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Frustumbug: a 3D mapless stereo-vision-based bug
algorithm for Micro Air Vehicles

R.S. Meester , T. van Dijk *, C. De Wagter † , G.C.H.E. de Croon ‡ †

Control and Simulation, Faculty of Aerospace Engineering
Delft University of Technology, The Netherlands

ABSTRACT

Obstacle avoidance is an important capability for fly-
ing robots. But for robots with limited resources, such as
small drones this becomes particularly challenging. Bug
algorithms have been proposed to solve path planning
with only minimal resources. And stereo vision provides
a rich description of the world for limited weight but typ-
ically has a limited Field of View (FoV) and is fixed to the
drone frame to further reduce weight. Based on these,
a computationally light 3D path-planning algorithm is
proposed. The proposed algorithm is called Frustumbug
and is based on the Wedgebug algorithm since this al-
gorithm copes well with a limited FoV. Since Wedgebug
only addresses 2D problems, the Local-ϵ-Tangent-Graph
(LETG) is used to extend the path planning to 3D. Dis-
parity images are obtained through an optimized stereo
block matching algorithm. Frustumbug copes well with
noisy range sensor data and includes 3D trajectories like
reversing, climbing and descending maneuvers to avoid or
escape local minima. The algorithm has been tested with
225 flights in two challenging simulated environments and
achieved a success rate of 96%. Here, 3.6% did not reach
the goal and 0.4% collided. Frustumbug has been imple-
mented on a 20-gram stereo vision system and was tested
in the real world on a MAV. This shows the potential for
small drones to reach their targets fully autonomously
based on very limited resources.

1 INTRODUCTION

The drone market keeps growing, with applications rang-
ing from industrial inspection to search-and-rescue and pack-
age delivery. Since most of the applications have to be per-
formed autonomously, autonomous obstacle avoidance is of
the essence. Current solutions combine multiple sensors and
are computationally expensive and memory intensive. An ef-
ficient, lightweight solution would require less energy from
the battery, increasing the flight time while reducing weight
requirements.

Over the past few decades, several distance measurement
sensors have been studied. To allow for onboard path plan-
ning, vision-based sensors are the only promising candidate
when looking at size and weight and power [Aswini et al.,
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(a) Drone’s viewing frustum
(b) Depth image obtained from the
information inside frustum

Figure 1: Creation of the 3D viewing frustum. The drone is
represented in red. The red dotted line indicates the traveled
path. Depth image includes a safety margin around obstacles.

2018]. To limit the computational resources used by the
drone, a mapless method is preferred over a map-building
method. Since the outdoor flight is assumed, building maps
of large, complex environments requires high resources.

Ideally, the generated path should resemble the globally
shortest path. Therefore, the drone’s ability to move up or
down to avoid obstacles needs to be exploited, hence this pa-
per focuses on path planning in three dimensions. 3D map-
less vision-based methods exist but are often combined with
probabilistic roadmaps [e.g. Matthies et al., 2014 and Lee
et al., 2021] or machine learning algorithms [e.g. Doukhi and
Lee, 2022 and Grando et al., 2022]. Since there is a certain
amount of randomness in these methods, the choice of paths
can not always be explained, and may not always lead to the
goal. Furthermore, these methods tend not to include strate-
gies for escaping local minima, or use randomly generated
sub-optimal paths to escape [e.g. Matthies et al., 2014 and
Yu et al., 2018].

Bug algorithms are used for robots with limited com-
putational resources since they plan their path using very
little computation and memory. Another advantage is that
these finite-state machines provide a strategy for escaping lo-
cal minima. Wedgebug [Laubach and Burdick, 1999] is a
two-dimensional bug algorithm that solved the problems for
robots with a small Field of View (FoV), by rotating the sen-
sor when more information is required. However, to create an
accessible algorithm for the many drones and cameras with-
out that capability, and to limit the necessary moving compo-
nents, the algorithm should be designed without the require-
ment of camera rotation. When stuck in a local minimum,
Wedgebug will follow the obstacle boundary until an inter-
mediate waypoint is found which decreases the distance to
the goal [Laubach and Burdick, 1999]. However, in 2D an

SEPTEMBER 11-15, 2023, AACHEN, GERMANY 73



ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2023-9 14th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

obstacle can only be avoided in two directions: left or right.
In 3D, the number of directions to avoid an obstacle increases
to infinity, since any location on the obstacle boundary can be
chosen. 3DBug [Kamon et al., 1996] reduces the necessary
calculations by discretizing the continuous obstacle contour
into a set of points. However, 3DBug assumes an infinite
sensor range and a 360 degrees FoV. Furthermore, it has been
tested on relatively simple environments where the locally
best decisions mostly lead to the globally best paths.

The goal of this study is to create a 3D path planning al-
gorithm, which can navigate a drone to a target while min-
imizing deviation from the nominal path using limited re-
sources. We contribute to the existing literature by; (i) extend-
ing Wedgebug to operate in 3D, (ii) introducing additional
navigation states for avoiding and escaping local minima, (iii)
designing a novel waypoint selection method to increase ro-
bustness to noisy range sensor data, (iv) extensively testing
the proposed algorithm in simulation and real-world, using a
very light-weight stereo vision system. We will call it Frus-
tumbug, as the frustum can be seen as the 3D extension of a
wedge. Figure 1 shows how the viewing frustum is shaped
(Figure 1a), along with its corresponding configuration space
(Figure 1b). Our contributions take the next step towards a
publicly available self-contained path planning package and
allow for future extensions since each path planning decision
follows from a logical decision captured in a decision tree,
and each branch can be altered individually. Assumptions
include outdoor flight during daylight, where GPS signal is
available. Furthermore, the target and obstacles are assumed
static and maze-like environments are not considered. The
remaining part of the paper is structured as follows: first, sec-
tion 2 shows the related work and section 3 explains how the
chosen approach is implemented. Then, section 4 presents
the experimental results from both simulation and real-world
testing. This paper then discusses the results in section 5 and
concludes in section 6.

