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Abstract
Summary: T-cell receptors (TCRs) on T cells recognize and bind to epitopes presented by the major histocompatibility complex in case of
an infection or cancer. However, the high diversity of TCRs, as well as their unique and complex binding mechanisms underlying epitope
recognition, make it difficult to predict the binding between TCRs and epitopes. Here, we present the utility of transformers, a deep learning
strategy that incorporates an attention mechanism that learns the informative features, and show that these models pre-trained on a large set of
protein sequences outperform current strategies. We compared three pre-trained auto-encoder transformer models (ProtBERT, ProtAlbert, and
ProtElectra) and one pre-trained auto-regressive transformer model (ProtXLNet) to predict the binding specificity of TCRs to 25 epitopes from the
VDJdb database (human and murine). Two additional modifications were performed to incorporate gene usage of the TCRs in the four trans-
former models. Of all 12 transformer implementations (four models with three different modifications), a modified version of the ProtXLNet
model could predict TCR–epitope pairs with the highest accuracy (weighted F1 score 0.55 simultaneously considering all 25 epitopes). The modi-
fication included additional features representing the gene names for the TCRs. We also showed that the basic implementation of transformers
outperformed the previously available methods, i.e. TCRGP, TCRdist, and DeepTCR, developed for the same biological problem, especially for
the hard-to-classify labels. We show that the proficiency of transformers in attention learning can be made operational in a complex biological set-
ting like TCR binding prediction. Further ingenuity in utilizing the full potential of transformers, either through attention head visualization or intro-
ducing additional features, can extend T-cell research avenues.

Availability and implementation: Data and code are available on https://github.com/InduKhatri/tcrformer.

1 Introduction

The human immune system can mount the immune response
by generating multiple T-cell receptors (TCRs) in response to
a pathogenic infection. Principally, this response involves in-
teraction between TCRs (antigen/epitope-recognition recep-
tors on T cells) and the epitopes (short peptides from
pathogenic proteins) present in infectious agents (bacteria/vi-
ruses). Complementarity determining region 3 (CDR3) on
both the a and b chains of TCRs binds with the epitope. The
diversity of TCRs is estimated to be �1018 in humans and
1015 in mice. The hypervariability of the CDR3 region is
imparted during the V(D)J recombination process followed
by the junctional diversity due to the insertion of additional
bases during the recombination process (see Supplementary
Text for more details). Determining the binding specificity of
such highly diverse and variable TCR sequences to an epitope
is a challenging problem since multiple TCRs can bind to an
epitope and similar antigenic peptides can be recognized by a
multitude of TCRs. Learning the specificity of TCRs to the
epitopes will enhance our understanding of the specificity of
the immune responses at the receptor level to multiple similar

epitopes and/or different epitopes from different infectious
agents.

An alignment model or attention focuses a neural network
on learning relevant relationships, reducing heavy translations
and improving translation performance. One of the deep neu-
ral architectures using attention is transformers (Vaswani
et al. 2017). Unlike long short-term memory models, trans-
formers are not restricted by the length of input sequences.
Transformers are trained using transfer learning, in which
transformer models are first pre-trained on task-analogous
objectives and later fine-tuned on task-oriented objectives (see
Supplementary Text for more details). Through transfer
learning, a transformer can learn contextual information
from a large dataset during pre-training and then apply the
knowledge learnt from pre-training towards a downstream
task, which can be applied to small datasets. Since the intro-
duction of transformers, many variations of its architecture
have been released (Lan et al. 2020, Yang et al. 2019, Clark
et al. 2020, Elnaggar et al. 2020). Common in all these trans-
former architectures is the self-attention mechanism. While at-
tention focuses on important parts of the input that lead to a
better conclusion (e.g. classification), self-attention focuses on
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surrounding words to delineate the meaning between similar
words. Furthermore, multi-headed self-attention learns multi-
ple representations from the same input; each of these are
termed as a head (Devlin et al. 2018). Different transformer
models implement different strategies to utilize attention
mechanisms efficiently.

Transformers are not just limited to natural languages;
given a sufficiently large corpus, they can be tailored towards
any sequence-based inference. ProtTrans is a transformer
model trained on a large corpus of protein data, i.e. the Uniref
database and the Big Fantastic Database (BFD), comprising
216 million and 2.122 billion protein sequences, respectively,
and has been shown to learn the contextual grammar of
amino-acid sequences (Elnaggar et al. 2020). Analogous to
Natural Language processing (NLP) tasks, the ProtTrans pre-
training task involved a vocabulary of 20 amino acids.
Therefore, sentences and words are analogous to protein
sequences and amino acids, respectively. Four variants of this
ProtTrans transformer model, three auto-encoders
[ProtBERT (Devlin et al. 2018), ProtAlbert (Lan et al. 2020),
ProtElectra (Clark et al. 2020)] and an auto-regressive model
[ProtXLNet (Yang et al. 2019)], are publicly available as of
November 2021. The attention mechanisms of these models
find relevant regions in a protein sequence (pattern of amino
acids) that accurately emulate the knowledge needed to un-
derstand the mechanisms behind a protein function. This in-
spired us to use transformers to learn the patterns of a TCR–
epitope interaction to understand the processes determining
the affinity between a TCR and an epitope.

