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SUMMARY

This thesis addresses the sensor-based perception of driver and pedestrian to improve
joint path prediction of ego-vehicle and pedestrian based on mutual awareness in the
domain of intelligent vehicles.

According to the World Health Organization (WHO), more than half of global traffic
deaths are among Vulnerable Road Users (VRUs), such as pedestrians and riders, and
human error is still a major cause of accidents. This motivates paying special attention to
pedestrians and drivers while they are interacting in traffic. For the foreseeable future, the
reality on the road (and the accident numbers) will largely be determined by Advanced
Driver-assistance Systems (ADAS) where the driver is still required to keep the eyes on the
road. To that end, the scope of this thesis resides within ADAS and driving automation
up to (including) autonomy level 3 as defined by the Society of Automotive Engineers
(SAE). While current ADAS consider pedestrians and the driver individually, their mutual
awareness has not been leveraged to improve path prediction and thereby road safety.

This thesis presents a framework that estimates driver head pose from driver camera
images, estimates pedestrian location and orientation from exterior camera images and
lidar point clouds, uses this information over time to reason about driver and pedestrian
mutual awareness, and performs joint probabilistic path prediction of ego-vehicle and
pedestrian to assess collision risk.

Deep neural networks demand a large training set to tune the vast amount of parame-
ters. This thesis introduces DD-Pose, the Daimler TU Delft Driver Head Pose Benchmark,
a large-scale and diverse benchmark for image-based head pose estimation and driver
analysis. It contains 330k measurements from multiple cameras acquired by an in-car
setup during naturalistic drives. Large out-of-plane head rotations and occlusions are
induced by complex driving scenarios. Precise head pose annotations are obtained by
a motion capture sensor and a novel calibration device. The new dataset offers a broad
distribution of head poses, comprising an order of magnitude more samples of rare poses
than a comparable dataset.

Utilizing the dataset, this thesis presents intrApose, a novel method for continuous
6 degrees of freedom (DOF) head pose estimation from a single camera image without
prior detection or landmark localization. intrApose uses camera intrinsics consistently
within the deep neural network and is crop-aware and scale-aware: poses estimated
from bounding boxes within the overall image are converted to a consistent pose within
the camera frame. It employs a continuous, differentiable rotation representation that
simplifies the overall architecture compared to existing methods. Experiments show that
leveraging camera intrinsics and a continuous rotation representation (SVDO+) results
in improved pose estimation compared to intrinsics agnostic variants and variants with
discontinuous rotation representations. Driver head pose of naturalistic driving is biased
towards close-to-frontal orientations. Training with an unbiased data distribution, i.e., a
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more uniform distribution of head poses, further reduces rotation error, specifically for
extreme orientations and occlusions.

In addition to considering the inside of the vehicle, this thesis also focuses on the
outside environment and presents a method for 3D person detection from a pair of camera
image and lidar point cloud in automotive scenes. The method comprises a deep neural
network that estimates the 3D location, spatial extent, and yaw orientation of persons
present in the scene. 3D anchor proposals are refined in two stages: a region proposal
network and a subsequent detection network. For both input modalities high-level feature
representations are learned from raw sensor data instead of being manually designed. To
that end, the method uses Voxel Feature Encoders to obtain point cloud features instead
of widely used projection-based point cloud representations. Experiments are conducted
on the KITTI 3D object detection benchmark, a commonly used dataset in the automotive
domain.

Eventually, the output provided by the methods of the former chapters, namely,
driver head pose and 3D person locations, are leveraged by a novel method for vehicle-
pedestrian path prediction that takes into account the awareness of the driver and the
pedestrian of each other’s presence. The method jointly models the paths of ego-vehicle
and a pedestrian within a single Dynamic Bayesian Network (DBN). In this DBN, sub-
graphs model the environment and entity-specific context cues of the vehicle and pedes-
trian (incl. awareness), which affect their future motion. These sub-graphs share a
latent state which models whether the vehicle and pedestrian are on collision course.
The method is validated with real-world data obtained by on-board vehicle sensing,
spanning various awareness conditions and dynamic characteristics of the participants.
Results show that at a prediction horizon of 1.5 s, context-aware models outperform
context-agnostic models in path prediction for scenarios with a dynamics change while
performing similarly otherwise. Results further indicate that driver attention-aware mod-
els improve collision risk estimation compared to driver-agnostic models. This illustrates
that driver contextual cues can support a more anticipatory collision warning and vehicle
control strategy.

The main conclusions and findings of this thesis are: using a measurement device with
a per-subject calibration procedure simplifies the data acquisition process to obtain a
broad distribution of head poses. Using an intrinsics-aware head pose estimation method
with a continuous rotation representations allows for a simple architecture that yields ro-
bust head pose estimates across a broad spectrum of head poses. Modeling of both driver
and pedestrian mutual awareness in a unified DBN improves joint probabilistic path
prediction compared to driver-agnostic models. Additionally, it provides explainability
for model parameters and interpretability of the internal decision making process.

Further research can be conducted to understand the behavior of humans inside and
outside an intelligent vehicle. Two major trends go towards integrating uncertainties into
the components and combining them to a system that can be trained end-to-end from
raw sensor data to predicted paths. Future work would greatly benefit from representative,
worldwide, naturalistic, multi-sensor, temporal data which cover the outside environ-
ment as well as the inside of the vehicle – ideally shared across research institutions and
companies.



SAMENVATTING

Deze dissertatie richt zich op het met sensoren waarnemen van bestuurders en voetgan-
gers om de paden van het ego-voertuig en voetgangers gezamenlijk te voorspellen met in
acht neming van wederzijdse gewaarwording, in het domein van intelligente voertuigen.

Volgens de Wereldgezondheidsorganisatie (WHO) valt meer dan de helft van alle ver-
keersdoden wereldwijd onder kwetsbare weggebruikers, zoals voetgangers en fietsers.
Menselijke fout is nog steeds een belangrijke oorzaak van deze ongevallen. Dit motiveert
om extra aandacht te besteden aan voetgangers en bestuurders tijdens hun interactie
in het verkeer. In de nabije toekomst zal de realiteit op de weg (en de ongevallencij-
fers) grotendeels bepaald worden door geavanceerde bestuurders assistentie systemen
(ADAS) waarbij de bestuurder nog steeds de ogen op de weg moet houden. Daarom
ligt de focus van dit proefschrift op ADAS en automatisering van het rijden tot en met
autonomieniveau 3 zoals gedefinieerd door de Society of Automotive Engineers (SAE).
Hoewel de huidige ADAS rekening houden met voetgangers en de bestuurder afzonderlijk,
is hun wederzijdse gewaarwording niet benut om de pad voorspelling en daarmee de
verkeersveiligheid te verbeteren.

Deze dissertatie presenteert een systeem dat de houding van het hoofd van de be-
stuurder herleid uit camerabeelden, en de locatie en oriëntatie van voetgangers obser-
veert uit externe camerabeelden en lidar puntenwolken. Over tijd wordt deze informatie
gebruikt om door middel van een gezamenlijke, probabilistische pad voorspelling van
het ego-voertuig en de voetganger te redeneren over de wederzijdse gewaarwording
tussen bestuurder en voetganger, om het risico op een botsing in te schatten.

Diepe neurale netwerken vereisen een grote trainingsset om de enorme hoeveelheid
parameters af te stemmen. Deze dissertatie introduceert DD-Pose, de Daimler TU Delft
Driver Head Pose Benchmark; een grootschalige en diverse dataset voor beeld-gebaseerde
observatie van hoofd bewegingen en bestuurder analyse. De benchmark bevat 330.000
metingen van meerdere camera’s die zijn verkregen door een in-voertuig opstelling tijdens
naturalistische ritten. Grote hoofdoriëntaties en occlusies worden veroorzaakt door
complexe rijscenario’s. Nauwkeurige annotaties van de hoofdhouding zijn verkregen door
een bewegingsopnamesensor en een nieuw kalibratieapparaat. De nieuwe dataset biedt
een brede distributie van hoofdhoudingen, met een orde van grootte meer zeldzame
poses dan een vergelijkbare dataset.

Gebruikmakend van de dataset presenteert dit proefschrift intrApose, een nieuwe
methode voor continue schatting van de hoofdhoudingen in 6 vrijheidsgraden uit een
enkel camerabeeld zonder voorafgaande detectie of lokalisatie van herkenningspun-
ten. intrApose neemt de intrinsieke camera-eigenschappen in acht binnen het diepe
neurale netwerk en houdt rekening met het bijsnijden en schalen van afbeeldingen: ori-
ëntaties geobserveerd in bounding boxes binnen het totale beeld worden geconverteerd
naar een consistente oriëntatie in het cameraframe. De methode gebruikt een conti-
nue, differentieerbare rotatie representatie die de algehele architectuur vereenvoudigt
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in vergelijking met bestaande methoden. Experimenten tonen aan dat het gebruik van
camera-intrinsieke eigenschappen en een continue rotatie-representatie (SVDO+) resul-
teert in een betere oriëntatie bepaling ten opzichte van intrinsiek-agnostische technieken
en varianten met discontinue rotatie representaties. Tijdens naturalistisch rijden is het
hoofd van de bestuurder voornamelijk naar voren gericht. Trainen met een meer uni-
forme verdeling van hoofdoriëntaties vermindert bias-gerelateerde meetfouten, specifiek
voor extreme oriëntaties en occlusies.

Naast observatie binnen het voertuig, richt dit proefschrift zich ook op de buitenom-
geving en presenteert een methode voor 3D-persoonsdetectie uit een combinatie van
camera beeld en lidar puntenwolk in verkeersscènes. De methode bestaat uit een diep
neuraal netwerk dat de 3D-locatie, ruimtelijke omvang en oriëntatie van personen in de
scène detecteert. 3D ankervoorstellen worden in twee fasen verfijnd: een regio voorstel
netwerk en een daaropvolgend detectienetwerk. Voor beide invoer modaliteiten worden
hoogwaardige representaties geleerd van ruwe sensor gegevens in plaats van handmatig
ontworpen. Daartoe gebruikt de methode Voxel Feature Encoders in plaats van de veel-
gebruikte projectie-gebaseerde puntenwolken. Experimenten worden uitgevoerd op de
KITTI 3D object detectie benchmark, een veelgebruikte dataset in de auto-industrie.

Vervolgens worden de resultaten uit de eerder benoemde methoden, namelijk, de
houding van het hoofd van de bestuurder en de 3D-locaties van personen, gebruikt voor
het voorspellen van het pad van voertuig en voetganger met een inachtneming van we-
derzijdse gewaarwording van elkaars aanwezigheid. De methode modelleert gezamenlijk
de paden van het ego-voertuig en een voetganger binnen een Dynamisch Bayesiaans
Netwerk (DBN). In dit DBN modelleren subgrafen de omgevings- en entiteit-specifieke
contextuele informatie van het voertuig en de voetganger (inclusief gewaarwording), die
hun toekomstige beweging beïnvloeden. Deze subgrafen delen een latente toestand
die modelleert of het voertuig en de voetganger op ramkoers liggen. De methode is
gevalideerd met praktijkgegevens die zijn verkregen door voertuig instrumentatie, die
verscheidene gewaarwordingsomstandigheden en manoeuvres van de deelnemers om-
vatten. De resultaten laten zien dat bij een voorspellingshorizon van 1,5 s, contextbewuste
modellen beter presteren dan context-agnostische modellen in pad voorspelling voor sce-
nario’s met een dynamische gedragsveranderingen, en vergelijkbaar presteren in andere
gevallen. De resultaten geven verder aan dat gewaarwordingsbewuste modellen het risico
op een botsing beter inschatten dan gewaarwording-agnostische modellen. Dit illustreert
dat contextuele aanwijzingen van de bestuurder een anticiperende botswaarschuwing en
voertuigcontrole kunnen ondersteunen.

De belangrijkste conclusies en bevindingen van dit proefschrift zijn: het gebruik van
een meetapparaat met een kalibratieprocedure per participant vereenvoudigt het proces
van gegevensverzameling van een brede verdeling van hoofdhoudingen. Het gebruik van
een intrinsiek-bewuste methode voor het schatten van hoofdoriëntatie met een conti-
nue rotatie weergave maakt een eenvoudige architectuur mogelijk die robuuste meeting
oplevert over een breed spectrum van houdingen. Modellering van wederzijdse gewaar-
wording tussen bestuurder en voetganger in een verenigd DBN verbetert gezamenlijke
probabilistische pad voorspelling in vergelijking met bestuurders-agnostische modellen.
Bovendien biedt het verklaarbaarheid voor modelparameters en interpreteerbaarheid
van het interne besluitvormingsproces.
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Verder onderzoek kan worden uitgevoerd om het gedrag van mensen binnen en
buiten een intelligent voertuig. Twee belangrijke trends gaan in de richting van het
integreren van onzekerheden in de componenten en ze combineren tot een systeem
dat eind-tot-eind getraind kan worden van ruwe sensor gegevens tot voorspelde paden.
Toekomstig werk zou veel baat hebben bij representatieve, wereldwijde, naturalistische,
multi-sensor, temporele gegevens die zowel de buitenomgeving als de binnenkant van het
voertuig bestrijken. In het ideale geval worden deze gegevens gedeeld tussen bedrijven
en onderzoeksinstituten.
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1
INTRODUCTION

C ONSIDER the traffic situation of a pedestrian about to cross the road and a driver
approaching the path of crossing in his or her vehicle (see Figure 1.1). They are

two interacting traffic participants, perceiving each other, assessing the traffic situation,
predicting their paths, and planning and negotiating their future actions to maneuver
towards their goals safely. They visually perceive their environment to form a mental
representation of the outside world and use experience to understand the surroundings.

