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Gaussian Copula-based Bayesian network approach for characterizing 
spatial variability in aging steel bridges 
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A B S T R A C T   

Finite Element (FE) modeling often requires unavoidable simplifications or assumptions due to a lack of 
experimental data, modeling complexity, or non-affordable computational cost. One such simplification is 
modeling corrosion phenomena or material properties, which are usually assumed to be uniform throughout the 
structure. However, e.g., corrosion has a local nature and severe consequences on the behavior of steel structures 
that should not be overlooked. To improve the current numerical modeling techniques in aging steel bridges, this 
paper proposes a Gaussian Copula-based Bayesian Network (GCBN) approach to model the spatial variability of 
structural element properties. Accordingly, a study of the automatic Bayesian network generation process is first 
conducted. Subsequently, the methodology is applied to a severely damaged riveted steel bridge built in 1897. 
The results show that the methodology has excellent flexibility for generating properties variability in FE models 
at a low computational cost, thus ensuring its practical feasibility and robustness for accurate numerical 
modeling.   

1. Introduction 

Finite element (FE) modeling is a powerful tool that can support, 
facilitate, and make more robust the various tasks that need to be 
addressed throughout the service life of a bridge, such as preservation, 
maintenance, damage prediction, or reliability-based structural safety 
assessment [1]. Adequate FE modeling requires extensive experimental 
campaigns that can provide all the necessary data [2–4]. Nonetheless, 
model accuracy might be affected by simplifications or assumptions 
made through the modeling process, many of which are unavoidable 
[5]. Some of these issues are linked to aging or damage to the structure, 
which causes a reduction in strength and changes in the behavior of the 
members and connections that make up the bridge [6]. As was stated in 
[7], collapses due to deterioration account for around 25 % of truss-type 
bridge collapses. 

In modeling steel bridges, a common simplification is to define 
corrosion only as a global and uniform phenomenon when it is also a 
process with a local nature, such as pitting [8]. Another common 
simplification is assuming all structural components have the same 
material properties. However, although the structure is generally made 
of the same material -and ignoring heterogeneities caused by the 
manufacturing process - the bridge elements do not exhibit the same 

behavior throughout the structure. This is due to some factors such as 
the corrosion state of the connections, the members’ net section (i.e., the 
effective thickness), or stress concentration effects, among others, which 
cause a reduction in strength and severe changes in their behavior 
[9–11]. In recently built and undamaged bridges, the behavior of the 
different elements is more homogeneous, and the simplifications made 
in the modeling process can be considered appropriate since the actual 
behavior of the structure may not differ significantly (although model 
updating techniques are still recommended to reduce the gap between 
reality and computer simulation [12,13]). However, in damaged or 
aging bridges, these changes can lead to significant differences that 
should not be overlooked. 

Among the different procedures for modeling the spatial variability 
and inhomogeneity of properties, random fields have been one of the 
main techniques in the last decades, with a significant increase in the 
number of works since 1990 until now. They have been widely used in 
various fields of study, such as fluid properties, turbulent flows, image 
segmentation or generation, earthquakes, or structural materials [14]. 
In the civil engineering field, several works have been developed that 
use random fields to represent the spatial variability of various prop-
erties and materials, such as laminated composite panels [15,16], spatial 
variations of material properties in tunnels [17,18], elastic moduli of 
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pavement layers [19], concrete material [20–22], corrosion distribution 
in reinforced concrete structures [23–25], or metal foam core sandwich 
material properties [26], wood or timber specimens [27,28]. For steel 
properties, random fields have also been extensively used in several 
works, such as [29], where pitting corrosion was modeled using random 
fields, or [30] and [31], where corrosion degradation modeling of steel 
plate specimens was studied. 

Despite the significant development and increase in popularity of 
random fields, they typically have the disadvantage of being defined by 
a covariance or correlation length that may be sufficient to define 
continuous media. However, their robustness may be compromised 
when modeling the dependencies of discrete elements, such as the 
structural components of a bridge. In these cases, the connections be-
tween the elements and their characteristics have more influence on 
their properties than their distance in the structure. Bayesian Networks 
(BNs) are powerful tools for modeling structures with complex de-
pendencies that can provide robust results. BNs are probabilistic 
graphical models that provide a joint distribution of interrelated random 
variables. BNs also have the advantage that, once modeled, they can 
predict new data using inference. For this reason, in addition to their 
high versatility and excellent performance in dealing with uncertainty 
quantification problems, they have become very popular in various 
fields of study. 

In the field of civil engineering, BNs have been used for various 
purposes, such as the prediction of corrosion depth on buried pipelines 
[32], optimal inspection and maintenance planning for deteriorating 
structural components [33], data fusion of multiple sources for bridge 
assessment [34], sensitivity analysis [35], bridge scour risk assessment 
[36], reliability analysis of steel structures subjected to fatigue [37], 
reliability assessment of RC structures [38], for the multi-hazard 
fragility assessment of bridge systems [39] or optimal inspection stra-
tegies for structural systems [40] among others. Specifically, in the field 
of bridge engineering, several works with different objectives can also be 
found, such as residual strength prediction in an RC bridge [41], fatigue 
damage assessment in a steel deck [42], fatigue crack propagation 
modeling [43], or structural reliability prediction of a steel bridge 
element [44], among others. In the works mentioned above, several 
methodologies of BNs have been carried out; for an in-depth review, the 
reader is referred to [45] and [46]. Among the different types of BNs, the 
Gaussian Copula-based Bayesian Network (GCBN) has gained great 
popularity. The main advantage of using the Gaussian copula in the 
developed framework is its computational efficiency. This is the main 
reason for using the Gaussian copula implementation in [47–49]. 
Smaller models can be quantified using different copula families in 
which case a possibility would be to use vine copulas using the database 
Chimera [50]. Note, however that the number of models on up to 8 
nodes is larger than 660 million. If only 8 nodes are sufficient to express 
variability in a particular application, then vine copulas parametrized 
using Chimera become a very attractive option to explore non-Gaussian 
dependence. In this case however hundreds of nodes are employed to 
represent spatial variability. The GCBN has demonstrated its versatility 
and robustness for modeling complex dependencies in several works, 
such as hurricane flood risk [51], reliability analysis of flood defenses 
[52], estimation of monthly maximum river discharge [53], or estima-
tion of hydrodynamic forces on a submerged floating tunnel [54]. 
Several works have also been carried out in the bridge field, from 
developing a maintenance decision model for steel bridges [55] to the 
reliability analysis of reinforced concrete bridge columns [56]. More-
over, GCBN has proven to be very effective in modeling very high- 
dimensional problems, such as the works [57] and [58], where GCBN 
was used to model multi-variable weight-in-motion data. 