2 RELEVANT WORK

The relevant work is divided into two sections: we first
look at the literature on distance measurement sensors to op-
timize our sensing, followed by literature on avoidance algo-
rithms to complete the path planning package.

2.1 Sensing
Vision-based sensors are suitable for outdoor environ-

ments since they usually have enough texture to be captured
with a camera [Matthies et al., 2014]. Deep/Machine learning
algorithms are not considered for obtaining depth informa-
tion, since these methods consist of multiple convolutional
layers, which require large matrices to be stored and many
computations to be made [e.g. Doukhi and Lee, 2022]. More-
over, the parameters of a neural network result from training
the algorithm for a longer period of time. If it shows incon-
sistent results for repetitive image texture or low-textured re-
gions, the parameters can not be easily adapted to improve

the result. It would have to be trained again on an improved
dataset, or with different hyperparameters.

Vision-based sensing can be done with one, two or more
cameras. Monocular vision in obstacle avoidance is generally
paired with optical flow methods. These have their drawbacks
in obtaining disparity images compared to stereo vision: a
larger image area needs to be searched to find matching pix-
els, estimates on position and attitude changes need to be in-
cluded in the calculation and it is not able to sense distances
in the direction of travel, since there is no optical flow in the
focus of expansion [van Dijk, 2020]. Following the argu-
ment above, stereo vision is preferred since the added weight
and required power are small; they can be as lightweight as
4 grams and be run on 168 MHz microprocessors [McGuire
et al., 2017]. To limit the computational resources, a solution
using more than two cameras is not considered.

Stereo matching can be done either local or global, and
sparsely or densely. Although global methods tend to gen-
erate better results in low-texture environments, it comes at
a computational cost [Liu et al., 2020]. Furthermore, out-
door environments during daylight have enough texture for
local methods. Sparse methods only calculate the dispar-
ity for interesting features, which decreases the computa-
tional cost. However, this would leave large gaps in the
disparity image, which are unwanted. Therefore, a local
dense stereo matching algorithm will be used to create the
disparity image. Possible stereo-matching algorithm candi-
dates can be compared by their run-time, used platforms, per-
formance and code availability from common benchmarks
KITTI [Geiger et al., 2012] and Middlebury [Scharstein and
Szeliski, 2002]. The most promising candidates are Block
Matching (BM) [Scharstein and Szeliski, 2002] and Semi-
Global Block Matching (SGBM) [Hirschmuller, 2005], due
to their fast execution time and performance in outdoor envi-
ronments [Lyrakis, 2019]. In addition, it was concluded that
BM is preferred over SGBM, since it is faster and does not
have the tendency to fill the sky with incorrect large disparity
values [Lyrakis, 2019].

Block Matching can be performed using various metrics
for similarity, pre-/post-filters and block sizes. The Sum of
Absolute Differences (SAD) consists of relatively simple cal-
culations, resulting in a fast algorithm [Patil et al., 2013]. Fil-
ters are used to delete outliers, which can be caused by occlu-
sions or untextured or repetitive image regions. These filters
will be discussed in more detail in subsection 3.1.

2.2 Avoidance

After the obstacles have been observed by the stereo cam-
era, a path needs to be planned around them for avoidance.
Path planning can be done by using either map-based or map-
less methods. Map-based methods either start with a com-
plete map of the environment (global map), or build them
using sensors (local map), here referred to as map-building
[Elmokadem and Savkin, 2021]. Mapless methods do not

2
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utilize this previously gathered information and show reflex-
like behavior based on current sensor data [Elmokadem and
Savkin, 2021]. Since complete maps of outdoor environments
are hardly ever available, map-based approaches which re-
quire a global map are unrealistic for outdoor path planning.

There is a trade-off in the decision for a map-building or
mapless method. The objective of this research is to mini-
mize deviation from the nominal path using limited resources.
Map-building methods require more computational resources
and memory, whereas mapless methods make reactive de-
cisions using a relatively small amount of processing of the
sensor data [Elmokadem and Savkin, 2021]. However, when
stuck in a local minima, a mapless method does not use any
information of previously sensed obstacles. It needs to scan
the obstacles again and it could fail to identify an escape path
already known to the map-building method. Hence, map-
building methods could lead to more optimal paths. Nev-
ertheless, only a small amount of dead ends is expected in
outdoor environments, since obstacles can also be avoided by
passing over them. Therefore, a mapless approach is chosen
to limit computational resources.

Bug algorithms are computationally cheap mapless path
planning algorithms, due to their simple reasoning in find-
ing a way to the goal. For example, Bug2 [Lumelsky and
Stepanov, 1986] draws a main line, or M-line, from start- to
goal position and follows this line until an obstacle is encoun-
tered. The obstacle boundary is then followed until the M-line
is met, and the motion to the goal is resumed. Wedgebug
[Laubach and Burdick, 1999] is of interest because it uses a
range sensor with a small FoV, and we also have limited FoV
vision. It scans a ’wedge’ to see if the goal is safe, or if an
intermediate waypoint needs to be set. In case there is no
solution inside the wedge, it will scan an adjacent wedge to
obtain more information. This algorithm was used to move
a planetary rover horizontally, i.e. in 2D. Extending it to 3D
is necessary to utilize the drone’s ability to move vertically.
3DBug [Kamon et al., 1996] is a bug algorithm that extends
path planning to 3D by constructing a Local-ϵ-Tangent-Graph
(LETG) which discretises the obstacle boundary. This is nec-
essary since any obstacle boundary is a line with an infinite
number of points. 3DBug assigns a finite number of points
to the boundary and creates the LETG, which consists of the
lines connecting the current- and the goal position to these
waypoints, as shown in Figure 2. Figure 2a shows an exam-
ple for a 2D plane and Figure 2b for a concave obstacle.