This work demonstrates the feasibility of transformers to
predict the TCR specificity to individual epitopes based on
TCR sequence information. We adapted the pre-trained trans-
formers to predict TCR–epitope binding specificity and com-
pared performances not only between different transformer
models (ProtBERT, ProtAlbert, ProtElectra, and ProtXLNet)
but also compared outcomes of these transformer models to
previously available tools based on distance metrics (Jokinen
et al. 2021) or deep learning (Sidhom et al. 2021).
Transformers are known to accept only sequence data as in-
put; however, it is known that additional information about a
TCR (besides their sequence), such as gene name and major
histocompatibility complex (MHC) class, can enhance the
predictive power of the models (Jokinen et al. 2021, Sidhom
et al. 2021). In comparison to other existing tools, we
uniquely modified the publicly available transformers to in-
corporate information about TCR gene names, as V and J
genes are instrumental in providing specificity to the TCRs to
recognize a epitope (Hodges et al. 2003). Altogether, we
showed that transformers can be used to predict TCR binding
specificity to unique epitope.

2 Materials and methods

2.1 Data acquisition and preparation

VDJdb (Shugay et al. 2018) provides a centralized source for
TCR–epitope pairs. For a TCR, the database provides CDR3
sequence, and V and J gene names of the TCRb and/or TCRa
receptor protein, the MHC Class I/II annotation, as well as
the organism (e.g. human, mouse) in which it was observed
(Shugay et al. 2018). For epitopes, the database provides the
epitope sequence (e.g. TVYGFCLL), the parent gene of the
epitope (e.g. m139), and the antigen species for the epitope
(e.g. MCMV). Confidence scores (0, 1, 2, and 3) are

associated with each TCR–epitope pair, wherein a zero score
indicates computationally predicted specificities, and higher
scores (i.e. 1, 2, and 3) represent pairs that were validated us-
ing one or more wet-lab-based techniques, e.g. assay identifi-
cation, TCR sequencing, or verification procedure.

Data obtained from VDJdb consisted of 81,762 entries (as
per November 2021), which included epitopes binding to a
variety of antigens from cancer, immune-disorders, plants,
microbes, etc. We filtered the dataset by selecting TCR-b
chains of Human and Murine epitopes with a confidence
score >0. Only single instances of duplicate CDR3 sequences
with the same V gene, J gene, MHC A, and MHC B were
retained; however, MHC gene was not used to improve per-
formance in our study. Additionally, we removed epitope spe-
cies not originating from infectious agents, i.e. related to
autoimmune disorders, cancer, synthetic, bacterial antigens,
or allergies. Finally, the TCR–epitope pairs (called ‘classes’
from hereinafter) comprising of minimum 50 CDR3 sequen-
ces were retained. Table 1 summarizes the number of TCR–
epitope pairs left after different filter steps. Finally, 2674 pairs
have been used for training, validating, and testing purposes.
This consisted of 25 unique TCR–epitope pairs (classes); 10
classes with more than 100 instances (these were considered
‘Easy-to-classify’) and 15 classes with <100 instances (these
were considered ‘Hard-to-classify’) (Supplementary Fig. S1).
Information about unique V and J genes (63 V genes and 13 J
genes) was encoded using an ordinal encoder and associated
with each TCR sequence. Consequently, the class label for
each TCR–epitope pair consists of the Epitope’s species,
genes, and sequence, e.g. ‘MCMV m139 TVYGFCLL’ class
label is composed of MCMV (Epitope’s species), m139
(Epitope’s gene), and TVYGFCLL (Epitope’s sequence).

2.2 Multi-class classification of TCR–epitope pairs

Four different models, i.e. ProtBERT (Devlin et al. 2018),
ProtAlbert (Lan et al. 2020), ProtElectra (Clark et al. 2020),
and ProtXLNet (Yang et al. 2019) were used for learning and
predicting the TCR–epitope pairs in a multi-class setting
(Elnaggar et al. 2020). The input is TCR protein sequence,
and the output is 1 of 25 epitope classes. We used pre-trained
models where ProtBERT, ProtAlbert, and ProtXLNet models
were pre-trained on the Uniref database (Suzek et al. 2007),
and ProtElectra was trained on the BFD database (https://bfd.
mmseqs.com/). These pre-trained models were subsequently
used to learn and predict TCR–epitope specificity. Hereto, the
2,674 TCRs divided over 25 different classes of epitopes is
split into 70% training, 15% validation, and 15% testing
dataset in a stratified way.

Table 1. Number of TCR–epitope pairs retrieved from the VDJdb

database after each filtering step.

Filtration criteria Sample count

Raw data 81 762
Post removing N/A 80 679
Selecting only human and murine antigen 78 647
Selecting TCR–epitope pairs with confidence score >0 9580
Post removing allergen and cancer antigen 8547
Post removing duplicated entriesa 5680
Selecting the TCR–epitope pairs with TRB sequences 4057
Selecting the TCR–epitope pairs with �50 instances 2674

a Duplicates were removed based on the same gene and MHC gene name
and identical CDR3 sequence.

