68,-50,43] [-55,-50,26]
v [100,-30,23] [25,-43,17]
vi [63,-30,17]
Bottom [0,0,-51] [0,0,-51] [0,0,-50] [0,0,-48] [0,0,-47] [0,0,-45]p

Jv 0.54 0.99 1 1 1 1

(a) (b) (c)

(d) (e) (f)

Figure 5.4: The optimal camera positions. (a) One camera on top. (b) Two cameras on top. (c) Three cameras
on top. (d) Four cameras on top. (e) Five cameras on top. (f) Six cameras on top.

5.3.1. SOLVING THE OPTIMAL PROBLEM

In all the experiments one camera is on the bottom of the box (negative values for z axis)
and the rest of the cameras have positive value along the z axis as defined in (5.14). The
box includes 3708 points as Ntot = 3708. In addition the optimization parameters in
(5.13) are considered as α1 = 200, α2 = 1.2, α3 = 1.2, α4 = 1, α5 = 15, and α6 = 1. The
values are defined via trial and error method emphasising on having as small as possible
scanner dimensions (high α1 = 200). The results of solving the optimal problem are nu-
merically reported in Table 5.2. According to the table, except the cases with having one
or two cameras on top, the other cases have Jv equal to one meaning all the points on
the box were visible to at least one camera. The position of the cameras are also visually
shown in Figure 5.4, where the points with red color on the box are the captured points
with at least one camera and the blue ones are not captured with any cameras.
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Figure 5.5: Percent of overlap variation based on the number of cameras on top.

5.3.2. PERCENT OF OVERLAP BETWEEN PAIR OF CAMERAS

A crucial step to reconstruct a scanned object through multiple depth cameras is using
surface registration methods. Surface registration is capable to assemble multiple 3D
point clouds in a common coordinate system via aligning the overlapping parts of the
point clouds [311, 309]. The point clouds may contain characteristics of a single shape
as a mesh structure to explain the surface of the 3D objects or scenes. To form a com-
plete 3D shape, different 3D captured datasets of an object from different viewpoints are
needed which should cover all the targeted areas of the object with acceptable level of
overlap between each pair of the views. This facilitates a well-performed registration to
recombine all the datasets and reconstruct as accurate as possible the 3D mesh of the
original scanned object or scenes [139]. In the registration process of a multiple-camera
scanner, these datasets must be registered on each other and the quality of the registra-
tion is very depending on the level of overlap between each two pair of cameras from
the object. Thus, here we investigate the degree of overlap based on the number of used
cameras with optimal positions.

Overlap percent (P i
o) from camera i th to camera j th is calculated as follows.

P i
o = N i , j

o

N i
o

×100 (5.15)

where, N i , j
o is the number of points on the scanned object captured with both camera

i th and camera j th , and N i
o is the total number of points captured with camera i th . To

study the effect, we designed the optimal camera locations through minimizing the cost
function in (5.13) for different number of cameras on top and reported the overlap per-
cent for each pair of cameras in Figure 5.5. According to the figure, the overlap range
increases by increasing the number of top cameras up to 5. After the 5 cameras on top
the range is more or less constant. Thus, 5 cameras on top should be enough to have
acceptable registration. However, as we would like to have a symmetric design we prefer
6 cameras on top to have three cameras on each sides.
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Figure 5.6: Scanner.

Table 5.3: Components of the final product in Figure 7.1.

Component Description Application

i-vi and
Bottom

RealSense D435i Capturing 3D point cloud

Glass ClearVision low-
iron glass plate

For capturing sole

Printed
foot

Printed out via
Ultimaker S5

For accuracy evaluation

5.3.3. SCANNER PROTOTYPE

The scanner used in this study is the first prototype of a 4D foot scanner at TUDelft
[128]. As shown in Figure 7.1, the scanner utilizes seven RealSense D435i depth cam-
eras to capture a 4D foot scan. In order for the user to start and end a scanning process,
two AdaFruit VL53L0X ToF distance sensors (30 to 1000 mm range) are integrated, which
are connected through an Adafruit TCA9548a Multiplexer (MUX). A rectangular-shaped
glass platform is able to support users of up to 200 kg in the context of walking. To this
end, the final scanner is fitted with a tempered ClearVision low-iron glass plate from
AGC’s Planibel Extra Clear glass collection. This type of glass is known for its high light
transmission rate (92% for 6 mm). The glass plate has a nominal thickness of 12± 0.3 mm
and a width and height of 600 ± 2 mm and 600 ± 3 mm, respectively. These dimensions
match the scanning plate support platform of Vidmar’s (2020) 4D foot scanner setup.
The glass was chosen over polycarbonate (PC) or polymethyl methacrylate (PMMA) be-
cause of their sensitivity to scratching. It is desired to have a durable scanning solution,
which also includes the quality of the scanning surface. Since glass has excellent scratch-
resistant and light transmission properties, and there is a constant interaction between
the walking users and the scanning plate, glass is chosen over other materials.
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(a) (b) (c)

Figure 5.7: No-load foot. (a) The source mesh. (b) Scanned through Artec Eva scanner. (c) Printed Artec Eva
output via Ultimaker S5 printer.

5.3.4. ACCURACY

Through the explained 3D registration method in [250] which uses a probability func-
tion [252, 247, 255, 254], we use seven cleaned frames captured by each camera to re-
construct the foot. According to the method each cleaned data-set is rigidly registered
on a reference model to build a rough point-cloud of the foot, then the reference model
is non-rigidly registered on the point-cloud to have a meaningful mesh. Due to the larger
overlap between each data-set captured by each camera in the proposed method than
the study in [250], their registration method shows better performance though our cam-
era arrangement comparing to their non-optimal camera arrangement. Accordingly, the
used reference model (source mesh) is shown in Figure 6.7(a).

To evaluate the accuracy of the results with the introduced algorithm, we scanned
a foot with Artec Eva scanner in a no-load condition as shown in Figure 6.7(b), then
the scanned foot was printed out via Ulimaker S5 scanner shown in Figure 6.7(c). The
printed foot is scanned with our scanner in static mode which is comparable with the
scan data of the Artec Eva. Next, the output of the Artec Eva scanner dimensions are
compared with the corresponded dimensions of our method output data depicted in
Figure 6.8. We first find the scaling ratio which maps the length of the reconstructed
foot to the length of the foot collected with the Artec Eva scanner and then calculate the
errors for the other dimensions as width, ball width, and ball angle according to [263].
Based on Figure 6.8, Lr , Wr , BWr , and αr explain the length, width, ball width, and ball
angle of the real scanned foot in the no-load case with the Artec Eva scanner respectively.
And, Le , We , BWe , and αe define the length and width of the estimated foot through our
method respectively. The scaling factor of r is considered as follows

r = Lr

Le
(5.16)

where in our experiment, Lr = 222.2 mm, Le = 0.3701 mm which results in r = 600.4.
Thus any dimension extracted from our method is multiplied to the r and compared
with the corresponded values on the Artec Eva scanner output summarised in Table 6.3.
According to the table, the errors for the width is 1.8 mm, for the ball width is 2.5 mm,
and for the ball angle is 0.3◦, which shows the average percentage error based on the
Artec Eva scanner is about 2.5%.
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(a) (b)

Figure 5.8: Dimension definition: (a) Artec Eva. (b) Our method.

Table 5.4: Error results of the parameters introduced in Figure 6.8 with r = 600.4.

Parameter Artec Eva Our approach MAE

Width (mm) Wr = 87.3 r ×We = 89.0 1.7
Ball Width (mm) BWr = 92.6 r ×BWe = 95.1 2.5
Ball Angle αr = 10.8◦ αe = 11.1◦ 0.3◦

5.4. CONCLUSION
This chapter proposes an approach to find the optimal number, position and orientation
of depth cameras to scan a foot for fast 3D mesh reconstruction. The optimisation prob-
lem aims to have minimum camera scanning error, sparsity, and the scanner dimension,
and to have maximal overlap between scans captured by an adjacent pair of cameras.
The results showed the scanner with seven cameras (one on the bottom and six on top)
have the most optimum performance. The future works lie on optimal design of a scan-
ner equipped by Azure Kinect cameras to improve the accuracy of individual scans. In
addition, the optimal problem will be integrated with a term regarding the lighting, as
it is one of the most important factors on the quality of the captured data. Moreover,
a human factor term will be integrated in the cost function to assure the participants
reproduce their everyday-walking step in a comfortable manner, which is essential for
ergonomics study and product design, e.g. shoe design.





6
DYNAMIC MESH RECONSTRUCTION

BASED ON 3D NONRIGID

REGISTRATION

Fitting apparel and apparel in performing different activities is essential for the func-
tional yet comfortable experience of the user. 4D scans, i.e. 3D scans in continuous times-
tamps, of the body (part) in performing those activities are the basis for the design of gar-
ments/apparel in 4D. In this chapter, we proposed a semi-automatic workflow for con-
structing 4D scans of the body parts with the emphasis on registering noisy scans at a given
timestamp. Continuous 3D scans regarding the moving body parts are captured first from
different depth cameras from different view angles. In a given timestamp, the collected 3D
scans are roughly aligned to a template using the rigid Iterative Closest Points (ICP) algo-
rithm. Then these scans are further registered using a newly proposed non-rigid Iterative
Closest-Farthest Points (ICFP) algorithm, in which correspondences between the source
and the target are established by either closest or farthest points based on the newly de-
fined logical distance concept and the probability theory. Experimental results indicated
that the ICFP method is robust against noise and the scanning accuracy can be as high as
3.4 %. It also reveals that, for the human foot, the differences of ball width and ball angles
between the loaded and the unloaded situation can be as large as 8 mm and 2 degrees,
respectively. This highlights the importance of using 4D scan in designing garments and
apparel.

Parts of this chapter have been published in:
Tajdari, F., Kwa, F., Versteegh, C., Huysmans, T. and Song, Y., 2022, August. Dynamic 3d mesh reconstruction
based on nonrigid iterative closest-farthest points registration. In International design engineering technical
conferences and computers and information in engineering conference (Vol. 86212, p. V002T02A051). American
Society of Mechanical Engineers. [250].
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6.1. INTRODUCTION

D Ue to comparatively huge changes in shape during deforming a dynamic object, dy-
namic anthropometry and 4D scanning have attracted a lot of attention in clothing

technology recently [35, 39]. The 4D scanning gives valuable information regarding hu-
man body deformation during moving, conducting an activity and dynamic workload,
establishes the fundamentals of comprehensive ergonomic fit design e.g., personal pro-
tective equipment, workwear, sportswear, and other practical garments [34, 173].

The concept of body measurement started with using measurement tape, which was
time-consuming and required considerable effort [220]. Advancement in technology in-
troduces the 3D scanning tool-kits [312, 74, 249, 248, 246, 242], which improves the ef-
fectiveness and efficiency of measuring the body shapes [51, 253]. However, the 3D body
measuring techniques [92, 257] and scanners only allowed the collecting data in static
postures, e.g., hand posture in [311, 309]. Thus, the scan captures the muscular system
aiming to hold the static position and neglects the interaction between the body and
environment during movement. As a result, garments are still designed based on the an-
thropometric standard position specified in standards and sizing framework as standing
upright, legs hip widespread, arms slightly abducted [20, 176]. However, body propor-
tion diverges from static to dynamic status, especially during intense activities such as
sports. Therefore, it is important to investigate the body during motion, to extract mean-
ingful features alterations i.e., dimensions, and transfer the the features into the garment
enhancement process. To this end, the technological development from 3D to 4D scan-
ning approaches establishes scanning in motion [266, 3].

Kirk et al. [118] introduced a method to evaluate the raising and lowering of the body
surface with respect to connection with position changes via measurement lines on the
knee. Schmid et al. [221] proposed seam damages were usually affected by changes of
body geometry. The research group of Ashdown studied dimensional variation on the
basis of 3D point cloud for the upper and the lower body half [50, 135, 49]. Based on the
state-of-the-art methodology the deformation of the body surface was studied through
discreet static postures. However, there is a paucity of literature regarding measurement
alteration during movement and only a few researchers address this challenge [20, 176].

The concept of dynamic anthropometry was prosperously implemented mainly for
the enhancement of high-performance sportswear. The challenges were decreasing mus-
cle fatigue, increasing comfort, and resistance diminution and performance develop-
ment [314, 119]. Firstly, Morlock et al. [157] studied deviation in body measurements
from work to sports corresponded postures of men and women that the population sam-
ple was very large [176]. Next, body motion is mainly observed through Motion Cap-
ture Technology. The method captures the deformation by tracking a few pre-selected
landmarks on the body mostly for articulation reconstruction. The approach has broad
applications such as video game design, computer-animated movies, or biomechanical
analyses in the fields of medicine and sports. The acquisition of 3D surfaces with motion
scanning has been studied by many researchers such as [189, 6, 291, 78]. A finite number
of landmarks highlighted with trackable markers are mounted on the human body and
the position of the landmarks was estimated by the systems.

A very recent topic of capturing the dynamic body surface deformation over the mov-
ing articulation attracted a lot of attention, as it is often challenged by capture speed,
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computational speed, and accuracy of the measurements [266]. Most approaches ex-
ploit equipment founded on the concept of light and depth sensor technology. Em-
ploying techniques and measurement principles i.e., triangulation or light section al-
gorithms, the surfaces are estimated. However, in each time frame, the methods fail to
capture the 4D pattern (correspondence) but instead deliver an independant 3D mesh
describing shape of the scanned object, which needs higher knowledge to extract the 4D
features.

In this chapter, we present a workflow of automatically extracting dynamic features
from the foot during walking. In detail, the method first aligns 3D point clouds extracted
from seven depth cameras around the walking foot through the well-known rigid Itera-
tive Closest Points (ICP) registration method. Then a reference foot model is nonrigidly
registered on the aligned 3D raw data to define the patterns and features in each time
interval. In the proposed nonrigid ICP algorithm, a new corresponding point selection
approach is proposed and implemented for a more effective and effcient registration.

The rest of the chapter is presented as follows: first, the methodology is introduced
in Section 7.3 where the techniques of the rigid alignment and nonrigid registration are
discussed. In Section 6.3.1, the setup of the experiments is introduced. In Section 7.5,
experimental results on the comparison of the proposed approach output and the ref-
erence data provided by Artec Eva scanner are presented. Finally, a short conclusion is
drawn and future research directions are highlighted as well.

6.2. METHODOLOGY
In this section, we introduce a methodology that reconstructs a temporally corresponded
3D mesh out of different 3D pieces of point cloud through a source mesh, i.e., making a
complete 3D shape using a few different depth cameras around the object. For proceed-
ing with the methodology, we use a rigid ICP registration technique to register each piece
containing the captured point clouds by each camera, correctly on the source mesh, and
then the source mesh will be registered on the combined pieces (target mesh) through
a non-rigid ICP registration method. Due to a high degree of noise, the corresponding
points selection is modified from only considering the closest point to logical distance
selection. The logical distance selection may choose the closest or farthest point on the
target to a point on the source as the corresponding point, based on the topology of the
reconstructed target. By iteratively reconstructing 3D shape out of the extracted 3D data
from each camera in a time frame, we are able to make time series of 3D scans known as
4D scanning.