GCBN has proven its efficiency in high dimensional problems, and its 
robustness in modeling complex dependencies with a low computational 
cost. For this reason, this work proposes the use of GCBN to model the 
spatial geometric and material properties variability in aging steel 
bridges. This paper focuses on the assessment of the variability 

generation process. However, It is worth mentioning that the practical 
implementation of this methodology (to model a specific structure using 
the proposed approach) requires additional research in which a frame-
work is needed to select and optimize the parameters of the Bayesian 
network using experimental data. This methodology automatically an-
alyzes the dependencies between the bridge structural elements and 
builds the corresponding Bayesian network. A comprehensive study of 
the influence of the controllable parameters in the automatic Bayesian 
network generation process has also been carried out. To implement the 
methodology, a refined FE model was developed with multiple parti-
tions, each of which is a Bayesian network variable (879 variables). This 
results in a probabilistic FE model that avoids the usual simplifications 
in steel bridge modeling and provides more robust results. The feasi-
bility of the methodology has been validated in a full-scale riveted steel 
bridge in Vilagarcía de Arousa, Galicia, Spain. 

2. Gaussian copula-based Bayesian network 

Bayesian networks (BNs) are graphical probabilistic models based on 
Directed Acyclic Graphs (DAG), where the nodes represent the random 
variables and the arcs represent the probabilistic dependencies between 
the linked variables [59]. The nodes connected by an arc follow the 
parent–child nomenclature, where the parent is the predecessor of the 
child node. A BN encodes the probability density function of a set of 
variables X = {X1,⋯,Xn} through the (conditional) independence 
statements established in the DAG and associated with a set of proba-
bility functions [57]. The d-separation principle establishes the criteria 
for interpreting (conditional) independence statements in the graphical 
model. The criteria focus around the three possible network connections 
denominated chain, fork and collider connections [60]:  

1. Chain connections (X1→X2→X3) : Chain connection entails that X1 
influences X2 and X2 influences X3. This means that X1 is not 
marginally independent of X3(X1not⊥X3). However, X1 and X3 are 
conditionally independent given X2(X1⊥X3 |X2 ).

2. Fork connections (X1←X2→X3) : Influence can pass between all the 
children of X2 unless the state of X2 is known. This means as in the 
chain connection that X1 is not marginally independent of X3(X1not⊥
X3) and X1 and X3 are conditionally independent given 
X2(X1⊥X3 |X2 ).

3. Collider connections (X1→X2←X3) : In this connection X1 and X3 
influence X2, i.e., X1 is marginally independent of X3 (X1⊥X3). They 
are however dependent given X2 (X1not⊥X3 |X2). 

For an overview of the semantics used in BNs, the reader is referred 
to [59–61], and for a general overview of their applications, the reader is 
referred to [46,45]. Most applications of BNs focus on the representation 
of discrete random variables. This type of representation is inadequate 
for many problems and has several limitations [47]. The BNs that deal 
with discrete and continuous domains are called hybrid Bayesian net-
works (HBNs). Among the different methods of HBNs, conditional 
Gaussian models [62,63], dynamic discretization methods [64], varia-
tional approaches [65], and mixtures of truncated basis functions 
(MoTBFs) [66] can be mentioned, among others. A detailed review of 
HBNs, highlighting the advantages and disadvantages of each approach, 
is given in [67]. 

Gaussian Copula-based Bayesian Networks (GCBN) are HBNs con-
structing a multivariate joint distribution of a set of variables. For this 
purpose, GCBN associates nodes with random variables and arcs with 
bivariate pieces of dependence using a one-parameter conditional 
copula [68], thus defining the DAG dependence structure. The copula C 
is the function that describes the joint distribution FXi ,Xj (x, y) of two 
random variables Xi and Xj for i ∕= j as stated in Eq. (1). 

FXi ,Xj (x, y) = Cθ
[
FXi (Xi),FXj

(
Xj
) ]

(1) 
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where θ is the parameter vector that provides the association measure 
between both random variables, such as the rank correlation (r). This 
describes the strength of the monotonic relation between the variables. 
The rank correlation of two random variables Xi and Xj with cumulative 
distribution functions FXi and FXj is calculated following Eq. (2). 

r
(
Xi,Xj

)
= ρ
[
FXi (Xi),FXj

(
Xj
) ]

(2)  

where ρ is the product-moment correlation of the random variables and 
can be computed through the variances and the expectations of Xi and 
Xj; see Eq. (3). 

ρ
(
Xi,Xj

)
=

E
(
Xi,Xj

)
− E(Xi)E

(
Xj
)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

var(Xi)var
(
Xj
)√ (3)  

The rank correlation can also be obtained using one parameter copulas 
as described in its population version, Eq. (4) [69]. 

r
(
Xi,Xj

)
= 12

∫1

0

∫1

0

Cθ(u, v)dudv − 3 (4)  

where u and v are the margins of the one-parameter bivariate copula Cθ.

The GCBN methodology was initially developed in [70], stating that 
any copula with the zero-independence property can be used, i.e., zero 
correlation implies independence. However, as stated in [47], only the 
joint normal copula provides the advantage of fast computation/infer-
ence in large and complex problems. For this reason, GCBN was subse-
quently extended in [71], where normal copulas are used to realize the 
dependence structure specified via (conditional) rank correlations. The 
Gaussian copula uses the product-moment correlation (ρ) as a param-
eter, as shown in Eq. (5). 

Cρ(u, v) = Φρ
[
Φ− 1(u),Φ− 1(v)

]

(u, v) ∈ [0, 1]2 (5)  

where Φρ is the bivariate standard normal cumulative distribution 
function and Φ− 1 the inverse of the one-dimensional standard normal 
distribution function. The relationship between product-moment cor-
relation (ρ) and rank correlation (r) using Pearson’s transformation is 
described in Eq. (6) [72]. 

ρ(X,Y) = 2sin
(π

6
• r(X, Y)

)
(6)  

Following Eq. (6), conditional rank correlations for normal copulas can 
be expressed as partial correlations. The conditional correlation of X and 
Y given Z1 = z1,⋯,Zm = zm is the one computed with the random vector 
(

X̃, Ỹ
)

where X̃, Ỹ have the distribution of X and Y given Z1 = z1,⋯,

Zm = zm. The conditional rank correlations are computed with the ranks 

of 
(

X̃, Ỹ
)

. In normal copulas, partial correlations are equal to condi-

tional correlations (because the joint copula can be transformed to a 
joint normal distribution) and can be computed recursively following 
Eq. (7) [73] where m denotes the number of parents Paj (Xi) for the node 
Xi. 