2 Khan et al.
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2.2.1 Using pre-trained transformers to predict TCR–epitope
specificity
Each transformer has its specific tokenizer, which prepares
the sequence-based input using its pre-trained vocabulary. A
general overview of the transformer model is depicted in
Fig. 1A. The embedding block prepares input (CDR3 sequen-
ces of TCRB in selected TCRs) for the transformer, which
includes adding special tokens to denote special relationships
(such as padding), an attention mask to denote if a token is to
be considered for attention calculation, and a segment ID to
denote two separate sequences in the same input. The

tokenizer in the embedding block also performs the encoding
of labels and presents sequences to the transformer block.
Each tokenizer maintains homogeneity of the sequence encod-
ing and presents each sample to the transformer to learn a
representation. The representation of the input sequence is
then fed to a classification block, which performs sequence in-
ference tasks. In the baseline transformer (Fig. 1A), the classi-
fication block receives an n-dimensional (e.g. in the case of
ProtBERT, n¼ 768) representation of each amino acid as in-
put from the final hidden state of the transformer block. The
first token of every sequence is a special classification token

Figure 1. Overview of the data flow in the different transformers settings. (A) Baseline setting: The CDR3 sequence is provided to the tokenizer to

generate a numerical representation of the input sequence based on embeddings learnt during pre-training. The prepared input is divided into three parts

(Query, Value, and Key) and provided to the transformer block to implement the self-attention mechanism. The output representation generated by the

transformer block is then used by the classification block to predict the epitope label. (B) Classification setting: Sequence is provided to the transformer

block and the gene usage information is directly presented to the classification head, where the gene information is added into a bilinear layer. (C)

Embedding setting: The sequence along with the gene usage information from the embedding block is provided to the transformer block; thereafter, the

combined embeddings are fine-tuned.
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(signified as Classification (CLS) by the tokenizer), which con-
tains the aggregated representation of the input sequence in
the final hidden state. This representation is termed pooled
output. The pooled output is the input to the classification
block to perform the TCR–epitope classification task. The
standard classification block consists of a linear layer map-
ping the pooled output vector (x of the size of the hidden
layer) from the transformer block as shown in Equation (1) to
class label (y), where y is the number corresponding to the
classes (epitope labels e.g. ‘MCMV m139 TVYGFCLL’).

y ¼ xAT þ b: (1)

2.2.2 Loss function for imbalance data
The imbalance in our dataset prompted us to adapt the loss
function. A binary loss function created upon cross-entropy is
Focal-loss (Lin et al. 2020) which adds a modulating factor
(or Focusing parameter) to cross-entropy [Equation (2)]. The
modulating factor is adjusted using gamma (c > 0), which
reduces the contribution of samples from the ‘easy-to-classify’
classes and enhances the contribution of samples of the ‘hard-
to-classify’ classes to the loss value. The enhanced loss value
of samples from the hard-to-classify classes informs the model
to accommodate more for these classes, which otherwise is
overlooked during training. The loss appears normal to the
model; the adjusted loss value is the manipulation performed
before providing it to the model, and the model can then di-
rect the gradient accordingly.

CE ¼ �
Xc

i¼0
tilogðf sð ÞiÞ: (2)

FL ¼ �
Xc

i¼0
tið1� f sð ÞiÞ

clogðf sð ÞiÞ: (3)

Multi-class cross-entropy can be extended to multi-class fo-
cal loss with an additional step after calculating the sum of
losses for each class, i.e. applying the modulating factor as
shown in Equation (3). A recommendation of c ¼ 2 was
made by the authors of focal loss; however, they only as-
sumed binary cases. For the multiclass classification model in
our problem, we used c as hyperparameter to optimize.

2.2.3 Providing VJ gene (non-sequence) information to the
transformers
We sought ways to include information about gene names
(e.g. TRBV1 and TRBJ1-1) as additional input as this has
shown to improve TCR–epitope binding specificity prediction
performance. To avoid re-training the transformer models
(which would take an enormous amount of time, see
Supplementary information: Transfer learning), we altered
the tokenizer to accommodate additional features along with
sequences. We explored two different ways to do that: (i) be-
fore, and (ii) after the transformer blocks. The first option
requires a modification in the classification block of the model
(Fig. 1B). The classification block receives the additional fea-
tures directly from the tokenizer, bypassing the transformer
block. Each CDR3 sequence has V and J gene names associ-
ated with it. An ordinal encoding for these gene names is pro-
vided to the tokenizer, which it associates with each sample
and then given to the classification block. We replaced the lin-
ear layer with a bi-linear layer where the pooled output (x1

having a size equal to the size of the hidden layer) and gene
encoding (x2 with size 2 representing V and J gene names sep-
arately) is mapped to a class label (y). The bi-linear transfor-
mation, as shown in Equation (4), will calculate weight
matrix (A) and bias (b) based on the two input vectors (se-
quence, x1, and gene name information, x2), which will ex-
press the interaction between sequence and gene names.

y ¼ xT
1 Ax2 þ b: (4)

The second option requires a modification in the embed-
ding block (Fig. 1C). The embedding block of a pre-trained
model contains a learnt representation of its vocabulary. The
introduction of additional information would require learning
new representations. To avoid this, we propose to add two
embedding layers; one for all unique V genes, and another for
all unique J genes (Fig. 1C). The padding index for these
layers is different from the padding for the word embedding
layer (so we explicitly pass an alternative padding index for
the additional features; 0 indices for V and J genes embedding
layer). Special tokens were added before and after a protein
sequence during tokenization. The separate padding index
will associate a gene embedding to only a protein sequence
and not to the special tokens. Each sequence embedding and
the V and J gene names are then merged. The new representa-
tions were presented to the classification block.