The pedestrian is aware of his or her location, orientation, and intended path. By
observing the approaching vehicle, he or she can estimate its location, orientation and
velocity, predict its future path, assess whether the situation will become critical, and
react accordingly (stop or continue crossing). As additional context information, the
pedestrian observes the driver to assess the driver’s awareness of the pedestrian, also

Figure 1.1: A traffic scenario of a pedestrian crossing the road as observed from an approaching vehicle. The left
depicts the image from an on-board frontal-looking camera mounted behind the windshield of an intelligent
vehicle. The center shows a cut-out of the pedestrian to ease judgment. Attentive human drivers extract a
variety of context information besides the location of the pedestrian to interpret the situation. Just from a single
image, a human driver can judge whether the pedestrian is aware of the approaching vehicle (head orientation),
or is moving towards the other side of the road (legs apart). Similarly, when observing the image of a driver
camera (right), one can judge that the driver is awake (eyes open), but not focusing on pedestrian (head and
eyes pointing towards the building). If the driver has not focused on the pedestrian in the past, and with the
information of the velocity of the vehicle, one can infer how critical the situation is and how likely a collision is
without intervention, e.g., of an Autonomous Emergency Braking (AEB) system.

1



1

2 1. INTRODUCTION

affecting the decision of whether it is safe to cross the road.

Likewise, the human driver observes the traffic scene, knows about the vehicle’s
location and velocity, and effortlessly localizes the pedestrian in relation to the road
topology. The driver further infers important context information from the pedestrian’s
body and head pose, such as the crossing intention and the pedestrian’s awareness of
the driver/vehicle. This helps the driver to anticipate the pedestrian’s behavior and react
accordingly, e.g., by braking.

This everyday traffic situation seems effortless to humans and much of the reasoning
happens subconsciously, based on innate cues such as gaze. How could an Advanced
Driver-Assistance System (ADAS) perceive this situation, build a representation of the
traffic scenario, extract useful information from the traffic participants, predict their
future paths, and reason about situation criticality?

This thesis answers these questions by proposing a framework for an intelligent
vehicle that intervenes in dangerous traffic situations by initiating emergency brakes or
by emitting warnings to raise the awareness of the traffic participants. The framework
presented in this thesis utilizes information from on-board sensors pointing-in (observing
the driver) and pointing-out (observing the traffic scene, notably the pedestrian) and
employs components from computer vision, pattern recognition, probabilistic reasoning,
and state estimation. An overview of the framework will be given in Section 1.1.3 after
further motivating the importance of road safety in Section 1.1.1.

1.1. MOTIVATION, SCOPE, AND CHALLENGES
Section 1.1.1 gives an overview of the current road safety situation and the behavioral
key risk factors that cause accidents. They motivate special attention to pedestrians and
drivers while they are interacting in traffic. Current ADAS already improve safety for
pedestrians, as well as comfort and safety for drivers. While they consider pedestrians
and driver individually, Section 1.1.2 suggests considering their mutual awareness to
improve path prediction of both ego-vehicle and pedestrian to eventually increase road
safety (see thesis scope in Section 1.1.3). The individual components like driver head pose
estimation, as well as 3D person detection involve certain challenges, complemented by
the challenges of their temporal integration for path prediction. They are described in
Section 1.1.4.

1.1.1. ROAD SAFETY

More than 1.35 million people are killed yearly in traffic worldwide, and up to 50 million
people are injured according to the World Health Organization (WHO) [135]. Pedestrians
make up 23% of this number. About two thirds of serious crashes between vehicles and
pedestrians occur while the pedestrian is crossing the road [36] and more than 32% occur
on dedicated crossing locations with marked right-of-way (e.g., zebras, traffic lights) [37].
The main causes are distracted drivers, misinterpretation of the pedestrian’s future action,
obstructed view of the pedestrian and difficult lighting conditions [36]. This motivates to
look into mutual awareness of driver and a potentially crossing pedestrian.

The WHO provides an interactive web visualization that helps to bring the dry figures
into perspective and connects them to our emotions, see Figure 1.2: It depicts a map
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of the world. In the center, it says: “A road user will die in 23 s” and counts down to 0 s.
Afterward, it starts over. Yet another person died in traffic, and it raises the urge to do
something about it. Road traffic injury is the leading cause of death for people aged
between five and 29 years – while walking, cycling, or playing [135].

Figure 1.2: Screenshot of the interactive web visualization on traffic fatalities provided by the WHO, it provides a
count down in seconds until the next death caused by traffic (statistically). Retrieved from https://extranet.
who.int/roadsafety/death-on-the-roads on 2023-03-23, based on the data of [135].

There are inequalities across regions: Africa had 26.6 deaths per 100.000 population
in 2016, compared to Europe with 9.3 deaths per 100.000 inhabitants. This inequality has
further widened, as the number increased in Africa from 2013 to 2016, while it decreased
further in Europe during that period [135].

There are behavioral key risk factors, such as (a) speeding, (b) drink-driving and
drug-driving, (c) nonuse use of motorcycle helmets, seat-belts and child restraints, and
(d) distracted driving [135]. These are legislatively being worked towards. In addition,
building safer roads (e.g., better separation of traffic, especially vehicles vs. Vulnerable
Road Users (VRUs)) and safer vehicles are important measures to improve road safety.
Implementations of these measures vary between countries worldwide and human error
is still a major cause of accidents [37].

These facts motivate this thesis to bring special attention to pedestrians and drivers
while they are interacting in traffic. As artificial intelligence has found its way into se-
ries production vehicles, it opens new opportunities to understand driver-pedestrian
interactions and help resolve critical situations.

https://extranet.who.int/roadsafety/death-on-the-roads
https://extranet.who.int/roadsafety/death-on-the-roads
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1.1.2. DRIVER COMFORT, DRIVER ASSISTANCE AND AUTOMATED DRIVING
The last decades have already shown considerable improvements towards road safety
and driver comfort, with many ADAS already available on the market. In addition, the
aspiration of automated driving currently pushes investments and developments of
vehicle manufacturers. The automated driving committee of the Society of Automotive
Engineers (SAE) has published the J3016 standard, a taxonomy of driving automation
levels with six levels of driving automation, incrementally shifting the distribution of
responsibilities between driver and automation [114]. See Figure 1.3.

SAE J3016TM LEVELS OF DRIVING AUTOMATIONTM

DRAFT- Stand alone

• lane centering

 OR

• adaptive cruise 
control

• local driverless 
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everywhere 
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• lane departure 
warning

• traffic jam 
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You are not driving when these automated driving 
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maintain safety

What does the 
human in the 
driver’s seat 
have to do?
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When the feature 
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you must drive

These are automated driving features
These features 

provide 
steering 

OR brake/
acceleration 
support to 
the driver
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AND brake/
acceleration 
support to 
the driver

These features can drive the vehicle 
under limited conditions and will 

not operate unless all required 
conditions are met

This feature 
can drive the 
vehicle under 
all conditions

These features 
are limited 

to providing 
warnings and 
momentary 
assistance

These are driver support features

What do these 
features do?

SAE 
 LEVEL 0TM

SAE 
 LEVEL 1TM

SAE 
 LEVEL 2TM

SAE 
 LEVEL 3TM

SAE 
 LEVEL 4TM

SAE 
 LEVEL 5TM

Copyright © 2021 SAE International. 

Copyright © 2021 SAE International. The summary table may be freely copied and distributed AS-IS provided that SAE International is acknowledged as the source of the content.

Learn more here:  sae.org/standards/content/j3016_202104

Figure 1.3: Visual chart of SAE J3016 levels of driving automation. It defines six levels of driving automation,
from SAE level 0 (no automation), to SAE level 5 (full vehicle autonomy). Adopted from [114].

Up to including SAE level 4, the driver has to complement the automated system.
Up to including SAE level 2, the driver must consistently supervise the support features,
whereas in SAE level 3, the driver can engage in non-driving activities, but must take
over the driving task on short notice when requested by the automation. SAE level 0 to
SAE level 4 systems support only under specific conditions defined by the operational
design domain (ODD), e.g. on-highway and during daytime. SAE level 0 features have
shown a positive impact on driving safety statistics [25] by warning (e.g., forward collision
warning, blind spot monitor, lane departure warning) or by intervention (e.g., automated
emergency brake).

Regardless of SAE level of automation, early and robust localization of pedestrians is
desirable, ideally with a large prediction horizon of the future path, respecting the cues
from the pedestrian itself, but also from the infrastructure and other road users. When
implementing pedestrian recognition systems, there is a trade-off to make between false
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positives (“hallucinated” pedestrians) and false negatives (“overseen“/missed pedestri-
ans). Ideally, both numbers should be close to zero and will decrease further over the next
decades thanks to active ongoing research. Up to SAE level 2, the trade-off could be set
towards fewer false positives while having more false negatives. This is possible because
the driver is responsible for the driving task.

Towards pedestrian safety, Mercedes-Benz improved the active safety system PRE-
SAFE®in 2013, which initiates emergency brakes if a dangerous traffic situation is found
by camera-based pedestrian detection. In 2016, the Euro New Car Assessment Program
(NCAP) has introduced tests for pedestrian protection systems, such as AEB Pedestrians,
motivating further vehicle manufacturers to increase pedestrian safety.

When it comes to the driver, ADAS can make use of multiple cues to increase driv-
ing safety and comfort. Camera-based driver monitoring systems can detect fatigue/
drowsiness [123], distraction/inattention [33], gestures [78], signs of being drunk [20], and
readiness to take over from automated driving [30]. Camera-based driver head pose has
been employed in on-market vehicles as early as 2007 (Toyota/Lexus) to estimate driver
alertness. Cadillac (Super Cruise, 2018), BMW (Extended Traffic Jam Assistant, 2018), and
Nissan (ProPilot, 2019) implement extended SAE level 2 capabilities and leverage a driver
camera to assess the readiness of the driver to take over the task of driving. Mercedes-
Benz’s latest S-Class features a driver camera that monitors the driver’s readiness to take
over from automated driving mode on highways in an SAE level 3 system. This legally
allows the driver to perform non-driving related tasks for up to 10 s under specific condi-
tions. In addition, the latest S-Class features a volumetric heads-up display (HUD), an
auto-stereoscopic 3D display, and multi-modal human-car interaction (e.g., the voice
assistant inferring which window to open), each facilitated by head pose estimation.

Ideally, an intelligent vehicle with the driver in-the-loop knows where the driver puts
his or her attention and can anticipate what the driver will do next. In ADAS, this can
be used to lower false emergency brakes, e.g., in the scenario of a crossing pedestrian
depicted in the beginning of this chapter, in the case where the driver is already aware of
the pedestrian. With a deeper understanding of the driver, the scene around the vehicle,
and how the road users interact comes a higher comfort and safety. To that end, this thesis
addresses the interaction between the driver and a pedestrian and uses their mutual
awareness to improve the prediction of their future paths.

1.1.3. THESIS SCOPE

The scope of this thesis is the path prediction and collision-risk estimation of ego-vehicle
and a pedestrian based on features extracted from vehicle, driver and pedestrian. The
focus is set on a pedestrian potentially crossing the road in front of the approaching
ego-vehicle. The targeted application domain is an ADAS for SAE level 0–2 in traffic
scenes with potentially crossing pedestrians. Integration into an intelligent vehicle is
considered by using onboard sensors (as opposed to simulator data) as well as employing
non-invasive sensors (as opposed to the driver or pedestrian wearing special equipment).
Based on the predicted paths of ego-vehicle and pedestrian, collision risk is assessed and
can be used in an adaptive AEB system. In this context, adaptive means that the trigger
for AEB can be more relaxed if both road users are aware of each other.

Within the defined scope and application domain, this thesis presents a framework
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that consists of multiple components: (a) camera-based driver head pose estimation with
deep learning methods (pointing-in, Chapter 3 and Chapter 4), (b) camera- and lidar-
based 3D person detection and orientation estimation with deep learning (pointing-out,
Chapter 5), and (c) probabilistic path prediction of ego-vehicle and a potentially crossing
pedestrian based on mutual awareness which is influenced by the driver head pose,
vehicle position and speed, and features from the pedestrian (location, body orientation,
head orientation) (Chapter 6).

A typical functional chain of an intelligent vehicle spans along the modules sensors
> perception (incl. sensor fusion) > behavior prediction > planning > control [141]. This
thesis contributes to multiple modules of the chain (see also Figure 1.4):

• Sensors provide measurements of the environment in a raw, machine-readable
format. E.g., cameras measure photons and provide two-dimensional arrays of
intensity values, and lidar sensors (actively) measure locations of multiple points
with respect to the lidar sensor and provide them as point clouds. Both camera and
lidar sensor data are leveraged in this thesis, whereas radar is out of scope.