A reactive approach requires each disparity image to be
used individually for path planning. Since the assumption
that the robot can be modeled as a point robot does not hold,
a safety margin needs to be included. This can be done with
low computational costs and little memory by expanding the
obstacles in disparity space to construct the configuration
space (C-space) [Matthies et al., 2014], as presented in
Figure 3. Each pixel in the disparity image is translated into
its world coordinates and a sphere of a predefined expansion

(a) 2D plane blocking the path (b) Concave obstacle
blocking the path

Figure 2: LETG edges used by 3DBug for an obstacle block-
ing the drone’s path to goal, represented by the thicker line.

radius is drawn around it. An example for one pixel is shown
in Figure 3a. Next, a rectangle that hides the sphere behind it
is drawn just in front of the sphere, to simplify calculations.
The area captured by each rectangle obtains a depth value
equal to the pixel’s original depth value minus the expansion
radius. Using the C-space, the drone can be modeled as a
point and it can safely choose an obstacle-free pixel in the
disparity image, as shown in Figure 3b.

(a) Obstacle expansion for
one pixel. Draw a sphere
with expansion radius rv
and capture in a rectangle.

(b) C-space after obstacle expan-
sion

Figure 3: Obstacle expansion in disparity space using expan-
sion radius rv , creating the drone’s C-space.

3DBug makes two assumptions that do not hold: The
range sensor has perfect readings and all obstacles can be
modeled as polyhedral obstacles. The stereo camera will not
provide perfect readings, which makes it difficult to model
the obstacles as polyhedral. As a solution, a boundary tracing
algorithm can be used to find the obstacle contours in the dis-
parity image. The Moore-Neighbor tracing algorithm is often
used, since it is fast and easy to implement [Reddy et al.,
2012]. After creating the contour, the point that represents
the locally shortest path can be calculated. Since boundary
tracing could identify the (unsafe) concave edge in Figure 2b
as safe, sudden points are searched within the image. These
are defined in Pointbug [Buniyamin et al., 2011] as large sud-
den changes in depth readings. Hence, the sudden points will
ensure that the drone chooses a waypoint around the obstacle
instead of into it.

If the drone is stuck in a local minimum, it needs to ap-
ply a strategy to escape. Wedgebug halts the robot and scans
additional wedges to find an intermediate waypoint [Laubach
and Burdick, 1999] and goes into boundary-following mode.
Here, the robot skirts the contour of the obstacle and leaves
the boundary whenever the goal direction is free of obsta-

3
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cles. Other escaping strategies are proposed by potential
field methods, for example introducing virtual obstacles that
push the drone away [Lee and Park, 2003] or using rotational
forces to steer around the obstacle [Sfeir et al., 2011]. How-
ever, the literature focuses on solutions for 2D problems, and
3D mapless obstacle avoidance algorithms tend not to men-
tion they are getting stuck in local minima [e.g. Lee et al.,
2021 and Oleynikova et al., 2015]. Due to the limited FoV of
stereo vision also in the vertical direction, situations in which
the drone cannot instantly see a vertical escape route can def-
initely occur.

3 METHOD

The method section first discusses the sensing, followed
by the intermediate waypoint selection method and the finite-
state machines. The latter is divided into the description of the
Wedgebug states, changes in these states and the additional
states for avoiding and escaping local minima.

3.1 Sensing

The rectified stereo image pair is fed to the stereo match-
ing algorithm to generate the disparity image. The depth in
meters can be obtained by multiplying the stereo base by the
focal length, and dividing by the disparity in pixels. Figure 4
shows the result of the stereo BM algorithm using SAD. The
RGB image in Figure 4a is taken from the simulated envi-
ronment UrbanCity1. Its corresponding true depth image is
shown in Figure 4b. The generated depth image is shown
in Figure 4c shows the result using BM’s default parameters.
To improve the result, a grid search is performed to find the
parameter combination giving the best disparity images. For
this, a dataset of 100 images with ground truth depth values is
generated from the open-source simulation software AirSim2.
To quantitatively compare the performance of the parameter
combination, each disparity image was evaluated for com-
pleteness, accuracy and noise. The parameters are for block
size, texture filter, uniqueness ratio filter, speckle filter, left-
right consistency check. An extra filter has been added in an
attempt to further reduce noise: morphological opening. The
generated depth image using these optimized parameters is
shown in Figure 4d.

The next step is to expand the obstacles in disparity space,
to create the C-space. As suggested by the authors, look-up
tables for obstacle expansion coefficients are generated pre-
flight for efficiency [Matthies et al., 2014]. The method is
shown in Figure 5. Figure 5a is a small cutout of the op-
timized parameters’ depth image showing two pixels as an
example of obstacle expansion. The width of rv has to be at
least half the width of the drone to include a large enough
safety margin. Expanding every pixel of an image with a
pixel resolution of 240x320, results in the C-space shown in
Figure 5b. To further improve performance, pixels are only

1https://www.unrealengine.com/marketplace/en-US/product/urban-city
2https://microsoft.github.io/AirSim/

(a) RGB image UrbanCity (b) True depth image

(c) Depth image using BM with
default parameters

(d) Depth image using BM with
optimized parameters

Figure 4: True- and stereo Block Matching depth images, be-
longing to an RGB image from simulated environment Ur-
banCity.

expanded if their depth value is below a threshold, and the
images are downscaled. In the example of Figure 5c, a depth
threshold of 30 meters is used, speeding up the runtime by a
factor 2.5. Figure 5d shows the image downscaled by a factor
100, yielding a 24x32 resolution, and is 110 times faster than
the complete C-space. The thresholded and downscaled im-
age shown in Figure 5e is 210 times faster than the complete
C-space, with satisfactory results. Figure 5f shows what hap-
pens to the C-space if the BM parameters are not optimized:
the noisy pixels on the nearby building cover the entire FoV
after obstacle expansion, making path planning impossible.