The padding index, the unique gene names and the special
token together, resulted in a total embedding size for V genes
of 65, and for J genes of 15. These new layers were randomly
initialized when fine-tuning. To synchronize with the fine-
tuning of the rest of the model, these weights are learned at an
increased rate (for the sake of simplicity, by a factor of 10).

2.3 Hyperparameter optimizations and performance

evaluation

A Bayesian algorithm (Tree Parzen Estimator) is utilized to
optimize the hyperparameters of different models using
Optuna (Akiba et al. 2019), which is recommended for situa-
tions that require the exploration of many hyperparameters.
Experiments are tracked using comet.ml and PyTorch for
training each model. Optimization is done for 10 major
hyperparameters: gradient accumulation, learning rate,
weight decay, attention layer dropout (not included in auto-
regressive or AR model), hidden layer dropout (‘dropout’ in
AR model), classifier layer dropout (‘summary last dropout’
in AR model), adam_beta1, adam_beta2, warmup ratio, and
gamma. A seed as a hyperparameter ensures model stability,
but performance is not evaluated on seed values.

When optimizing hyperparameters we gain insight into the
behaviour of the transformers when trained with TCR data.
Optuna (Akiba et al. 2019) provides sampling strategies
depending on the hyperparameter of choice. Supplementary
Table S1 presents the sampling strategy for each hyperpara-
meter and its range. Since training steps are directly dependent
on training batch sizes, and since we have small training data
of 1,871 samples, we used a training batch size and an evalua-
tion batch size of 1 and 8, respectively. In preliminary experi-
ments, we experienced high fluctuations in evaluation loss,
which made transformer training susceptible to stopping pre-
maturely. Therefore, each experiment is trained with an early
stopping for 50 training epochs giving sufficient training time
to adjust fluctuations caused by focal loss.

4 Khan et al.
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2.4 Evaluation metrics

We used the weighted F1-score and receiver operating charac-
teristic (ROC) curve plots as metrics to assess the predictabil-
ity of the transformer models. Additional metrics included
were a balanced accuracy score, weighted precision, and
weighted recall to provide an overview of the different per-
formances of a model. Parallel coordinate plots and parame-
ter importance were plotted to evaluate the contribution of
parameters towards the objective value.

In a multi-class setting, the assessment of transformers is
done through the epitope-specific perspective and model-
specific perspective. The area under the ROC (AUROC) curve
provides an epitope-specific perspective where performance
comparison for TCR specificity can be made. The weighted
F1-score of the model provides us with a holistic measure for
comparing different models (across all methods) in a multi-
class setting and hence a model-specific perspective.

The performances of all 12 transformer implementations (4
transformer models each with 3 different modifications) were
evaluated using ROC plots. The AUROC curve for all 25
labels were assessed using the Wilcoxon test to compare per-
formance across different implementations of the same trans-
former model. The transformer implementation with no
modifications for each model are called baseline, while the
ones with modifications in classification and embedding
blocks are called classification and embedding.

We compared the transformer models to existing (non-
transformer) models. TCRGP and TCRdist both have 24
common epitopes that overlap with our filtered dataset.
DeepTCR has 20 epitopes in common. We used the AUC
values published in these studies to compare with the AUC
values of our models.

2.5 Benchmarking performance of our method

We benchmarked the performance of our methods by first
assessing our models on the IMMREP benchmarking dataset
(Meysman et al. 2023) and later by comparing the perfor-
mance of our model with the model that is solely based on
TCR sequence similarities (Baseline-SS) (Montemurro et al.
2021). Of 25 epitopes in our study, only four epitopes, i.e.
CMV pp65 NLVPMVATV, CMV pp65 TPRVTGGGAM,
EBV BMLF1 GLCTLVAML, and InfluenzaA M GILGFVFTL
were common in the benchmarking dataset. Similarly, only
four epitopes were common in the baseline-SS model as well,
i.e. CMV pp65 NLVPMVATV, EBV BMLF1 GLCTLVAML,
HCV NS3 ATDALMTGY, and InfluenzaA M GILGFVFTL.
All these labels are hard-to-classify. For the Baseline-SS
model, we compared the best performer for the four labels
rather than our overall best performer. Finally, we assessed
the performance of our best model is not by chance and can
perform better than the V and J genes identities alone.