• Perception extracts meaningful information from the raw sensor inputs, often with
the use of pattern recognition methods. Specific to this thesis, driver head pose
(3 degrees of freedom (DOF) translation and 3 DOF rotation) is extracted from
single camera images, and 3D person location and body yaw rotation is extracted
from a measurement pair of camera-image (forward-looking) and lidar point cloud.
Multiple (noisy) per-sensor measurements are observed over multiple time steps
to build an environment model. In this thesis, measurements of driver head pose,
pedestrian location and orientation alongside ego-motion information of the ego-
vehicle are fused in a probabilistic framework to estimate the motion dynamics of
the road users.

• In behavior prediction future paths of ego-vehicle and other road users are esti-
mated. The work of this thesis also touches upon the behavior prediction module
by making probabilistic predictions of the future path of both ego-vehicle and a
pedestrian.

Sensors

Camera
(facing the driver)

Camera
(forward looking)

Lidar

Perception
and Fusion

6 DOF driver head
pose

3D pedestrian
location

Multi-sensor 
fusion

Temporal 
framework

Behavior
Prediction

Probabilistic
prediction of

future paths of
ego-vehicle and 

pedestrian

Planning

Collision risk
estimation

Control

Collision warning

Figure 1.4: Typical functional chain of an intelligent vehicle (columns from left to right) and scope addressed by
this thesis.
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• Planning and control are components of an autonomous vehicle responsible for
defining the future path of the ego-vehicle and using actuators to implement the
path using motion control, e.g. apply brakes upon the decision of AEB. Collision
risk estimation and warning of this thesis contribute to these modules.

Note that despite multiple pedestrians can be localized within the perception module,
the path prediction experiments of this thesis focus on a single, potentially crossing
pedestrian. This is to limit the complexity of interaction and keep data collection for
optimization and evaluation feasible. Extensions to multiple pedestrians will be discussed
in Section 6.6.

1.1.4. CHALLENGES
The intelligent vehicles domain brings certain challenges to overcome. There are chal-
lenges that are specific to each individual module mentioned in the last section, and there
are challenges arising from composing the modules to a robust on-board system.

CHALLENGES TO VISION-BASED ALGORITHMS IN INTELLIGENT VEHICLES

Cameras mounted on-board a moving vehicle perceive the complex environment around
and inside the vehicle (see Figure 1.5). Image sensors consist of a limited amount of pixels
where the field of view is being projected to. For an object of fixed size, the size in pixels is
inversely proportional to its distance, leading to small projections of far-away objects (see
Figure 1.5a). Objects at the image border are only partly visible in the image (truncation,
see Figure 1.5b).

Lighting conditions affect the exposure of the camera, e.g., low-light conditions (night-
time, dawn) increase the exposure time and can lead to motion blur for fast movements
(see Figure 1.5c). Similarly, changes in lighting dynamics, such as entering/exiting tunnels,
lead to delayed adaptations of the exposure time, causing temporal under/overexposure.
Because the ego-vehicle is moving, the background continuously changes (as opposed to
the surveillance domain with cameras mounted to static infrastructure) and is cluttered,
making separation from objects of interest more challenging, also due to occlusions from
other objects (see Figure 1.5b). Camera images might be disturbed by low sun, dirt, dust,
rain, snow, or fog (see Figure 1.5d and Figure 1.5e).
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(a) Low resolution. (b) Truncation of person on left image border and hood of the
ego-vehicle; occlusion by other pedestrians.

(c) Motion blur on left image border caused by long camera
exposure time, high vehicle speed, and moving pedestrians.

(d) Low sun causing artifacts on the image.

(e) Rain on the windshield locally blurring the image.

Figure 1.5: Examples of challenges of vision-based algorithms in intelligent vehicles perceiving the outside
environment. Image source: EuroCity Persons dataset [12] with the author’s permission.
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CHALLENGES OF DRIVER HEAD POSE ESTIMATION

In-vehicle driver head pose estimation provides particular challenges in addition to those
of general vision-based head pose estimation systems. The challenges include difficult
illumination conditions (such as harsh sunlight covering parts of the face, see Figure 1.6a),
occlusions (by worn objects such as glasses, see Figure 1.6b, or hands, see Figure 1.6d),
but also due to the driving action (see Figure 1.6c), mobile phone use (see Figure 1.6e) and
extreme head poses (see Figure 1.6f) imposed by naturalistic, complex driving scenarios
while demanding a precise pose estimate and high availability in a non-invasive setting
(no blinding illumination, no worn sensors). Different drivers vary widely in appearance,
e.g., due to age, gender, ethnicity, or accessories. On the other hand, operating in-vehicle
also provides advantages, such as a fixed perspective defined by the known extrinsic and
intrinsic camera parameters, and the sparse number of faces simultaneously present
within the cabin [76].

(a) Low sun overexposing parts of the
face.

(b) Glasses occluding the eye region. (c) Steering wheel occluding parts of
the face.

(d) Hands occluding parts of the face. (e) Hand-held mobile phone covering
parts of the face.

(f) Out-of-plane rotations of the head.

Figure 1.6: Examples for challenges of vision-based driver observation algorithms.

When training and evaluating driver head pose algorithms, head pose distribution has
to be considered: Naturalistic driving depicts mostly frontal head pose, especially during
highway driving. Far-from-frontal head poses, e.g., during parking scenarios, occur less
frequently.
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CHALLENGES OF 3D PERSON DETECTION FROM CAMERA AND LIDAR

Detecting persons in urban traffic scenes poses further challenges in addition to the
general challenges of vision-based algorithms mentioned above. Persons come in a wide
variety of sizes, appearances, e.g., caused by clothing (different seasons, weather, time,
personal style) or poses, see Figure 1.7. Persons are non-rigid: they can stand, walk,
crouch, lie, jump, and depict complex articulations. Children, due to their body height
are particularly difficult to detect in far distances, both for cameras (small projections),
and for lidar sensors (few 3D points covering the child).

Figure 1.7: Examples for challenges induced by the intra-class variance of persons, causing different appearance
(left) and poses, like sitting (right). Examples from the EuroCity Persons dataset [12] with the author’s permission.

Detecting the 3D location of persons from camera images only has the challenge of
missing depth information. Working only with data from a lidar sensor is challenging due
to the sparse spatial distribution of point clouds at the distance. The lack of sensing texture
makes it difficult to distinguish subtle features, such as head poses and overall body shape.
Additionally, persons can be covered by fewer points due to external occlusion or self-
occlusion compared to unobstructed cases.

Combining both modalities (camera images and lidar point clouds) introduces addi-
tional challenges, namely the need for precise calibration and synchronization. Intrinsic
and extrinsic calibration parameters may change over time. In contrast to a camera,
a lidar rotates while capturing the scene, so aligning point clouds of a moving vehicle
demands for compensation of ego-motion.

CHALLENGES OF EGO-VEHICLE AND PEDESTRIAN PATH PREDICTION

Pedestrians are highly maneuverable; they can stop walking or change direction in an
instant. This makes accurate path prediction a main challenge for intelligent vehicles.
Road users dynamically interact with each other, which influences their future behavior,
alongside environment factors. Low resolution of far-away pedestrians makes pedestrian
head pose estimation imprecise. In turn, path prediction methods need to tolerate this
lack of information/noise in the signal. Path prediction relies on observations of ego-
vehicle movement, pedestrian location and pose, and driver head pose over time in a
rigid, world-static coordinate frame. Therefore, the ego-centric perception has to be
ego-motion compensated posing further challenges.
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CHALLENGES OF SYSTEM INTEGRATION

Integration of the components into an intelligent vehicle poses additional demands.
Processing should be performed in real-time with low latency, i.e., quickly reacting to new
measurements. Sensors need to be and stay calibrated intrinsically and extrinsically: the
optical projection parameters of each camera and the spatial transformation between
all sensors and the ego-vehicle needs to be known. Sensors might decalibrate over time
in a moving vehicle due to temperature changes and vibrations. This decalibration
must be detected and compensated over time. Measurements of the sensors need to
be synchronized, i.e. within the same time domain. Computation resources within an
intelligent vehicle are limited: computation power is proportional to power consumption,
which directly affects fuel economy, respectively battery range for electric vehicles.

1.2. OUTLINE AND CONTRIBUTIONS
The goal of this thesis is to increase traffic safety by improving path prediction of ego-
vehicle and a potentially crossing pedestrian by leveraging mutual awareness of driver
and pedestrian. To achieve this, this thesis contributes improved driver head-pose esti-
mation, pedestrian localization and a probabilistic framework for path prediction based
on features extracted from vehicle, driver and pedestrian.

Figure 1.8: Graphical outline of the chapters of this thesis (see also thesis cover for more visual context).
Chapter 3 and 4 address interior-sensing of the ego-vehicle, specifically a driver head pose dataset and a 6 DOF
head pose estimation method (camera frustum and driver head pose highlighted in yellow). Chapter 5 localizes
the pedestrian in 3D (orange cuboid) based on exterior camera and lidar. Chapter 6 predicts paths of ego-vehicle
(blue curves) and pedestrian (green uncertainty ellipses) based on driver head pose (yellow arrow), pedestrian
location (orange cuboid) and pedestrian head pose (orange arrow).
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Figure 1.8 and the cover of this thesis depict a graphical outline of the methodical
chapters of this thesis. First, Chapter 2 presents previous work for the methodical chapters
outlined above, namely, head pose datasets, head pose estimation methods, 3D person
detection, and road user path prediction. Then Chapter 3 introduces a new large, natural-
istic driver head pose dataset, motivated by the demand of deep neural networks with
respect to dataset size and ground truth accuracy. The dataset is made available to the
scientific community to encourage further research in this domain. Based on the dataset,
Chapter 4 presents a novel driver head pose estimation method. Chapter 5 leverages a
combination of camera and lidar sensors to estimate the 3D location and yaw rotation of
persons surrounding the vehicle. Based on the output of the previous chapters, Chapter 6
presents a method that predicts the paths of the ego-vehicle and a pedestrian based on
mutual awareness extracted from the head poses of both driver and pedestrian. In the
final Chapter 7 overall conclusions are presented and future work is discussed.

The following subsections give a more detailed overview of the contributions of the
methodical Chapters 3 – 6.

1.2.1. A LARGE-SCALE DRIVER HEAD POSE BENCHMARK

Developing head pose estimation algorithms based on machine learning demands for a
large training set to optimize the large amount of parameters. Head pose, represented by
3 DOF of translation and 3 DOF of rotation, is difficult to manually annotate with suffi-
cient precision. Chapter 3 introduces DD-Pose, the Daimler TU Delft Driver Head Pose
Benchmark, a large-scale and diverse benchmark for image-based head pose estimation
and driver analysis. It contains 330k measurements from multiple cameras acquired by
an in-car setup during naturalistic drives. Large out-of-plane head rotations and occlu-
sions are induced by complex driving scenarios, such as parking and driver-pedestrian
interactions. Precise head pose annotations are obtained by a motion capture sensor and
a novel calibration device. A high-resolution stereo driver camera is supplemented by
a camera capturing the driver cabin. Chapter 3 is based on the work published in [109]
(©2019 IEEE).

This chapter’s main contributions are:

• The driver analysis benchmark from naturalistic driving scenarios features a broad
distribution of head orientations and positions with an order of magnitude more
samples of rare poses than comparable datasets. The dataset is made available for
public benchmarking1.

• The high-resolution stereo images allow for analysis of resolution, depth, and taking
image context around faces into account.

• The supplemental camera of the driver cabin, combined with steering wheel and
vehicle motion information, pave the way for holistic driver analysis, rather than
head pose only.

1https://dd-pose-dataset.tudelft.nl

https://dd-pose-dataset.tudelft.nl
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1.2.2. MONOCULAR DRIVER 6 DOF HEAD POSE ESTIMATION LEVERAGING

CAMERA INTRINSICS
Chapter 4 presents intrApose, a novel method for continuous 6 DOF head pose estimation
from a single camera image without prior detection or landmark localization. Using
camera intrinsics alongside the intensity information is essential for accurate pose esti-
mation. The proposed head pose estimation framework is crop-aware and scale-aware,
i.e., it keeps poses estimated within image cut-outs consistent with the whole image. It
employs a continuous, differentiable rotation representation that simplifies the overall
architecture compared to existing methods. The method is validated on the dataset
introduced in Chapter 3 and uses ablation studies to compare rotation and translation
errors of intrinsics-aware and -agnostic methods, continuous and discontinuous rotation
representations, and data sampling strategies. Chapter 4 is based on the work published
in [108] (©2023 IEEE).

This chapter’s main contributions are:

• It is observed that neglecting camera intrinsics (e.g., by using heuristics) introduces
both rotation and translation errors that exceed reported rotation estimation errors.
intrApose uses camera intrinsics consistently within the deep neural network and
is crop-aware and scale-aware: poses estimated from bounding boxes within the
overall image are converted to a consistent pose within the camera frame.

• This chapter borrows for the use in head pose estimation the continuous rotation
representation SVDO+ [69] which was used successfully in other domains.

• Using the challenging in-car driver head pose dataset introduced in Chapter 3,
this chapter demonstrates that intrApose estimates translation and rotation more
robustly compared to State-of-Art (SoA) methods, especially for extreme out-of-
plane rotations.