ρ1,2;3,⋯,m =
ρ1,2;4,⋯,m −

(
ρ1,3;4,⋯,m

)(
ρ2,3;4,⋯,m

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(1 − ρ2
1,3;4,⋯,m)(1 − ρ2

2,3;4,⋯,m)

√ (7)  

Considering a BN on n variables, the joint distribution satisfies the 
characteristic of factorizations as described in Eq. (8) where f1,…,n de-
notes the joint density of the n variables, fi their marginal densities and 
fi|Pa(i) the conditional densities [47]. 

f1,…,n(x1,…, xn) = f1(x1)
∏n

i=2
fi|Pa(i)

(
xi|xPa(i)

)
(8)  

Each variable Xi is represented by the node i. The arch that joins the 
parent node with the child node Paj(Xi) →Xi is associated with the 
conditional rank correlation as described in Eq. (9) where the index j is 
in the non-unique order, i.e., the order of the parents can be permuted. 

r
(
Xi, Paj(Xi)

)
,

{
j = 1

j = 2,…,m

r
(
Xi, Paj(Xi)|Pa1(Xi),…,Paj− 1(Xi)

)
,

(9) 

these assignments are algebraically independent and they uniquely 
determine the joint distribution for a particular choice of copula as states 
the following theorem: 

Theorem 2.1. Given:  

1. A DAG with n nodes specifying conditional independence relationships;  
2. n variables X1,⋯,Xn, assigned to the node with invertible distribution 

functions F1,⋯,Fn;

3. The specification stated in Eq. (8), i = 1,⋯, n, of conditional rank cor-
relations on the arcs of the GCBN;  

4. A copula realizing all correlations [-1,1] for which correlation 0 entails 
independence. 

the joint distribution of the n variables is uniquely determined. This joint 
distribution satisfies the characteristic factorization (Eq. (8)) and the con-
ditional rank correlations in (Eq. (9)) are algebraically independent. 

However, a modification of this theorem was proposed (Theorem 
2.2) to allow for various types of copulas. If the conditional indepen-
dence statements were not specified as zero rank correlations, but as 
(conditional) independent copulas, then the (conditional) rank corre-
lations associated with the arcs could be realized by any copula that 
realizes all correlations [-1; 1]. For instance, an GCBN could be quan-
tified with a mixture of (conditional) independent copulas and t-copulas. 
The possibility of using the multivariate t-copula, with different tail 
dependence for each pair of (conditional) variables allows to capture 
dependent extreme values [47]. 

Theorem 2.2. Given:  

1. A DAG with n nodes specifying conditional independence relationships;  
2. n variables X1,⋯,Xn, assigned to the node with invertible distribution 

functions F1,⋯,Fn;

3. The specification stated in Eq. (8), i = 1,⋯, n, of conditional rank cor-
relations on the arcs of the GCBN;  

4. A copula realizing all correlations [-1,1]; 
5. The (conditional) independent copula realizing all (conditional) inde-

pendence relationships encoded by the graph of the GCBN; 

the joint distribution of the n variables is uniquely determined. This joint 
distribution satisfies the characteristic factorization (Eq. (8)) and the con-
ditional rank correlations in (Eq. (9)) are algebraically independent. 

Finally, marginal distributions and arbitrary (conditional) copulas 
need to be specified in order to quantify GCBN. The marginal distribu-
tions can be obtained from data or experts [74] or using the empirical 
marginal distribution fitting parametric forms. The (conditional) cop-
ulas are parametrized by (conditional) rank correlations that can be 
calculated experimentally from data or provided from experts [75]. 
Besides, it is generally not mandatory to set the conditional rank cor-
relations as constant but they are usually assumed constant for conve-
nience [47]. Each arc between a parent and a child is associated to a 
conditional rank correlation. In the case where a child has multiple 
parents, the order of these parents can be non-uniquely determined. 
When experts contribute to constructing the structure of the GCBN, they 
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can determine an order for the parents based on their decreasing in-
fluence on the child. Alternatively, the order of the parents may be 
determined by data availability or another criterion. It is important to 
note that there is no singular procedure or criterion to construct the 
directed acyclic graph (DAG) of the GCBN. 

The methodology described in this section has been implemented in 
BANSHEE, an open-access scriptable code developed as a toolbox in 
MATLAB [48] and Python [49]. For this study, the MATLAB version of 
BANSHEE was employed. This toolbox allows the quantification of the 
BN, the validation of the underlying assumptions, the visualization of 
the network and its corresponding rank correlation matrix, and finally, 
the computation of inference with a BN based on existing or new 
evidence. 

3. Paraíso bridge 

The structure used to demonstrate the applicability of the proposed 
methodology is a riveted steel bridge that crosses the Umia River near 
the village of Paraíso in Galicia, Spain. It was part of the old railway line 
that connected the cities of Pontevedra and Vilagarcía de Arousa. It was 
built in 1897 and was in service until 2008. In 2020 it was refurbished 
and is now part of a greenway open to pedestrians and cyclists. The main 
views of the Paraiso bridge are shown in Fig. 1. 

The central span has a total length of 37.0 m, a width of 2.6 m, and a 
height of 4.1 m. The bridge is composed of 4 primary chords that form a 
trapezoidal box, 52 diagonal beams reinforcing this box (type I and II), 
24 verticals, 15 torsional bracings, 12 lower and 12 upper lateral brac-
ings and 15 transverse bracings. In the upper part of the deck, there is a 
frame composed of 2 stringers that cover the length of the bridge, 
reinforced by 15 cross-girders. In addition, the stringers are reinforced 
by 12 lateral and 12 X-shaped bracings. The main dimensions of the 
bridge and the structural members are shown in Fig. 2. 

After a comprehensive inspection of all bridge elements, many were 
found to be in an advanced state of corrosion. The plates and angles that 
make up the beam profiles are among the most damaged elements. In 
addition, some steel connections are severely damaged, see Fig. 3. The 

chord webs also show relatively high levels of generalized corrosion, 
with degradation and delamination of the angles connecting the web to 
the flanges (Fig. 3). The degree of corrosion of these elements can be 
partly explained by their arrangement, which leads to water accumu-
lation during rainy periods, thus increasing the corrosion progress. 

4. FE modelling 

As an initial stage of the modelling process, the geometrical char-
acterization was carried out with the aid of a digital gauge with an ac-
curacy of ± 0.01 mm. Eleven profiles with different cross-section were 
identified along the entire structure (See Fig. 2). Some of these profiles 
are reinforced depending on their location. For instance, the chords, 
which are reinforced with two or even three steel plates in the central 
areas, or the verticals or the type 1 diagonals, which are reinforced to-
wards the ends of the structure. As a result of the geometrical charac-
terization, the measurements of all the profiles that constitute the bridge 
were obtained and schematized in a CAD model using Ansys Spaceclaim 
Software [76]. It should be noted that a great variability has been 
identified in the measurements taken due to the high level of corrosion 
in the structure. For this reason, nominal measurements were defined for 
the profiles that symbolize the average value obtained for the different 
measurements taken on the same element in different parts of the 
structure. The dimensions of the main components that form the bridge 
are described in Fig. 4. 