3 Results

We compared the performance of four different transformer
models, three of which are based on an auto-encoder architec-
ture (ProtBERT, ProtAlbert, and ProtElectra) and one is based
on an auto-regressive structure (ProtXLNet), as well as their
modification to include information about the V/J genes, on a
dataset containing binding specificities between 2,674 TCR–
epitope pairs. These pairs are split in 25 classes, with 10 clas-
ses having more than 100 instances (and considered ‘Easy-to-
classify’), while 15 classes have <100 samples (and considered

‘Hard-to-classify’) (Supplementary Table S2). Data were split
in 70% training, 15% validation, and 15% testing dataset in
a stratified way across the classes. The validation set was used
to optimize the hyperparameters, and the testing set was used
to estimate the performance of the optimized models. Each of
the four different transformer models were run in three differ-
ent settings: (i) without the use of information about the V/J
genes (Baseline setting), (ii) including the V/J gene names
within the classification block (Classification setting), and (iii)
including information about the V/J names by modifying the
embedding layer (Embedding setting). See Fig. 1 and Section 2
for more details. This resulted in 12 optimized transformer
models (4 different transformers, in 3 different settings).
These optimized models were subsequently compared to three
of the current best-performing tools classifying TCR–epitope
pairs, i.e. TCRGP, TCRdist, and DeepTCR (all non-
transformer-based). We first discuss the tuning of the hyper-
parameters and the learning behaviour of the transformer
models. Then we compare the classification performances be-
tween the different models.

3.1 Learning behaviours of the transformer models

The three auto-encoder models had 11 hyperparameters (in-
cluding the seed value), while the auto-regressive model had
10 hyperparameters). Optimization for these hyperparameters
was performed for at least 100 runs for each implementation.
For the ProtBERT and ProtElectra auto-encoder models, the
hidden-layer dropout probability had the largest influence on
the optimization (65%–87% and 71%–81%, respectively)
(Table 2, Supplementary Fig. S2). Moreover, for both models,
the importance of the hyperparameters is roughly the same
across the three different settings. For the ProtAlbert auto-
encoder, we observe equal influence across hyperparameters.
Within the baseline setting, the hidden-layer dropout proba-
bility is still the most influential although the learning rate is
also important, while in the other settings, the learning rate is
the most influential (21–39%). This could be because ProtBert
and ProtElectra do not have parameter sharing among the en-
coder blocks, resulting in a large network size (thus more
parameters to train, emphasizing the need for regularization),
whereas ProtAlbert have parameter sharing among the encoder
blocks, resulting in a smaller network size and thus less need for
regularization. As ProtAlbert is not solely dependent on the
encoding representation but also on the learning rate, it might
be more efficient in learning new relationships from the interac-
tion between TCRs and epitopes.

The overall importance of the hyperparameters in the
Classification setting of the ProtXLNet auto-regressive model
was similar to the ProtBert and ProtElectra auto-encoders,
with the dropout probability being most influential (62%).
The Baseline and Embedding settings for ProtXLNet showed
a behaviour which was more similar to ProtElectra, with the
learning rate being most important (30% and 36%, respec-
tively). From this, we conclude that ProtXLNet finds it diffi-
cult to introduce the gene usage in the classification block, as
it is trying to generate a better representation from the trans-
former block.

3.2 Comparing performances of transformer models

When comparing the weighted F1 scores of the transformer
models, we see a general trend in which ProtXLNet per-
formed better than ProtElectra, while ProtElectra performed
better than ProtAlbert. ProtBert performed the worst

Transformers determining TCR-epitope specificity 5
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(Fig. 2A, Table 2, Supplementary Table S3). Moreover, we
see another trend that the Embedding setting performed the
best, followed by the Baseline setting. The Classification set-
ting performed worst, although for ProtBert, the classification
setting performed the best. On contrary, we observed that the
Embedding setting outperformed the other settings for the
rest of the transformer models, i.e. ProtAlbert, ProtElectra,
and ProtXLNet. In this setting, the number of unclassified
and misclassified labels reduced significantly (Supplementary
Fig. S3).

When comparing the mean AUROC scores of all classes
within the TCR–epitope dataset across the best (F1 score) set-
ting for each of the four transformer models, we observed
that the AUROC of the Classification setting of ProtBERT im-
proved the performance over ProtAlbert in the Embedding
setting. The Embedding setting of the ProtXLNet consistently
performed significantly better than the other methods
(Wilcoxon paired comparison, all three P-value’s <0.0021)
and has the least unclassified and misclassified labels
(Supplementary Fig. S4).

Twenty-five classes in the dataset were divided into ‘easy-
to-classify’ classes and ‘hard-to-classify’ classes (Section 2). In

line with the label classification, we observed that some that
some epitopes are hard to classify by all the models, e.g. the
CMV and EBV epitopes (Supplementary Fig. S4). Some mod-
els have problems to recognize specific classes, e.g. the
Baseline setting of ProtBert cannot identify seven ‘hard-to-
classify’ category (Supplementary Fig. S4) most likely due to
very low number of training samples for these classes. When
investigating the AUROC scores for the different categories of
classes (Fig. 2B), we observed that there is hardly any differ-
ence between the AUROC scores for the ‘easy-to-classify’
classes and ‘hard-to-classify’ classes for ProtAlbert,
ProtElectra, and ProtXLNet (scores are evenly distributed)
(Supplementary Table S3). ProtBERT, however, seemed to
struggle more with some of the ‘easy-to-classify’ classes.
When studying the differences in classification accuracy be-
tween the ‘easy-to-classify’ classes and ‘hard-to-classify’ clas-
ses for the different settings for each transformer, we found
no significant differences (Supplementary Fig. S5). Although
based on the performance of the models, we observed that the
Classification setting is the most economical as it used
the least training time when compared with other methods of
the models (Table 2).