The best parameters for a dataset are not necessarily
the best parameters for each individual image. For exam-
ple, some images could have highly repetitive textures and
would need different values for the uniqueness ratio param-
eter. Therefore, if the drone is not able to move due to poor
stereo matching, Frustumbug will change the uniqueness ra-
tio temporarily, in an effort to escape the current location.

3.2 Waypoint selection

Wedgebug and 3DBug are both finite-state machines
(FSM). They set intermediate waypoints to avoid obstacles,
and move to the goal position when possible. The basis of the
avoidance strategy is shaped by Wedgebug.

The novel waypoint selection method, shown in Figure 6,
finds the locally best waypoint based on its sensor data. The
goal- or current waypoint pixel must always be located inside
the FoV, else the drone will hover and scan. The goal pixel
is shown in white in the middle of each image. In this exam-
ple, the goal is blocked by an obstacle at around 30 meters
and a waypoint with a clearance of at least 35 meters will
be selected. The first step is to identify the ’safe’ pixels, as
shown by the white mask in Figure 6a. Second, the mathe-

4
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(a) Expansion radius rv
(b) Complete C-space

(c) Thresholded C-space (2.5x
faster)

(d) Down-scaled C-space (110x
faster)

(e) Thresholded and Down-
scaled C-space (210x faster)

(f) Thresholded and Down-
scaled C-space default parame-
ters

Figure 5: Comparing C-space efficiency measures results

matical erosion of this mask is performed, yielding the eroded
mask in Figure 6b. Since the obstacle expansion in disparity
space is extremely sensitive to noise, as shown in Figure 5f,
its expansion radius can not be too large. The mathematical
erosion is performed to ensure a large enough safety margin,
in a noise-robust manner. Third, the edge of the eroded mask
is calculated, shown in Figure 6c. To get the locally shortest
path, the obstacle needs to be avoided with the smallest devi-
ation possible. Hence, the best waypoint will be located on
the edge.

Since the Moore-Neighbor Tracing Algorithm requires a
starting point for each boundary it traces, the novel method is
preferred because it is able to find multiple safe areas. In ad-
dition, it makes it simpler to include an extra safety margin.
Since a mask also makes no distinction between waypoints
around or into concave obstacles, the fourth step is to look for
sudden points. These are defined as pixels that have neighbor-
ing pixels have a change larger than 20% in their depth value,
and are shown in Figure 6d.

The last step is to find the best waypoint according to a
cost function. For this, the obstacle boundary is discretized
to pixel resolution: each pixel indicates a new possible way-
point. The cost function minimizes the pixel distance to the
sudden points within the eroded mask (if they exist) and the
goal pixel, shown in Figure 6e. Wedgebug places the way-
point at a finite sensor range [Laubach and Burdick, 1999].

Frustumbug places the waypoint beside the obstacle it is
avoiding, to allow for goal scanning upon arrival.

(a) Safe pixels mask (b) Eroded mask

(c) Eroded mask edge (d) Sudden points

(e) Selected waypoint

Figure 6: Waypoint selection procedure

3.3 Finite-state machine - Wedgebug states

Similar to Wedgebug and 3DBug, Frustumbug is also a
finite-state machine. A simplified version is shown in Fig-
ure 7. The Wedgebug FSM is shown by the blue, green and
yellow shapes, which are connected by solid lines. Frustum-
bug expands the FSM by adding reversing, climbing and de-
scending states, indicated by the dashed grey lines. These
can be activated from motion to goal, motion to waypoint or
boundary following. The states with a solid boundary indi-
cate a moving robot, whereas the dotted boundaries indicate
a stationary robot, used for scanning. For the drone, station-
ary means hovering.

Wedgebug uses state Motion to Goal (MtG) to move the
robot directly towards the goal. If the goal is reached, the
algorithm halts. If an obstacle is detected, a new waypoint
will be searched using the method described above. If found,
state MtG transitions to state Motion to Waypoint (MtW). If
not, it transitions to state Scanning Waypoint (SW). State
MtW moves the robot to the waypoint and checks if state
MtG is possible when the waypoint is reached. If the path
to the waypoint becomes unsafe because of a previously un-
seen obstacle, a new waypoint is searched. If this waypoint is
not found, state MtW transitions to state SW. In other words,
state SW is activated when there are no safe waypoints visi-
ble in the current wedge. The robot halts and scans additional

5
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wedges to find a new waypoint that can still decrease its dis-
tance to the goal. If no such waypoint can be found, state SW
transitions to state Scanning Boundary (SB). State SB keeps
scanning additional wedges until a new waypoint is found. If
none are found, the goal is deemed unreachable. Otherwise,
state SB transitions to state Boundary Following (BF), which
moves the robot around the obstacle boundary until a transi-
tion to state MtG is possible, or until there exists a leaving
point: a waypoint which has a smaller distance to the goal
than the previously visited coordinates, making a transition
to state MtW possible [Laubach and Burdick, 1999]. The al-
gorithm stores the direction in which the obstacle boundary
is being followed (CW/CCW) to prevent backtracking. If the
goal is reachable, Wedgebug guarantees global convergence
[Laubach and Burdick, 1999].

3.4 Finite-state machine - Changes to Wedgebug states

Since Frustumbug obtains depth information from imper-
fect sensor readings, it is not able to identify independent
obstacle boundaries. In other words, it is not sure whether
it has been following the boundary of the same obstacle, or
if it has jumped to different ones (e.g. it is hard to identify
which branch belongs to which tree in a dense forest). This
causes Frustumbug to lose its global convergence guarantee.
Moreover, if an unseen obstacle appears within a short time
after transitioning from state BF into state MtW, it cannot be
said with certainty if this is the same obstacle whose bound-
ary it was just following, or if it is a new obstacle. If it is
the same, it should follow the boundary in the same direction
(CW/CCW). Therefore, the positive direction around an ob-
stacle is remembered until a distance is traveled that exceeds
a threshold, currently implemented as 20 meters.