6.2.1. RIGID REGISTRATION

In the proposed research, we focus on the geometry of the foot. Firstly, we estimate the
points visible from each camera on the source mesh used in [251] which is scaled to have
approximately the same foot length as the scanned data with one of the side cameras
(e.g., the red points on a side camera in Figure 6.1 are used to scale the gray source mesh
in order to have the same length as the red point-cloud). These estimated points from
each camera are used as the target for any extracted data from the relevant camera. Then
using the rigid ICP method we are able to find the extrinsic transformation matrix that is
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(a) (b) (c)

Figure 6.1: Pre-defined points on the source mesh for a side camera (the camera 3 in Figure 7.1): (a) Front view.
(b) Side view. (c) Bottom view.

able to map each piece of data to the correct location on the source mesh. As an example
of showing the predefined points on the source mesh, we depicted the predefined points
for a side camera in Figure 6.1(e.g., camera 3 described in Section 7.3.1).

6.2.2. FILTERING
Usually, the output of the depth cameras is very noisy, and also there may be some point
clouds that are not presenting any targeted features, e.g. from the background. Thus,
first we filter the 3D point cloud of the target mesh (T).In this process, the closest point
for each point on T is found on the source mesh (S), and the distance between each
point on T and its corresponding point on S are compared with a distance limit (dl ) as
follows.

dl = m +2σ (6.1)

where, m is the average of all the closest distance from T to S, and σ is the standard
deviation of the closest distance population. The points that have a distance greater
than the dl will be rejected as follows.keep, if dp ≤ dl

r e j ect , if dp > dl
(6.2)

where dp is the distance from a point p on T to its corresponding point on S. It is worth
mentioning that we consider the distance from S to T only, many useful points on T

might be excluded due to the imperfect alignment of the pieces during establishing the
T.

6.2.3. NONRIGID CORRESPONDING SELECTION
In the use of the conventional ICP method, given a point on the S, the closest point on
the T is considered as its corresponding point. As only the Euclidean distance is used in
establishing the correspondences, in terms of a high level of noise or disturbances, the
topography of the original S may be lost. Thus, we use a logical distance instead of the
closest point approach to establish the correspondences. Accordingly, firstly the closest
point from each point on T to S is established. Regarding the miss alignment and dis-
turbances for some points, the found distance is comparatively high, which may never
be considered as a corresponding point regarding the conventional ICP corresponding
point selection algorithm. However, not all the far points are spare as there may be con-
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Algorithm 2 The proposed corresponding selection approach

Input: Target point clouds (T) and Source point clouds (S)
Output: Corresponding points

1: Initialization
2: SourceID: Find the closest point from each point on T to a point on S
3: SourceDis: The distance between the two corresponding points regarding SourceID
4: IDclass = unique(SourceID): Defines all the involved points from source as corre-

spondences
5: Bound = mean(SourceDis) + std(SourceDis)
6: k = 1
7: while k ≤ length(IDclass) do
8: ResembleID = find(SourceID == IDclass(k))
9: DistanceMatrix = SourceDis(SourceID(ResembleID))

10: if isempty(find(SourceDis(ResembleID)<Bound,1)) then
11: The corresponding point is the farthest
12: else
13: The corresponding point is the closest
14: end if
15: k = k +1
16: end while

siderable error with rigid registration then some useful points can be located in far dis-
tance from the source mesh. In addition if the deformation is very high e.g., closed finger
hand as a target versus opened finger hand as a source mesh highlights the disability of
using only closest distance to find the correspondences. Thus, we define a varying dis-
tance boundary by iteration that increases the probability of finding the useful point
although they are far. In the process of finding correspondences from each point on T
to S, each point on S may be selected for more than one point on the T. In this case,
we logically select either the closest or farthest point. In each iteration of the registration
process, we define a boundary distance as follows for the corresponding distance matrix
from T to S as follows.

Bound = m +ζσ (6.3)

where m and σ are the mean and standard deviation of the counted distance for the
correspondences from T to S, accordingly. If for a point on S a population of points T
are selected which includes more than one point, then we consider the point with the
highest distance among the population, if all the distance for the population is greater
than the bound. Otherwise, we select the closest point as the corresponding point to the
point on S. The process of the corresponding point selection is explained in Algorithm
2.

Discussion: To study the probability of success with the considered value in (7.5),
statistical solutions are employed. First, we assume that the closest distance from points
on T to points on S establishes a normally distributed population with an average of
m and standard deviation of σ. Accordingly and based on Miller’s studies of Freund’s
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statistics [82] used in [252, 247, 255], the probability indicator z is defined as follows.

z = Bound −m

σ
(6.4)

= m +ζσ−m

σ
= ζ (6.5)

Using Table III of the book [82], while z = ζ, the probability (P ) of having a distance more
than the bound is

P (Di st ance > Bound) = 0.5−P (z) = 0.5−P (ζ) (6.6)

It should be noted that in the Table III of the book, z is bounded where z ∈ [0, 3.09] which
0 ≤ P (z) ≤ 0.499. Thus, P (Di st ance > Bound) is always equal or less then 0.5. As the
methodology is iterative with a maximum iteration of j max, the probability of missing
a useful point would be P (Di st ance > Bound) j max

which would be a very small value.
In fact, greater values of the Bound resulted from greater values of ζ, means the closest
point which is often used in the conventional ICP algorithm is addressed in the selection.
While, smaller values of the Bound (smaller value of ζ) emphasises more on selecting the
farthest point which may map all the source mesh vertices to the farthest point and re-
sults in the source mesh topology loss. There must be an optimal value of ζ that balances
the closest and farthest selection process as discussed in Section 6.3.2.

6.2.4. NONRIGID REGISTRATION
In this section, based on the established correspondences, a cost function based on Am-
berg [13] is defined. Amberg [13] proposed the non-rigid registration formulation as a
combination of distance and stiffness terms summarised in the following formula

E(X ) = ∥
[
αM ⊗G

W D

]
X −

[
0

W U

]
∥2

F

= ∥AX −B∥2
F (6.7)

where, The sparse matrix D is formed to facilitate the transformation of the source ver-
tices with the individual transformations contained in X via matrix multiplication, and
denoted as D = di ag (vT

1 , vT
2 , . . . , vT

n ), where vi ∈S and i = 1, ...,n, and n is the number of
vertices on the S. W is a diagonal matrix consisting of weights wi . α is the stiffness con-
straint. To regularise the deformation, an additional stiffness term is introduced. Using
the Frobenius norm ∥.∥F , the stiffness term penalizes the difference of the transforma-
tions of neighboring vertices, through a weighting matrix G = di ag (1,1,1,γ). During the
deformation, γ is a parameter to stress differences in the skew and rotational part against
the translational part of the deformation. The value of γ can be specified based on data
units and the types of deformation [13]. The node-arc incidence matrix M (e.g. Dekker
[61]) of the template mesh topology is employed to convert the stiffness term functional
into a matrix form. As the matrix is fixed for directed graphs, the construction is one
row for each edge of the mesh and one column per vertex. To establish the node-arc
incidence matrix of the source topology, the indices (i.e. the subscripts) of edges and
vertices are addressed, for any edge of r which is connected to vertices (i , j ) , in r th row
of M , and the nonzero entries are Mr i =−1 and Mr j = 1.
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Table 6.1: Parameters used in simulation configuration.

Parameter Value Description

α 1000:1 stiffness ratio

Nmean 3 Target points averaging size

ϵ 0.001 Convergence error threshold

j max 50 Convergence iteration threshold

kmax 20 Number of iteration for the outer loop

6.3. EXPERIMENT SETUP

6.3.1. PARAMETERS OF THE PROPOSED METHOD

Table 6.1 presents parameters used in the experiment. During the minimization of the
cost function, γ in G introduced in (6.7), was chosen to one. The stiffness constraint,
α, is the lowering scalar. In the experiments α is decreasing from 1000 to 1. Regarding
dependency of α values to the dynamic of source surface, the bounds of these values
were manually defined so that only global deformations were considered in the begin-
ning of registration. On the other hand, the lower limit of the α also depend on the data
type [13]. Accordingly, a small α may cause singularity of A in Eq. (6.7), which leads to
instability of the solution. Therefore, our experiments started with a sufficiently high α.

To have a smoother registration process, we averaged a number of points from a set
with size of 3 (Nmean = 3). In the implementation of [42], the system of linear equations
that arises in each step was solved with the help of the UMFPACK library [60].

6.3.2. TUNING OF ζ
In this section we numerically investigate the percentage of mean mesh quality loss and
percentage of the target vertices involved in the nonrigid registration for a domain of
ζ. There is an optimum point which maximise the involved vertices and minimises the
mesh quality loss. Accordingly, we consider a cost function as follows.

minJ =∑ |Q̄ f i nal −Q̄0|
Q̄0

+ N T
i n

N T
tot

(6.8)

where Q̄ f i nal and Q̄0 are the average of mesh quality for all vertices on the source mesh
before and after registration respectively. Also, N T

i n is the number of vertices from target

employed as corresponding points during the nonrigid registration process, and N T
tot is

the total number of vertices on the target mesh. As stated in Section 6.2.3, ζ equals to z
and has an acceptable range in [0, 3.09]. The results reported in Figure 6.2 shows best
performance where ζ= 1.7.

6.3.3. SCANNER INTRODUCTION

The scanner used in this study is the first prototype of a 4D foot scanner at TUDelft [128].
As shown in Figure 7.1 and reported in Table 6.2, the scanner utilizes seven RealSense
D435i depth cameras to capture a 4D foot scan.
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Figure 6.2: Variation of J for a domain of ζ.

Figure 6.3: Scanner.

6.4. RESULTS

6.4.1. RAW DATA
Using the scanner, we were able to capture the geometric shape of the foot as shown in
Figure 6.4(a), which is very noisy and the foot part is not the majority of the extracted
data. Thus, we manually deleted the spare parts through MeshLab software. In which
the result is depicted in Figure 6.4(b).

6.4.2. FRAME SELECTION
During scanning a foot many frames are captured by each camera while the captured
frames are not synchronised with each other. In this chapter, we manually looked at the
frame by frame extracted with each camera and picked the ones that corresponded to
the same posture. We considered five main postures as shown in Figure 6.5 as: 1. Heel
strike, 2. Foot-flat, 3. Midstance, 4. Heel-off, and 5. Toe-off. Accordingly, the selected
frames from an experiment is shown in Figure 6.6.



6.4. RESULTS

6

127

Table 6.2: Components of the final product in Figure 7.1.

Part Number Description Application

0-6 RealSense D435i capturing 3D point cloud
7-8 AdaFruit VL53L0X ToF stance sensors Define start and end of scanning

(a)

(b)

Figure 6.4: Raw data from one of the RealSense depth camera: (a) Uncleaned. (b) Cleaned.

6.4.3. ACCURACY

Employing the discussed technique in Section 7.3, we assess the accuracy of the scanner
through two static 3D objects of human foot and human hand as follows.

FOOT MODEL:

The used source mesh is shown in Figure 6.7(a). To evaluate the effectiveness of the in-
troduced algorithm, we scanned a foot with an Artec Eva scanner in a no-load case as
shown in Figure 6.7(b), then the scanned foot was printed out via Ulimaker S5 scan-
ner shown in Figure 6.7(c). The printed foot is scanned with our scanner in static mode
which is compared with the scan data of using the Artec Eva. Next, some dimensions
shown in Figure 6.8 are compared between the two scanners’ output. We firstly find the
scaling ratio which maps the length of the reconstructed foot to the length of the foot
collected with the Artec Eva scanner and then calculate the errors for the other dimen-
sions as width, ball width, and ball angle according to [263]. Based on Figure 6.8, Lr , Wr ,
BWr , and αr explain the length, width, ball width, and ball angle of the scanned foot
with the Artec Eva scanner respectively. And, Le , We , BWe , and αe define the length and
width of the estimated foot through our method respectively. The scaling factor of r is
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Figure 6.5: Main postures during walking.

Figure 6.6: Selected frames.

considered as follows,

r = Lr

Le
(6.9)

where in our experiment, Lr = 222.2 mm, Le = 0.3561 mm which results in r = 623.9.
Thus any dimension extracted from our method is multiplied to the r and compared
with the corresponded values on the Artec Eva scanner output summarised in Table 6.3.
According to the table, the errors for the width is 3.2 mm, for the ball width is 3.4 mm,
and for the ball angle is 0.9◦, which shows the average percentage error is about 3.4%.

Table 6.3: Error results of the parameters introduced in Figure 6.8 while the scaling ratio r = 623.9.

Parameter Artec Eva Our approach MAE

Width (mm) Wr = 87.3 r ×We = 84.1 3.2
Ball Width (mm) BWr = 92.6 r ×BWe = 89.2 3.4
Ball Angle αr = 10.8◦ αe = 11.7◦ 0.9◦
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(a) (b) (c)

Figure 6.7: No-load foot. (a) The source mesh. (b) Scanned through Artec Eva scanner. (c) Printed Artec Eva
output via Ultimaker S5 printer.

(a) (b)

Figure 6.8: Dimension definition: (a) Artec Eva. (b) Our method.

HAND MODEL:
As an extra validation, we used a hand model in [312] as shown in Figure 6.9. Accord-
ing to the figure, the 3D printed hand, the Artec Eva scan of the hand, the used source
mesh, and the output of our scanner are depicted in Figure 6.9(a), (b), (c), and (d) re-
spectively. Furthermore, we rigidly aligned the output of our scanner with the Artec Eva
scan as shown in Figure 6.9(e) to visually compare the accuracy of the output. To numer-
ically investigate the deviation of our scanner output with the Artec eva scan we figured
the histogram of the distance between a point on our scan and its closest point on the
Artec eva scan. Accordingly, the average error is about 2 mm which is acceptable in er-
gonomics study.

6.4.4. POSTURE RECONSTRUCTION

Through the explained method in this chapter, we use seven cleaned frames for each
posture as the input of the proposed method. Accordingly, the output is depicted in
Figure 6.11 for the bottom view and the side view of the reconstructed scans of one foot
shown in Figure 6.6 over three feet we reconstructed in this chapter. The deformation
of the source mesh is logically related to the corresponded posture, which shows the
acceptable visual performance of the approach. In addition, the deformation of each
the foot width is compareable between adjacent frames, where the posture with more
load on front of foot has bigger width shown in Figure 6.11. To study the deformation
numerically, we reported the introduced dimensions in Section "Accuracy", for different
postures per case in Figure 6.12 which shows the deformation direction of all the feet are
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(a) (b) (c) (d) (e)

Figure 6.9: Hand evaluation: (a) Real model. (b) Artec Eva scan. (c) Source mesh. (d) Our method scan. (e)
Aligned our output to Artec Eva scan.

Figure 6.10: Error sparsity histogram.

the same however the amplitude is different. The feet belong to three cases as follows:

• Case 1: Male, from Middle-east, 30 years old, with Body Mass Index (BMI) equal to
27.8.

• Case 2: Male, from Asia, 25 years old, with BMI equal to 26.8.