Table 2. Performance metrics of the different transformer models across the three different settings (Baseline, Classification, and Embedding setting) on

the test dataset.

PROT transformers Settings Duration (h) Weighted F1-score Balanced accuracy Mean AUC

ProtBERT Baseline 4.49 0.39 0.33 0.79
Classification 1.99 0.41 0.37 0.8
Embedding 2.21 0.41 0.35 0.79

ProtAlbert Baseline 3.16 0.42 0.37 0.79
Classification 0.57 0.38 0.33 0.78
Embedding 3.21 0.46 0.44 0.81

ProtElectra Baseline 1.29 0.46 0.41 0.86
Classification 0.9 0.44 0.41 0.8
Embedding 0.99 0.47 0.4 0.84

ProtXLNet Baseline 1.57 0.48 0.44 0.81
Classification 1.21 0.46 0.38 0.8
Embedding 1.23 0.55 0.5 0.88

Figure 2. Comparison metrics for all transformer models. (A) Weighted F1-score on test dataset. (B) AUROC scores for the different classes in the test

dataset. Only the significant P values as calculated by Wilcoxon paired test are mentioned in the plot.
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3.3 Transformers in comparison with publicly

available tools

To assess the best-performing transformer model from our
study, we selected a few previously available best-performing
tools classifying TCR–epitope pairs: TCRGP, TCRdist, and
DeepTCR. As all the tools used a common database (VDJdb)
for assessing the performances, a head-to-head comparison
was possible. However, not all the epitopes were present in all
the tools, since the database updates the samples in the clas-
ses. TCRGP and TCRdist lacked 1 epitope, whereas with the
DeepTCR only 20 epitopes were in common to the epitopes
used in our study. These classification tools were compared to
our best model; ProtXLNet in the Embedding setting.

Our ProtXLNet model, which had a mean AUROC of
0.876 across the 24 common epitopes, showed an improve-
ment of almost 5% when compared with TCRGP
(AUROC¼ 0.831) and TCRdist (AUROC¼ 0.781) (Fig. 3).
For the three ‘hard-to-classify’ labels of the MCMV epitope
family, TCRGP and TCRdist had a mean AUROC of 0.843
and 0.807, respectively, whereas ProtXLNet had a mean
AUROC of 0.946 for the same labels of MCMV epitope fam-
ily (an improvement of �10%) (Supplementary Table S4).

Similarly, for the 20 common epitopes with DeepTCR
model, ProtXLNet exhibited a mean AUROC of 0.856,
whereas DeepTCR had a mean AUC of 0.784. This difference
in the mean AUROC was mainly attributed to the ‘hard-to-
classify’ labels, for which DeepTCR performed poorly (Fig. 3,
Supplementary Table S4).

3.4 Benchmarking performance of our method

We used the IMMREP benchmark dataset and performed the
experiments using our models for the four shared epitopes
(CMV pp65 NLVPMVATV, CMV pp65 TPRVTGGGAM,
EBV BMLF1 GLCTLVAML, and InfluenzaA M
GILGFVFTL). We observed that for these epitopes both for
IMMREP dataset and our dataset ProtXLNet Embedding set-
ting out-performed all the models (Table 3). Moreover, we
observed consistently comparable AUC for all the models in
both the datasets for these epitopes.

Additionally, we used the performance metrics available for
the common epitopes by the sequence-similarity-based model
(Baseline-SS) method in the suggested article (Montemurro et
al. 2021). Only 4 labels (i.e. CMV pp65 NLVPMVATV, EBV
BMLF1 GLCTLVAML, HCV NS3 ATDALMTGY, and
InfluenzaA M GILGFVFTL) out of 25 labels were overlap-
ping. When comparing the AUC for these four labels, we
found that the two models achieved comparable performance
with a minor advantage of ProtElectra Embedding setting
when tested on the task of predicting the positive versus 10�
negatives (Table 4). However, ProtElectra Embedding setting
significantly outperformed the Baseline-SS for all evaluations
when separating between positives and swapped negatives as
also mentioned by the NetTCR prediction performances
(Montemurro et al. 2021).

Finally, we assessed the performance of our best model,
ProtXLNet Embedding setting, by randomly shuffling the
labels of our validation dataset. We observed that the
AUROC of randomly labelled validation data is 0.49 suggest-
ing that performance of our model is not predicted by chance
(Supplementary Table S5). Furthermore, we constructed a
neural network model (NN) using TensorFlow and Keras,
comprising an input layer for V and J features, two hidden
layers with ReLU activation functions, and an output layer
with softmax activation. The model was trained using cate-
gorical cross-entropy and evaluated on the test set. Although
the simple NN model with VJ genes as input had a good
performance our best-performing model demonstrated 22%
improvement in compared to VJ genes NN model
(Supplementary Table S6).