Frustumbug is designed for a fixed stereo camera, hence
it can not rotate its sensors like Wedgebug. Whenever it has
to scan an extra wedge, it will rotate the drone around the
vertical axis (yaw). To minimize the chance of crashing into
obstacles while the camera is facing away from the direction
of motion, this is only performed when hovering stationary.
If the drone is moving, it has to come to a stop first. To transi-
tion from state MtW to state MtG, the drone first needs to stop
and scan the goal. This is done via the state Scanning Goal
(SG). Furthermore, it required a design change for state BF,
since it cannot scan the goal direction while moving along
the boundary. Frustumbug divides state BF into two states:
Boundary Following - Waypoint (BFW) and Boundary Fol-
lowing - Turning (BFT). When state SB has found a way-
point, it transitions to state BFW, which moves the drone to
the waypoint. Upon arrival, there is a transition to state BFT,
which rotates the drone to scan the goal and/or the obstacle
boundary to plan a new waypoint. The distance between the
waypoints results from a trade-off between stopping too often
and missing opportunities where the goal direction was safe.
Unfortunately, states BFW and BFT can lead to long paths if
they miss safe goal direction opportunities and the continuous

Motion to Goal

Motion to 
Waypoint

Scanning Waypoint

Goal 
reached?

Obstacle
detected?

Waypoint 
reached?
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detected?

No

No

Yes
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Waypoint 
found?
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Boundary
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Figure 7: Simplified Frustumbug FSM

stopping, rotating and going can be time-demanding.
To decrease the frequency in which states BFW and BFT

are activated, state SW is allowed to scan for waypoints that
do not necessarily decrease the distance to goal, as long as
they are within a 180 degrees FoV when facing the goal.
Since Frustumbug already lost its global convergence guar-
antee due to being unable to identify independent obstacle
boundaries, this rule is implemented to improve the overall
performance. Further improvements are made by allowing
state SW to always scan a left wedge and a right wedge, unless
a fixed direction around the obstacle has been specified. This
is implemented to prevent missing out on good opportunities
to avoid the obstacle. Wedgebug would stop scanning as soon
as it finds a waypoint in the left or right wedge [Laubach and
Burdick, 1999].

To prevent looping around the same obstacle, Wedgebug
has implemented a loop detection: when a location on the ob-
stacle boundary is visited twice, a loop is detected [Laubach
and Burdick, 1999]. A two-dimensional loop might not be
found in a three-dimensional environment, since the shape of
an object is not always constant over height, and the altitude
of the drone can change during state BFW. Since Frustumbug
can not clearly distinguish independent obstacle boundaries,
it is possible that it will follow the boundary of multiple ob-
stacles. Hence, even if a loop is found, the maneuver can
be time-consuming. Therefore, the state MtG is activated by
state BFT once the M-line is crossed. Instead of using the
M-line from start- to goal position, Frustumbug defines this
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line as the line between the start of the state SB and the goal
position, since the M-line does not play a role in the other
states.

3.5 Finite-state machine - Additional states

To further decrease the frequency in which states BFW
and BFT are activated, Frustumbug introduces the possibility
to reverse the drone backward along previously visited GPS
points using state Waypoint Reverse (WR). This state looks
for escape points that would steer the drone around the ob-
stacle in an earlier stage, using different parameter settings.
Perhaps it did not see the obstacle before due to a stereo mis-
match. Just in case it is mismatched again, the obstacle loca-
tion is remembered as a single pixel, which is redrawn in the
incoming images while reversing. One pixel is enough since
it will be expanded in disparity space to create the C-space.
State WR is only activated if the previously visited GPS coor-
dinates are located on a straight line, since the drone is going
there blindly and turning radii can be different than on the
way there.

Next, a distinction has been made regarding obstacle size
when reaching local minima: the C-space could be blocked
by a farther away large obstacle (note that these pixels are
still unsafe) or a nearby smaller obstacle which caused the
obstacle expansion to cover the entire FoV, similar to what
happened in Figure 5f. In case of a small obstacle, it is pre-
ferred to reverse and avoid using state WR, or to find a new
waypoint using state SW. However, for a large obstacle, a new
waypoint may not be found by states WR or SW. Instead, the
altitude is increased in an effort to avoid the obstacle by going
over it.

The process for selecting the best waypoint for climbing
is shown in Figure 8. Due to the limited FoV it is not pos-
sible to move straight up, hence the drone will climb using
a small flight path angle. To limit the required memory and
computation when scanning its surroundings, only three pixel
rows are checked, shown in white in Figure 8a. In the 32x24
image, these are rows 3, 6 and 9. The waypoint will not be
selected in the top rows (0, 1 and 2), since it would move out
of FoV quickly when the drone pitches forward to move, and
obstacle presence could not be checked. For each white row,
the best pixel’s column is stored if the number of safe pixels
exceeds the threshold for a safe climb. The best pixel’s col-
umn is the column with the largest distance from any obstacle
in that row. Figure 8b shows the safe pixels in grey, as well
as the best pixel in white. If a safe pixel exists in the high-
est row, it is chosen first, followed by the middle row and then
the bottom row. Preference is given to the climbing directions
that are closer to the goal direction.