• Case 3: Male, from Europe, 24 years old, with BMI equal to 21.9.

The figure shows the variation of the foot per case in different postures and please note
that in the posture 5, the length of the foot is not the real length and is the distance
between tip of the big toe to the heel of the foot, and the bending of the foot is not con-
sidered. This resulted in a sudden decrease of the foot length in the figure.

Figure 6.11: Results of posture reconstruction for the case 1.
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Figure 6.12: Results per different cases.

6.5. CONCLUSION
The method presented in this chapter demonstrates a workflow of extracting any time-
varying features from dynamic scans of a deformable object. The semi-automated pro-
cedure includes pre-defining points which may be seen by each depth camera, man-
ually cleaning the raw data from each camera, rigid registration of the extracted data
from each camera to the corresponded predefined points, and finally non-rigidly reg-
istering a source mesh on the point cloud reconstructed through the rigid registration.
Reconstructing the final mesh through the non-rigid registration for several frames in
a time series provides a 4D feature outcome (for specific points) or 4D trackable scan-
ning (for all the points) which is unique. Comparison of the output of our algorithm
with the dimensions extracted from the scanning data of the same object using an Artec
Eva scanner shows the estimated dimensions have acceptable error. Further develop-
ments include deriving a full automated approach for the filtering, the predefined point
selection, and corresponded frame selection, a higher frequency scanner, and integrat-
ing temporal super-resolution repetitive motion techniques to have higher resolution of
the 4D scanning.





7
4D FEET: WALKING FOOT SHAPES

RECONSTRUCTION VIA

ADGC-LSTM NETWORK

4D scans of dynamic deformable human body parts help researchers have a better under-
standing of spatiotemporal features. However, reconstructing 4D scans based on multiple
asynchronous cameras encounters two main challenges: 1) finding the dynamic corre-
spondences among different frames captured by each camera at the timestamps of the
camera in terms of dynamic feature recognition, and 2) reconstructing 3D shapes from
the combined point clouds captured by different cameras at asynchronous timestamps
in terms of multi-view fusion. In this chapter, we introduce a generic framework that is
able to 1) find and align dynamic features in the 3D scans captured by each camera us-
ing the nonrigid iterative closest-farthest points algorithm; 2) synchronize scans captured
by asynchronous cameras through a novel ADGC-LSTM-based network, which is capable
of aligning 3D scans captured by different cameras to the timeline of a specific camera;
and 3) register a high-quality template to synchronized scans at each timestamp to form a
high-quality 3D mesh model using a non-rigid registration method. With a newly devel-
oped 4D foot scanner, we validate the framework and create the first open-access data-set,
namely the 4D feet. It includes 4D shapes (15 fps) of the right and left feet of 58 partici-
pants (116 feet in total, including 5147 3D frames), covering significant phases of the gait
cycle. The results demonstrate the effectiveness of the proposed framework, especially in
synchronizing asynchronous 4D scans using the proposed ADGC-LSTM network.

Parts of this chapter are available in arxive:
Tajdari F, Huysmans T, Yao X, Xu J, Song Y. 4D Feet: Registering Walking Foot Shapes Using Atten-
tion Enhanced Dynamic-Synchronised Graph Convolutional LSTM Network. available in arXiv preprint
arXiv:2307.12377 [259], and submitted to IEEE Open Journal of the Computer Society.
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7.1. INTRODUCTION

H Uman movements often lead to large shape deformation of different body parts.
4D scanning, which is able to capture 3D geometric shapes over time, attracted a

lot of attention for a better understanding of the dynamic anthropometry in different
applications [35, 39], as 4D scans help researchers establish the fundamental under-
standing of human movements and give valuable information regarding human body
deformation while performing different types of activities. Outcomes of research on
4D scans can be applied in many areas, e.g. building virtual avatars, performing (vir-
tual) ergonomics evaluations, developing computer games, designing personal protec-
tive equipment, workwear, sportswear, and other practical garments [34].

To acquire 4D scans, multiple (depth) cameras are often used. Those cameras can
be synchronized for capturing continuous images at a given moment. However, it is dif-
ficult to balance the needed resolutions of the images, the needed time duration, the
buffer of the depth cameras, the data transfer rate, the computing power, and the stor-
age [33]. For instance, to capture 640×576 depth images by 6 cameras at 30 frames per
second (fps), the needed bandwidth is about 2Gb/s. This poses challenges in the de-
sign of a 4D scanning system, especially for a low-cost system. "Dropped frames" are
frequently observed in the captured data, mainly due to that the huge amount of to-be-
transferred data leads to a nonlinear accumulative delay regarding each camera, even if
all cameras are hardware-based synchronized [171]. In a practical case of using 6 Azure
Kinect DK cameras for 15 fps 4D scanning, as in Figure 7.1, even when all cameras are
hardware synchronized, we found that there are on average 2 milliseconds delays for
each frame acquired by those cameras in a 3-seconds scanning session. Note that the
delay is accumulative, i.e. at the beginning of the scanning all the cameras’ outputs are
well-aligned based on their clocks; however, the longer the duration of the scanning is,
the more the delay accrues, resulting in a divergence of the geometry in each frame re-
garding the timestamps.

Researchers developed different methods, on both hardware and software, to tackle
those challenges. In the scanning of a human body (parts), a possible approach is to use
the prior knowledge of human actions and the associated dynamic features to synchro-
nize the captured frames. In the past decades, recognizing human dynamics features has
attracted a lot of attention in the field of computer vision. The developed 3D human ac-
tion recognition methods can be roughly classified as the RGB video-based approaches
[278, 280], skeleton-based methods [223, 225], depth image-based methods [307, 308,
300] and the point cloud-based method [282]. Although the existing methods are proven
to be effective in many applications, e.g., video surveillance, human-computer interac-
tion, sports analysis [239, 199], most of them are limited to employ (depth) images as
the input, and the recognized 3D actions as the output. Extracting point-to-point corre-
spondences among sequential point clouds from multiple views e.g., cameras, is rarely
investigated [282, 203, 31, 153]. On this topic, there are two fundamental challenges: 1)
establishing the dynamic connectivity among asynchronous images (scans) captured by
different cameras in terms of dynamic feature synchronization i.e. temporal correspon-
dence, and 2) extracting meaningful dynamic features from the combined camera views
for accurate analysis of deformation, i.e. multi-view fusion.

In this chapter, using a newly developed low-cost 4D foot scanner based on 6 Mi-
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crosoft Azure Kinect DK depth cameras, we developed a framework to synchronize and
register the captured asynchronous images on significant phases of the gait cycle, result-
ing in a new open-access 4D Feet data-set of 58 subjects (116 feet). Our main contribu-
tions are:

• Establishing and implementing a simple and effective framework to synchronized
spatiotemporal asynchronous scans captured from multiple cameras and to track
a point’s correspondences in all the frames to extract dynamic features of each
vertex e.g, velocity;

• Developing a novel Attention Enhanced Dynamic-Synchronised Graph Convolu-
tional (ADGC)-LSTM network to synchronize the dynamic features extracted from
different cameras besides existing algorithms;

• Presenting the first 4D mesh-morphed walking foot open-access data-set (4D Feet),
as a validation of the proposed framework.

7.2. RELATED WORK

7.2.1. SKELETON-AND-DEPTH-BASED ACTION RECOGNITION
The skeleton-based approach and the depth-based approach are often used in recog-
nizing dynamic features of human actions based on prior knowledge [153]. Regarding
skeleton-based 3D action recognition, sequence-based approaches, and graph-based
approaches are often used. Via describing the skeleton as a sequence of joints, the
sequence-based approaches [223, 225] employed the RNN (Recurrent Neural Network)
based methods to extract temporal connectivity among those featured points. The graph-
based approaches [144, 318] often utilized GCN (Graph Convolution Network) to exploit
spatiotemporal connectivity by considering the skeletal structure as a graph, where the
featured points are considered as the points of the graph. Regarding depth-based 3D ac-
tion recognition, the available methods [187, 307, 184, 279] mainly use the visualization
features through 2.5D depth maps. Although both approaches are able to give a reason-
ably good estimation of the 3D actions that the target subject performed, it is difficult
to form a generic framework to fully extract dynamic features based on a few featured
points of the moving object, which may cause a reduction in the performance of 3D ac-
tion recognition.

7.2.2. 3D POINT CLOUDS ACTION RECOGNITION
Deep learning tools play a key role in extracting human actions via 3D point clouds,
which is widely employed in recent studies [203, 156, 142, 237, 154, 95, 155, 28]. Among
them, PointNet [202] as one of the most recent methods in the area, employs a set of
MLPs on each of the individual vertices to identify the unique features. Next, it utilizes
a max-pooling layer to generate the global identifier for each point cloud which does
not use any geometry-based connectivity of the local neighboring structure. Contrary
to these single-frame-based point cloud analysis approaches, in this chapter, we present
a simple and effective framework for time series 3D shape reconstruction and action
recognition, in which we explicitly use temporal information in the motion stream to
identify dynamic features.
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Figure 7.1: The TU Delft 4D foot Scanner.

7.3. METHODOLOGY

In this section, we first present the newly developed 4D foot scanner which is used to
capture 4D data. Then, details of the proposed novel ADGC-LSTM network are pre-
sented. Based on the hardware and the novel ADGC-LSTM network, we introduce the
framework for synchronizing asynchronous 4D scans from different cameras. Finally, we
introduce the mesh registration method to along synchronized scans of different cam-
eras at each timestamp.

7.3.1. THE 4D FOOT SCANNER

A 4D foot scanner was developed at TU Delft [128] for acquiring dynamic foot shape data.
Figure 7.1 presents the next generation of the 4D foot scanner which utilizes six Microsoft
Azure Kinect DK cameras to capture the 4D foot shapes, where four cameras are installed
on the top (id 1, 2, 3, and 4) and two cameras are at the bottom (id 5, and 6). To adapt
to the minimal focal distance( ∼ 50 cm) of the cameras at the bottom, two first-surface
mirrors (id 7 and 8) were placed on the floor to "fold" the optical path for lowering the
height of the scanner for a better user experience. A 9 mm thickness plexglass (id 9) was
installed on the footpath to enable capturing the shape of the bottom of the foot while a
subject is walking.

The spatial positions and orientations of all cameras were optimized to maximize
the resolutions of the captured scans and the intersections of effective view volumes of
6 cameras [128]. To transform the captured data to a global coordinate system, we used
a two-sided checkerboard shown in Figure 7.1, and the code in [87] is utilized.
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7.3.2. ATTENTION ENHANCED DYNAMIC-SYNCHRONISED GRAPH CONVO-
LUTIONAL LSTM NETWORK

In the analysis of sequential geometric shapes, many studies suggested that the LSTM, as
a transformation of RNN, has a strong capability to understand long-term time depen-
dency of the phenomenons e.g., understanding temporal dynamics of limited points-
network (skeleton) sequences. However, using LSTM alone is difficult for incorporat-
ing spatial relations in the limited points-network-based action recognition. To this
end, AGC-LSTM [225], as an extension of LSTM, was developed to incorporate not only
unique features of spatial configuration and temporal dynamics but also the coincident
relationships between the spatial domain and temporal domain.

In the process of capturing moving objects (4D scanning), the requirements of the
needed movement ranges and the limited views of the cameras are always contradic-
tory factors. This often results in a compromise in the design of the 4D scanner, ei-
ther with a very small working envelope with limited movements or with sparse points
in some of the captured point clouds. Commercial systems may employ more camera
modules in 4D scanning; however, at the cost of investment and increased complex-
ity. As the human movements are part of nature and cannot be constrained in a lim-
ited range, we target at building correspondences between/among sparse point clouds.
Therefore the principles of the graph convolution model which has been broadly em-
ployed in sequential data with limited points-network nodes were adopted. Establish-
ing the graph model plays a fundamental role in the graph convolution algorithm. Avail-
able graph convolution models e.g, AGC-LSTM, have several limitations for example us-
ing single graph structures, illed-correspondences among points, and inadequate dis-
crimination of dissimilar actions. Here we develop a graphic model according to the
Dynamic-Synchronised Graph based on the dynamic points, aiming at generating more
sparse dynamic features to enhance the capability of the AGC-LSTM model in classifying
spatiotemporal features and improve the precision of the action recognitions. The pro-
posed novel method presented here is named Attention Enhanced Dynamic-Synchronized
Graph Convolutional LSTM Network (ADGC-LSTM). The details of the algorithm are pre-
sented below.

Following the structure of LSTM, the ADGC-LSTM includes three gates: the input
gate it , forgetting gate ft , and output gate ot . The input X t , hidden state Ht , and cell
memory Ct are graph structure data, and the graph structure is generated by the ICFP
(Nonrigid Iterative Closest-Farthest Points) algorithm explained in Section 7.3.3.1. The
graph convolution operator in the ADGC-LSTM, cell memory Ct , and hidden state Ht

can be used to extract temporal dynamics, and include spatial structure information.
Figure 7.2(a) describes the structure of an ADGC-LSTM layer. Figure 7.2(b) describes the
structure of the ADGC-LSTM unit. Equation (7.1) describes the functions of the ADGC-
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LSTM unit.

it =σ
(
Wxi ⋆gX t +Whi ⋆gHt−1 +bi

)
ft =σ

(
Wx f ⋆gX t +Wh f ⋆gHt−1 +b f

)
ot =σ

(
Wxo ⋆gX t +Who ⋆gHt−1 +bo

)
ut = tanh

(
Wxc ⋆gX t +Whc ⋆gHt−1 +bc

)
Ct = ft ⊙Ct−1 + it ⊙ut

Ĥt = ot ⊙ tanh(Ct )

Ht = fat t (Ĥt )+ Ĥt

(7.1)

where ⋆g defines the graph convolution operator and ⊙ defines the Hadamard product.
σ(.) denotes the sigmoid activation function. ut denotes the modulated input. Ĥt ex-
plains an intermediate hidden state. Wxi ⋆gX t defines a graph convolution of X t with
Wxi . The used graph convolution is the same as the graph convolution employed for
the Graph Convolutional Neural (GCN) network in [305] with K number of labels. fat t (.)
is an attention network that can select the diverse information of key nodes. The out-
put Ht reinforces the information of key nodes, without neglecting the information of
non-focus nodes, aiming at better integrity of spatial information.

The ADGC-LSTM network logically insists on key nodes by using a soft attention
mechanism that automatically quantifies the emphasis level of the key nodes. The im-
portance of the spatial attention network is depicted in Figure 8.3. The intermediate
hidden state (Ĥt ) of ADGC-LSTM contains persistent spatial structure information and
temporal dynamics. The state practically improves the selection of the key nodes proce-
dure. In order to guarantee that independent degree weights are established and rein-
force the significance of dissimilar nodes for dissimilar types of actions, we employed a
query feature as:

qt = relu

(
N∑

i=1
W Ĥti

)
(7.2)

where W defines the trainable parameter matrix, and N is the number of nodes in the
graph. Thus the attention scores of all nodes would be specified as:

αt = sigmoid

(
Us tanh

(
Wh Ĥt+Wq qt+bs

)
+bu

)
(7.3)

where αt = (αt1 ,αt2 , . . . ,αtN ), and Us , Wh , and Wq are the trainable matrices. bs and
bu are the bias. A non-linear function si g moi d is employed regarding the probability
of selected key joints. The hidden state Hti of node vti is considered as (1 +αti )Ĥti .
The attention enhanced hidden state Ht is considered as an input for the next ADGC-
LSTM layer. In the final layer of the ADGC-LSTM network, the accumulation of all node
features is classified as a global feature F g

t , and the weighted sum of focused nodes is
classified as a local feature F l

t :

F g
t =

N∑
i=1

Hti ; F l
t =

N∑
i=1

αti Ĥti . (7.4)



7.3. METHODOLOGY

7

139

Figure 7.2: The structure. a) One ADGC-LSTM layer; b) One ADGC-LSTM unit adapted from [225].