4 Discussion

A diverse set of TCRs is generated by the adaptive immune
system that recognizes a short immunogenic peptide on the
proteins of the pathogens. The epitopes should ideally have
an explicit set of TCRs with particular properties, including
distinct CDR3 sequences, gene usage, and MHC class.
Several sequence-based and deep learning-based models have
been proposed to predict TCR–epitope pairs; however, there

Figure 3. AUROC scores for the ProtXLNet model with embedding setting and previously known methods (TCRGP, TCRdist, and DeepTCR) for different

epitope classes. The classes are coloured blue if the epitope is considered to be of the hard-to-classify class and red for the easy-to-classify class.
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is still a performance deficit in these methods. In this study,
we used a novel deep learning approach, transformers, which
uses attention layers that are learnt to focus on relevant parts
of the provided TCR sequence. We adopted three pre-trained
auto-encoders (ProtBERT, ProtAlbert, and ProtElectra) and
one auto-regressor (ProtXLNet) and added a classification
head to build multi-class classification models to identify
TCR specificity to the selected epitopes from the VDJdb. To
incorporate gene usage in these transformers, we have made
novel modifications to these transformers, either by adapting
the classification block (Classification setting) or by adapting
the embedding layer (Embedding setting).

Across 12 different transformer models, we found that the
ProtXLNet auto-regressor model, when modified with the
Embedding setting, achieved the highest weighted F1 score
(0.55), the highest Mean AUROC for the ‘hard-to-classify’
samples (0.88) as well as for the ‘Easy-to-classify’ samples
(0.86). Additionally, it demonstrated significantly better AUC
values for all classes, which are not predicted by chance and
are better than V/J identities alone (Supplementary Table S3).
Moreover, this best-performing transformer model outper-
forms previously developed sequence-based (TCRGP and
TCRdist) and deep learning (DeepTCR)-based methods
(Supplementary Table S4).

We also assessed the performance of our trained model in the
benchmark IMMREP datatset, where ProtXLNet Embedding
setting performed the best for the four common labels in
IMMREP dataset. Similarly, when comparing with the base-
line-SS model, ProtElectra Embedding setting significantly out-
performed the Baseline-SS model for all evaluations when
separating between positives and swapped negatives, similar to
the NetTCR performance (Montemurro et al. 2021).

The results can further be evaluated using attention head visu-
alization in which attention heads playing the most vital role

towards a classification can be highlighted. As we can instruct
the tokenizer to calculate attention for specific regions in CDR3
sequences, identifying the relevant amino-acid residues from the
interaction of TCR and epitope by the attention mechanism can
further improve the usage of the transformers for making better
predictions of specific TCRs (at the level of amino-acids in the
CDR3 sequences) binding to specific epitopes.

The previous methods have shown that incorporating
CDR3 sequences and gene usage information of both alpha
and beta chains along with MHC restriction can increase the
performance and the prediction power of the tools. Here, in
our study, we only used the CDR3 sequences and gene usage
of the TCR beta chain. We only targeted this simplified ap-
proach because our main goal was to understand the different
ways to incorporate gene usage within the transformer models
(i.e. the Classification setting and the Embedding setting).

During optimization of the different parameters for all four
transformer models, we observed that the models tended to
stop early for potentially good runs. This might have been
caused by the choice of the loss function, as, depending on
modulating factor, the focal loss may cause many spikes in
loss values. These spiking fluctuations may then be misinter-
preted and cause early stopping. Increasing the tolerance
threshold for early stopping led to stale runs and immense
waste of training time. Exploring how to best tackle this prob-
lem could increase the optimization.

A common theme for developing tools to predict TCR specif-
icity to the epitopes is to improve encoding of input data, e.g. as
observed in the tools developed using sequence similarity
(Pogorelyy et al. 2019), k-mer sequence features (Tong et al.
2020), convolutional models (Montemurro et al. 2021), utilizing
amino acid physicochemical properties (Gielis et al. 2019), learn-
ing a non-parametric function (Jokinen et al. 2021) or enhancing
sequence feature into a high-dimensional space (Sidhom et al.

Table 3. Assessing the performance of all the protein-BERT models trained in our study for four common epitopes in IMMREP benchmark dataset.