1.2.3. DEEP END-TO-END 3D PERSON DETECTION FROM CAMERA AND

LIDAR
Chapter 5 presents a method for 3D person detection from camera images and lidar point
clouds in automotive scenes. The method comprises a deep neural network that estimates
the 3D location, spatial extent, and yaw orientation of persons present in the scene. 3D
anchor proposals are refined in two stages: a region proposal network and a subsequent
detection network. For both input modalities high-level feature representations are
learned from raw sensor data instead of being manually designed. To that end, the method
presented in Chapter 5 uses Voxel Feature Encoders [146] to obtain point cloud features
instead of widely used projection-based point cloud representations, thus allowing the
network to learn to predict the location and extent of persons in an end-to-end manner.
Experiments are conducted on the KITTI 3D object detection benchmark [43]. Chapter 5
is based on the work published in [110] (©2019 IEEE).

The main contributions of this chapter are threefold:

• A novel end-to-end deep learning-based method for 3D person detection using
camera images and lidar point clouds is introduced. It does not rely on hand-crafted
features.
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• Various fusion schemes (early, late, and deep) and feature combinations (mean and
concatenation) are compared.

• The method outperforms the prior SoA on the validation dataset of the KITTI 3D
object detection benchmark [43].

1.2.4. DRIVER AND PEDESTRIAN MUTUAL AWARENESS FOR PATH PREDIC-
TION AND COLLISION RISK ESTIMATION

Chapter 6 leverages the output of the methods presented in the former chapters, i.e., driver
head pose and 3D person locations. It presents a novel method for vehicle-pedestrian
path prediction that takes into account the awareness of the driver and the pedestrian
towards each other. The method jointly models the paths of ego-vehicle and a pedestrian
within a single Dynamic Bayesian Network (DBN). In this DBN, sub-graphs model the
environment and entity-specific context cues of the vehicle and pedestrian (incl. aware-
ness), which affect their future motion and allow to increase the prediction horizon. These
sub-graphs share a latent state which models whether the ego-vehicle and pedestrian are
on collision course; this accounts for a certain degree of motion coupling. The method is
validated with real-world data obtained by on-board vehicle sensing (stereo vision, GNSS,
and proprioceptive). Data consist of 93 vehicle and pedestrian encounters, spanning
various awareness conditions and dynamic characteristics of the participants. Chapter 6
uses ablation studies to quantify the benefits of various components of the proposed
DBN model for path prediction and collision risk estimation. Chapter 6 is based on the
work published in [111] (©2022 IEEE).

The contributions are threefold:

• A method for joint path prediction and collision risk estimation of vehicle and
pedestrian is presented that uses observed kinematics, mutual awareness, and
environment cues. Joint awareness of driver and pedestrian towards each other has
not been considered in previous work.

• An ablation study is provided analyzing the effect of various context cues on situa-
tions where an intervention of either road user is needed to avoid a collision.

• The proposed method is optimized and evaluated on newly collected real sensor
data from a moving vehicle.
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T HIS chapter presents the previous work on the building blocks for driver-pedestrian
mutual awareness and joint path prediction of ego-vehicle and pedestrian in the

intelligent vehicles domain: camera-based driver head pose estimation including relevant
datasets, 3D person detection and orientation estimation based on camera and lidar, and
road user path prediction.

2.1. DRIVER HEAD POSE ESTIMATION
This Section reviews different representations of rotations with a focus on applications
within deep neural networks. Further, methods for image-based head pose estimation
are surveyed.

2.1.1. ROTATION REPRESENTATIONS
Rotations in 3D space can be described by 3 degrees of freedom (DOF). There is an
abundance of 3 DOF rotation representations, most prominently Euler angles, Tait-Bryan
angles, rotation matrices, and quaternions. See Shuster et al. [122] for a survey and
Table 2.1 for a tabular overview.

Euler angles and Tait-Bryan angles describe a rotation by three rotation components
and an implicit or explicit convention of the order of axes the individual rotation compo-
nents are applied on. For Euler angles the first and third rotation component are around
the same axis while for Tait-Bryan angles, each rotation component refers to a dedicated
coordinate axis. In addition, the rotation can be extrinsic, defining the rotation about axes
of the original coordinate frame which is assumed to be motionless, or intrinsic, having
the axes rotate along the chain of the three elemental rotations. This results in 12 different
conventions for obtaining a well-defined rotation based on three given angles. Euler
and Tait-Bryan angle components are restricted on a bound interval, thus introducing
discontinuities (360◦ and 0◦ represent the same amount).

Rotation quaternions (q ∈H) are a compact 4-element representation allowing for
efficient computation using quaternion algebra. Rotation quaternions suffer from the

15
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Table 2.1: 3 DOF rotation representations within deep neural networks and the number of values (#val) they
estimate. ⊥: representation is within SO(3) without post-processing and after each step of backpropagation.
HPE: Applied to head pose estimation. ⟲: representation is continuous in accordance with the definition of
Zhou et al. [144].

Representation #val Method ⊥ HPE ⟲

YPR [145] 3 Euler / Tait–Bryan angles ✓ ✓ -

Rotation vector [4] 3 (rotvec). Compact axis-angle ✓ ✓ -

Axis-Angle [144] 4 3-vector for axis, scalar angle - - -

Quaternion [54] 4 Quaternion + normalization - ✓ -

Ortho5D [144] 5 Stereographic projection ✓ - ✓

Ortho6D [144], [52] 6 Gram-Schmidt process ✓ ✓ ✓

M [144] 9 3x3 matrix (unconstrained) - - -

SVD-inf [16, 69] 9 SVD (inference) on M, ortho loss [16] - ✓ -

SVDO+ [69] 9 Differentiable SVD (training) on M ✓ - ✓

antipodal problem making q and −q represent the same rotation [122].
A rotation matrix R (R ∈ SO(3) ⊂ R3×3, RRT = I, det(R) = +1) maps an orthonormal

basis in R3 to another orthonormal basis in R3, spanned by the three columns of R . SO(3)
is the special orthogonal group containing all rotations in 3D.

There are less frequently used representations, such as axis-angle (axis a ∈R3, ||a||2 = 1,
angle θ ∈ [0,2π]), and rotation vectors (rotvec; r ∈R3, with angle θ = ||r ||2).

The above representations have the drawback of being discontinuous, which are less
suitable for learning, by leading to higher errors or slower convergence [144]. Recently,
rotation representations have been proposed to overcome these drawbacks. Zhou et
al. [144] proved that in the three-dimensional space any rotation representation with
less than five dimensions is discontinuous and thus harder to approximate by a neural
network. Zhou et al. [144] construct an Ortho5D and an Ortho6D representation which
are both continuous. Out of the 5 (6) values, a rotation matrix ∈ SO(3) is built using a stere-
ographic projection (a Gram-Schmidt process). Levinson et al. [69] explore the viability
of integrating symmetric orthogonalization SVDO+ (based on singlar value decompo-
sition (SVD)) directly into the neural network following an unconstrained intermediate
representation of nine values (a degenerate rotation matrix M). SVDO+ is continuous
and differentiable, thus suitable within deep neural networks.

2.1.2. HEAD POSE ESTIMATION
Head pose estimation from images has been a popular topic for decades and can be cate-
gorized from different perspectives, i.e., the methodical perspective, the I/O (input/output)
perspective, and the application perspective.

METHODICAL PERSPECTIVE

Both surveys of Murphy-Chutorian et al. [81] and Abate et al. [1] use a high-level method-
based categorization: template-based methods, subspace-based methods, feature-based
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methods, and regression-based methods.
Template-based methods estimate head pose by matching appearance templates, i.e.

by comparing test images to a set of exemplars with known pose. Subspace-based methods
map the input space (e.g. image intensities) to a head pose manifold. E.g., Derkach et
al. [31] use tensor decomposition to model a non-linear manifold of 3D head poses.
Feature-based methods make use of an intermediate geometric representation of the face.
E.g., Baltrusaitis et al. [7] localize facial landmarks by a constrained local model (CLM)
and estimate head pose by a successive generalized adaptive view-based appearance
model. Tran et al. [129] fit a 3D morphable model to the head which implicitly encodes
head pose. Chang et al. [18], point out several drawbacks of facial landmark locations:
they (a) are ill-defined, therefore vary in interpretation of the annotator, (b) represent
facial contours, therefore change with a different viewpoint, and (c) become occluded
depending on viewpoint. This introduces certain errors in head pose estimates based on
facial landmark locations.

Regression-based methods learn a (non-linear) functional mapping from input data to
the head pose parameter space. There is an abundance of work within this domain, so
some examples representative of the concept are pointed out and the reader is referred
to the comprehensive survey on deep regression by Lathuiliere et al. [66]. The methods
typically perform regression using a neural network, though other regression models have
been applied. Neural network-based regression models consist of a CNN-based back-
bone for feature extraction and a prediction head. Regressing a discontinuous rotation
representation has an impact on the architecture. One prominent scheme is coarse-
and-fine/ordinal regression, where coarse bins are classified in addition to continuous
regression values [16, 55, 113, 133, 139]. Zhou et al. [145] address the discontinuities of
large Euler angles by a wrapped loss. Schwarz et al.[119] choose quaternions and use a reg-
ularization term to keep quaternion elements small. Hsu et al. [54] additionally propose
losses explicitly dealing with the inter-dependence of certain quaternion elements and
the independence of others. Albiero et al. [4] use a rotation vector representation. Their
method img2pose estimates the delta from a normalized pose (zero-mean, unit standard
deviation) to increase robustness. Further, img2pose employs a calibration point loss
which uses a set of head-static 3D points (e.g., 3D head landmarks) and compares the
projected points of ground-truth and predicted pose.

Lately, methods have tackled the constraint of orthogonality. Cao et al. [16] propose
to estimate the basis vectors or the rotation matrix and use a loss to keep the basis vector
close to orthogonal. Yet, SVD is needed to create an orthonormal rotation representation.
Zhou et al. [144] have proposed the continuous Ortho6D representation (see Section 2.1.1).
Hempel et al. [52] applied it to a head rotation estimation in a simple deep neural network
estimating six values, and employ the Ortho6D representation. The method does not
estimate head translation.

I/O (INPUT/OUTPUT ) PERSPECTIVE

A taxonomy orthogonal to the above structure follows the available input modality (e.g.,
intensity, depth [9, 39], optical-flow or a combination of those), and whether a single
measurement in time is being used or multiple consecutive frames (e.g., tracking [8, 121],
RNNs [47]). Another disambiguation is about which of the 3 DOF rotation parameters
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are being estimated, e.g. from a single yaw angle [32, 99] up to 3 DOF head rotation
parameters. Finally, methods can be distinguished by whether they estimate (up to
3 DOF) translation alongside rotation, and whether a preprocessing step is needed before
the pose estimation, such as a face bounding box detection. This thesis focuses on
single-image, intensity-based methods estimating continuous, full rotation (3 DOF) and
translation (3 DOF).

APPLICATION PERSPECTIVE

Based on the application domain, different challenges/requirements arise that need to
be addressed by the method. E.g., surveillance applications typically have to deal with
low-resolution and tolerate larger rotation errors. A widely used application is head
pose estimation within generic images. Generic images are typically easy to obtain (e.g.,
collected from the internet), but lack other information, such as camera intrinsics. Within
this category one recent method is img2pose [4], a Faster R-CNN-based [105] head pose
estimation method which estimates full 6 DOF head pose without prior face or landmark
detection. The method regresses bounding boxes out of which features are being pooled
for a prediction head. The prediction head regresses a discontinuous rotation vector and
a translation vector for each bounding box. The prediction head loses context by being
presented with a cut-out of the whole image. Therefore, the bounding-box-local pose is
converted to an image-global pose using scaling heuristics. img2pose implicitly assumes
a fixed focal length for all input images, leading to erroneous head pose estimates if the
assumption fails (i.e., with images depicting a different field-of-view). The ground truth
pose used for training and evaluation is obtained using the same focal length assumption
and is thus biased.

Another domain is in-vehicle applications. Most approaches focus on head rotation
from depth data from structured infrared light, such as Borghi et al. [9], Schwarz et al. [120],
or Venturelli et al. [131], while Ahn et al. [2], Firintepe et al. [41] and Schwarz et al. [119]
leverage intensity images to estimate head rotation. Out of the aforementioned methods,
only Schwarz et al. [120] estimate head translation in addition to rotation, yet only from
depth data.

See Table 2.2 for the nearest neighbors of the method presented in Chapter 4.

Table 2.2: Related methods for intensity-based head pose estimation with their translation and rotation repre-
sentations. Crop-aware: whether the pose is consistent with the image crop. In-vehicle: whether the method
has been applied to driver head pose estimation. Intr.-aware: whether the method leverages camera intrinsics.
Note that the top four methods do not estimate head translation, yet are of interest due to their rotation repre-
sentation.