Figure 7.3: Illustration of spatial attention mechanism principal adapted from [225].

7.3.3. TIME SYNCHRONIZATION

In Figure 8.6, the workflow of the proposed time synchronization method is presented
based on the data captured by the 4D scanner and the proposed novel ADGC-LSTM net-
work. In the following, Section 7.3.3.1 focuses on explaining the process of synchro-
nizing data for each camera as the first step in the workflow. Then in Section 7.3.3.2, the
aligned data from all cameras is synchronized using the proposed ADGC-LSTM network.
Section 7.3.3.3 describes details in the implementation of ADGC-LSTM regarding scans
from different cameras.

CONSTRUCTION OF THE DYNAMIC-SYNCHRONISED GRAPH BASED ON THE DYNAMIC POINTS

After scanning, each camera gives a set of time series 3D point clouds, and there are not
logical correspondences among them. This prevents us to explain any dynamic features
between the frames as the correspondence of points from one frame to the other frame,
known as dynamic points, does not exist. Figure 7.6 (the first row of each sub-figure)
presents this "lack of correspondence", where we selected two points (highlighted with
red and green colors) in the first frame of each camera, and tracked these points in the
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Figure 7.4: Time synchronization procedure.

rest frames using point ids in the acquired point clouds. To be able to have meaning-
ful dynamic features between frames of a camera needed as the key nodes used for the
ADGC-LSTM network in Section 7.3.2, we established the correspondences of points
using a novel extended version of the Nonrigid Iterative Closest-Farthest Points (ICFP)
scheme [250] which guarantees to find proper corresponded points in a limited number
of iterations from a Source mesh (S) to a Target mesh (T). In the process of finding cor-
respondences from each point on T to S, initially, each point on S may have multiple
corresponding points on the T. In this case, we logically select either the closest or the
farthest point. In each iteration of the registration process, a boundary distance (l ) in
(7.5) is defined as the corresponding distance matrix from T to S.

l = m +ζσ (7.5)

where m and σ are the mean and standard deviation of the counted distances for the
correspondences from T to S, respectively. ζ is the probability indicator in [250] regu-
lates the closest-farthest point selection and has an acceptable range in [0, 3.09] refer to
Table III of the book in [82]. In [250], the ζ is a predefined constant variable that is nu-
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Figure 7.5: Assumed J −ζ shape.

merically defined based on registering a source foot on only one target foot to minimise
a concave parabolic cost function (J ) including two terms of percentage of mean mesh
quality loss and percentage of the target vertices involved in the nonrigid registration.
However, there is no guarantee that the selected ζ results in the minimization of the cost
function for any other target foot. Thus, here we extend the corresponding selection cri-
terion by designing an adaptive ζ finds the minimum cost function by iterations and can
be implemented on any other registering shapes. Assuming J from [250]

minJ =∑ |Q̄ f i nal −Q̄0|
Q̄0

+ N T
i n

N T
tot

(7.6)

where Q̄ f i nal and Q̄0 are the average of mesh quality for all vertices on the source mesh
before and after registration respectively. Also, N T

i n is the number of vertices from target

employed as corresponding points during the nonrigid registration process, and N T
tot is

the total number of vertices on the target mesh.

7.3.3.1.1 Assumption: For the design of the estimator, we formulate a parabolic J −ζ
relationship. In particular, we employ the following function describing the J − ζ rela-
tionship, also depicted in Figure 7.5,

J = aζ2 +bζ+ c, (7.7)

where a ∈R>0 and b ∈R>0 are unknown parameters, and C is equal to J (0) defined as ini-
tial condition of J which is assumed known; function (7.7) has a minimum point (ζ⋆, J⋆)
as

ζ⋆ = −b

2a
; J⋆ = −b2

4a
+ J (0). (7.8)

7.3.3.1.2 Adaptive ζdesign: By replacing the nominal values of J⋆ and ζ⋆ in (7.7), the
error of J from J⋆ is

J − J⋆ = a(ζ2 −ζ⋆2
)+b(ζ−ζ⋆). (7.9)
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Now, we introduce the integral error states

Eq =
∫ (

J − J⋆
)

d t ; Eζ =
∫ (

ζ−ζ⋆
)

d t , (7.10)

allowing to define the integral error system

Ė J = q −q⋆; Ėζ = ζ−ζ⋆, (7.11)

that can be reformulated as
ẋ = Be ue + re , (7.12)

where

x =
[∫

J d t∫
ζ d t

]
,ue =

[
u1

u2

]
=

[
ζ2 −ζ⋆2

ζ−ζ⋆
]

(7.13)

Be =
[

a b
0 1

]
,re =

[
J⋆

ζ⋆

]
. (7.14)

We propose controlling system (7.12) using MRAC [229], which let us simultaneously
identify the unknown parameters a and b (both appearing in Be ) and minimise the track-
ing error. In order to proceed, we introduce the feedback control law (see, e.g., Chapter
1 in [277])

ue =−Π̂(x − re ), (7.15)

where Π̂ is an unknown matrix that needs to be estimated. We then introduce a model
reference

ẋM =−AM xM +BM re , (7.16)

where AM is designed as a positive definite matrix and BM is an arbitrarily defined ma-
trix in which they guarantee stable model reference dynamics. Let us define the error
between the integral states and the model reference e = x − xM , whose dynamics are
defined as (see [229])

ė = ẋ − ẋM

=Be (−Π̂x+Π̂re )+re+AM xM−BM re+AM x−AM x

=−AM (x −xM )+Be (−Π̂+AM )x+Be (Π̂−BM−I

Be
)re

=−AM e +Be (−Π̂+ AM )x+Be (Π̂−BM−I

Be
)re (7.17)

Knowing v =
[

x
re

]
, the error dynamic system would be

e =−AM e +
[
−BeΠ̂+Be AM BeΠ̂−BM + I

]
v

=−AM e + φ̃v (7.18)
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where φ̃ =
[
−BeΠ̂+Be AM BeΠ̂−BM + I

]
. We assume that φ̃ = φ̂−φ, where φ̂ is an

estimating matrix, namely φ̂ =
[
−BeΠ̂ BeΠ̂

]
and φ is the unknown constant matrix,

namely φ=
[
−Be AM BM − I

]
defines φ̇= 0. Thus,

˙̃φ= ˙̂φ. (7.19)

We can observe that the error dynamic of (7.18) is bounded over time if φ̃ is bounded,
and the error is asymptotically stable if φ̃ converges to zero, considering that −AM is se-
lected as a stable matrix with negative eigenvalues, while BM and Be are constant matri-
ces.

In order to study the convergence of φ̃ to zero, a Lyapunov function is employed as
follows:

V = eP e⊤+ φ̃Γ−1φ̃⊤, (7.20)

where P ≥ 0 and Γ> 0 imply that V > 0. In order to guarantee stability, it is sufficient if
V̇ ≤ 0, then

dV

d t
= ėP e⊤+eP ė⊤+ ˙̃φΓ−1φ̃⊤+ φ̃Γ−1 ˙̃φ⊤. (7.21)

By replacing ė from (7.18), and considering (7.19), we obtain

dV

d t
=−AM eP e⊤−eP e⊤A⊤

M +2eP v⊤φ̃⊤+2 ˙̂φΓ−1φ̃⊤. (7.22)

As AM is positive definite, −AM eP e⊤− eP e⊤A⊤
M is negative semi-definite matrix, thus

dV
d t ≤ 0 if and only if

2eP v⊤φ̃+2 ˙̂φΓ−1φ̃⊤ = 0, (7.23)

which is a sufficient condition for stability where the changes in the estimating unknown
matrix φ̂ is

˙̂φ=−eP v⊤Γ, (7.24)

where Γ is known as the growth rate of the estimation law. Using (7.24), the instruction
of φ and φ̂, and φ̃→ 0, we may conclude that Π̂→ AM , and Be → (BM − I )Π̂−1, which

results in ζ → ζ⋆ = −Be1,2
2Be1,1

from (7.8), and (7.14). Thus, having ζ → ζ⋆ and for a point

on S, if a number of points on T are selected, we consider the point with the largest
distance among the selection, if all the distance for the population is greater than the l .
Otherwise, we select the closest point as the corresponding point to the point on S. The
ICFP scheme was used to find the available correspondences for all frames captured by
a single camera e.g, top-rows of the sub-figures in Figure 7.6. In the implementation, we
use the ICFP to match each consequent pair of frames (e.g. i th frame and (i+1)th frame),
starting from the first frame to the last frame, e.g. for 100 captured frames, 99 pairs were
used to generate the correspondences matrix. Apparently, not all points in a frame have
correspondences in the neighboring frames, as a new frame may not be able to capture
all the points captured in the previous frame e.g, from comparing Figure 7.6(d)-top with
Figure 7.6(d)-bottom after the 42th frame (F42) the density of Dynamic-Synchronised
Graph is reduced. Thus, some frames with very low-density point-clouds are skipped
due to the lack of correspondences.
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(a) Camera 1

(b) Camera 2

(c) Camera 3

(d) Camera 4

(e) Camera 5

(f) Camera 6

Figure 7.6: Top: Raw data; Bottom: Dynamic-Synchronised Graph as the key nodes.

ADGC-LSTM NETWORK

In this section, an end-to-end attention enhancement Dynamic-Synchronised Graph
Convolution LSTM network (ADGC-LSTM) for points-network-based action behavior
recognition, i.e. human walking, is explained. The captured data of the moving object
from each camera can be described as a unique class that has considerable overlap(s)
with other classes with respect to the configuration of the cameras. All the ADGC-LSTM
networks designed for each Dynamic-Synchronised Graph in this chapter also have sim-
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ilar structural characteristics. First, the linear layer and the shared LSTM layer were em-
ployed to collect the feature information for each of the graph. Then, the feature infor-
mation of each graph was fed into the proposed three layers of the ADGC-LSTM as node
depiction to consider the spatiotemporal features in the model.

7.3.3.2.1 Dynamic-synchronised Graph Model Based on Human feet dynamic points:
Firstly a linear layer and LSTM layer were employed to convert the 3D coordinate of
each key node into a high-dimensional feature space regarding the key node-network
sequence. The preliminary linear layer maps the 3D coordinates onto a 256-dimensional
vector, as the geometric features Pt , i.e., Pt i defines the geometry feature of key node i .
As it includes only geometry information, Pt i is effective to proceed with the learning
process regarding spatial structure features in graph models. The differential feature Vt i

between two sequential frames, facilitates the dynamic feature understanding used to
train the ADGC-LSTM. The sequential group of features is able to explain a more sparse
domain of feature information better, while the differential of the features is more sen-
sitive to the changes of the feature vectors. Thus, the LSTM layer was utilized to avoid
having unnecessary sensitivity between the sequential feature groups. Equation (7.25)
presents this proposition.

Et i = fl stm

(
concat

(
Pt i ,Vt i

))
= fl stm

(
concat

(
Pt i ,P(t−1)i

)) (7.25)

where Et i is the augmented featured of key node i at time t .

7.3.3.2.2 Learning of the ADGC-LSTM: Finally, the global feature F g
t and local fea-

tures F l
t at each timestamp were converted to scores og

t and ol
t of each class. According

to (7.1), the predicted probability of the i th class can be obtained as:

ŷt i = eot i∑C
j=1 eot i

, i = 1, · · · ,C (7.26)

In the training process, taking into account the hidden state of each time interval, the
ADGC-LSTM includes short-term dynamics and the loss function with the structure in
(7.27), extracted to the train model as:

L =−
T3∑

t=1

C∑
i=1

yi logŷg
t i −

T3∑
t=1

C∑
i=1

yi logŷ l
t i

+ λ̄
3∑

j=1

N∑
n=1

1−
∑T j

t=1αtn j

T j

2

+β̄
3∑

j=1

1

T j

T j∑
t=1

(
N∑

n=1
αtn j

)2 (7.27)

where y = (y1, · · · , yc ) is the ground-truth label. T j denotes the number of time intervals
on the j th ADGC-LSTM layer. The third term is considered to emphasize equally to vari-
ation of featured points. The final term is to restrict the number of interested nodes. λ̄
and β̄ are weight decaying coefficients.
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Figure 7.7: Hierarchical learning-synchronization process.

IMPLEMENTATION OF ADGC-LSTM
To synchronize the captured frames between each pair of cameras, we use the gener-
ated Dynamic-Synchronised Graph of each camera. We use one camera’s Dynamic-
Synchronised Graph as the supervisor to train our ADGC-LSTM Network and the other
one for validation. In this case, we use a hierarchical learning process to have the max-
imum overlap between cameras with the shown framework in Figure 7.7. In the figure,
firstly we synchronize Camera 2 with Camera 1 (where the corresponding frames of Cam-
era 2 to Camera 1 is F2−1) and name the overall point cloud as Camera 12 (Camera 1 with
synchronized Camera 2). Then synchronize Camera 3 with Camera 12 (with frame set
of F3−12) and name it as Camera 123. Then we continue with Camera 4, Camera 5, and
finally Camera 6, to have all the cameras synchronized based on Camera 1.

7.3.4. MESH REGISTRATION
Based on the established correspondences, a cost function based on Tajdari et. al [251] is
defined for registering meshed at each time step. Tajdari et. al [251] proposed the non-
rigid registration formulation as a combination of distance (W,D,U ), stiffness (M ,G),
and semi-curvature (Wc , Ac ,Bc ) terms summarised in the following formula

E(X ) = ∥

αM ⊗G
W D
βWc Ac

 X −

 0
W U
βWc Bc

∥2
F

= ∥AX −B∥2
F (7.28)

where, The sparse matrix D is formed to facilitate the transformation of the source ver-
tices with the individual transformations contained in X via matrix multiplication, and
denoted as D = di ag (vT

1 , vT
2 , . . . , vT

n ), where vi ∈S and i = 1, ...,n, and n is the number of
vertices on the S. W is a diagonal matrix consisting of weights wi . α is the stiffness con-
straint. To regularise the deformation, an additional stiffness term is introduced. Using
the Frobenius norm ∥.∥F , the stiffness term penalizes the difference of the transforma-
tions of neighboring vertices, through a weighting matrix G = di ag (1,1,1,γ). During the
deformation, γ is a parameter to stress differences in the skew and rotational part against
the translation part of the deformation. The value of γ can be specified based on data
units and the types of deformation [13]. The node-arc incidence matrix M (e.g. Dekker
[61]) of the template mesh topology is employed to convert the stiffness term into the
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Table 7.1: The anthropometric data.