IMMREP dataset Our dataset

CMV pp65
NLVPMVATV

CMV pp65
TPRVTGGGAM

EBV BMLF1
GLCTLVAML

InfluenzaA M
GILGFVFTL

CMV pp65
NLVPMVATV

CMV pp65
TPRVTGGGAM

EBV BMLF1
GLCTLVAML

InfluenzaA M
GILGFVFTL

ProtBERT Baseline 0.69 0.81 0.83 0.87 0.75 0.81 0.86 0.81
Classification 0.8 0.86 0.89 0.87 0.76 0.75 0.76 0.82
Embedding 0.61 0.54 0.77 0.84 0.79 0.74 0.63 0.76

ProtAlbert Baseline 0.81 0.87 0.9 0.89 0.85 0.70 0.70 0.84
Classification 0.78 0.79 0.91 0.87 0.77 0.73 0.72 0.83
Embedding 0.83 0.93 0.93 0.9 0.82 0.81 0.72 0.86

ProtElectra Baseline 0.84 0.86 0.86 0.91 0.88 0.78 0.77 0.92
Classification 0.8 0.88 0.92 0.89 0.71 0.79 0.75 0.85
Embedding 0.84 0.89 0.94 0.91 0.85 0.76 0.77 0.94

ProtXLNet Baseline 0.85 0.91 0.93 0.91 0.85 0.80 0.71 0.89
Classification 0.81 0.94 0.91 0.9 0.82 0.79 0.80 0.86
Embedding/ 0.89 0.98 0.96 0.93 0.86 0.87 0.80 0.92

/ The ProtXLNet Embedding setting out-performed other models for IMMREP and our dataset.

Table 4. Comparing performance of ProtElectra Embedding setting, best performer in our study, to the Baseline-SS model based on TCR sequence-

similarity.

ProtElectra Embedding setting

Baseline-SS

Baseline-SS Pos versus True Neg Baseline-SS Pos versus Swap Neg

CMV pp65 NLVPMVATV 0.85 0.75 0.72
EBV BMLF1 GLCTLVAML 0.77 0.84 0.77
HCV NS3 ATDALMTGY 0.78 0.84 0.76
InfluenzaA M GILGFVFTL 0.94 0.85 0.77
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2021), utilizing molecular structures (Weber et al. 2021), or pre-
training BERT model on TCR data (Wu et al. 2021). Generally,
these tools train a binary classification model to exhibit epitope
specificity among a background of epitopes. However, our study
provided an alternative approach: a multi-class classification
model towards TCR classification. Only DeepTCR included a
multi-class setting, but this setting was employed exclusively for
the GAG TW10 epitope family and not for the entire TCR data
(with 10 variants). To the best of our knowledge, the multi-class
approach has never been utilized in such a fashion because of
scarcity of TCR data or lacking computational resources. We
could overcome these limitations by utilizing pre-trained trans-
formers, trained on large corpus of protein sequence data.

We showed that the ProtXLNet transformer with the
Embedding setting outperformed the previously known
sequence-based and deep learning-based algorithms.
However, a recently published transformer-based algorithm,
i.e. TCR-BERT, was not included. TCR-BERT used two dif-
ferent BERT models (one for beta sequences and one for al-
pha sequences) and combined their embeddings for the
classifier block. It does not exploit additional information,
like we do on the gene usage. Despite not being able to make
a head-to-head comparison with TCR-BERT, we assessed the
comparisons based on the AUROCs reported by the TCR-
BERT method, but that could only be done for the CMV-
pp65-NLVPMVATV class. The TCR-BERT approach
resulted in an AUROC of 0.837 (using both TRA and TRB
sequences), whereas our modified ProtXLNet model had an
AUROC of 0.86 (using only TRB sequences). TCR-BERT uti-
lized the entire 81K entries from VDJdb to pre-train a BERT
model as opposed to us. We used pre-trained transformer
models built from proteins in either Uniref or BFD, compris-
ing 216 million and 2.122 billion protein sequences. For fine-
tuning the classification head, we utilized only the VDJdb
data with a confidence score of more than 0. TCR-BERT fine-
tuned TCR specificity for binding to a positive class (epitope).
Nevertheless, a more in-depth comparison of the two
approaches could provide greater insight into which approach
(fine-tuning or pre-training) is better suited for TCR data.

Although our approach demonstrates the potential of trans-
formers by fine-tuning CDR3 sequences and how additional
features can be juxtaposed cohesively, some limitations re-
main. Problematic events such as hallucination and cata-
strophic forgetting (Sun et al. 2019) were not evaluated.
These problems are prevalent in deep neural networks and
contribute significantly to misclassification. Hallucination
occurs in generated sequence at the last transformer block,
leading to unlikely content. Predominantly, hallucination
(Kolouri et al. 2019, Ji et al. 2022) often occurs when generat-
ing natural languages. As we just explored classification
through transformers and not generation of sequences, we do
not expect to suffer from hallucination. Catastrophic forget-
ting is prevalent in transformers where the weights learned
during pre-training get overridden during fine-tuning.
Therefore, we employed early stopping and we lowered the
learning rate to prevent pre-trained knowledge from being
overridden (or diminished) during fine-tuning. Furthermore,
the fine-tuning and henceforth the performance of all the
BERT models tested with Baseline setting could be further
improved by freezing technique model blocks in BERT
models (Liu et al. 2021); however, its feasibility with the
modified BERT model is still limited.

Taken together, we have shown the potential of transform-
ers and multi-class learning for TCR–epitope pair prediction.
The comparison with pre-existing prediction methods for
TCR–epitope pairs is performed by comparing the AUROC
presented in their studies which could be a limiting factor as
the underlying data can have a little variation. Although
transformers outperformed other methods, fine-tuning of the
hyperparameters can further enhance the performance of
transformers.
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