Based on the geometric characterization performed, the finite 
element (FE) model of the structure was developed. First the boundary 
conditions were defined. Simple supports were implemented in one side 
of the bridge and roller supports in the other side, as observed during the 
geometric characterization process. In both cases in-plane (Z-axis) ro-
tations were allowed and, in case of the roller supports, the longitudinal 
displacements were also allowed (X-axis). Then, the modeling process of 
the bridge was performed using line bodies in the Diana FEA software 
[77]. The main structural members of the bridge were defined as two- 
node three-dimensional Class I beam elements. On the other hand, the 
bracings were modeled as two-node directly integrated truss elements. 

Fig. 1. Main views of the Paraíso bridge.  
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The cross-sections that make up the bridge are formed by riveted steel 
shells that form complex and irregular geometries. Since these are non- 
standardized cross-sections, they must be entered in Diana FEA as 
“arbitrary shapes”, which consists of entering the cross-section geometry 
by means of coordinates. To define the coordinates of the cross section, 
the profile must be subdivided into zones composed of 4 points. The set 
of the different zones will define the cross-section shape. In order to 
parameterize the thicknesses and to vary them automatically, an algo-
rithm has been developed using MATLAB software [78]. This algorithm 
recalculates the coordinates of the different zones according to the 
corrosion of each plate and the centroid of the overall cross section (the 
set of the different zones). It also recalculates the eccentricities assigned 
to each profile according to its corrosion. Finally, the algorithm is pro-
grammed to automatically enter the new profiles in the Diana FEA 

software exporting the model to “.dat” extension in order to introduce 
the new profiles, following the “batch syntax” defined in Diana’s manual 
for “arbitrary shapes”. 

A mesh size of one division per element was used for the model. A 
single division was implemented because each chord was separated into 
several different geometric elements (line bodies) to discretize further 
the bridge and its components around the steel connections. Thus, a 
division was implemented at a distance of 0.5 m from each node. In 
addition, the line bodies were further subdivided to represent the 
different reinforcements (see Fig. 5) that some beams contain, such as 
the chords and verticals, further increasing the number of subdivisions. 
By implementing these subdivisions, the model was expanded from the 
original 278 line bodies to a total of 879 line bodies. For this reason, and 
in order to find a balance between accuracy and computational cost, it 

Fig. 2. Outline of the structural members and main dimensions of the Paraíso bridge.  

Fig. 3. Detail of corroded elements in the Paraiso bridge a) chord web b) gusset plates at the connection between stringers and cross-girders c) connection of the 
lower lateral bracings to the chords. 

B. Barros et al.                                                                                                                                                                                                                                  



Structural Safety 106 (2024) 102403

6

was decided that a single division per element would be sufficient. 
As model input variables, the thickness variations of the structural 

members and the steel material properties were considered. Initially, it was 
decided to define uniform distributions for all variables because normal 
distributions can produce unrealistic values such as thickness variations 
greater than the original thickness. In addition, future work will use 
sensitivity analysis techniques prior to model calibration. In sensitivity 
analysis techniques it is beneficial to use uniform distributions to explore 
the sample space equally. In this work, the bounds chosen are not a crucial 

aspect to demonstrate the viability of the proposed methodology and were 
established as an example in order to represent realistic values. The range 
of thickness variation for the different elements was established as a 
nominal measure ± 2.0 mm, where the nominal measure is the rounded 
average measured thickness and 2.0 mm is the maximum theoretical 
thickness reduction obtained according to the current European standards 
of corrosion in metals [79,80,80] for a corrosivity category of C4 and given 
the age of the bridge. Regarding the material properties, the lower and 
upper bounds of the density were obtained using the three sigma rule of 

Fig. 4. Main dimensions in mm of the profiles of Paraíso bridge: a) Chords, b) Verticals and diagonals type I, c) Cross-girder, d) Diagonal beam type II, e) Stringers, f) 
Transverse bracings. 

Fig. 5. FE model of the Paraíso bridge a) geometrical model based on line bodies b) FE model with the profiles’ cross sections c) detail of the end section of the model 
d) detail of a middle section of the model. 
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thumb (99.7 % confidence interval) in the distribution recommended in 
the JCSS probabilistic model code which follows a normal distribution with 
a mean of 7850 Kg/m3 and a coefficient of variation (CoV) of 1.0 % [81]. 
For the elastic properties, to represent the corrosion-induced effects, the 
lower limit of Young’s modulus was obtained based on a 99.7 % confidence 
interval for a log-normal distribution with a mean of 200 N/mm2 and a 
CoV of 5 % [82,83], and the upper limit was obtained according to the 
value established for structural steel in the Eurocode [84]. The upper limit 
follows a different criterion from the lower limit because, had they used the 
same criterion, the value obtained (230 N/mm2) would have been unre-
alistic for aging steel. 

Finally, a second algorithm was developed in Python that classifies 
all bridge elements by profile type, location, and corresponding nodes. 
The code then creates a copy of the original FE model and defines a 
material and an element geometry property for each bridge element. 
This code is designed to discretize and apply different geometric and 
material properties to the different elements of the bridge in a fully 
automated way. 

5. Spatial variability characterization through GCBN 

As introduced earlier, random fields are valuable tools for modeling 
spatial variability. However, in the case of inhomogeneous (for example 
negative correlations in space appearing together with positive ones), 
“discrete” space dependence, and complex dependence structures in 
general, their ability to reproduce the dependence of elements is quite 
limited. Bayesian networks are probabilistic graphical models that 
provide a joint distribution of a large number of interrelated variables, i. 
e., they can represent complex dependency structures. In this study, 
Bayesian networks were used to define the dependencies of the elements 
that make up the FE model of the Paraiso bridge and to generate spatial 
variability in the desired model input variables. 

5.1. Framework 

As a first step, the directed acyclic graph (DAG) of the Bayesian 
network was defined. In this framework, each node of the DAG repre-
sents one structural element of the FE model of the bridge (879 struc-
tural elements in total). Each node of the Bayesian network contains the 
probability distribution of the variable for which the spatial variability 
wants to be generated. According to the approach adopted in the 
framework, a Bayesian network can only generate variability in a single 
variable of the model. To generate variability in independent variables 
(uncorrelated with each other), as many BNs as variables are needed and 
the DAG of each BN will be formed by as many BN nodes as structural 
elements in the FE model. In the case of correlated variables, the algo-
rithm must be reconfigured to generate for each structural element as 
many BN nodes as desired variables. To correlate both variables it is only 
necessary to join both nodes by means of an arc and specify a value of 
conditional rank correlation. This is another great advantage over the 
random fields, since in these, correlating variables is not so straight-
forward. The Gaussian copula-based Bayesian network is classified as 
“hybrid” and can handle both discrete and continuous variables 
although in this research we restrict ourselves to the purely continuous 
case. Therefore, this type of BN is suitable for all types of problems since 
it is very robust (see introduction section and references therein). In this 
case study, the random variables (thickness variation and Young’s 
modulus) were considered as continuous and independents (both pa-
rameters are not correlated with each other). For this reason, two 
Bayesian networks were created to generate thickness and Young’s 
modulus values for each bridge element. 