Sex Age Shoe size Height Weight BMI
♀ 24.0±5.1 37.5±1.5 161.1±9.0 55.9±9.4 21.5±2.6
♂ 26.2±6.4 42.9±1.6 178.8±8.8 73.3±11.7 22.9±3.0

matrix form. As the matrix is fixed for directed graphs, the construction is one row for
each edge of the mesh and one column per vertex. To establish the node-arc incidence
matrix of the source topology, the indices (i.e. the subscripts) of edges and vertices are
addressed, for any edge of r which is connected to vertices (i , j ), in r th row of M , and the
nonzero entries are Mr i =−1 and Mr j = 1.

7.4. EXPERIMENT SETUP

7.4.1. DATA-SET

OUR DATA-SET

Using the proposed 4D scanner and the novel framework, we tried to build an open-
access data-set of 4D feet data regarding significant phases of the gait cycle such as initial
contact, foot flat, midstance, heel lift, and toe-off. An experiment was designed and
approved by the local human research ethical committee. In the experiment, after a
brief explanation, participants first read and signed the consent forms. Subjects under
18 had their consent forms signed by their parents/legal guardians. Then each subject
was guided to walk through the glass bridge with his/her bare feet twice regarding the
left and the right feet, respectively. Both feet of 59 subjects (26 females (♀) and 33 males
(♂)) were scanned while the data of participant 53 was not saved and was excluded from
the data-set, resulting in a data-set with 58 subjects. Among them, 55 subjects are right-
handed and the rest are left-handed. The age of the population ranges from 6 to 50 years
old where the mean age is 24 for females (♀) and 26.2 for males (♂). Their normal shoe
sizes range from 32 to 46 (European sizes, 20-29.3 CM). To be more inclusive and address
the diversity of the population, we invited subjects from different countries such as The
Netherlands, Belgium, Italy, Spain, Latvia, Slovenia, Swaziland, Turkey, Iran, India, Thai,
China, Japan, Costa Rica, Mexico, Cameroon, Nigeria. The anthropometric data of the
population can be found in Table 7.1.

DATA-SET FOR REGISTRATION

In the experiment, both the right and the left feet shapes in data-set number 25 in the
SHREC’14 data-set [196] were selected as the source surface. Before the experiment, the
meshes of both feet were pre-processed for a more uniform mesh using ACVD, a freely
available software provided by Valette et al. [271]. The acquired two meshes, each has
5000 vertices, were used as the inputs of the experiment as the source meshes for the
nonrigid registration regarding the left and the right foot, respectively.

7.4.2. METHODS FOR COMPARISON
We compare the proposed methods in the framework with the following methods with
similar state-of-the-art [98]:
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• ARIMA [287]: Auto-Regressive Integrated Moving Average method is one of the
well-known methods to anticipate the future values in a time sequential data-set.

• VAR [320]: Vector Auto-Regressive finds the pairwise connectivity between time-
sequential data-sets.

• LSTM [103]: Long-Short Term Memory network, is a variant of RNN network.

• GRU [53]: Gated Recurrent Unit network, is a specific RNN network.

• STGCN [305]: A Spatial-Temporal Graph Convolution model is developed based
on automatic learning of both the spatial and temporal patterns.

• GeoMAN [149]: A multi-level attention-based RNN model aimed for the geo-sensory
time sequential anticipation problem.

Root mean square error (RMSE) of the geometry based on closest points is used as
the metric.

7.4.3. ADGC-LSTM PARAMETERS’ CONFIGURATION
In the experiments, a fixed length of T = 40 is used in (7.27) from each graph sequence
as the input. Regarding the ADGC-LSTM, we assumed the neighbor set of each node
includes only nodes directly connected with itself. Regarding a fair comparison with
ST-GCN [305], the graph labeling function in ADGC-LSTM divides the neighbor set into
K = 3 subsets according to [305]. In the training process, the Adam optimizer [117] is
employed to optimize the network. The parameters of λ̄ and β̄ are set to 0.01 and 0.001,
respectively. We set the initial learning rate to 0.0005 which is reduced in every 15 epochs
by multiplying 0.1 to the learning rate. In addition, we discretize the parameter estima-

tion formula in (7.24) by considering ˙̂φ= φ̂(k+1)−φ̂(k)
∆k , k ∈Z≥0; then, knowing that ∆k = 1

as k is a sequentially increasing index (the index of intervals in the registration process),
the estimation rule (7.24) turns into

φ̂(k +1) = φ̂(k)−e(k)P v⊤(k)Γ, (7.29)

where we assumed Γ= 0.8I4×4, and P = 1. Regarding the used mesh registration method
in Section 7.3.4, we use the same parameter values in [251] regarding (7.28).

7.5. RESULTS

7.5.1. MOTION SYNCHRONISATION
To evaluate the effectiveness of the synchronization, we developed a K-fold-like scheme
where: 1) we used the mean Closest Points Geometry Distance (CPGD) [13] values be-
tween adjacent point clouds as the metric and 2) for each camera, we compared its syn-
chronized scans to the merged results of other 5 cameras at each timestamp. That is,
in the i th frame and after synchronization with each of the aforementioned methods in
Section 7.4.2, we exclude the j th camera points from the complete foot and calculate the
CPGD of the camera j th points with the remaining points. We repeat this process for all
other cameras and the average values of errors are presented in Table 7.2. According to
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Table 7.2: RMSE results of the comparison based on Closest Points Geometry Distance (CPGD), and Percent of
Improvement (PI) comparing to the raw data, for the left and right foot.

Method
Left foot Right foot

CPGD (cm) PI(%) CPGD (cm) PI(%)

raw data 7.01 – 7.35 –
ARIMA 6.81 2.8 5.95 19.1
VAR 3.24 53.8 4.22 42.6
LSTM 1.62 76.9 1.58 78.5
GRU 1.71 75.6 1.59 78.3
STGCN 1.21 82.7 1.14 84.4
GeoMAN 1.13 83.8 1.03 85.9
Our 0.64 90.8 0.72 90.2

the table, our proposed method outperforms all the other methods for the both the left
and right feet in the data-sets.

According to Table 7.2 and Figure 7.8, one can be seen is that generally the output of
the non-deep learning methods e.g., ARIMA and VAR, demonstrate a higher error than
the deep learning methods e.g., LSTM, GRU, STGCN, GeoMAN. This is investigated nu-
merically and the results are presented in Table 7.2, which shows that the deep-learning
methods could averagely improve the performance for about 80% in terms of PI, reveal-
ing the limited abilities of the non-deep-learning methods to tackle non-linearity and
complexity in time series analysis. Among the deep-learning methods, the models that
simultaneously consider temporal and spatial correlations, e.g. STGCN, GeoMAN, and
the proposed method, outperform other deep-learning-based methods including LSTM
and GRU for about 11% in terms of PI. Where, GeoMAN slightly outperforms STGCN in
terms of PI, defining that the multi-level attention mechanisms employed in GeoMAN
enhance finding the correlation among dynamic features of the feet. Our ADGC-LSTM
network, achieved better results than other included state-of-the-art methods, confirm-
ing the performance of the proposed method in describing spatial-temporal features of
the walking foot.

7.5.2. ESTABLISHING REGISTRATION-BASED DATA-SET

Through the explained method in Section 7.3.4, we register the synchronised frames in
Section 7.4.1.2 at each time step to establish a mesh morphed 3D geometry as Figure 7.9.
In this regard, we can track not only the geometry of any point but also the dynamic fea-
tures of the point such as velocity, and acceleration. In addition, we can compare the
geometry or dynamic features of any points among all captured feet shapes. To this end,
we numerically investigated the deformation variation of a few well-known foot dimen-
sions in Table 7.3. The dimensions are length (L f ), width (W f ), and ball width (BW f )
according to [263] used in [250], and their variations are ∆L f , ∆W f , and ∆BW f . Where
the operator ∆ defines the differences between the maximum and minimum value of
the dimension for a participant during walking. By calculating the average foot length
(Lave ) of all the feet in our data-set (both left and right feet) as 24.3 cm, we can see from
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(a) ARIMA

(b) VAR

(c) LSTM

(d) GRU

(e) STGCN

(f) GeoMAN

(g) Our

Figure 7.8: Results of time synchronisation with different methods.

Table 7.3 that the variation of L f is about 3% of Lave , and W f and BW f are about 5% of
Lave , which are a considerable variation and highlights the importance of 4D scanning,
and 4D studying of human actions.

7.5.3. DATA-SET COMPARISON

To the best of our knowledge and referring to Sections 7.1 and 7.2, there are few articles
that developed a 4D data-set based on a software-based frame time-synchroniser, while
we recognised a few works with similar state-of-the-art results summarised in Table 7.4
as Walking Foot [250], 4DComplete [146], Dynamic foot [36], and SURP [188]. According
to the table, we compare the presented data-sets in the works with the results of our work
in this paper using several matrices: Number of objects, Number of cameras, speed, total
frames, time-delay synchronisation, and accuracy.

Briefly, the work in [250] presents a step-by-step semi-automated framework to re-
construct a full walking foot using 7 RealSense cameras, 4DComplete [146] includes an-
imation sequences of animals and humans body, the work in [36] introduced a human
feet data-set based on a parametric statistical shape model, and SURP [188] is a data-set
including different human body part and full human body shapes.
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Figure 7.9: 4D Feet. We present a new 4D data-set of 58 Participants (P1,· · · ,P58 in the figure), including 5147
frames of 3D scans. The raw 3D scans (meshes) were collected at 15 fps through a novel 4D foot scanner
including 6 Azure Kinect DK cameras. Then we showed how to synchronize the cameras through a novel deep-
learning-based framework, and establish a mesh-morphed data-set.

Table 7.3: Foot dimensions variation results.

Parameter Left foot Right foot
∆L f (cm) 0.71±0.60 0.69±0.62
∆W f (cm) 1.1±0.9 1.0±0.9
∆BW f (cm) 1.2±0.9 1.1±1.0

According to Table 7.4, the work in [250] presents more accuracy than our work (due
to manual filtering and time-delay synchronisation), Dynamic foot [36] shows higher
speed than our work, and SURP [188] has more total frames than our work; however,
the framework we introduced is fully automated, especially for time-delay synchronisa-
tion which is completely novel, and the data-set we presented is comparatively includ-
ing more than four times objects than the other works. In addition, excluding the semi-
automated work in [250], our work outperforms the other compared works in accuracy
for an average of 45% which is a considerable achievement.

7.6. CONCLUSION
In this chapter, we proposed a generic framework to synchronize and register asyn-
chronously captured point clouds of a moving and deforming object, namely the hu-

Table 7.4: Comparison of available data-sets.

Work in Number of
objects

Number of cam-
eras

Speed (fps) Total frames Time-delay
synchronisa-
tion

Accuracy
(cm)

Walking Foot
[250]

3 7 (RealSense) 5 15 Manually 0.2

4DComplete [146] 31 1 (unknown) unknown 1.972 k not applicable 3.74
Dynamic foot [36] 30 6 (RealSense) 90 1.771 k Manually 1
SURP [188] Not available 8 (3DMD) 10 1200 k Manually 0.9
Ours 116 6 (Azure Kinect) 15 5.147 k Automatically 0.68
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man foot, through a novel ADGC-LSTM-based network and a non-rigid registration al-
gorithm. We implemented the framework on the data captured from a novel 4D foot
scanner to acquire the first 4D open-access feet data-set with the focuses on 1) find-
ing the dynamic connectivity among 3D scans captured at different timestamps of each
camera in terms of dynamic feature synchronization and 2) extracting meaningful dy-
namic features from the combined views of multiple cameras for estimating the ampli-
tude of the deformation. Experiment results show that our method improved the syn-
chronization process on average by about 30% compared to other state-of-the-art meth-
ods. Meanwhile, the quality of the acquired 4D scan was comparatively high regarding
the deformation of each part of the foot, and such information can be useful in differ-
ent applications, e.g. footwear design. Further developments include establishing a 4D
Statistical Shape Model (SSM) of human foot as a tool to study the gait and foot defor-
mations. Also, due to inconsistency in capturing speeds of different cameras, there are
differences in the resolutions of the frames, which might be improved by using temporal
super-resolution repetitive motion methods.
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8
PERSONALIZED PRODUCT DESIGN

THROUGH DIGITAL FABRICATION

Personalized designs bring added value to the products and the users. Meanwhile, they
also pose challenges to the product design process as each product differs. In this chapter,
with the focus on personalized fit, we present an overview as well as details of the per-
sonalized design process based on design practice. The general workflow of personalized
product design is introduced first. Then different steps in the workflow such as human
data/parameters acquisition, computational design, design for digital fabrication, and
product evaluation are presented. Tools and methods that are often used in different steps
in the process are also outlined where in human data acquisition, 3D scanning, and dig-
ital human models are addressed. For computational design, the use of computational
thinking tools such as abstraction, decomposition, pattern recognition and algorithms are
discussed. In design for digital fabrication, additive manufacturing methods (e.g. FDM),
and their requirements on the design are highlighted. For product evaluation, both func-
tional evaluation and usability evaluation are considered and the evaluation results can
be the starting point of the next design iteration. Finally, several case studies are presented
for a better understanding of the workflow, the importance of different steps in the work-
flow and the deviations in the approach regarding different contexts. In conclusion, we
intend to provide designers a holistic view of the design process in designing personalized
products as well as help practitioners trigger innovations regarding each step of the pro-
cess.

Parts of this chapter have been published in:
Minnoye, A.S.L., Tajdari, F., Doubrovski, E.Z.L., Wu, J., Kwa, F., Elkhuizen, W.S., Huysmans, T. and Song,
Y., 2022, August. Personalized product design through digital fabrication. In International Design Engi-
neering Technical Conferences and Computers and Information in Engineering Conference (Vol. 86212, p.
V002T02A054). American Society of Mechanical Engineers [173].
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8.1. INTRODUCTION

P Ersonalized products are products that are designed and manufactured to satisfy
the needs of individual customers, ranging from functional requirements to aes-

thetics [160]. Enabled by Industry 4.0 and especially the advanced manufacturing tech-
niques [232], the production goal of personalized products is shifting towards the added
value for consumers, who are also engaged in specifying the requirements of, or even
designing, their own products. Personalized products can be grouped into three cate-
gories [204], i.e.,

- Personalization in Identity: This category focuses on the perception of the prod-
uct; The unique form, texture, color, print, smell, taste, sound, feel, etc. provide
added value for the customers; e.g. Apple® offers customer a service of printing
his/her names on the AirPod®;

- Personalization in Capabilities: In this category, the design focuses on the person-
alized functions of the product. The unique performance of the products that is
enabled by extra ingredients (electrical, mechanical, fluidic, and thermal compo-
nents) demonstrates the added values of the product, e.g. adding electric roof in a
car configuration;

- Personalization in Fit: It addresses the presence of the personalized product re-
garding the interactions between the product and the consumer, the environment
and/ or other products that are used by the consumer. Physical characteristics of
the product, such as shape, size, mass, area, quantity, color palette, etc. and the
personalized interactions (e.g. comfort), present the added values of the person-
alized products in this category, e.g. custom fit shoes/chair/glasses.