Name Method
Trans-
lation

Rotation
Representation

Crop-
aware

In-
vehicle

Intr.-
aware

TriNet [16] Coarse-to-fine, SVD-inf - R - - -

QuatNet [54] Quaternion, coarse-and-fine - Quaternion - - -

WHENet [145] Coarse-and-fine, address Euler discontinuities - Euler (YPR) - - -

6DRepNet [52] Ortho6D representation of [144] - R - - -

img2pose [4] Faster R-CNN, crop-invariant proposals XYZ Rotation vector ✓ - -

intraApose (Chapter 4) Crop-invariant proposals, SVDO+ XYZ R ✓ ✓ ✓
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2.2. HEAD POSE DATASETS
There is an abundance of publicly available camera-based head pose datasets dating back
nearly two decades [5, 6, 39, 47, 64, 75, 76, 84, 89, 117, 119, 140] (see Table 2.3).

Head pose datasets can be categorized by different aspects, such as imaging charac-
teristics, data diversity, acquisition scenario, annotation type, and annotation technique.
These aspects play an important role on whether and how the dataset identifies challenges
of the head pose estimation task.

Imaging characteristics relate to the image resolution, number of cameras, bit depth,
frame rate, modality (RGB, grayscale, depth, infrared), geometric setup and field of view.

Data diversity incorporates aspects such as the number of subjects, the distribution of
age, gender, ethnicity, facial expressions, occlusions (e.g. glasses, hands, facial hair) and
head pose angles. Data diversity is essential to training and evaluating robust estimation
models.

Acquisition scenario covers the circumstances under which the acquisition of the head
pose takes place. The most important distinction is between in-laboratory [5, 6, 39, 47,
117, 140] vs. in-the-wild [75, 76, 84, 89, 119] acquisition. While the former restricts the
data by defining a rather well-defined, static environment, the latter offers more variety
through being acquired in unconstrained environments such as outside, thus covering
many challenges like differing illumination and variable background. Head movement
can be staged by following a predefined path or can be naturalistic by capturing head
movement while the subject performs a different task, such as driving a car.

Annotation type describes what meta-information, such as head pose, comes along-
side the image data and how it is represented. Head pose is defined by a full 6 DOF
transformation from the camera coordinate system to the head coordinate system, cover-
ing 3 DOF for translation and 3 DOF in rotation. Head pose datasets differ in how many of
those DOF are provided alongside the images, i.e. whether only a subset of the translation
and rotation parameters is given. Ultimately, annotation types differ in their granularity
of sampling the DOF space: there are discrete annotation types that classify a finite set of
head poses, and there are continuous annotation types that offer head pose annotations
on a continuous scale for all DOF.

There are different annotation techniques for obtaining the head pose annotation
accompanying each image. The annotation technique has a large impact on data quality.
It can be categorized into manual annotations vs. automatic annotations. For manual an-
notations, human experts annotate the image data according to a label specification [117].
Automatic annotations can be divided into data-based annotations, computed by algo-
rithms on the image data [39, 140], and sensor-based annotations, which in turn use an
additional hardware sensor for obtaining the head pose for each image [5, 6, 119].

Manual annotations do not need additional hardware but are prone to introduce
errors and biases. E.g., a human annotator can only annotate in the image plane, thus
needs to guess the distance part of the translation of the head [75, 76]. There is also inter-
annotator variability through different interpretation of the same scene. Additionally, as
manual annotations consume human time, their cost scales linearly with the amount of
data to be annotated.

Automatic annotations based on algorithms computing the annotations from the
image data are fast to obtain but induce systematic errors of the underlying algorithm
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and will not allow disambiguating between annotation errors and errors induced by the
method under test.

Automatic annotations based on sensors make use of additional reference sensors
during the data acquisition process. The reference sensor measurements should be cal-
ibrated to the head coordinate system and calibrated and synchronized to the camera
images. There are different types of reference sensors that differ in their measurement
method. Among those are electromagnetic sensors [5, 6], inertial sensors, vision-based
sensors, 3D scanners [117], optical marker tracking sensors [119], and hybrid combina-
tions of them. An optimal reference sensor for head pose estimation should be accurate,
free of drift, robust to disturbance, and measure all 6 DOF on a continuous scale.

From the aspects mentioned above, this thesis focuses on datasets with continuous
head pose annotations for all 6 DOF which offer naturalistic scenarios and a large data
diversity.

Section 2.1.2 showed that many recent models for classification and regression tasks
are based on deep convolutional neural networks.Their high model complexity demands
for a very large number of training examples. Therefore, this thesis also focuses on large
datasets in terms of number of images.

An overview of currently available datasets is given in Table 2.3. Respective example
data can be found in Figure 2.1.

Table 2.3: 2D/3D face datasets with continuous head pose annotations.

Dataset GT Year #Cams x w x h #Images #Subjects f/m Head pose Reference Scenarios

Bosphorus [117] 3D 2008 1x1600x1200 5 k 45/60 relative guided choreographed facial expressions

ICT-3DHP [6] 3D 2012 1x640x480 1 k 6/4 relative magnetic choreographed large rotations

Biwi Kinect [39] 3D 2013 1x640x480 16 k 6/14 relative guided, ICP choreographed large rotations (yaw, pitch)

gi4e hpdb [5] 2D 2016 1x1280x720 36 k 4/6 relative magnetic choreographed large rotations

SynHead [47] 3D 2017 1x400x400 511 k 5/5 absolute synthetic data 70 different motion tracks

UbiPose [140] 3D 2018 1x1920x1080 14 k 22c absolute 3DMM service desk interactions

RS-DMV [84] 2D 2010 1x960x480 13 k 6c N/A N/A naturalistic driving

Lisa-P [75] 2D 2012 1x640x480 200 k 14c relative POS [29] naturalistic driving, choreographed large yaw

NDS HPV [89] 2D 2015 1x720x480 2 PBd >3100c N/A N/A naturalistic driving

VIVA [76] 2D 2016 1x*544 1 k N/A relative POS [29] naturalistic driving

DriveAHead [119] 3D 2018 1x512x424a 1 M 4/16 absolute mo-cap naturalistic driving, parking

DD-Pose (Chapter 3)b 3D 2019 2x2048x2048 2x330 k 6/21 absolute mo-cap
naturalistic driving,
large rotations and translations

a only head image crops provided. Mean size 25x50
b additional data streams recorded: front facing camera, interior camera facing driver from the rear right
c female/male ratio not provided by the authors
d number of images not provided. Assumed to be >109

The datasets are subdivided by their acquisition scenario into two groups, namely
generic head pose datasets vs. driving head pose datasets. The latter come with desirable
properties such as naturalistic scenarios, a large data diversity and challenging imaging
characteristics.

2.2.1. GENERIC HEAD POSE DATASETS
Bosphorus [117] contains 5k high resolution face scans from 105 different subjects. The
3D scans are obtained by a commercial structured-light based 3D digitizer. It offers 13
discrete head pose annotations with different facial expressions and occlusions.

ICT-3DHP [6] provides 1400 images and depth data from 10 subjects acquired with a
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(a) Bosphorus [117]
(b) Biwi Kinect [39]

(c) ICT-3DHP [6]
(d) gi4e hpdb [5]

(e) SynHead [47]

(f) UbiPose [140] (g) RS-DMV [84]

(h) Lisa-P [75]

(i) NDS HPV [89] (j) VIVA [76]

(k) DriveAHead [119]. Content within red box provided. Left: infrared camera image. Right: Depth image.

Figure 2.1: Example data of the investigated 2D/3D head pose datasets. The datasets differ in many aspects,
such as sensor modalities (RGB, IR, depth), in-lab vs. synthetic vs. naturalistic driving, precision of head pose
annotation and resolution.
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Kinect v1 sensor. 6 DOF head pose annotations are measured by a magnetic reference
sensor. The authors do not detail on whether calibration and synchronization of the
reference sensor measurements to the camera images is performed.

Biwi Kinect [39] consists of 16k VGA images and depth data from 20 subjects depict-
ing the upper body. The data were acquired by a Kinect v1 sensor. 6 DOF head pose
annotations are provided by fitting user-specific 3D templates on depth data, which has
limitations when occlusions are present. As it is recorded in a laboratory environment, it
provides a uniform and static background.

gi4e hpdb [5] contains 36k images from 10 subjects recorded with a webcam in an
in-laboratory environment. Head pose annotations are given in 6 DOF using a magnetic
reference sensor. All transformations and camera intrinsics are provided. Head pose
annotations are given relative to an initial subjective frontal pose of the subject.

SynHead [47] contains 511k synthetic images from 10 head models and 70 motion
tracks. The rendered head models are composed with random background images,
providing indoor/office scenery. As this is a generative method for data synthesis, head
pose annotations are very accurate. Making use of 10 head models provides little diversity
of human facial expressions.

UbiPose [140] features natural role played interactions with 10k frames obtained by a
Kinect v2 sensor. 22 subjects are recorded. Head pose was annotated automatically based
on the raw footage using initial facial landmark annotations and fitting a 3D morphable
model. Annotations not fitting the data were pruned by human annotators. Subjects were
captured from a relatively large distance.

2.2.2. HEAD POSE DATASETS IN THE AUTOMOTIVE CONTEXT

RS-DMV [84] contains 13k images from six subjects captured in naturalistic outdoor and
simulator scenarios. Head pose annotations are not provided.

Lisa-P [75] offers 200k images from 14 subjects with a resolution of 640x480. Head
rotation annotations are obtained by using the Pose from Orthography and Scaling (POS)
algorithm [29] on manually labeled facial landmarks. By using an orthographic projection,
this approach only allows for approximate position and rotation estimates.

NDS-HPV [89] contains 2 PB (peta byte) of highly compressed, low resolution images
from a naturalistic driving study. It contains images of over 3100 subjects collected over a
period of over two years. Head pose annotations are not provided, thus restricting its use
to qualitative analysis.

The VIVA head pose estimation benchmark [76] is a test set consisting of images
with 607 faces, out of which 323 are partially occluded. The naturalistic driving images
were selected both from research vehicle recordings and YouTube videos to display harsh
lighting conditions and facial occlusions. The head pose annotations of the test dataset are
not released, but evaluation is possible by submitting hypotheses through a benchmark
website. No training images are provided.

DriveAHead [119] features 1M images and depth information acquired by a Kinect
v2 sensor during naturalistic driving. 20 different subjects appear in the recordings.
Images were collected with a resolution of 512x424 pixels. 6 DOF continuous head pose
annotations are obtained by a motion capture system which measures the pose of a
marker fixated at the back of the subject’s head. The coordinate transformation between
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the head mounted marker coordinate system and the head coordinate system is calibrated
per-subject by measuring the position of eight facial landmarks of the face of each subject
after fixating the head-mounted marker. The transformation between the reference
sensor coordinate system and the camera coordinate systems are known, although the
calibration process is not described. Alongside, per-image annotations for occlusions
and whether the subjects wears glasses or sunglasses is provided.

The large number of image samples enables training of deep convolutional neural
networks for head pose estimation. Parking maneuvers and driving on a highway and
through a small town results in naturalistic head movements, thus providing distributions
of head rotation angles and head positions which are typical for naturalistic drives.

As no intrinsic camera parameters are provided, 3D points in the camera coordinate
system cannot be projected into the image space. Consequently, both head position and
rotation estimation methods have to implicitly adapt to the specific dataset. DriveAHead
provides cut-outs of faces with a mean inter-pupil distance of 35 pixels, thus targeting on
methods for low-resolution head pose estimation.

2.3. 3D PERSON DETECTION
This section first reviews deep learning based object detection methods, followed by
methods for 3D object detection applied to detection of Vulnerable Road Users (VRUs)
based on camera-only, lidar-only and both modalities combined.

2.3.1. DEEP LEARNING BASED OBJECT DETECTION
Deep neural networks, specifically convolutional neural networks (CNNs) have been
shown to be very accurate in many image recognition tasks such as image classifica-
tion [62], object detection and especially person detection [12]. A large number of arti-
ficial neurons stacked in several layers create a neural network. It transforms the input
datum into an output datum which represents the task to solve. Within each layer, a more
high-level representation of the input is encoded.

For the task of object detection, there are two different approaches, namely two-stage
and single-stage object detectors.

TWO-STAGE OBJECT DETECTION

Two-stage object detection architectures consist of a region proposal stage and a pro-
posal classification stage. The region proposal stage generates proposals which are to be
classified by the proposal classification stage. Using a fast region proposal stage allows
to keep inference time low, while still maintaining a high accuracy. Popular methods
adopting this approach are Region-based Convolutional Neural Networks (R-CNN) [46],
Fast R-CNN [45], Faster R-CNN [105] and Region-based Fully Convolutional Network
(RFCN) [27].

SINGLE-STAGE OBJECT DETECTION

Single-stage object detection architectures perform the detection task in one forward
pass through the network. You Only Look Once (YOLO) [100] and Single-shot multibox
detector (SSD) [74] are prominent representatives of single-stage object detectors.
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YOLO and its improved derivatives [101, 102] divide an input image into a grid. Each
grid cell predicts a fixed number of bounding boxes with an associated confidence score.
Each bounding box is classified. The resulting detections are obtained by a non-maximum
suppression (NMS).

SSD uses a base CNN to extract feature maps at different layers. Each layer produces
detection proposals based on default bounding boxes associated to each feature map.
This allows for specialized classification of objects in various sizes.