The goal direction is always scanned first for a possible
waypoint to climb. If not found, state Scanning Climb (SC)
is activated. It will first scan the 180 degrees in the goal di-
rection to find a suitable climbing waypoint. If no waypoints
are found, it will scan the remaining 180 degrees. If a way-

(a) The three scanned rows in
white

(b) Waypoint for the quickest
and safest climb in white. Grey
shows obstacle-free waypoints

Figure 8: Method for selecting the best waypoint for a climb-
ing maneuver

point is found, state Waypoint Climb (WC) will move the
drone towards this waypoint. Else, state SB is activated. A
climbing maneuver always consists of at least 2 segments to
minimize the deviation from the nominal path: halfway the
desired height difference, a new waypoint will be searched.
It is possible that Frustumbug uses more than 2 segments to
obtain the desired height difference if a previously unseen ob-
stacle blocks the waypoint in state WC. A new segment is then
added, using the method described above.

The climbing maneuver is created to allow the drone to
avoid obstacles by flying over them, followed by a descend-
ing maneuver. Therefore, the drone is instructed to keep fly-
ing at a higher altitude until the obstacle is passed. Since
individual obstacle boundaries can not be distinguished, this
is implemented as a minimum distance to be flown toward the
goal at a higher altitude. Once arrived, the goal direction is
always scanned first for a possible waypoint to descend. If
not found, state Scanning Descent Forwards (SDF) is acti-
vated. The method is similar to selecting climbing waypoints,
but rows 14, 17 and 20 are scanned for descent.

State SDF only scans the 180 degrees FoV towards the
goal. This state is normally used after the obstacle has been
passed because descending backward could send the drone
back to the wrong side of the obstacle. If no waypoint for
descent is found, the drone will keep flying towards the goal
at the same altitude for a few meters and transition to state
SDF again. Else, state Waypoint Descent (WD) will move the
drone towards this waypoint. Upon arrival, the goal direction
will be scanned to see if the goal is inside the FoV. If not,
state Scanning Descent Backwards (SDB) will be activated,
which will scan the 180 degrees in the opposite direction of
the goal. If a waypoint exists here, state WD is activated to
execute the path. Else, state SDF is activated, which will try
to find a waypoint to descend the drone toward the goal.

In case the drone is located nearby and above the goal, or
if state BFT noticed that the goal is located below its FoV, it
has no clear preference between states SDF or SDB. Hence,
state Scanning Descent Either (SDE) is designed such that it
will first scan in the goal direction. If no waypoint is found,
it will continue to scan until a waypoint is found or until a
full revolution is completed, similar to what state SC does
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for climbing. A note to this: if the drone realizes it is above
an obstacle (e.g. a roof), it will keep moving towards the
goal until this obstacle is passed. It attempts to identify this
situation by checking if the pixels blocking the goal have a
roughly linearly increasing depth value since this is usually
the case when above buildings or large trees.

In total, the drone can adapt to 14 different states on its
way to the goal position. We are aware that these FSMs can
come across as quite elaborate. However, in complex envi-
ronments, there are many possible failure modes that need to
be accounted for, and we would like to present the states in
detail to keep a clear overview of the drone’s behavior during
flight. Note that each path planning decision can be changed
easily, allowing for quick user-preferred changes or upgrades.

4 EXPERIMENTAL RESULTS

The proposed algorithm has been tested both in simula-
tion and on a real drone. First, results from simulation en-
vironments UrbanCity and Forest are presented, followed by
the real-world results. A number of start- and goal positions
are generated for both UrbanCity and Forest environments.
The generated paths are stored, from which the success rate
and the path length can be obtained.

4.1 Simulation UrbanCity
UrbanCity is an environment built in Unreal Engine 4.

Open source project UnrealCV included several commands
to interact with the environment. The environment simulates
an urban city corner and contains buildings, trees, roads and
street signs. Start- and goal positions are chosen throughout
the environment: 11 on ground level and 3 on top of build-
ings. These 14 locations yield 182 possible paths to be trav-
eled. Since UnrealCV is only able to set static camera poses,
drone dynamics are not included. To navigate through the en-
vironment, the camera location is moved by 1 meter in the
direction of the waypoint each time. Only the yaw angle is
changed, not pitch nor roll.

Figure 9: All successful paths in UrbanCity. The paths are
color-coded similar to their goal position.

In total, 177 out of 182 goals were reached successfully,

leading to a success rate of 97.3 %. Figure 9 shows all the
successful paths. Each path has the same color as its goal,
however since there are only 7 colors for 14 goals, every color
appears twice. The 5 unsuccessful paths are shown in Fig-
ure 10, of which the first two are shown in Figure 10a. Here,
the crosses represent the starting points, the dots are where it
failed and the stars are the goals. The black line used state WC
to avoid an obstacle at a higher altitude near the end. Upon
arrival, the goal was still inside FoV near the bottom, but was
blocked by the top of the building, hence state MtW was ac-
tivated. A small distance later, the goal went out of FoV and
state SDE was activated, which found a waypoint in the direc-
tion it just came from: in the front of the building. The drone
got stuck in this loop until a timeout was reached. The green
line collided with a building, due to a temporary change in
value for the uniqueness ratio parameter, as explained in the
last paragraph of subsection 3.1. After a turn, the drone was
facing a different obstacle, which could not be detected using
the temporarily increased uniqueness ratio. However, with-
out this change in the uniqueness ratio parameter, dozens of
simulations got stuck.

(a) Paths 1 and 2
(b) Paths 3, 4 and 5

Figure 10: All unsuccessful paths in UrbanCity. A cross rep-
resents a starting point, a star represents the goal and the dot
is where the simulation failed.

The three other unsuccessful flights, shown in Figure 10b,
all ended in state BFT or BFW at the timeout. The blue and
cyan lines could not find a path in between the buildings and
continued to follow the boundary of a growing group of ob-
stacles. The red line initially starts boundary following al-
most from the start, but gets stuck in a loop around one of
the higher buildings. All three did not cross their respective
M-lines. They initially did not start climbing because they
were looking into small alleys, meaning that the minimum
percentage of nearby pixels was not reached.