Personalized products may help businesses in different ways, e.g. generate more
sales; increase the profit margin; stand out from the competition; lower the inven-

tory costs; have a deep insight of the needs of customers; increase customer loyalty
and power the online business [212]. Meanwhile, personalized products also pose chal-
lenges for businesses as the products require flexibility and fast responses from the busi-
ness [211]. In particular, a seamless information flow needs to be established across
customer relation management (CRM), supply chain management (SCM), enterprise
resource planning (ERP), the manufacturing process and the logistics [8]. It requires a
complete transformation of business. Additionally, due to the nature of personalized
products, they are hard to be reused. That is, an ill fitted/used product cannot be re-
paired or reused. Therefore, sustainability in the design of products, e.g. using more
recyclable materials, design for recycling, should be addressed across the complete life
cycle of the products.

In the area of design and manufacturing, traditionally, designers often design a se-
ries of products while taking into account the variations in consumers’ wishes, sizes and
other requirements. When designing personalized products, the designer is responsible
for making a "modifiable" template. This template, often a script or computer program,
processes user data (dimensions, text) and outputs the finalized design geometry and
specifications [261]. Regarding manufacturing, agile manufacturing enabled by Indus-
try 4.0 is able to quickly respond to the customer’s demands [8]. As an important enabler
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of agile manufacturing, additive manufacturing methods (i.e. 3D printing) has been at-
tracting attention due to its high flexibility and cost-effectiveness. Currently, additive
manufacturing methods are widely used in manufacturing personalized products such
as medical implants [260]. In this chapter, with the focus on “personalized fit” products,
we summarize the design process of personalized products and address the key steps
based on design practice. The rest of the chapter is organized as follows: first the general
workflow of designing personalized products is discussed. Then the role of human data
acquisition in the personalized fit is presented in Section 3. In Section 4, computational
design is introduced as a bridge between designers and the data. Furthermore, design
for digital fabrication is studied in Section 5, and methods of evaluations are explained in
Section 6. Several cases studies are presented in Section 7 to highlight different steps in
the design practice and finally, a short conclusion is drawn and possible improvements
for the future works are highlighted as well.

8.2. THE WORKFLOW
Based on the design requirements and using the computational design approach, the
general workflow (Figure 8.1) of designing personalized products can be divided into the
following iterative steps: 1) Human data/parameters acquisition; 2) Generate design us-
ing computational design tools; 3) Design for digital fabrication; 4) Product evaluation.
Besides, human models and 3D scanning techniques are often used for data acquisition,
and to generate design templates for computational design. Human data/parameter ac-
quisition In this step, data and parameters of individual body shapes are collected/generated.
Besides parameters regarding the context of the design, two methods are often used in
acquiring human body shape data:

- Direct data collection from 3D scanning, CT and/or MRI.

- Data augmentation from collected data, i.e., using a digital human model to gen-
erate (part of) the 3D human body shape.

8.2.1. GENERATE DESIGN USING COMPUTATIONAL DESIGN TOOLS
Prior to the personalized product design process, a set of design templates are often cre-
ated. Instances of the template are controlled by the data (e.g. dummy human body
shape), and/or parameters (e.g. the required length of a hand splint and the thickness
of the splint). With the newly acquired data/parameters, a personalized design can be
generated automatically based on those templates.

8.2.2. DESIGN FOR DIGITAL FABRICATION
In this step, materials and manufacturing requirements are used as the inputs, and the
personalized design is further tuned for the selected manufacturing methods, selected
materials and optimized for the specific manufacturing process.

8.2.3. PRODUCT EVALUATION
A product needs to be evaluated regarding its functionality and usability. For personal-
ized products, extensive evaluations should be conducted on different boundary condi-
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Figure 8.1: The workflow.

tions (with a safety margin) regarding engineering, manufacturing and ergonomics fac-
tors. Evaluation results shall be feedback to the designer for the next iteration of the
design.

In personalized product design for digital fabrication, a series of software tools can
be used. For human data acquisition based on 3D scanning methods, tools such as
Geomagic®, Agisoft Metashape® are often used. In the category of computational de-
sign, Rhino® (and Grasshopper®) is frequently mentioned. For computer aided design
(CAD), Solidworks®, CATIA®, NX®, Autodesk Fusion® etc. are often used and in the
area of computer aided engineering (CAE) analysis, Ansys®, Abaqus®, CATIA®, NX®,
Adams®, SimScale®, etc. are tools that are often applied. For computer aided-manufacturing
(CAM) tools, besides machine specific tools, 3D expert®, Cura®, Slic3r®, Materialise 3-
matic®, etc. are frequently applied in simulation and toolpath generation. It is worth
mentioning that the uses of those tools are not exclusive but complementary. Designers
often select tools based on the desired functionality, usability, familiarity, and availabil-
ity.

The aforementioned workflow and the detail steps are more indications rather than
guidelines. In practice, designers often take short iterations to improve the design, or
sometime they even swap the steps following the needs of a particular context. For in-
stance, in the process of design for digital fabrication, designers may modify the com-
putational design templates to fit the manufacturing requirements; or they will simply
print a (part of the) prototype to verify the set parameters. Another example is that for
the known scenarios, CAE simulations are always performed prior to the manufacturing
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(a) (b)

Figure 8.2: 3D scanning of human hands using Artec® Eva® scanner, courtesy of [312].

process to tune the design. However, CAE simulations are also conducted in the evalua-
tion for a comparison of the experiment and the simulation results to find protentional
problems in setting up the simulation, e.g. boundary conditions, material properties.
The new scenario discovered during evaluation are often simulated as well for the next
design iteration.

8.3. HUMAN DATA/PARAMETER ACQUISITION
The shape of humans differs by nature. “Personalized Fit” requires not only the desired
parameters of the product, but also data regarding the 3D body shape of the individ-
ual. For acquiring human 3D shapes, two methods are often used: 1) 3D scanning - to
acquire the exact body shape of individuals; and 2) Data augmentation using digital hu-
man models.

8.3.1. 3D SCANNING OF HUMAN BODY
Many techniques, e.g., structured lights, time-of-flight scanning, laser scanning, com-
puted tomography and photogrammetry, have been developed and used in digitizing the
3D shape of the human body. In real life scenarios, the challenges in digitizing human-
body parts are mainly the complex geometry and the potential movement of the human
body during the scanning process. Figure 8.2(a) presents the scanning of the hand where
an Artec Eva® was held by a researcher. A participant sat on a rotary chair and raised his
hand over his head. While the subject was asked to keep the body and the hand as stable
as possible, a second researcher (not shown in the picture) slowly rotated the chair with
instructions from the first researcher holding the scanner. After a few tries, it was possi-
ble to acquire the scan of the hand within 40-50 seconds. However, the quality of the scan
(Figure 8.2(b)) strongly depends on the cooperation of the subject and researchers [312].
To solve this problem, researchers/practitioners sometime use another strategy which is
to scan the negative shape, e.g. podiatrists use the scan of the foot imprint on the foot
impression foam to design customized orthotics [284]. However, this process can only
get the shape information of one posture.

In the area of high-speed digitization of human body shapes, 3D optical scanning
and photogrammetry are two techniques that are often used. 3D optical scanning meth-
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Figure 8.3: 3D hand reconstruction using photogrammetry (blue planes are identified camera image planes),
courtesy of [312].

Figure 8.4: 3dMD® scanning system (courtesy of [2]).

ods project either a laser or a structured light pattern onto a region of interest (ROI).
The images of the ROI are then captured by cameras. Based on image processing and
the use of the triangulation method, the external shape of the ROI can be acquired. Ex-
amples of those scanners are the Artec Eva® [18] and Capture 3D® [41] . Photogram-
metry is the process of creating a 3D scan of a human/object using multiple images
of the object taken at different angles. The principle of photogrammetry is to match
the same featured points (e.g. pixels or regions) in overlapped regions of different im-
ages and then compute the coordinates of those points using the triangulation method.
The Scale-Invariant Feature Transform (SIFT) [59] is a typical algorithm used to identify
those featured points. Examples of software tools that use photogrammetry technique
to construct 3D models are Agisoft Metashape® [5], and Meshroom® [11], a free and
open-source 3D reconstruction software. Figure 8.3 shows the process of reconstructing
a human hand 3D model from 50 images using Agisoft Photoscan®. Many commercial
scanners often combine photogrammetry with another technique. A typical example
is the 3dMD® scanning system [2], which is built on multiple Modular Camera Units
(MCUs). MCUs utilize a hybrid of stereo photogrammetry and structured light tech-
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(a) (b)

(c)

Figure 8.5: Building a hand SSM model. (a) 3D scans of the hand. (b) Establishing correspondences between
scans. (c) Change the coefficient of the principal components (PCs) of the hand SSM model.

nology. Depending on the needs of the applications, the system can be configured to
capture the shape of the whole body as well as different parts.

8.3.2. DIGITAL HUMAN MODEL
A digital human model is a parametric virtual representation of the variation of a human
characteristic based on large sample database. Based on a few anthropometric mea-
surements, it is possible to use a 3D digital human model to approximate shapes of the
human body with reasonable accuracy. A digital human shape model can be constructed
based on different requirements using different tools. A statistical shape model (SSM) of
the human body, which can represent the 3D shape with a limited number of param-
eters with a certain accuracy, can be utilized as a high-fidelity digital representation of
the body in many applications. In general, a SSM can be created based on digitization,
establishing correspondence and modelling these three steps.

- Digitization: In the digitization step, many 3D scans representing the whole popu-
lation are collected. For example, Figure 8.5(a), we show some scans of the human
hands. All scans are triangle meshes, i.e., the surface is represented by triangles
that are connected by their shared edges or vertices.

- Establishing correspondence: In this step, the correspondences between vertices/triangles
of a triangular mesh and a reference model (template) are established as Figure 8.5(b).
Many algorithms were developed for this purpose, for instance, the non-rigid iter-
ative closest points methods (non-rigid ICP, e.g. [251]).
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Figure 8.6: The Mannequin tool from the DINED platform [64].

- Modelling: In this step, all meshes are aligned together (brought together as close
as possible). Possible posture variations can be corrected using different methods,
such as using embedded skeletons [311]. A statistical shape model can be built
based on the mean of corresponding vertices and the variances of each vertex re-
garding the corresponding vertex in the mean model. The variances (Figure 8.5(c))
can be simplified using dimension reduction methods, e.g. the principle compo-
nent analysis method, which is a dimension-reduction tool that can be used to
reduce a large set of variables to a small set that still contains most of the informa-
tion present in the large set.

An example of online digital human models is the DINED database [106], developed in
TU Delft as Figure 8.6. Since 2000, the focus has been moving to the application of 3D
scanning in anthropometry. This has resulted in various 3D data collection as well as re-
search into the analysis and presentation of 3D anthropometric data and its applications
in design. Designers can easily acquire a human shape model based on a few parame-
ters, e.g. the statue, BMI. It is worth mentioning that the accuracy of the model strongly
depends on that if the target user is in the population that the datasets were that the
model built on, the inputs of the users as the default parameters of the model is often
the mean values of the population.

8.4. COMPUTATIONAL DESIGN
Computational design has the possibility to help designers explore the solution space in
a systematic and comprehensive manner by utilizing the computing power of computers
and the intelligence of embedded algorithms. Using computational design, the role of
designers is evolving from designing an explicit shape, to programming instructions for
a computer to generate up with (unique instances of) a design, automating steps of the
design process. The basis of the computational design is computational thinking [289].
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(a) The concept (b) Abstraction and decomposition

(c) Pattern recognition & Algorithms

Figure 8.7: An example of using computational thinking in design.

Computational thinking is a systematic approach to tackle ambiguities of design, sophis-
tications and open-ended optimal problems through exploiting fundamental computer
science principles and practices. Thus, computational thinking contains a large variety
of computational-related components, while we list the most design-oriented compo-
nents as follows:

- Abstraction: which encourages designers to focus on the core idea of the design
instead of being lost in the complexity and details;

- Decomposition: which allows designers to logically divide a new challenge in the
field into several related problems and increase the manageability of the workflow,
e.g., using the divide-and-conquer strategy;

- Pattern recognition: which help designers find the “rhythms” in the design to sim-
plify and accelerate the design process;

- Algorithm: which translates the designers’ idea to a set of ordered instructions
that utilize the computing power to automate the design process and optimize the
design.

Figure 8.7 shows an example of using computational thinking in design. The task in this
case is to design a personalized splint for a patient with bone fractures on the forearm
as Figure 8.7(a). In the abstraction of the design, we notice the similarity of human fore-
arms shapes, and it is possible to design a "reference design" of the splint as a template
on a dummy shape of the forearm. Further thinking indicates that the splint can be built
on the forearm by mapping a planar pattern as Figure 8.7(b). In the construction of the
model, the holes on the planar shape can be automatically generated by different algo-
rithms, e.g. the Voronoi algorithm. And the planar shape can be morphed to the forearm
using UV mapping (Figure 8.7(c)). For a geometric model generated by computational
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(a) (b)

Figure 8.8: (a) The Voronoi Bicycle Helmet designed by Yuefeng Zhou, Zhecheng Xu and Haiwei Wang. (b)
Panels of aircraft interiors of the flying-v project [269].

design tools, it often utilizes a set of parameters. Parametric design/modelling is the
"creation of a 3D geometric model using a series of pre-programmed rules or algorithms
based on data and design parameters" [32]. Using parametric design, the 3D model can
be generated and updated automatically based on the data and parameters specified by
the designer(s). Design parameters of personalized products can be intrinsic and extrin-
sic parameters of 3D shapes:

- Intrinsic parameters of a 3D shape can be interpreted as a human description and
interpretation of a shape or object [231]. In the case of the Voronoi Bicycle Helmet
(Figure 8.8(a), an intrinsic parameter of the helmet can be the width of the helmet;

- Extrinsic parameters can be considered as parameters of geometrical entities which
actually define the shape or object. Computers use extrinsic parameters to gener-
ate and update a 3D model, e.g. the position of each vertex in the helmet.

With the human centered design principle, it is important that the parameters of a para-
metric design should be interpretable for personalized products, preferably by the cus-
tomers to drive a design towards their needs and wishes.

8.4.1. GENERATIVE DESIGN & TOPOLOGY OPTIMIZATION
The idea of generative design is to explore the design space in a systematic and auto-
matic manner, and thus to generate the optimal design under prescribed design speci-
fications. It is an algorithm-driven design process. Example approaches include shape
and topology optimization, shape grammar-based design, machine learning based de-
sign methods, among others [292]. For instance, Wu et. al. utilized Generative Adver-
sarial Network (3D-GAN) to generate 3D objects from a probabilistic space by leverag-
ing recent advances in volumetric convolutional networks and generative adversarial
nets [293].