2.3.2. 3D PERSON DETECTION IN THE AUTOMOTIVE CONTEXT
3D person detection in the automotive context can be performed on measurements
acquired by different on-board sensors such as cameras, radar and lidar. Methods can
perform either on a single modality or a combination of sensor inputs. This section
focuses on camera-only methods, lidar-only methods and methods working on both
modalities. Radar-based methods are out-of-scope for this thesis. Palffy et al. [87] presents
an exemplary method leveraging radar. Qian et al. [97] present a recent survey on 3D
object detection for autonomous driving.

CAMERA-BASED METHODS

[80] estimates the 3D pose of objects from a single image. A State-of-Art (SoA) 2D detector
is used to obtain 2D bounding boxes of the objects. A CNN estimates the 3D pose of
the object while considering projective geometry constraints. 3DOP [22] generates 3D
object proposals from stereo-based depth information. An energy function is formulated
to exploit different features such as prior object size, free-space, and point densities
inside the bounding box. The 3D object proposals are then scored by a CNN. In contrast,
Mono3D [21] creates 3D object proposals from monocular images by exploiting con-
straints such as objects residing on the ground plane. Proposals are scored by semantic
information, context, as well as shape features and location priors. [17] introduces Deep
MANTA, a CNN which estimates 2D bounding boxes and vehicle part locations, along
with visibility and a 3D CAD template. The pose in terms of location and orientation is
recovered by using a 2D/3D point mapping.

LIDAR-BASED METHODS

In contrast to images, point clouds are inherently unordered and have a varying size. To
overcome the this issue, different representations have emerged: bird eye view (BEV) [23,
124], sensor-view [70], mixed 2.5D BEV images [65], and voxel grids [146]. These rep-
resentations allow for transplanting image-based methods to point clouds, specifically
CNNs [70, 124].

In [70], an image-like 2D point map representation is used on which a CNN is em-
ployed for 3D object detection. Complex-YOLO [124] expands the YOLOv2 CNN [101] and
applies it on a BEV representation of the point cloud to detect 3D objects. These methods
rely on designing a good representation of point clouds.

In contrast, there there are methods which learn features from point clouds without
a strongly enforced intermediate representation [19, 65, 96, 138, 146]. PointNet [19]
presents a permutation-invariant deep neural network which learns global features from
unordered point clouds. The method is applied to 3D part segmentation and point-wise
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semantic segmentation. PointPillars [65] uses the features from PointNet in order to
learn a feature representation on vertical columns (pillars). This allows for an image-
like representation on which an SSD-based detection network is applied for 3D object
detection.

Voxelnet [146] avoids using hand-crafted features by partitioning the input space into
equally-sized voxels. The group of points within each voxel is transformed into a unified
feature representation through voxel feature encoding (VFE) layers. A VFE layer combines
point-wise features with a locally aggregated feature. Stacking VFE layers allows for
learning higher level features. The resulting high-dimensional volumetric representation
is used in a region proposal network framework to estimate the 3D location of objects.

CAMERA- AND LIDAR-BASED METHODS

There are multi-modal fusion methods which combine camera images and lidar point
clouds. At the cost of needing a well-synchronized and calibrated sensor setup, benefits
from each modality can be leveraged. E.g. small and far-away objects can be visible in the
camera image while they may not have a lidar measurement.

Frustum PointNets [95] uses a SoA 2D object detector on camera images to obtain
points which reside in the object’s frustum. Then, 3D object instance segmentation and
bounding box regression is performed on point features extracted with the method of
PointNet [146].

Multi-View 3D (MV3D) [23] and Aggregate View Object Detection (AVOD) [63] are
both sensor fusion methods, i.e. they take input from both camera images and lidar point
clouds, extract features from each modality, fuse the features and consequently perform
3D bounding box regression.

MV3D [23] represents point clouds in a front view and a BEV image. Along with the
camera image, convolutional layers are applied for high-level feature representation.
A region proposal network creates view-specific feature crops from the BEV. The per-
modality region-based features are fused either early, late, or in a deep fusion scheme. 3D
bounding box regression is performed to obtain the object’s 3D position.

AVOD [63] provides a similar architecture as MV3D. However, it fuses features from
the individual sensors earlier in the region proposal network in order to capture smaller
objects. Furthermore, AVOD uses the camera image and BEV input only, while still
achieving a higher accuracy on the KITTI 3D detection benchmark.

Both MV3D and AVOD present multi-modal architectures for 3D object detection from
camera and lidar. However, the methods rely on a dense image-like feature representation
of the inherently sparse point cloud.

2.4. ROAD USER PATH PREDICTION
Road user path prediction has attracted a lot of attention in recent years, see surveys
regarding the ego-vehicle [68] and Vulnerable Road Users [106, 112]. Path prediction meth-
ods require positions as input. Ground plane positions relative to a vehicle coordinate
system can be obtained from detections in various sensors (e.g. camera [12], radar [86],
lidar [126], or a combination thereof [110, 126]). See also Section 2.3 for more previous
work on 3D person detection. If ground plane positions relative to a global coordinate
system are needed (e.g., this thesis), then vehicle ego-motion compensation is necessary
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as an additional pre-processing step. For this, a combination of GNNS, INS, and vehicle
proprioceptive sensing can be used. Following sub-sections focus on context cues and
motion models used for path prediction.

2.4.1. CONTEXT CUES FOR PATH PREDICTION
In the most rudimentary form, cues for path prediction consist of point kinematics, i.e.
positions and velocities of the relevant object. It has however been well established that
the use of additional “context” cues can improve path prediction performance [112].
These can be categorized into object cues, and static and dynamic environment cues.

Object context cues refer to cues pertaining to the object of interest itself. For example,
Keller and Gavrila [58] improve pedestrian path prediction by using dense optical flow
features extracted from a pedestrian bounding box. Kooij et al. [60] use relative head
orientation as a “proxy” for the pedestrian’s awareness of the oncoming ego-vehicle while
crossing. Kooij et al. [61] and Pool et al. [93] incorporate the arm gesture of a cyclist to
predict its turn at an intersection. Quintero et al. [98] recover a full 3D articulated pose of
a pedestrian to better predict crossing action.

Object context cues can also refer to properties derived from the driver of the ego-
vehicle, when interested in predicting the future ego-vehicle path. Typical such cues are
driver head orientation or gaze, or performed driver actions, as inferred from accelerator
pedal position, braking force and steering wheel angle. For example, Roth et al. [107]
employ driver head pose to capture the driver’s awareness of a crossing pedestrian.

Static environment context cues refer to elements of the static traffic infrastructure
which will likely influence road user motion, such as road topology [93, 94], road markings
and traffic lights [130].

Dynamic environment context cues capture the presence and motion properties of
other road users (including that of the ego-vehicle itself) that may influence the target
road user’s behavior, i.e. to avoid hazards or to minimize hindrance. For example, [60, 61,
83, 90, 107] use basic kinematics properties, such as relative distances and velocities, and
the expected point of closest approach.

2.4.2. MOTION MODELS
Models for human motion path estimation can be subdivided into physics-based, pattern-
based and planning-based methods [112]. As motivated earlier, this thesis focuses on
physics-based methods, which represent motion by explicitly defined dynamic equations
of one or more underlying dynamical models. Simple motion dynamics can be modeled
by Linear Dynamical Systems (LDSes), which commonly assume a linear relationship
between states and measurements with Gaussian noise. Under these assumptions, the
Kalman Filter (KF) [134] is an optimal filtering algorithm, which has been widely applied
for pedestrian and vehicle tracking [68, 118].

In the scope of collision analysis, motion models play a role for predicting paths of
targets such as a potentially crossing pedestrian and the ego-vehicle. The probabilistic
models described here allow to extrapolate observed behaviors into the future while
accounting for uncertainties in the assumed dynamics and observations.

Since traffic behavior may change at any time, a common approach is to treat the
complex dynamics by switching between or combining multiple motion models at each
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prediction step, e.g., by using a Switching Linear Dynamical System (SLDS). SLDSes can
be extended by dynamical models to incorporate contextual cues for path prediction [61,
98]. Li et al. [72] combine the path prediction output of Kooij et al. [61] with a sequence-
to-sequence path generation method to leverage the complementary advantages of
hand-crafted models and data-driven methods.

Different methods have been introduced to predict the paths of multiple interacting
road users, e.g., Social Force models for human-human interactions [51]. For pedestrian-
vehicle encounters, e.g., Kooij et al. [61] assume that the vehicle does not change motion
dynamics, while Braeuchle et al. [10] use a Bayesian Network to find an appropriate
vehicle motion model which minimizes pedestrian injury risk. The pedestrian motion
model is fixed based on initial velocity. Gupta et al. [49] simulate actions (speed up,
slow down) of a self-driving vehicle within a negotiation cycle with a crossing/yielding
pedestrian to optimize traffic throughput.

2.5. COLLISION RISK PREDICTION
Collision risk prediction can be categorized into physical model-based and data-driven
methods [26]. The latter estimate collision risk metrics based on training data. Physical
model-based methods incorporate physical knowledge and can further be subdivided
into single-behavior threat metrics (SBTM), optimization-based methods, formal meth-
ods, and probabilistic approaches. However, these categories can partially overlap [26].
Söntges et al. [127] present an SBTM method by computing time-to-react from over-
approximating reachable sets. DeNicolao et al. [28] directly estimate collision risk based
on ego-vehicle motion and a random-walk-based pedestrian motion simulation. Col-
lision risk is precomputed by simulation of pedestrian crossing and looked up during
inference based on ego-vehicle motion model parameters and relative position.

Given predictive distributions, collision risk can be obtained by analytic [10] or dis-
crete [14] integration. Bräuchle et al. [10] use a compound car-pedestrian geometric
model to infer a joint spatial probability distribution. Collision risk is estimated by inte-
gration over predicted distributions for all time steps. The method of Brouwer et al. [14]
fuses predicted object occurrences from four pedestrian motion models in a probabilistic
fusion grid. Collision risk is estimated by summation over all grid cells inside the collision
corridor. Roth et al. [107] estimate a joint spatial distribution by moment matching of pre-
dicted distributions for vehicle and pedestrian. A collision risk is calculated by integrating
the joint spatial distribution over the collision area, defined by all possible intersections
between vehicle and pedestrian locations.





3
A LARGE-SCALE DRIVER HEAD

POSE BENCHMARK

This chapter introduces a new driver head pose dataset that is important for the develop-
ment of the head pose estimation method of Chapter 4.

3.1. OBJECTIVES
Benchmarks (i.e. datasets and evaluation metrics) play a crucial role in developing and
evaluating robust head pose estimation methods. A good benchmark not only allows
to identify the challenges of a task but also enables the development of better methods
for solving it. An in-car head pose dataset provides difficult illumination conditions,
occlusions, and extreme head poses. The recent popularity of deep learning methods
with their large model complexity stresses the demand for a large dataset [12]. Available
head pose datasets have drawbacks in terms of size, annotation accuracy, resolution, and
diversity (see Table 2.3). To close this gap, this chapter presents DD-Pose , a large-scale
head pose benchmark.

This chapter is based on the work published in [109] (©2019 IEEE).

3.2. PROPOSED APPROACH
This chapter introduces DD-Pose1, a large-scale head pose benchmark featuring driver
camera images acquired during complex naturalistic driving scenarios. The proposed
benchmark provides 330 k high resolution driver camera images from 27 subjects with
precise continuous 6 DOF head translation and rotation annotations. DD-Pose includes
a variety of non-frontal poses and occlusions occurring in complex driving scenarios.
Occlusions from steering wheel, hands, and accessories such glasses or sunglasses are
present and manually annotated as such on a per-frame basis. Sample annotations of the
benchmark can be found in Figure 3.1.

1Available at https://dd-pose-dataset.tudelft.nl
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Figure 3.1: DD-Pose provides precise 6 degrees of freedom (DOF) head pose annotation for 330 k stereo image
pairs acquired in an in-car environment. The benchmark offers significant out-of-plane rotations and occlusions
from naturalistic behavior introduced by complex driving scenarios. Annotations for partial and full occlusions
are available for each high-resolution driver camera image. An additional camera capturing the interior of the
car allows for further multi-sensor driver analysis tasks.

High resolution images of the driver’s head are acquired by a stereo camera setup
mounted behind the steering wheel. Continuous frame-wise head pose is obtained by a
optical marker tracker measuring the 6 DOF pose of a marker fixated on the back of each
subject’s head. A per-subject transformation from the head mounted marker to the head
coordinate system is found by a novel calibration device.

In addition to the driver stereo camera, the proposed setup uses a wide angle RGB
camera depicting the driver from the rear side to allow for upper-body analysis of the
driver action. Vehicle parameters such as steering wheel angle, velocity and yaw rate are
also part of the benchmark.

All sensors are calibrated intrinsically and extrinsically, such that the coordinate
transformations between their coordinate systems are known. Depth information can
be extracted from the provided stereo camera images by using a disparity estimation
algorithm, e.g. semi-global matching [53]. The optical marker tracker and the stereo
driver camera are electrically synchronized, resulting in a head pose measurement free of
drift and latency.

DD-Pose offers a broad distribution of poses and challenging lighting conditions
like dark nighttime driving, tunnel entrances/exits and low standing sun. 12 driving
scenarios were conducted to gain highly variant, yet naturalistic images of the driver.
Nine driving scenarios comprise drives through a big German city with lane merges,



3.2. PROPOSED APPROACH

3

31

complex roundabouts, parking, and pedestrian zones with pedestrian interactions. In
addition to driving scenarios, DD-Pose provides three standstill scenarios covering a
broad range of head poses and a scenario with mobile phone use.