To automatically generate the DAG, an algorithm was developed 
using MATLAB. This algorithm uses the exported version of the FE 
model with the extension “.dat” to determine how the different struc-
tural elements are connected and how they are arranged in the structure. 
For this purpose, the algorithm explores all the structure analyzing the 

mesh nodes that make up each structural element and defines a list of 
elements and their corresponding mesh nodes. The code has been 
configured to generate different DAG structures depending on the 
structural elements selected as initial points (nodes without parents). 
Therefore, the code will generate different BNs depending on the initial 
points selected. For this reason, the number of initial points (N) must be 
specified to execute the algorithm, and thus the code will randomly 
select N elements. Then the steps followed by the algorithm are 
explained below:  

1. In the first iteration, the algorithm identifies the mesh nodes of the 
structural elements selected as initial points and creates the corre-
sponding BN nodes.  

2. Then the algorithm identifies the connected structural elements 
using the mesh nodes, i.e., those structural elements that share the 
same mesh node are the adjacent structural elements.  

3. The algorithm creates the BN nodes of the adjacent elements. 
4. The parent–child relationship of the Bayesian Network nodes rep-

resenting the connected structural elements is defined. 

Once the BN nodes of the initial points and their corresponding child 
nodes were created and their relationships were defined using arcs, the 
points 2, 3 and 4 are repeated until the algorithm does not detect any 
structural element that has not been previously selected. The workflow 
of the proposed methodology is summarized in Fig. 6. 

An example of the DAG generated for a bridge section is shown in 
Fig. 8. At each iteration, connected elements are detected and classified 
as children of the Bayesian Network node under evaluation. The code 
continues until all elements of the structure have been classified and 
their parents have been assigned. Fig. 7 shows some steps of the evo-
lution of the algorithm. Fig. 8 shows the DAG generated for this 
particular example. 

The connection between two BN nodes is made by means of arcs that 
follow the parent–child direction. This direction depends on the initial 

Fig. 6. Workflow of the developed algorithm to automatically generate de DAG 
of the Bayesian network. 
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points chosen by the algorithm and affects the results, i.e., it is not the 
same for node 1 to depend on node 2 as node 2 to depend on node 1. 
However, since the problem is approached probabilistically, with hun-
dreds or thousands of runs in each simulation, it can be said that both 
directions are considered when obtaining a final result. These arcs 
represent the bivariate pieces of dependence and are defined as the 
conditional rank correlations which should be provided to run the al-
gorithm. Ideally, the conditional rank correlations should be obtained 
from measurements of the bridge properties. However, due to the high 
dimensionality of the problem (879 variables), a significant number of 
experimental measurements would be required to obtain an accurate 
value of the conditional rank correlations. For this reason, expert 
judgment is a common approach in this type of problems, to determine 
an appropriate value of the conditional rank correlation [85–88,75]. In 

this case study, the algorithm was designed to set the same value of the 
conditional rank correlation value between each pair of nodes. 
Following this approach, the variable conditional rank correlation rep-
resents the correlation between the variable of any pair of adjacent 
structural elements. With a minor reconfiguration of the code, other 
approaches could be implemented such as setting correlation values 
according to the connection type, the profile of the structural element, or 
its degree of exposure. However, this would require a high discretization 
of the conditional rank correlation. Since this framework was imple-
mented to perform a calibration in a future work, it was initially 
preferred to lump all elements into a single correlation variable until a 
sensitivity analysis was performed. Once it was verified that the variable 
is sensitive in the FE model responses, an iterative process could begin in 
order to find the most accurate approach (if necessary) avoiding 
excessive discretization, which can lead to model responses becoming 
insensitive to the correlation variables. 

Once the DAG structure is defined and the conditional rank corre-
lation for the different arcs is fixed, the capabilities of BANSHEE [48] are 
exploited to construct the rank correlation matrix. BANSHEE builds a 
joint distribution coupling the marginal distributions of each node 
through the use of the Gaussian copula and with the dependence 
structure constructed from the bivariate pieces of dependence (arcs) for 
a selected value of the conditional rank correlation. In this study, all 
nodes are defined as variables following a beta probability distribution 
and with the bounds defined in Section 4. Once the joint distribution is 
constructed, and the distributions of each node are defined, the thick-
ness and Young’s modulus variability can be obtained for each bridge 
element. First, random samples are generated from a uniform marginal 
distribution [89]. Then, the values of thickness and Young’s modulus 
variability are derived from the generated samples [90]. The algorithm 
uses a self-developed Python script to execute the Python commands 
predefined in the software Diana FEA to change the material and geo-
metric properties for each structural element. To do this, the algorithm 
makes a copy of the FE model and automatically creates as many 

Fig. 7. Steps (j) of the classification algorithm exploring a subsection of the 
structure; the evaluated elements are highlighted in red. This example corre-
sponds to a single realization of many implemented in this research. (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 8. Example of the DAG created for a subsection of the structure.  
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materials and element geometries (cross-sections) as structural elements 
(the variation is applied uniformly to each element). Then, it substitutes 
the thickness and Young modulus values for each structural element. 
Moreover, the code also creates additional copies of the model in which 
a color scale represents the thickness and Young’s modulus variability to 
visually evaluate the values generated (see Fig. 17). 

Since the initial points and the conditional rank correlation have a 
strong influence on the automatically generated Bayesian network and 
thus on the generated variability, the study of the influence of these 
parameters was thoroughly addressed. A summary of the main results 
and conclusions of this study are presented in sections 5.2 Initial points 

and 5.3 Conditional rank correlation. The complete study of these pa-
rameters is included in a supplement available upon request to the 
corresponding author. As examples, the illustrations of the DAG (see 
Fig. 9) and the correlation matrix (see Fig. 10) are shown for the case of 
1 initial point and a conditional rank correlation of 0.75 using the 
developed methodology. 

5.2. Initial points 

As mentioned in the previous section, the DAG is automatically 
generated in the developed methodology. The only required inputs are 

Fig. 9. Directed Acyclic graph (DAG) of a Bayesian network with one initial point.  

Fig. 10. Correlation matrix of a Bayesian network with one initial point.  
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the number of starting points and the conditional rank correlation be-
tween nodes. In order to understand how the initial points influence the 
Bayesian network, a total of 800 Bayesian networks with different 
starting points (1, 2, 5, 10, 25, 50, 100, 150) have been generated. 
Bayesian networks with more than 150 starting points have not been 
generated because they lead to the creation of correlation matrices very 
close to singularity. Besides, a constraint implemented in the developed 
algorithm makes each element selected as the initial node to be in a 
different bridge region. Since the starting points are chosen arbitrarily, it 
was decided to simulate 100 times each of the abovementioned com-
binations of starting points by setting the conditional rank correlation to 
0.75 to analyze only the effect of the starting points without the influ-
ence of the conditional rank correlation. These 800 Bayesian networks 
generated with a conditional rank correlation of 0.75 are called “Posi-
tive cases”. The DAGs obtained present similar structures, and their 
differences are not perceptible due to the large number of variables. 
However, the number of initial points creates a quite considerable 
saturation difference in the graph. Table 1 shows the average number of 
arcs (µ) obtained for the 100 Bayesian networks and its standard devi-
ation (σ) for the different number of starting points. As can be seen, the 
network saturation increases with the number of starting points. 