One widely recognized generative design technique is topology optimization [295],
which has been increasingly used in personalized product design, either for reducing
the weight without compromised to the stiffness of the design, and/or for a better de-
sign aesthetic. In topology optimization, the problem of structure design is reformu-
lated as finding the optimal distribution of material in a discretized design domain. The



8.5. DESIGN FOR ADDITIVE MANUFACTURING

8

165

optimized layout is not restricted to its initial topology, opening up possibilities for su-
perior structural performance over manual designs based on engineers’ intuition and
experience. Topology optimization aims to find the optimal structural layout for cer-
tain applications such as finding a structure that is optimized for maximum stiffness
under a given load or torque. The optimization problem is often solved using an itera-
tive approach. Figure 8.8(b) presents panels of aircraft interiors for which an innovative
topology optimization method [296] was applied in the design process.

8.5. DESIGN FOR ADDITIVE MANUFACTURING
Additive Manufacturing (AM), or 3D Printing is a Digital Manufacturing technology that
is increasingly being used in the architecture, engineering, and construction sector, and
could also be considered a prerequisite for fabricating many personalized fit designs [182].

Depending on the requirements of the design, an AM process and material needs
to be selected from the large variety of available AM processes and materials. Fused
Deposition Modelling (FDM), Stereolithography (SLA) and/or Selective Laser Sintering
(SLS) are often used in printing plastic products, and for metal parts/products, Pow-
der Bed Fusion, Direct Energy Deposition and Binder Jetting are often applied. Recent
developments on printing soft materials, conductive materials [105, 303] and multi-
material printing [213] offer new opportunities for personalized products. For instance,
the Stratasys J735 multi-color/material 3D printer uses the polyjet technique and is able
to print with multiple materials, ranging from rigid opaque materials, to transparent and
rubber-like soft materials. Figure 8.9(a) presents a personalized dress that was printed
using a multiple materials [173]. For optimal performance of the printed product, it is
essential to consider different parameters of the chosen AM process. AM-related design
considerations need to be taken into account from the beginning of the design process.
Each AM system has a set of design rules. For example, design rules for wall thickness,
tolerances, and possible overhangs directly influence the possible structures that can be
fabricated. Also, the engineering properties, e.g. thermal or mechanical properties, of 3D
printed materials differ from the original materials, mainly due to the non-uniformness
introduced by the manufacturing process.

Next to design rules, there are also manufacturing-related decisions that need to be
taken and which have an influence on part properties. A well-known example in the use
of Fused Deposit Modelling (FDM) is the building orientation as shown in Figure 8.9(b).
Different building orientations will result in different support structures, different stiff-
ness of the prototype/products, different surface finishing. Details of those constrains
are available in different knowledge bases, e.g. [1]. Referring to the 3D printing practices,
e.g. FDM, many practical issues need to be considered in setting the printing parame-
ters for a specific printing technique, or even for a particular machine, such as build
plate adhesion type and strategies to avoid warping.

As many personalized products come in contact with the user, it is important to
choose materials that can be in contact with the human body without any adverse ef-
fects, i.e. biocompatibility is recommended for such products. The FDA (U.S. Food &
Drug Administration) approved many Class I and Class II materials that can be used to
construct personalized products, such as Polylactic acid (PLA) filaments or PETG Fila-
ment, which can be used in Class II products [76]. Regarding metals, Titanium Alloy
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(a) (b)

Figure 8.9: (a) A 3D printed dress, design by Iris van Herpen, presented at Galerie de Minéralogie et de Géologie
in Paris, Photographed by Yannis Vlamos and courtesy of [173]. (b) An example of adjusting printing parame-
ters according to needs, i.e. preview of a part with different building directions using FDM.

Figure 8.10: A design of hand splints, but sizes may vary according to different hand shapes [310].

(Ti-6Al-4V) is often used in medical implants.

8.6. DESIGN EVALUATION
Personalized products can share the same design template, but the model has to be ad-
justed based on different body shapes. For example, the thickness of the hand splint
might need to be increased for larger hands as Figure 8.10. Due to size variations, it can
be difficult to set one evaluation standard. An evaluation strategy needs to be set regard-
ing different boundary conditions of the design based on the functionality and usability
of a product. Scenario creation Usage scenarios with the user(s), the product(s), the
environment and possible interactions may help the designer to have a better under-
standing of the boundary conditions for evaluating the products. A possible procedure
in defining the scenarios can be:

1. Define the persona: It is worth mentioning that personalized products differ due
to their nature. Multiple personas are often needed regarding personalized fit, e.g.,
P5 and P95 of the population, or randomly generated examples for verification;



8.6. DESIGN EVALUATION

8

167

Figure 8.11: FEM simulation of a new patient-specific prosthesis for resurfacing of the distal radius based on
different scenarios (CAE tool: Solidworks® ), Courtesy of [72].

2. Define the starting point and the tasks of the scenario(s); Multiple scenarios are
often needed in the evaluation as well;

3. Explore the stakeholders and the product use environments;

4. Write different stories regarding the user activities in different scenarios;

5. Explore the extrema (boundary conditions) regarding the use of the product in
those stories. For the functionalities of the product, the boundary conditions can
be identified through different usage scenarios and manufacturing variations. Me-
chanical, electrical, fluidic, thermal properties are often evaluated against those
boundary conditions.

8.6.1. FUNCTIONAL EVALUATION
As indicated in Section 2, CAE simulations can be use prior to the manufacturing and/or
in the evaluation of the product, depending on the requirements and the case. Through
CAE simulations, it is possible to predict/analyze the performances of a prototype in a
cost-effective manner. Figure 8.11 presents the Finite Element Method (FEM) simulation
of a patient specific implant in different scenarios (with different loading conditions).

8.6.2. USABILITY EVALUATION
Subjective evaluation is often used in the usability evaluation. Questionnaires are an
important tool(s) in subjective evaluation. There are many types of questionnaires for
evaluating different types subjective feelings, and using verified questionnaires may ac-
celerate the evaluation process. Figure 8.12 presents a simple comfort/discomfort ques-
tionnaire, which is often used to evaluate the level of comfort/discomfort that the user
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Figure 8.12: Comfort and discomfort questionnaire.

feels before, during and after using the product. "..." in the figure can be changed by
different contexts. A list of questionnaires for comfort evaluation of different products
can be found in [16]. Objective measures regarding the user and the environment are
also often used in the evaluation [230]. Parameters of the environment include vibra-
tion, light, noise, smell, etc. Physical parameters of the user(s) include anthropometry,
contact interface pressure, movements, etc. Physiological parameters of the user(s) in-
clude heart rate, heart rate variability (HRV), blood pressure, etc. Literature indicates
that there are many relations between/among objective measures and subjective feel-
ings, e.g., features in HRV are associated with the stress level [15]. With the digital twin
technology [99], and especially the embedded real-time sensors in the products, the fu-
ture personalized product might be able to predict the feeling of the user or even change
its form for a better performance.

8.6.3. EXPERIMENTS DESIGN
Experiments or trials are the “gold” standard in product evaluation. In the design of the
experiment to evaluate the design, the following aspects might be considered:

- The hypothesis(s) to be testified by the experiment;

- The setup and the location of the experiment;

- The metrics (function & usability) will be used in the evaluation;

- The measurement methods and devices that may generate data to support the
metrics;

- The data management plan (DMP) and the post-processing methods of the col-
lected data;

- The target users of the products, i.e. experiment participants should be represen-
tative for the target population;

- The safety of users in the use of the product; a risk management matrix can be a
good addition;

- In any experiments where the user(s) is involved, we need to consider the ethics
and apply permissions from the ethical committee (incl. informed consent);
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Figure 8.13: Personalized products fabricated by 3D printing.

8.6.4. RISK MANAGEMENT

Risk management is an important requirement in the development of personalized prod-
ucts especially many personalized products, such as a hand splint for managing frac-
tured bones, can be categorized as Class I or II medical devices [201]. For Medical devices
- Application of risk management to medical devices (ISO 14971:2019 [108]) specifies the
terminology, principles and a process for risk management of medical devices. Follow-
ing the scenarios defined before, according to the functional and usability evaluation
results, the designer can often use a risk assessment matrix [77] to explore the ways of
mitigating the potential risks, especially regarding the severe and catastrophic risks.

8.7. CASE STUDIES
In the past decade, “personalized product design though digital fabrication” is a focus
of the Faculty of Industrial Design Engineering (IDE) at Delft University of Technology
(TU Delft), from both research and education perspectives. For instance, in Figure 8.13,
students’ design of personalized products fabricated by 3D printing are presented. The
authors have explored and developed the workflow, advanced algorithms. Meanwhile,
they also explored various novel applications in the area of personalized designs. In this
chapter, based on those design practices, we summarized our experiences and present
the outcomes as the “best practice” for personalized product design though digital fab-
rication. In the rest of this section, we present some case studies as typical examples. It
is worth mentioning that in different cases studies, the focuses on different steps of the
workflow might be different, depending on the context of the design.

8.7.1. CASE: PERSONALIZED DENTAL

Implant – Courtesy of [169] This project uses the computational design method, to de-
sign the lattice structure for a personalized dental implant. Currently, the process of
placing dental implants is a long process with a 3-5 % failure rate, mainly caused by
the lack of osseointegration (the integration of living bone and an artificial implant) and
infection. This patient-specific implant has a porous structure to promote osseointegra-
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(a) (b)

Figure 8.14: Design of patient specific tooth implants, courtesy of [169].

tion. Another advantage of using this product is that bone healing after extraction (of the
tooth) is not required, which saves 3-6 months of the procedure.

In the personalized design, the shape of the root of the tooth was acquired by a cone-
beam computed tomography system (CBCT). Using image segmentation software, the
shape of the root can be retrieved (Figure 8.14(a)). A lattice structure was designed fol-
lowing the shape of the root using Rhino® and Grasshopper®. Such porous structure
was created to promote osseointegration, where bone can grow into the pores of the
structure for a better fixation. The prototypes were made of Ti6Al4V alloy manufac-
tured by selective laser melting (SLM). The surface of the implant was treated by plasma-
electrolytic oxidation (PEO) with silver nanoparticles to create an antimicrobial surface.
Figure 8.14(b) shows the printed implant (left), surface treated by PEO (middle), surface
treated by PEO and silver plating (right). The design was validated with oral surgeons
and all of them see added values in the patient-specific design as compared to current
solutions, which only have a set of “standard shapes”.

8.7.2. CASE: PERSONALIZED SUNGLASSES
It is difficult for the customers to find sunglasses that they like and fit to their face. Per-
sonalized sunglasses with adjustable aesthetic style as well as ergonomics fit might meet
the needs of consumers. The aim of this project is to develop customized sunglasses
that fit individual users. Photogrammetry technique was selected for acquiring human
face models. The user was asked to make a video of their face while turning his/her
head from right to left in 30 seconds. A 3D model can be constructed based on photos
extracted from the video with an accuracy of 1 mm regarding the critical areas of the
face for wearing glasses, such as nose bridge, ears, and eye positioning. (Figure 8.15(a)).
Several templates of sunglasses were designed in different styles. For each template, pa-
rameters were introduced to adjust the template for the best fit regarding a given 3D
scan. An example is presented in Figure 8.15(b) where parameter Fw is the width of the
face and Nw (a crucial parameter for the user’s comfort) is the width of the nose bridge.
The Selective laser sintering (SLS) printing method was selected as the manufacturing
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(a) (b)

(c) (d)

Figure 8.15: Personalized sunglasses, courtesy of [272].

method where PA12 was selected as the material. FEM simulations were conducted on
the small and the large designs in different scenarios to verify the stiffness of the person-
alized sunglasses structure (Figure 8.15(c)). Several prototypes were also produced and
tested by the users and Figure 8.15(d) shows one of the prototypes worn by the user.

8.7.3. CASE STUDY: ANKLE FOOT ORTHOSIS

Patients diagnosed with drop foot syndrome often encounter difficulties in walking. An
Ankle Foot Orthosis (AFO) is an orthopedic aid that limits the plantar flexion of the foot
to ensure a safe walking gait for the patient. Currently, these AFOs are often acuum
formed over a machined foam following the shape of the patient’s leg. In this case study,
we present the design of the personalized AFO using the 3D scanning and the additive
manufacturing method. The 3D shape of the lower leg of the patient was scanned first
where some extra measurements were collected manually (Figure 8.16(a)), mainly to
make up the missing part(s) in the 3D scans. The 3D scanning data was post processed
(Figure 8.16(b)) and then the AFO was designed using computational design tools, in
this case Rhino® and Grasshopper® (Figure 8.16(c)). The AFO was printed and tested
regarding engineering parameters (Figure 8.16(d)) as well as usability (Figure 8.16(e)).

8.8. CONCLUSION
Personalized product design brings added value to the product(s), meanwhile it also
poses challenges to the design process. In this chapter, we give an overview of differ-
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(a) Human data acquisition

(b) Human modelling

(c) Computational Design

(d) Functional evaluation (e) User evaluation

Figure 8.16: Design a patient specific AFO, courtesy of [273], in (e) the blue/grey block is the pressure gauage).

ent steps of the personalized product design process based on the best practice. Within
the proposed iterative workflow, the body shape of the user(s) is collected first, either by
3D scanning or based on digital human models. Computational design tools are used to
fit an existing design template to the acquired body shape. With design for digital fab-
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rication tools, the design is further optimized for a better manufacturability. Both func-
tional and user evaluation methods are introduced for evaluating the design. We want
to address that this chapter is based on the design practice, and we expect that it will
give designers a holistic view of the design process in designing personalized products
as well as help practitioners trigger innovations regarding different steps in the process.

Meanwhile, our design practice also indicated that there are many aspects can be
improved in the workflow. In the area of human data acquisition, shapes of human body
(parts) used in the design is in mainly 3D, which often resemble a static pose. Research
on acquiring 4D shapes and using those dynamic body postures in design is undergoing.
For computational design, more advanced algorithms in the area of generative design
and topology optimization are under development. In design for digital manufacturing,
different types of digital materials will be introduced and new additive manufacturing
methods, e.g. cold spray, are under investigation. For product evaluation, engineering
properties of materials manufacturing by additive manufacturing methods, especially
about their anisotropic properties, are being embedded in the material database for a
better prediction of the behaviors of the product in use. Among all potential improve-
ments, perhaps the most important is to develop a software platform to support per-
sonalized product design through digital fabrication. Currently, many software tools are
used in the design process, and designers have to shift among different tools for the de-
sired functions. This is expensive regarding both the cost and the needed skills. A plat-
form which is able to synthesize the needed functions may help designers avoid possible
errors in swapping tools and accelerate the design process, therefore improve the effec-
tiveness and the efficiency in designing.
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9
SUMMARY AND FUTURE WORK

In this chapter, we first summarize the contributions of this Ph.D. research and provide
answers to the three research questions presented in Chapter 1. The implications of this
Ph.D. project are highlighted from the perspectives of design engineering and sustainabil-
ity. Finally, discussions on the limitations of this research and possible future work are
presented.
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T HIS Ph.D. project provides effective solutions for automating the processing of 3D/4D
geometry. Firstly, new algorithms were developed and implemented to address ac-

curate 3D point cloud non-rigid registration, both as surface mesh and volumetric mesh.
The main focus of these methods was to ensure robustness, convergence, and speed. Ad-
ditionally, new hardware, specifically a 4D scanner, was designed and manufactured to
enable 4D scanning of moving objects, achieving a frame rate of 30 frames per second. To
facilitate the synchronization of time-wise aligned frames, a novel time-synchronization
software was implemented on the scanner. By employing the 3D point cloud registra-
tion methods, a comprehensive mesh-morphing 4D scan product was created. Finally,
the integration of all the developed software and hardware for design purposes is dis-
cussed. The subsequent section presents the answers to the research questions posed in
Chapter 1, highlighting the main contributions of this Ph.D. research.