Overall, DD-Pose offers a variety of naturalistic driving data which is crucial for
development and evaluation of head pose estimation algorithms in unconstrained envi-
ronments. With four megapixels per camera and a mean inter-pupil distance of 274 px,
DD-Pose offers around 60 times more face pixels than DriveAHead to extract features
from fine-grained face structures such as eye gaze and evaluate whether high resolution
is a benefit to the methods under test.

3.2.1. SCENARIOS
The definition of driving scenarios has an essential impact on the distribution of the
head pose and textural variability of the data. E.g., a drive along the highway would
be very biased towards a frontal pose and not be beneficial to train and evaluate head
pose estimation methods. Non-frontal poses are favored by implicitly forcing the driver
have to look out of the car, e.g. by interacting with pedestrians in a pedestrian zone, and
instructing the driver to read shop names on the side of the street. Yet, to be representative
of naturalistic drives, scenarios of standard traffic manoeuvres, such as passing zebra
crossings, highway merges, roundabouts, parking and turning the vehicle are included.
To provide more extensive poses, scenarios while standing are included, where the driver
is instructed to fixate his or her gaze on predefined locations within the car, forcing large
head rotations and translations, and making a phone call.

The scenarios of DD-Pose are defined in Table 3.1, alongside with their intended
properties on data variability.

For the in-car gaze fixation scenario (Table 3.1, #9) this chapter defines the following
protocol: the car stands still with the steering wheel in straight position. The subject is
asked to turn the head to point at a predefined set of targets in the car. A button is to
be pressed by the subject for the period he or she is fixating the object, thus annotating
the time stamps of fixation ad-hoc. Among the targets are mirrors, in-car buttons and
displays.

In summary, these carefully-chosen scenario definitions result in a large variance in
head rotation and head translation, but also facial expressions.

3.2.2. HARDWARE SETUP AND COORDINATE SYSTEMS
A research vehicle has been equipped with a stereo camera facing the driver (each
2048x2048 px, 16 bit, IR sensitive). It is mounted near the speedometer. An infra-red LED
illuminates the driver. A wide angle interior camera (RGB) captures the driver’s cabin
from the rear side. An optical marker tracker was mounted on the rear right behind the
driver. The optical marker tracker can measure the 6 DOF pose of a marker consisting of
multiple IR retroreflective spheres. The subject wears such a marker on the back of his or
her head, which is fixated using a rubber band.

The driver stereo camera, LED illumination and optical marker tracker are electrically
triggered at 15 Hz. The other sensors are synchronized.

A head calibration device was designed which defines the head coordinate system
when attached to the driver’s head while being simultaneously being measured by the
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Table 3.1: Driving scenario definitions and the resulting features of the proposed benchmark. 12 scenarios are
defined to implicitly enforce a broad distribution of head poses and texture.

# Description Rot Trans Occl Stw Occl Facial ex Illum var Ped inter Remark

0 generic driving low low low med high med low talking

1 zebra crossing low low low low med med high crossings and bus stops

2 merge high med low low med med low mirrors, look over shoulder

3 tunnel low low low low med high low entrance, exit

4 roundabout high med low med med med low also multi-lane roundabout

5 ped zone high med low high med med high incl. two-step turn

6 intentional occl med med high med high med low occlusions, facial expressions

7 shop name reading high med med low high med high shops left and right

8 parking high high med high high med med parking in

9 in-car fixation high med med no high med low no driving

10 large translations med high med no med med low no driving

11 large rotations high med med no med med low no driving

12 hand-held calling high med high no med med low no driving

Rot: rotation; Trans: translation; Occl: occlusion; Stw occl: steering wheel occlusions;

Facial ex: facial expressions; Illum var: illumination variance; Ped inter: pedestrian interaction.

optical marker tracker.
Each camera, the optical marker tracker, the head mounted marker, the driver’s

head and the car’s chassis define a coordinate system. A transformation between two
coordinate systems A and B is defined as a homogeneous matrix T A←B which transforms
a homogeneous point pB into pA by pA = T A←B ·pB.

See Figure 3.2 for a visual overview of the sensors, their coordinate systems and the
transformations in between them.

3.2.3. OPTICAL MARKER TRACKER TO DRIVER CAMERA CALIBRATION

T cam_driver_left←marker_tracker and the camera intrinsic parameters are obtained simulta-
neously by a calibration routine which makes use of 3D checkerboard corner positions.
The 3D checkerboard corner positions inside the marker tracker coordinate system are
defined by attaching retro-reflective spheres to the checkerboard, thus making it a marker
measurable by the optical marker tracker. With the 3D checkerboard corner positions and
their corresponding 2D projections in the image, a bundle adjustment method is used to
optimize intrinsic and extrinsic camera parameters, such as focal lengths, principal points,
distortion parameters and rectification parameters [143]. T cam_driver_left←marker_tracker is
obtained as a by-product of the optimization.

3.2.4. MARKER TO HEAD CALIBRATION
The head coordinate system is defined as follows. The origin is located in the nasion of
the head. The x-axis points in frontal direction. The y-axis points towards the left ear.
The z-axis points upwards; it touches the chin centrally. The xz-plane mirrors the head.

A calibrator is designed to attach to the driver’s head during the per-subject calibration
process. It provides a notch to touch the nasion. A chin slider is adjusted such that it
touches the chin centrally. Two cheek sliders are slid against the head such that they
touch the cheeks with equal force, thus defining symmetry about the xz-plane. It is also
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Figure 3.2: In-car hardware setup, coordinate systems and transformations. White arcs denote static trans-
formations acquired once during the setup calibration process. The yellow arc denotes the transformation

T marker_tracker←marker
t being measured by the optical marker tracker for each frame at time t . The orange arc

denotes the transformation T marker←head
s being calibrated once per subject s. All transformations are provided

with DD-Pose.
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Figure 3.3: The per-subject head calibration process. A calibrator whose pose can be measured by the optical
marker tracker is attached to the head by touching the nasion and both chin and cheek sliders in proper position.

equipped with retroreflective spheres such that its pose can be measured by the optical
marker tracker. Its coordinate system is defined such that it coincides with the head
coordinate system above. When it is attached properly, the per-subject transformation
between marker and head is then T marker←head

s := T marker←calibrator
t . This process has to

be performed once per subject and is valid as long as the marker is fixated at the subject’s
head. The calibration process is illustrated in Figure 3.3.

3.2.5. DATA PREPROCESSING

Depending on the driver’s head pose, the retroreflective spheres of the head-worn marker
are visible in the camera image. They are removed to avoid models to overfit on these.
This chapter extends the approach of [119], where the projected locations of the spheres
are filled with interpolations of the values of their surroundings. As markers will mostly be
hidden behind the subjects’ head, a heuristic is employed to only blur the spheres which
are likely visible. The heuristic is based on an empirically found range of head poses and
conservatively set, i.e. rather fill hair or face border than leave spheres visible.

3.2.6. OCCLUSION ANNOTATIONS

Each driver camera image is manually annotated for its occlusions based on the visibility
of facial landmarks, as defined in [115]. none: all 68 landmarks visible; partial: at least
one landmark occluded; full: all landmarks occluded.
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3.2.7. DATASET SPLITS

To allow for a fine-grained evaluation, this chapter splits the data into the disjoint subsets
easy, moderate, and hard depending on the angular distance of the measured head pose
from a frontal pose (looking directly into the driver camera) α f and the presence of
occlusion. easy: α f ∈[0,35)◦ ∧ occl∈{none}; moderate: (α f ∈[0,35)◦ ∧ occl∈{partial})∨
(α f ∈[35,60)◦∧occl∈{none,partial}); hard: α f ∈[60,∞)◦∨occl∈{full};

3.3. DATASET ANALYSIS
DD-Pose comprises recordings of 27 subjects, of which 21 are male and 6 are female. The
average age is 36 years. The youngest and oldest driver are 20 and 64 years old.

There are 330 k measurements of the driver stereo image camera along with interior
camera images. Head pose measurements are available for 93% of the images. The
proportion of the dataset splits is (easy, moderate, hard) = (55%, 33%, 12%).

For the left driver camera images, 5% are fully occluded, 19% are partially occluded
(not counting glasses or sun glasses) and 76% have no occlusion. In 41% of the images,
the driver wears glasses, in 1% sunglasses.

There are 13 scenarios, out of which nine are driving scenarios (#0 - #8) and four
are non-driving scenarios (#9 - #12); see Table 3.1. The shortest scenario (#3, tunnel
entrance/exit) is on average 24 s long. The longest scenario (#5, pedestrian zone) is on
average 211 s long.

The mean inter-pupil distance is 274 px (cf. DriveAHead: 35 px [119]).
The distribution of head rotation angles of DD-Pose and DriveAHead [119] is de-

picted in Figure 3.4. The angles vary in the following ranges, ignoring outliers with less
than 10 measurements in a 3◦ neighborhood: roll ∈ [−63..60]◦; pitch ∈ [−69..57]◦; yaw
∈ [−138..126]◦. The mean pitch angle is −20◦, caused by the driver camera mounted at
the speedometer.

The distribution of head translation occurrences of DD-Pose and DriveAHead [119] is
depicted in Figure 3.5. DD-Pose covers a broad volume of head locations.

Overall, DD-Pose offers an order of magnitude more data for off-centered head poses
than comparable datasets [119].

3.4. EXPERIMENTS
To show that the proposed benchmark contains challenging imagery and head poses,
this chapter evaluates the performance of two 6 DOF off-the-shelf head pose estimation
methods on it. In addition to the experiments conducted in this chapter, a novel method
for head pose estimation which employs the dataset will be presented in the next chapter.

3.4.1. OFF-THE-SHELF HEAD POSE ESTIMATION METHODS

One method is the head pose prior, which always assumes the head to be present in the
mean pose obtained from the dataset. The second method performs head pose estimation
by localizing facial landmarks and solving the Perspective-n-Point (PnP) problem.

Prior: on a dataset with a large amount of frontal poses, this method is expected to
perform very well, despite performing bad on rare poses. The mean head translation
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Figure 3.4: Distribution of head rotation angles of the proposed benchmark DD-Pose and DriveAHead [119]
with respect to a frontal pose into the camera. While both datasets cover a broad range of rotations, DD-Pose
supplies an order of magnitude more data for non-frontal head rotations.
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Figure 3.5: Distribution of head translations of DD-Pose and DriveAHead [119] in the camera coordinate system.
Although the action volume of the driver is limited in the driver’s seat, the datasets differ in their translation
distribution. DD-Pose covers a larger lateral space, is unbiased in y-direction and also depicts very close-by
heads.
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of DD-Pose wrt. the camera is t̄ = (0.011m,0.006m,0.608m). The mean rotation is
y aw =−6.6◦, pi tch =−20.1◦, r ol l = 0.7◦.

OpenFace 2.0: the second method this chapter evaluates is OpenFace 2.0 [7], a State-
of-Art (SoA) face analysis toolkit. Head pose estimation is performed by localization
of facial landmarks via Convolutional Experts Constrained Local Model (CE-CLM). The
facial landmarks are assigned to a 3D landmark model in head coordinates. The pose
is found via solving the Perspective-n-Point (PnP) problem, i.e. finding the pose of the
head coordinate system with respect to the camera coordinate system which minimizes
the projection error. Pretrained models from the authors [7] are used, and the pose is
transformed such that it fits the head coordinate system defined above. The model uses
multi-view initialization to account for extreme poses.

3.4.2. EVALUATION METRICS

Evaluation metrics play an important role on evaluating the performance of the methods
for the specific task. The task of head pose estimation is evaluated for translation and
rotation separately.

Recall: recall defines on which percentage of the images a head hypothesis from head
pose estimation method exists. Images without a hypothesis are left out when evaluating
translation and rotation.

Translation: the mean Euclidean distance for each axis and the mean absolute error
(translation) (MAEt), i.e. mean Euclidean distance, between ground truth head origin and
hypothesis head origin.

Rotation: the commonly used metric mean absolute error (rotation) (MAER) can
be performed on each of the three rotation angles separately or by computing a single
rotation angle between ground truth and hypotheses (geodesic distance). In both cases,
outliers will have a small weight on biased datasets, e.g. with many frontal poses and a
few extreme poses. For an unbiased evaluation of head rotation, balanced mean absolute
error (BMAE) is used, as introduced in [119]. It splits the dataset in bins based on the
angular difference from the frontal pose and averages the MAER of each of the bins:

BMAEd ,k := d

k

∑
i
φi ,i+d ∀i ∈ dN∩ [0,k] (3.1)

where φi ,i+d is the MAER of all hypotheses, where the angular difference between ground
truth and frontal pose is between i and i +d . During evaluation, this chapter uses bin
size d := 5◦ and maximum angle k := 75◦.