The increase in the number of starting points entails an increment in the 
number of independent points (nodes without parents) and the saturation 
of the DAG structure. These changes can be easily observed in the color 
maps representing the correlation matrix of the Bayesian Network. Such an 
increase provokes the initial blue or green areas to become white, as shown 
in Fig. 11. The part that remains invariant with high correlation values 
represents the correlations of adjacent or nearest elements in the structure, 
while the areas with lower values represent the correlations between the 
more distant elements. As the number of independent points (initial points) 
and the network saturation increases, the more distant elements tend more 
quickly to low or zero correlation values. In cases of higher saturation, as in 
the case of 150 starting points, only the elements very close in the structure 
will present correlation, leaving the remaining elements with practically 
null correlation. Therefore, it can be concluded that the number of starting 
points hardly affects the correlation between the closest or adjacent ele-
ments, but it does have severe consequences for the correlation values of 
the most distant elements. 

To quantify how the multivariate Gaussian distributions are affected 
by the DAG structure, two techniques have been employed to quantify 
the difference between the correlation matrices. Due to the high number 
of variables that conform the network, the first technique is the sym-
metric KL (Kullback-Leibler) divergence technique [91], which mea-
sures the distance between two distributions. The second technique is 
the metric developed by Abou-Moustafa [92]. Both methods are ideal for 
problems with many variables since it does not use the matrix deter-
minant. The symmetric KL divergence and Abou-Moustafa metrics are 
computed as stated in Eqs. (10) and (11), respectively: 

dKL(D1,D2)=
1
2
(m1 − m2)

T ( R− 1
1 − R− 1

2

)T
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1
2

tr
(
R− 1

1 R2+R− 1
2 R1 − 2I
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1
2
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)− 1
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+

(
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log2λk(R1,R2)

)1/2
(11)  

where D1 and D2 are the multivariate Gaussian distributions to be 
compared, and m1 and m2 are the mean vectors of their respective 
covariance matrices (R1 and R2). In Eq. (11), λk represents the gener-
alized eigenvalues for the generalized eigenvalue problem R1v = λR2v. 

Both techniques are composed of two terms, i) the difference be-
tween means and ii) the difference between covariance matrices. In this 
work, as the Gaussian copula was employed with a zero mean, the 
dissimilarity measures are reduced to the second term (covariance ma-
trix differences). Herein, we present only the results obtained for the 
Abou-Moustafa metric. The results of both techniques are similar, 
although with some differences, such as the lower robustness of the 
symmetric KL divergence technique when the matrix is very close to the 
singularity. 

Since the distance techniques employed are not standardized, a 
comparative analysis was made to study the variation range of their 
values. For this purpose, “Negative cases” and “Independent Case” were 
created to verify that the results of both techniques are robust. The 
“Negative cases” use the same DAG as the “Positive cases” but setting the 
conditional rank correlation to − 0.75. The “Independent case” corre-
sponds to the identity matrix, meaning each element is only correlated 
with itself. Fig. 12 shows, classified by the number of initial points, the 
average distances obtained for the following cases: a) “Positive cases” 
with themselves (in red), b) “Positive cases” with “Negative cases” (in 
blue), and c) “Positive cases” with “Independent case” (in green). 

As can be observed, the distances obtained among the “Positive 
cases” are lower than the comparisons with the Negative and Indepen-
dent cases. This fact entails that the metric presents a robust behavior, 
and the distances obtained are coherent. Besides, it can be noticed how 
the distances tend to increase with the number of initial points. This fact 
is more clearly illustrated in Fig. 13, which shows the cumulative density 
function for the distances obtained among the positive cases and clas-
sified according to the number of initial points. This is because a high 
number of initial points induce a high number of independent nodes, 
and since the initial points are randomly chosen, when the number of 
initial points increases, more different Bayesian networks are obtained. 

Finally, the distances obtained among the 100 Bayesian networks 
with the same number of initial points were computed. Table 2 sum-
marizes the mean and the standard deviation (σ) of the distances ob-
tained. As can be seen, the elements selected as initial points provoke 
high differences between the Bayesian networks obtained. When the 
number of initial points increases, the differences between the Bayesian 
networks are further incremented. For this reason, it can be concluded 
that the number of initial nodes and the selection of the elements chosen 
as initial nodes provoke high differences in the resulting Bayesian 
network. 

5.3. Conditional rank correlation 

Once the influence of the initial points on the Bayesian networks was 
analyzed, the study of the conditional rank correlation was carried out. 
For this purpose, Bayesian networks with conditional rank correlation 
values (0.1, 0.25, 0.5, 0.6, 0.75, 0.9) were built for the cases of 1 and 150 
initial points. Fig. 14 represents the color maps of the correlation 
matrices obtained for 1 initial point and the different conditional cor-
relation values, and Fig. 15 for the case of 150 initial points. 

In both cases, it can be noticed how the conditional rank correlation 
globally affects the correlation of the Bayesian network. For low values 
of conditional rank correlation, the correlation matrix presents very low 

Table 1 
Mean number of arcs (µ) and standard deviation (σ) in 100 Bayesian networks with a different number of starting points.  

Initial Points 1 2 5 10 25 50 100 150 

µ 1771 1768 1766 1775 1816 1890 2043 2174 
σ 11.17 13.49 14.07 16.00 17.88 18.87 17.13 17.26  
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Fig. 11. Comparison of the correlation matrices regarding the number of initial points.  

B. Barros et al.                                                                                                                                                                                                                                  



Structural Safety 106 (2024) 102403

12

or practically zero values in all the elements except the diagonals. 
Moreover, in the case of 1 initial point, it can be observed how high 
values of conditional rank correlation cause high correlation values in 
practically the whole correlation matrix, and these values decrease 
globally when the conditional rank correlation decreases. In the case of 
150 initial points, it can be appreciated how the correlation affects the 
structure globally, but it is limited by the number of initial points. In 
other words, despite setting high correlation values, the most distant 
elements present low correlation values. Therefore, it can be concluded 
that the number of initial points presents a limiting effect on the cor-
relation when high conditional rank values are used in constructing the 
Bayesian network. This aspect must be considered in the parameter 
setting process of the Bayesian network since an incorrect choice of the 
number of starting points may distort the result of the correlation 
matrix. 