In subsection 3.5 a distinction between small and large
obstacles was made, which would both have the entire FoV
covered after obstacle expansion. Figure 11 shows an exam-
ple to explain both possibilities using on-board data. Fig-
ure 11a shows a nearby light pole and Figure 11b shows a
farther away building. This is supported by their depth maps:
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(a) RGB image light pole (b) RGB image building

(c) Depth image light pole (d) Depth image building

Figure 11: Examples of nearby (light pole) and farther away
(building) obstacles, both blocking the C-space. The light
pole would trigger a transition to either state SW or WR, de-
pending on the current state. The building would trigger a
transition to state SC.

Figure 11c shows only a few nearby pixels in blue, whereas
Figure 11d shows a large obstacle. After obstacle expansion,
the nearby pixels cover the complete FoV for both. To transi-
tion to state SC, the percentage of nearby pixels in the depth
image needs to exceed a threshold (currently 80 percent), else
there will be a transition to either SW or WR, depending on
the current state. For Figure 11a, state SW was activated, be-
cause the camera had just turned and there was no straight
line segment, so the transition to state WR was not allowed.
For Figure 11b, state MtG transitioned into state SC.

The path lengths are compared to their default path length.
Note that the default path is not equal to the globally optimal
path. Since it is complicated to get the globally shortest path
out of UrbanCity, the default path length is defined by the path
length that is obtained if the drone would simply climb high
enough, fly over all obstacles, and descend to the goal, using
the FoV restricted climbing maneuver. On average the path
lengths are 75.8 % of their default path lengths, meaning that
Frustumbug has found an average shortcut of 24.2 %. Results
are shown in Figure 12. All 6 flights exceeding 115 % have
activated states BFW and BFT during flight.

4.2 Simulation Forest
The open-source simulator AirSim is developed by

Microsoft and contains an outdoor environment called
Forest. It includes many trees, branches, bushes, rocks and
hills, and is shown in Figure 13. The green dot indicates
the starting position, and the 8 orange dots indicate the goal
positions. Some of the goals are located near trees, but all
are reachable. The paths are flown at 3 different altitudes,
and from low to high altitude and vice versa, resulting in 40
paths. The area with the purple dots consists of fewer trees
and more hills, hence it is used to test Frustumbug’s ability
to deal with ground elevation changes. In total, 43 paths are
generated. The arrows indicate that the waypoint location is

Figure 12: Frustumbug’s path lengths histogram

outside of the image. Drone dynamics are included in this
simulation, making it more representative for outdoor flight.

Figure 13: Forest environment. The green dot represents the
start position, the orange and purple dots show all the goal
positions. Arrows indicate they are off the map.

39 out of 43 goals were reached successfully, leading to
a success rate of 90.7 %. Figure 14 shows all the successful
paths and Figure 15 shows the 4 unsuccessful paths. Fig-
ure 14a starts with the top view. Note that the left side of
this plot is the most cluttered part of the environment, with
a large number of trees located close together. Figure 14b
shows the 24 paths where start- and goal positions have the
same altitude. Two goals (14 and 15) are not reached, both
in the cluttered area. Figure 14c shows the 16 paths that go
from low to high altitude and vice versa. Here, two goals (34
and 38) were not reached, of which one was located in the
cluttered area. Figure 14d shows the three waypoints far into
the forest, in the area containing hills. All three were reached
by the proposed algorithm.

Ideally, the generated path lengths are compared to the
globally shortest path lengths. However, calculating these
would require accurate obstacle data, which is not available.
Furthermore, the climbing and descending method presented
in UrbanCity would yield unrealistically long default paths,
since the trees are generally not avoided by climbing over
them. Therefore, the paths had to be analyzed qualitatively.
It was found that any deviation it took from the nominal path
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(a) Top view of all paths

(b) Paths at constant altitude

(c) Paths with changing altitude
(d) Paths into the hills

Figure 14: All successful flights in Forest

was supported by obstacle presence.

Figure 15: Four unsuccessful paths in Forest

The four unsuccessful paths are caused by three differ-
ent reasons. The paths shown in Figure 15 belong to the
red markers in Figure 14b and Figure 14c. Paths 34 and 38
both got stuck for the same reason: states BFW and BFT did
not find an escape point in any of the wedges. Path 14 was
working its way around the trees, but got stopped by a time-
out. Path 15 transitioned many times from state BFT to state
MtW, and from state MtW back to SB (followed by BFW and
BFT). This was because the positive direction around the ob-
stacle boundary was forgotten by the time the transition to SB
happened. In other words, the threshold explained in subsec-

tion 3.4 was too low for this run, since it kept going around
the same group of obstacles in different directions, until the
timeout was reached.

4.3 Real World
For real-world testing, two JeVois3 cameras were con-

nected to one ARM-A7 processor, responsible for the navi-
gation. The setup is shown in Figure 16, where the stereo
camera is shielded in tin foil to block electromagnetic radia-
tion.

Figure 16: Experimental setup: JeVois stereo camera
mounted to the bottom of the drone.

The testing is performed in the CyberZoo facility at the
faculty or Aerospace Engineering at the TU Delft. The drone
obtains accurate position and orientation estimates via the
motion capture system Optitrack. In the experiment shown
in Figure 17, obstacles are placed in a V-shape to create a
local minimum.

Figure 17: Real world testing environment: CyberZoo facil-
ity at the TU Delft. Obstacles are positioned to create a local
minimum.