9.1. ANSWERS TO THE RESEARCH QUESTIONS

• RQ1: What type of registration methods can contribute to establish 3D human shape
model and their use as prior knowledge in fitting new subject scans?

The answer to RQ1 is presented in Part II, which includes Chapter 2, Chapter 3, and
Chapter 4, with a primary focus on 3D static point clouds. Through our observations, we
found that during the registration process, a source mesh, whether it’s a surface mesh or
a volumetric mesh, may lose some of its features as deformation and feature preserva-
tion compete with each other. In Part II, we explored the idea of balancing these com-
peting factors either globally across all registering points or individually for each regis-
tering point within an existing surface registration method, namely the non-rigid ICP
algorithm.

– RQ1.1: How to integrate a shape descriptor to the nonrigid ICP algorithm to
consider the shape characteristics?

The answer to RQ1.1 is discussed in Chapter 2, which aims to present a non-rigid ICP
approach based on a newly defined concept called semi-curvature. The semi-curvature
exhibits similar properties to Gaussian curvature but possesses distinct mathematical
and geometric characteristics. Leveraging these unique properties, we incorporate the
semi-curvature into the metric for establishing correspondences and the cost function
within the registration method. Additionally, the distance and stiffness terms are embed-
ded in the cost function. By enhancing the logical dependency of vertices on their neigh-
bors, the semi-curvature term preserves surface features within a stable region through-
out the registration process, prioritizing mesh quality and convergence.

The effectiveness of the registration methods is evaluated using various human body
parts, including 22 right and left feet, 101 full human bodies from the CAESAR dataset,
and 4 lumbar vertebrae of the human spine. Through extensive testing, our method
demonstrates the ability to achieve a logical balance between the competing terms. This
is evaluated based on three matrices: the quality of correspondences selection, the qual-
ity of the surface after registration, and the time required for the convergence process. In
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comparison to the several approaches with the same state-of-the-art, the method pre-
sented in Chapter 2 outperformed them in terms of the quality of correspondences se-
lection (75%), the quality of the surface after registration (8%), and the time spent on the
convergence process (82%).

– RQ1.2: How to derive a nonrigid ICP-based algorithm that is robust to arte-
facts in a 3D shape?

The answer to RQ1.2 is explored in Chapter 3, which introduces a non-rigid ICP ap-
proach combined with an innovative adaptive feedback control scheme to estimate the
stiffness ratio. This estimation is achieved by utilizing the gradient of the mesh qual-
ity and mean curvature values per vertex. To enhance the convergence procedure to-
wards accurate estimation, an ANFIS-based predictor is integrated with the estimator.
The ANFIS predictor utilizes the topology of both the source and target meshes to antic-
ipate initial values for the adaptive estimator, facilitating the estimation procedure. Sub-
sequently, the estimated stiffness ratio is incorporated into the metric for establishing
correspondences and the cost function, alongside the distance and stiffness terms. By
adjusting the connectivity level of vertices based on their neighbors (equivalent to stiff-
ness), the ANFIS-based adaptive estimator effectively preserves surface features within
a globally asymptotically stable region during the registration process, placing emphasis
on mesh quality and convergence.

The effectiveness of the registration method is validated using various human body
parts, including 101 full human bodies from the CAESAR dataset and 11 thoracic ver-
tebrae of the human spine. Through comprehensive testing, our method demonstrates
the ability to achieve a logical balance between the competing terms. This evaluation is
based on four criteria: the quality of correspondences selection, the quality of the sur-
face after registration, the time required for the convergence process, and the level of
topology alignment between the source and target meshes after registration. In compar-
ison to the method presented in Chapter 2, the method described in Chapter 3 outper-
formed it with respect to the quality of correspondences selection (50%), the quality of
the surface after registration (60%), and the topology alignment level of the source mesh
and target mesh (20%).

– RQ1.3: How to implement the nonrigid-ICP registration method for register-
ing volumetric meshes on each other?

The response to RQ1.3 is discussed in detail in Chapter 4 and is illustrated through
a case study involving the development of a bio-informed mechanistic deep learning
model for the prognosis of pediatric spinal deformity. The training data utilized in this
study consists of both clinical data and mechanistic features. The clinical data is ex-
tracted from anteroposterior and lateral views of X-ray images using an active contour
image segmentation model. To ensure optimal performance, the parameters of the ac-
tive contour model are calibrated through sensitivity analysis. Subsequently, personal-
ized 3D spine models are established using the mesh morphing technique. This involves
registering a volumetric atlas spine model onto each of the extracted clinical data, en-
abling the detection and tracking of any geometry-dependent features within the patient-
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specific models. The bone growth model parameters are calibrated based on these fea-
tures. The mechanistic features are obtained from the bone growth model, which takes
the stress distributions of the spine as inputs. To measure the stress distribution, a
patient-specific 3D finite element model is generated using a 2D clinical data and a 3D
reconstruction algorithm. By integrating medical data with a mechanistic model, the
proposed framework addresses the challenge of limited data for patient-specific studies.
The presented model has the capability to predict the spinal curve of an individual pa-
tient, even beyond the training range. This means it can make accurate predictions for
patients who fall outside the range of the training data, enhancing its applicability and
generalization capabilities.

The effectiveness of the model is verified using the human body parts such as 5 full
human volumetric spines. Finally, in Chapter 4, the suggested FFNNCR-BM enhanced
geometry prediction accuracy by 40% for the inside of the range spine data and 84.3%
for the outside of the range.

• RQ2: What type of tools and the registration methods can contribute to establish 4D
human shape model and their use as prior knowledge in fitting new subject scans?

This research question is addressed in Part III, which comprises Chapter 5, Chap-
ter 6, and Chapter 7. These chapters focus on the collection and processing of time-
series 3D point cloud data, commonly referred to as 4D scanning. Starting with the 4D
scanner, it is crucial to achieving an optimal design that satisfies various criteria, such
as employing the minimum number of cameras, minimizing the scanner’s dimensions,
maximizing resolution and accuracy, and enabling comprehensive observation of dy-
namic objects. With this in mind, we formulated and investigated a novel optimization
problem that encompasses these criteria and facilitates optimal design considerations.
On the other hand, capturing a moving deformable object using asynchronous cameras
introduces significant nonlinear accumulative delays, often caused by data transfer con-
gestion. Consequently, the outputs of the cameras are not aligned in terms of time and
geometry. To tackle this issue, we explored effective solutions for time synchronization
and dynamic geometry registration of the camera outputs.

– RQ2.1: How to optimally define the position and orientation of a set of cam-
eras in a foot scanner?

To address RQ2.1, Chapter 5 explored a methodology for determining the optimal
number, position, and orientation of depth cameras to achieve fast 3D mesh reconstruc-
tion of a foot. The optimization problem focused on minimizing camera scanning error,
sparsity, and scanner dimensions, while maximizing the overlap between scans captured
by adjacent camera pairs. The findings demonstrated that a scanner configuration com-
prising seven cameras (one positioned at the bottom and six positioned on top) yielded
the best performance.

The experimental results revealed that the scanning accuracy, when compared to a
reference scan obtained using a high-end scanner (Artec Eva), could reach up to 2.5%
error against the output of Artec Eva scanner.
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– RQ2.2: How to establish meaningful dynamic features between frames of a
camera which guarantees to find the proper corresponded points in a limited
number of iterations from a Source mesh to a Target mesh?

The response to RQ2.2 is detailed in Chapter 6, which presents a comprehensive
workflow for extracting time-varying features from dynamic scans of deformable ob-
jects. This semi-automated procedure involves several steps. Firstly, points that can be
observed by each depth camera are pre-defined. Secondly, the raw data from each cam-
era is manually cleaned. Subsequently, the extracted data from each camera is rigidly
registered to the corresponding pre-defined points. Finally, a source mesh is non-rigidly
registered onto the point cloud obtained through the rigid registration process. By re-
constructing the final mesh using non-rigid registration for multiple frames in a time se-
ries, a unique 4D feature outcome (for specific points) or 4D trackable scanning (for all
points) is achieved. This workflow demonstrates the capability to extract dynamic infor-
mation from the scans and provides a comprehensive understanding of the deformable
object’s behavior over time.

Comparison of the output of our algorithm with the dimensions extracted from the
scanning data of the same object using an Artec Eva scanner shows the method is robust
against noise and the scanning accuracy can be as high as 3.4 % compared to the Artec
Eva scanner.

– RQ2.3: How to design a higher level of software-based synchronisation method
between cameras in a 4D foot scanner?

The answer to RQ2.3 is investigated in Chapter 7, which introduces a generic frame-
work for synchronizing and registering asynchronously captured point clouds of moving
and deforming objects. This framework incorporates a novel ADGC-LSTM based net-
work and a non-rigid registration algorithm. To demonstrate the effectiveness of the pro-
posed framework, it was implemented using data captured from a novel 4D foot scanner,
resulting in the creation of the first 4D open-access feet dataset. Within this framework,
a method was developed to determine the dynamic connectivity between different time
intervals in each camera, focusing on dynamic feature synchronization. Additionally,
meaningful dynamic features were extracted from the combined views of multiple cam-
eras to estimate the magnitude of deformation.

The experimental results demonstrate that our method significantly improved the
synchronization process by an average of approximately 30% when compared to other
state-of-the-art methods. Additionally, the quality of the acquired 4D scan was notably
high, particularly in terms of capturing the deformation of each part of the foot. Such
detailed information can prove highly valuable in various applications, such as footwear
design and analysis.

• RQ3: How can we use the 3D/4D human data in the design automation for UPPS ?

The investigation of potential solutions to address RQ3 is discussed in Chapter 8, in
which the treatment of this chapter is more general and that this treatment gives a bet-
ter idea of how methods discussed in Chapters 2–7 fit within the whole UPPS workflow.
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To the best of our knowledge, the availability of a workflow that systematically guides
designers in utilizing new methods and tools, such as the findings in Chapters 2–7, is
relatively rare. To address this gap, we provide an overview of the various steps involved
in the personalized product design process, based on best practices.

In the proposed iterative workflow, the first step involves collecting the body shape
of the user(s) through either 3D scanning or digital human models. Computational de-
sign tools are then utilized to fit an existing design template to the obtained body shape.
The design is further optimized for improved manufacturability using design for digital
fabrication tools. Both functional and user evaluation methods are introduced to assess
the design. Chapter 8 is grounded in practical design experience, and it aims to provide
designers with a comprehensive understanding of the design process for personalized
products. Additionally, we anticipate that it will inspire practitioners to innovate at vari-
ous stages of the process.

9.2. LIMITATIONS AND FUTURE WORKS
In broad terms, this dissertation examines the influence of geometry processing on de-
sign automation, resulting in the development of multiple methods and tools. Being a
part of the Next UPPS project, which is discussed in Section 1.2, the future work aims to
integrate all the developed methods and tools into a cohesive and user-friendly toolkit
for designers working in the field of personalized fit. However, there are certain limita-
tions associated with the presented methods and tools. In this section, we will discuss
these limitations and outline potential avenues for future research in the three main ar-
eas discussed in Section 1.4: 3D human body shape processing, 4D human body shape
scanning, and design automation.

9.2.1. 3D HUMAN BODY SHAPE PROCESSING

This section pertains to Part II, where several methods are discussed for registering 3D
point clouds with each other. However, it should be noted that these methods are lim-
ited in their ability to handle point clouds that are not monotonically related. For in-
stance, when attempting to register healthy with pathological data such as amputee or
deformity, these methods are expected to perform poorly. Additionally, these methods
primarily rely on searching for local features for matching and may struggle to address
significant differences between the point cloud being registered and the registering point
cloud. For example, they may encounter difficulties in identifying features between a sit-
ting person and a standing person. Overcoming this limitation is considered as part of
future work in this area.

The methods presented in this dissertation offer a general framework for integrat-
ing a variety of linear or nonlinear terms (as long as they are linearizable) into the cost
function while ensuring a stable region. A potential future direction is to investigate the
expansion of the cost function to incorporate additional new terms in our ongoing re-
search. Furthermore, in Chapter 2, the concept of semi-curvature is defined based on
the 1-ring neighboring points. It would be valuable to explore the effects of including
more rings and evaluate the robustness of the method against noise in the target mesh.
These aspects can be considered as potential areas for future research.
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9.2.2. 4D HUMAN BODY SHAPE SCANNING
In Part III, as well as in this section, we made contributions to the design of a 4D foot
scanner and developed 4D scanning techniques inspired by the methods employed to
address RQ1 in Part II. Consequently, the limitations discussed in Section 9.2.1 remain
applicable in this area. Furthermore, in the step involving the construction of the Dynamic-
Synchronized Graph based on dynamic points, the performance of the ICFP method is
highly sensitive to missed frames or very low-density point clouds. When the density
is reduced, many local features become obscured, making it challenging to reconstruct
these features from a specific frame. As a result, we chose to skip missed or low-density
frames captured by the cameras. Additionally, it is important to note that the entire pro-
cess is conducted offline due to the time required for frame synchronization and com-
putational calculations. Also, the presented data-set considered normal people and ab-
normal, or disabled people are not collected. The approaches to these limitations are
also part of future works.

Furthermore, future work in this area will focus on the optimal design of a scanner
that is equipped with Azure Kinect cameras, using a dynamic template foot. This ap-
proach will allow for the consideration of dynamic features when solving the optimiza-
tion problem. Additionally, the optimization problem will be expanded to include a term
related to lighting, as it is a critical factor in the quality of the captured data. Moreover,
a human factor term will be integrated into the cost function to ensure that participants
can comfortably reproduce their everyday walking steps. This consideration is vital for
ergonomics studies and product design, such as shoe design, where the comfort and
usability of the product for the user are paramount.

9.2.3. DESIGN AUTOMATION
Based on the design practice presented in this thesis, there are several aspects within the
workflow that offer room for improvement. In the realm of human data acquisition, the
current design focuses on specific body parts such as the foot, full body, and spine in
the 3D/4D space. However, exploring the implementation of the introduced tools and
methods for other body parts, such as the heart [37], would be an interesting avenue for
future research.

In computational design, ongoing development of more advanced algorithms in the
areas of generative design and topology optimization holds promise, as these advance-
ments may also address the 4D behavior of the human body.

Among the various potential improvements, the development of a software platform
dedicated to supporting personalized product design through digital fabrication is per-
haps the most significant. Currently, designers have to rely on multiple software tools
throughout the design process, which can be costly in terms of both expenses and re-
quired skill sets. A unified platform that synthesizes the necessary functions would help
designers avoid errors that may arise from switching between tools, while also acceler-
ating the design process and improving its effectiveness and efficiency.
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