In order to conclude this section of the study, the distances among 
the Bayesian networks were calculated, aiming to quantify the differ-
ences originated by the conditional rank correlation and to compare 
them with the effect of the number of initial points. Accordingly, Table 3 
presents the distances of the Bayesian networks using the Abou- 
Moustafa metric. The table shows that high values of conditional rank 
correlation provoke an increase in the distances similarly to the number 
of initial points. However, a slight difference in the conditional rank 

correlation provokes similar distance values to those obtained 
comparing two Bayesian networks with the same conditional rank cor-
relation value and with 1 and 150 starting points, i.e., a slight difference 
in conditional rank correlation provokes a similar impact that a signif-
icant change in the number of initial points (from 1 to 150). For this 
reason, it can be concluded that conditional rank correlation values have 
a more severe effect on the correlation matrix due to their global 
behavior. 

5.4. Results and discussion 

After analyzing how the number of initial points and the conditional 
rank correlation affect the Bayesian network, the influence of these 
parameters on the generated variability is studied. For this purpose, 12 
Bayesian networks with different conditional rank correlations (0.2, 0.6, 
0.8) were created for the cases of 1 and 150 initial points and consid-
ering the bridge properties of steel members’ thicknesses and Young’s 
modulus. 

A total of 500 samples were generated for each Bayesian network, 
assuming that the nodes follow a beta distribution with bounds of [-2, 2] 
mm for the thicknesses and [170,210] GPa for the Young’s modulus. 
Each sample contains 879 thickness or Young’s modulus values (one for 
each bridge element). In order to visualize the variability created, the 

Fig. 12. Comparison of the average Abou-Moustafa distances between the positive Bayesian Networks and a) themselves (red), b) the negative cases (blue), and c) 
the independence case (green), classified by the number of initial points. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 
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cumulative density function for each of the 500 samples was plotted. 
Fig. 16 shows the thickness variability for the six generated Bayesian 
networks. 

As can be observed, low correlation values induce a relatively uni-
form distribution of the bridge properties in their variation range. For 
this reason, the 500 simulated samples present very similar results. With 
high conditional rank correlation values, the bridge properties tend to 
become more homogeneous and agglutinated within the variation 

range, with less variability per sample. This entails the creation of more 
different samples for the same Bayesian network. In addition, in the 
cases of higher correlation values, more different samples can be seen in 
the case of 1 initial point concerning the case of 150 initial points. This 
fact is due to the limiting effect of the number of initial points on the 
Bayesian network correlation, as mentioned in the previous section. 

Finally, an algorithm has been developed to visualize the generated 
variability in the bridge that automatically establishes a color scale in 
the FE model based on each element value. Fig. 17 shows the thickness 
variability of one of the 500 samples for 1 initial point and correlations 
of 0.2, 0.6, and 0.8. This figure shows how the increase of the condi-
tional rank correlation generates more similar values in the closest el-
ements of the bridge. For low conditional rank correlation values, the 
bridge properties are practically random, and almost no relationship 
between nearby elements can be observed. 

Moreover, the effect of the different parameters of the Bayesian 
network on the output (dynamic) responses of the FE model was 
analyzed. For this purpose, a total of 6000 simulations were performed 
with different values of conditional rank correlation (0.2, 0.6, 0.8) for 
the cases of 1 and 150 initial points. The 12 Bayesian networks of the 
previous section were employed to generate the variability of the FE 

Fig. 13. Cumulative density functions of the Abou-Moustafa distances obtained among the sets of BNs classified as a function of the number of initial points.  

Table 2 
Mean and standard deviation of distance measures of 100 Bayesian networks for 
a different number of starting points using the Abou-Moustafa metric.  

Initial Points Averaged Distance σ 

1  39.191  5.901 
2  40.649  3.181 
5  41.608  2.000 
10  42.242  1.403 
25  43.320  1.066 
50  44.427  0.930 
100  47.425  0.980 
150  50.785  0.815  
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Fig. 14. Comparison of the correlation matrices obtained for 1 initial point and multiple conditional rank correlation values.  
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Fig. 15. Comparison of the correlation matrices obtained for 150 initial points and multiple conditional rank correlation values.  
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model properties. The frequencies of the first five vibration modes were 
extracted as output responses of the FE model. The histograms of the 
first natural frequency with the different configurations of initial points 
and conditional rank correlation values are presented in Fig. 18. 

These figures show how high values of conditional rank correlation 
cause wider histograms and more extreme frequency values than in the 
simulations with lower conditional rank correlation values. This is 
because high conditional rank correlation values provoke more homo-
geneous values for each simulation, so the properties of the FE model 
behave more globally and acquire less dissimilar values. Regarding the 
initial points, the results are similar for the same value of conditional 
rank correlation, as shown in Fig. 19, where the cumulative density 
function (CDF) of the first natural frequency of each configuration of the 
Bayesian network is plotted. This figure shows how the CDFs are almost 
identical for the same conditional rank correlation values independently 
of the number of initial points. Besides, increasing the conditional rank 
correlation generates more extreme values in the dynamic responses, 
thus confirming the previous observations in the histograms. In addi-
tion, it can be highlighted that some vibration modes are more suscep-
tible than others to the generated variability with the same Bayesian 
network configuration. This is because not all modes present the same 
sensitivity to the thickness variables and Young’s modulus. This differ-
ence in sensitivity causes the variation bounds of the dynamic responses 
to be considerably wider in some modes. 

As could be observed, the initial points and the conditional rank 
correlation have a strong influence on the generated variability and on 
the dynamic responses of the model. The characterization of these pa-
rameters could follow two approaches, i) based on experimental data or 
ii) computational using dynamic or static data as reference and applying 
a calibration framework. Following the first approach, the initial points 
could be the structural elements for which in situ measurements are 
available and the values of the child nodes are computed using infer-
ence. For conditional rank correlation, this approach would be more 
complex, as it would require a large number of measurements to obtain a 
robust value. The second approach would be to computationally esti-
mate the initial points and conditional rank correlation in calibration 
frameworks. The disadvantage of this second approach is that it can lead 
to convergence problems in the optimization process. For this reason, an 
appropriate approach may involve determining the number of initial 
points experimentally and then computing the conditional rank corre-
lation values within the optimization framework. However, the 
parameterization of the conditional rank correlation can be performed 
using multiple approaches such as different correlation values according 
to the profile type, the connection type, or its degree of exposure to 
environmental conditions. This requires an iterative framework of 
parameterization, sensitivity analysis and calibration. In addition, due 
to the nature of the proposed methodology, a new framework for 
sensitivity analysis and calibration must be developed. However, all 

Table 3 
Abou-Moustafa distances obtained among 12 Bayesian networks with different conditional rank correlation values and number of initial points.  
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these issues are beyond the scope of this paper and will be addressed in a 
future work. 