The results are shown in Figure 18, where Frustumbug
has created a safe path around the obstacles. Figure 18a uses
a low elevation angle to show that the height is approximately
constant throughout the flight. Figure 18b shows a better per-
spective of the generated path. The path starts at the green
dot, and the drone moves to the goal using state MtG. Once
the obstacle is detected, the drone stops and hovers, because a
waypoint is not found. State SW (cyan cross) starts scanning
for a waypoint, and on the second left scan, a waypoint is
found and the drone moves there. At both the orange crosses
an obstacle (the CyberZoo edge) is detected and a new way-
point is found while in the state MtW. At the dark blue cross,

3http://jevois.org/
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the waypoint is reached and state MtG moves the drone to-
wards the goal. A waypoint above the obstacles was not
found due to the limited vertical FoV.

(a) Low elevation angle

(b) High elevation angle

Figure 18: Result of a CyberZoo flight test. State SW finds
a waypoint around the group of obstacles. State MtW steers
clear of the CyberZoo edge. State MtG moves the drone to-
wards the goal.

Another experiment, where the drone only had to avoid
one obstacle, is shown in Figure 19. It starts at the green
dot in state MtG, and the obstacle is detected at the orange
cross. However, in this experiment, a waypoint is imme-
diately found, hence no transition to state SW is necessary.
State MtW moves the drone towards the waypoint. Upon ar-
rival, the state transitions to MtG to complete the last seg-
ment to the goal. Note that these real-world tests do not test
all the possible state transitions. Since the simulated environ-
ments have already proven that the algorithm can reach its
goal through challenging environments, the main focus of the
real-world tests is to show its feasibility on resource-limited
systems.

Figure 19: Result of a simple CyberZoo flight test. In state
MtG, the obstacle is detected and a waypoint is found. State
MtW moves the drone to the waypoint and a transition to state
MtG follows.

5 DISCUSSION

The results have shown that Frustumbug is able to reac-
tively plan its path from start- to goal position with an accept-
able path length, using limited computation and memory.

Previous research had various simplifications and limita-
tions. 3DBug assumed that the range sensor has perfect read-
ings over a 360 degrees FoV and that all obstacles could be
modeled as polyhedral. In addition, it was only tested in sim-
ulation. Other studies on reactive path planning in 3D did not
explicitly mention escaping local minima or used randomly
generated sub-optimal paths to escape. Frustumbug has been
demonstrated in complex, realistic environments. It has found
solutions for the assumptions that do not hold in these envi-
ronments, and escapes local minima by taking logical deci-
sions. The strengths of the proposed algorithm are the high
success rate and the small size, weight and power. Further-
more, every path-planning decision is made according to a
large decision tree. This means that any choice made by the
algorithm can be examined afterward and changed individu-
ally. Moreover, the stereo matching parameters can be altered
mid-flight if the incoming image shows signs of low texture
or highly repetitive texture.

The limitations of the algorithm come in twofold, which
will be discussed along with a few recommendations.

First, the choice of using a stereo camera with a small FoV
limits the drone’s local environment information. For exam-
ple, during boundary following, the drone has to stop often to
scan extra wedges. Furthermore, it results in small climbing
and descending angles in states WC and WD. Increasing the
FoV is a possible solution, but comes with issues. Increasing
the FoV while keeping the same image resolution will de-
crease the focal length, which decreases the largest depth that
can be measured. The stereo base could be increased to coun-
teract, but for small drones, this is not ideal. To keep a con-
stant focal length, the image size needs to be increased, but
this will increase the computation. Another solution is to al-
low separate rotation of the stereo camera, similar to Wedge-
bug. However, this would introduce more moving compo-
nents that can fail and puts more requirements on drones that
would like to use Frustumbug. A third solution would be the
use of additional lightweight sensors, for example, an HC-
SR04 SONAR. Since it has an extremely small FoV it could
not be used for normal path planning, but it could scan to see
if there is an obstacle above the drone. If not, the FoV limited
climbing maneuver can be avoided. Pointing a stereo camera
up would be excessive since detailed information about ob-
stacles above the drone is not required. The SONAR requires
only 15 mA (JeVois: 800 mA), but adds an extra weight of
8.7 grams per sensor 4.

Second, the c-space expansion could hide any escape
points in narrow streets, or local areas with a high obstacle
density. Future work could focus on running two instances of

4https://www.adafruit.com/product/3942
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the c-space algorithm, with both a small and large expansion
radius. The small expansion radius could be used temporarily
to escape the situations described above. However, the larger
expansion radius is the default for path planning, to keep a
big enough safety margin from obstacles for changes caused
by wind or GPS inaccuracy.

Further improvements can be found when looking at the
results. The black path in Figure 10a failed because it did
not identify that it was above an obstacle that needed to be
passed, as described in subsection 3.5. In this particular flight,
the drone was squeezed between two buildings of different
heights, and no linearly increasing depth values were found
in the direction of the goal. Future work could focus on de-
signing an improved version of this function. The same ra-
tionale applies to the green path: it failed because the trick
to ignore repetitive texture caused it to not recognize another
building. Future work could use image characteristics to have
a variable parameter set for the stereo-matching algorithm.

Looking at Figure 10b, improvements can be made in the
decision for state transition. For example, state SB is ac-
tivated when the obstacle is relatively small (and state SW
could not find a waypoint), but once state BFW or BFT re-
alizes that the obstacle is in fact quite large, the state should
switch to state SC and not stay in BFW or BFT, as was seen
in Figure 10b. The same figure also shows a red path getting
stuck in a loop around the same building, hence implement-
ing something equivalent to a 3D loop detection seems useful
after all.

6 CONCLUSION

Frustumbug is a cheap, lightweight three-dimensional
path-planning package for small drones. It reaches more than
90% of its goals in complex environments, is robust to noisy
range sensor data and runs smoothly on a 20-gram stereo vi-
sion system with limited memory and computation. Further-
more, it has been extensively tested, both in simulation and
real-world.

Our paper takes a step towards a publicly available path
planning package. Since it does not rely on heavy processing
power, it will be less demanding for the battery and onboard
computer, increasing valuable flight time.
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