Finally, the computational cost of the methodology was evaluated 
using three different computers. The first is a medium–high-range laptop 
model (DELL G5), the second is a custom computer designed for these 
types of simulations, and the third is a computing server. The features of 
the computers are summarized in Table 4. The computational cost was 

divided into two parts. First, the consuming time to run the developed 
algorithm (BN time). This entails the time the algorithm spent copying 
the FE model, creating the geometry and the material for each element, 
traversing the structure and assigning the parent-children relationships, 
and finally creating the DAG structure, the correlation matrix, and, thus, 
the Bayesian network. This algorithm part is only simulated once for 
each Bayesian network configuration. Secondly, the computational cost 

Fig. 16. Cumulative density function of steel members’ thicknesses for 500 simulations with different configurations of initial points and conditional rank corre-
lation values. 
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Fig. 17. Graphical representation of thickness variability with different conditional rank correlation values.  
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Fig. 18. Histograms of the first natural frequency for 500 simulations with different configurations of initial points and conditional rank correlation values.  

Fig. 19. Cumulative density function of the first natural frequency for 500 simulations with different configurations of initial points and conditional rank corre-
lation values. 
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of simulating 100 samples with different thicknesses and Young’s 
modulus values for each element was evaluated. Table 5 summarizes the 
computational cost of the two algorithm steps for the three computers. 

As observed, the time to build both Bayesian networks (BN time) 
range from 7.03 to 17.9 min, depending on the computer employed. In 
this step, the CPU speed is crucial since it is characterized by performing 
most calculations in series. Thus, it is recommended to use computers 
with higher CPU speed (such as PC2) to carry out this part of the process 
since the number of cores is not a determining factor. Regarding the 
simulation time for 100 simulations, it varies from 5.73 to 24.36 min, 
which translates into a speed of 3.44 to 14.61 s per simulation. As this 
part of the code is parallelized, the number of cores is crucial and more 
important than the CPU speed. This can be seen in the results where the 
highest simulation speed was obtained for the computer with more cores 
(PC3) which obtained a speed of 3.44 s per simulation. In this regard, it 
should be highlighted that if the employed computer does not have a 
sufficiently powerful hard disk, it can act as a bottleneck due to the read/ 
write workload required by the FE model simulations, so despite 
increasing the number of cores, the simulation speed will not increase. 

6. Conclusions 

This paper proposes using Gaussian Copula-based Bayesian Network 
(GCBN) for spatial variability characterization in aging steel bridges. 
This work involved the development of the methodology and the 
assessment of the generated variability. As future work, the practical 
implementation to model the corrosion variability in a real case study 
could be performed. For this purpose, a methodology should be defined 
for the optimization of the parameters of the Bayesian network to ensure 
that the generated models are representative of the real structure. In this 
paper a methodology was developed that automatically creates a 
Bayesian network and induces the generated variability in the FE model. 
As a simplification to carry out the study of the variability generated, 
only positive and uniform values of conditional rank correlation were 
assumed for each pair of nodes of the BN. Thus, the conditional rank 
correlation variable is defined as the correlation between any pair of 
adjacent structural elements. The main findings of the study are sum-
marized in the following:  

• From the study of the controllable parameters of the automatic 
generation process of the Bayesian Network, it can be concluded that 
the conditional rank correlation globally affects the correlation ma-
trix that defines the Bayesian network, while the initial points mainly 
affect the correlation of the most distant elements in the structure. 
Besides, a high number of initial points limits the effect that the 

conditional rank correlation exerts on the correlation matrix. This 
fact implies that the correlation matrix maintains low values in the 
more distant elements despite the employment of high conditional 
rank correlation values. Regarding the influence of the controllable 
parameters in the FE model, it can be noted that higher conditional 
rank correlation values create samples with more homogeneous 
properties in the bridge. Therefore, more extreme values in the dy-
namic responses are obtained. The initial points produce a lighter 
effect than the conditional rank correlation on the generated vari-
ability and, therefore, on the dynamic responses.  

• About the methodology, it is highlighted that the GCBN is a highly 
efficient tool for modeling complex dependencies, thus overcoming 
the drawbacks presented in classical random fields. Moreover, it has 
a low computational cost thanks to the Gaussian copulas and the 
efficiency of the automatic generation algorithms, making it ideal for 
high-dimensional problems such as the one presented in this study. 
Nonetheless, due to the high complexity of modeling the corrosion 
phenomena and the typical lack of experimental measurements, it is 
recommended to select the parameter settings of the Bayesian 
network (initial points and conditional rank correlation) based on 
collected data of the bridge properties such as the static or dynamic 
responses.  

• Overall, it can be concluded that the synergies produced between the 
developed algorithm, which provide a fully automatic generation of 
the Bayesian network, and the use of the GCBN allow us to accurately 
model, at a low computational cost, the properties variability in 
high-dimensional problems of complex structures, such as aging steel 
bridges, making the methodology a robust process for the generation 
of highly detailed probabilistic FE models. For other bridge typol-
ogies, such as masonry or concrete bridges, the use of the Bayesian 
network can also be a very effective approach. In micro-modeling 
approaches it can define the dependencies between the units, the 
mortar joints and their interfaces in a more robust way. In addition, 
the use of experimental data together the use of inference can be an 
accurate approach to model the damage in the structure. Notice that 
performing inference using traditional models such as random fields 
would not be a straightforward task as it is with BNs. 

• Finally, some lines of action are underlined to improve the meth-
odology in further work regarding different aspects, such as 
increasing the discretization level of the structure, further enhancing 
the modeling flexibility of the Bayesian network by implementing 
constraints that choose different values of conditional rank correla-
tion depending on the element type and connection or improving the 
representation of the properties variability by applying Bayesian 
inference on the network if experimental data of the structure were 
available. 
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Table 4 
Features of the three computers employed to quantify the computational cost.   

Features  

Model Reading/Writing 
SSD speed (Mb/s) 

CPU model Cores Base/ Max 
Frequency (GHz) 

PC1 Dell G5 3500 /2300 Intel i7 
9750H 

12 2.6/4.5 

PC2 Custom 2200 /1900 AMD Ryzen 
9 3950X 

16 3.5/4.7 

PC3 Server 7500/6850 2 X AMD 
EPYC 7513 

2 X 
32 

2.6/3.65  

Table 5 
Computational cost of the BN creation and simulation of 100 samples for the 
three employed computers.   

Model BN time (min) 100 Simulations time (min) Total time (s) 

PC1 Dell G5  12.85  24.36  14.61 
PC2 Custom  7.03  10.18  6.11 
PC3 Server  17.90  5.73  3.44  
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[85] Morales-Nápoles O, Delgado-Hernández DJ, De-León-Escobedo D, Arteaga- 
Arcos JC. A continuous Bayesian network for earth dams’ risk assessment: 
Methodology and quantification. Struct Infrastruct Eng 2014;10(5):589–603. 
https://doi.org/10.1080/15732479.2012.757789. 
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