3.4.3. RECALL

The prior method, by construction, has a recall of 1.0. The recall of OpenFace 2.0 on the
whole dataset is 0.76 and for the subsets (easy, moderate, hard) = (0.95, 0.65, 0.16). A
more fine grained analysis on the recall value depending on the angular distance from
the frontal pose is found in Figure 3.6. One can see the influence of the definition of the
subsets. While the easy subset offers a large recall as it covers unoccluded heads with
angles up to 35◦, the moderate subset covers the partial occlusions in this range with a
lower recall. The overall recall drops with increasing angle.
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Figure 3.6: Recall depending on angular difference from frontal pose. The recall of OpenFace 2.0 on the whole
dataset drops with increasing rotation from the frontal pose.

Table 3.2: Translation errors (mm). Errors along all axes and mean Euclidean Distance MAEt for the subsets.

Subset

Prior OpenFace 2.0

x y z MAEt x y z MAEt

all 40 21 36 66 8 8 41 44

easy 23 19 32 49 5 6 31 33

moderate 54 21 38 78 12 10 58 63

hard 83 27 46 107 44 30 134 148

3.4.4. TRANSLATION ERROR

The errors in head translation estimation are listed in Table 3.2. The errors on the prior
method implicitly denote statistics of the distribution of the subsets. The MAEt increases
from 5 cm to 11 cm from the easy to the hard subset, caused by a larger translation
variance around the mean translation in the measurements. OpenFace 2.0 localizes the
head translation in x and y direction for the easy and moderate subsets within 1 cm,
increasing up to 4 cm for the hard subset. OpenFace 2.0 has approximately 4-5 times
larger errors in z direction than for the other two dimensions.

3.4.5. ROTATION ERROR

An overview of the MAER and BMAE of the methods on DD-Pose is given in Table 3.3.
Figure 3.7 depicts the MAER depending on the angular difference from a frontal pose.

The prior method implicitly denotes statistics on the rotation measurement distribu-
tion around the mean rotation. The MAER increases from 11◦ to 45◦ from the easy subset
to the hard subset, showing the increasing variance for the more difficult subset.

The MAER of OpenFace 2.0 ranges from 5◦ on the easy subset to 33◦ on the hard subset,
i.e. the error increases by more than a factor of 6 when facing more challenging poses
and occlusions. For comparison: the reported MAER of OpenFace 2.0 is 2.6◦ on the BU
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Table 3.3: Overall mean absolute error (rotation) (MAER) and balanced mean absolute error (BMAE) in degrees
of the head pose estimation methods for the subsets; MAER for roll, pitch, yaw of OpenFace 2.0 (deg).

Subset

Prior OpenFace 2.0

MAER BMAE MAER BMAE roll pitch yaw

all 20 32 9 16 5 4 4

easy 11 14 5 5 3 3 2

moderate 27 26 14 13 8 6 8

hard 45 34 33 31 13 9 27

Figure 3.7: Mean absolute error (rotation) (MAER). All methods increase in terms of MAER for more extreme
poses.

dataset [64] and 3.2◦ on the ICT-3DHP dataset [7].
The evaluations show, that the data of the proposed benchmark provide challenges to

head pose estimation methods due to its broad distribution of angles.

3.5. ADOPTION OF DD-Pose SINCE RELEASE
DD-Pose has been adopted by the scientific community since the release on the public
website2 in October 2019. See Figure 3.8 for a screenshot of the public website. As of May
2023, 58 persons have registered for the use of the dataset. The registrants come from 23
different countries, most prominently from China.

Sign-up is restricted for scientific, non-commercial purposes only, as stated by the
license terms on the website3. The license is derived from the EuroCity Persons Dataset
license4 [12] and is strict to ensure compliance with general data protection regulation
(GDPR) of the European Union. This led to the denial of 64 interested parties who have

2https://dd-pose-dataset.tudelft.nl
3https://dd-pose-dataset.tudelft.nl/eval/license/license
4https://eurocity-dataset.tudelft.nl/eval/license/ecplicense

https://dd-pose-dataset.tudelft.nl
https://dd-pose-dataset.tudelft.nl/eval/license/license
https://eurocity-dataset.tudelft.nl/eval/license/ecplicense
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not fulfilled the license requirements.
Overall, an international audience has shown interest in the dataset, considering the

size of the research field of camera-based head pose estimation.

Figure 3.8: Screenshot of the public website of DD-Pose (https://dd-pose-dataset.tudelft.nl). Visitors
get an overview of dataset statistics and can download the dataset upon successful registration.

https://dd-pose-dataset.tudelft.nl




4
MONOCULAR DRIVER 6 DOF HEAD

POSE ESTIMATION LEVERAGING

CAMERA INTRINSICS

This chapter proposes a new method for camera-based head pose estimation. It leverages
the dataset presented in Chapter 3. Head pose of a driver will be used as a cue for the
driver’s awareness of a pedestrian in Chapter 6.

4.1. OBJECTIVES
Head pose estimation plays an essential role in human understanding, as it is our natural
cue for inferring focus of attention, awareness, and intention. For machine vision, the
task is to estimate both the translation and rotation of the head from camera images.

Head pose constitutes up to 3 degrees of freedom (DOF) for translation and up to
3 DOF for rotation. Unlike most previous work that has estimated only a subset of the
6 DOF, e.g., by not estimating translation, estimating less than 3 DOF of rotation, or by
estimating coarse bins of rotation, this chapter focuses on full 6 DOF on a continuous
scale, as required by most of the applications mentioned in Chapter 1. Both the estimation
of translation and rotation can be seen as a regression problem, based on the intensity
input image.

Estimating a metric translation (i.e., [x, y, z] in meters) from monocular images re-
quires (implicit) knowledge of the head size because head size and distance (as a part of
translation) are inversely proportional with respect to pinhole camera projection: a larger
head will appear closer. Parameters determining how the head is being projected into the
camera image are the intrinsic camera parameters, i.e., focal lengths and principal point.
These factors directly affect the estimation accuracy. This chapter will show that a head
pose estimation method needs to be intrinsics-aware for precise estimation, i.e., being a
camera-based method rather than an intrinsics-agnostic image-based method. On the
contrary, a head pose estimation method which does not explicitly consume camera pa-
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Figure 4.1: intrApose is an intrinics-Aware head pose estimation method. The method estimates continuous
6 degrees of freedom (DOF) head pose (rotation and translation) from a single intensity image and known
camera intrinsics. Left: Input intensity image (DD-Pose validation set). Right: 3D scene with camera frustum
(blue). Face mesh and RGB axes: 6 DOF head pose result of intrApose. Gray axes: ground truth head pose.

rameters encodes implicit assumptions which hinders generalization to different camera
setups.

There are different representations for 3 DOF rotations, most commonly Euler angles,
and Quaternions. Both come with discontinuities (i.e., Euler angles between 359◦ and
0◦) and non-linearities. Rotation estimation methods have applied workarounds for
dealing with the discontinuity of rotation representations rather than intrinsically using a
continuous representation, that is more suitable for deep learning methods [16, 145].

This chapter presents intrApose, a method for full, continuous 6 DOF head pose
estimation which explicitly leverages camera intrinsics and uses a continuous rotation
representation. It operates directly on intensity images and camera intrinsics without a
previous face detection or landmark estimation step.

Training and evaluating a method that estimates full, continuous 6 DOF head pose
demands a dataset that provides camera intrinsics alongside continuous 3 DOF transla-
tion annotation and continuous 3 DOF rotation annotation. To that end, this chapter
bases the experiments on the driver head pose dataset DD-Pose which was introduced in
Chapter 3. See Figure 4.1 for exemplary input to and output of the presented method.

This chapter is based on the work published in [108] (©2023 IEEE).
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Legend:

Module
(differentiable)

Module (learned and
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Input
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Pose representation

Head poses wrt. BBox

Head poses wrt. image

Head pose to BBox

Refined BBoxes

Output:
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Backbone, FPN + RPN

Faster R-CNN BBox proposals
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Faceness Non-maximum 
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Poses wrt. BBox
(bounding box)

Poses wrt. image

Pose conversion (BBox to image) (Alg. 1)

𝑅, 𝑡

(vanilla) Faster R-CNN 
with FPN

New (intrApose)

Figure 4.2: Architectural overview of intrApose, the proposed head pose estimation method, with novel parts
highlighted in bold. intrApose takes intensity images and camera intrinsics as an input. RoI features are obtained
from BBox (bounding box) proposals based on Faster R-CNN with feature pyramid network (FPN) [73, 105] (gray
box). A Raw pose prediction net regresses raw pose features which the Pose representation module converts to
head poses ∈ SE(3), i.e., the rotation R spans an orthonormal basis. Up to here, the poses are relative to their
respective BBox (orange box). The BBox-local poses are converted to be image-global (blue box); see Algorithm 1
and Figure 4.4. Bounding boxes are obtained based on the predicted head poses. A non-maximum suppression
step filters overlapping predictions. The output is a set of head poses, faceness scores and bounding boxes.
During training, losses are applied to BBox proposals and head poses (dashed lines). The whole architecture
is intrinsics-aware, specifically in the Pose conversion (BBox to image) module and the Head pose to BBox
projection module, but also with respect to augmentations (see Section 4.2.5) and cropping/resizing.

4.2. PROPOSED APPROACH

4.2.1. OVERVIEW
This chapter proposes intrApose, a novel method for image-based driver head pose
estimation based on a deep neural network that regresses continuous 6 DOF from a single
intensity image without prior face detection or landmark estimation (see Figure 4.2). The
main building blocks are a Faster R-CNN-based network which regresses BBoxes and
extracts RoI features within these. intrApose learns raw pose features and converts them
to a continuous, full 6 DOF head pose within the BBox. This BBox-local pose is converted
to an image-global pose in the camera frame while respecting camera intrinsics (see
Algorithm 1). Using differentiable modules and a continuous rotation representation
allow for a plain overall architecture.

The proposed method is inspired by the recent head pose estimation method img2pose
proposed by Albiero et al. [4]. The latter presents an efficient Faster R-CNN-based model
which regresses 6 DOF head poses without prior face detection or landmark localization.
The method has shown strong performance on datasets with ground truth head poses
obtained from manually annotated facial landmarks.

The main differences are: (a) intrApose is camera-intrinsic aware: focal lengths are
consistently used as opposed to using image size as a heuristic for focal length. (b) intrA-
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pose uses a continuous rotation representation which makes both pose normalization
and usage of a calibration point loss as employed by img2pose obsolete, therefore simpli-
fying the architecture. (c) intrApose provides an architecture with a differentiable pose
conversion which makes an inverse image-to-bbox pose conversion step (i.e., inverse of
Algorithm 1) at training time superfluous, therefore further reducing model implemen-
tation complexity. (d) intrApose uses Faster R-CNN anchor box aspect ratios and sizes
tuned for human heads, as opposed to aspect ratios and sizes of generic objects, such as
cars or cats.

4.2.2. DEFINITION OF HEAD POSE

In this thesis, head pose is defined as a linear transformation matrix T cam←head ∈ SE(3),
the special Euclidean group, which transforms a three-dimensional homogeneous point

phead = [
xhead, yhead, zhead,1

]T
given in the head coordinate frame to a point pcam =

[xcam, ycam, zcam,1]T in the cam coordinate frame by pcam = T cam←head ·phead, thus rep-
resenting translation by 3 DOF and rotation by 3 DOF on a continuous scale.

Transforms T ∈ SE(3) are constructed as in (4.1). They can be decomposed into a
3×3 submatrix R ∈ SO(3) representing the rotation and a translation vector t = [tx , ty , tz ].
Ultimately, a homogeneous point multiplied from the right-hand side will be rotated by R
and afterward shifted by t .

T cam←head =


tx

R ty

tz

0 0 0 1

 (4.1)

For the cam frame, this thesis follows the convention: x to the right, y to the bottom,
and z in the viewing direction. The head frame can be an arbitrary, head static frame.

One common convention is headC (C as in camera-like): x sinister, y inferior, z
posterior, with the origin being close to the nasal point (though there is no agreed-upon
convention for the origin). This definition has the advantage, that a head pointing straight
towards the camera will have a null rotation (identity). However, it has the drawback, that
the Tait-Bryan rotation components roll (cervical side-bending), pitch (cervical flexion),
and yaw (cervical rotation) do not correspond to the axes x, y , and z, respectively.

4.2.3. WHY CAMERA INTRINSICS ARE ESSENTIAL FOR POSE ESTIMATION
The camera intrinsic matrix K defines, how 3D points in the cam frame are projected onto
a rectified image. See (4.2):

K =

 fx s cx

0 fy cy

0 0 1

 (4.2)

It is a 3×3 matrix consisting of focal lengths fx and fy for x and y axes and principal
point (cx ,cy ) representing the optical center within the image. The axis skew parameter
s is typically assumed 0. K projects a point pcam = [xcam, ycam, zcam]T given in the cam
frame onto pixel coordinates [u, v] by [u · w, v · w, w]T = K · pcam. Points residing in a
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different frame, e.g., head, can be transformed into the cam frame by a rigid transform
T cam←head ∈ SE(3). K is non-singular: its inverse K −1 projects an image coordinate [u, v,1]
into a 3D ray representing all points in cam frame which project onto [u, v,1].

Translation and Rotation Errors: One implication of assuming focal lengths not corre-
sponding to the camera optics, e.g., k fx and k fy for a factor k ∈R will project a central
object to k times the image size (k−1 times the distance to the camera), compared to focal
lengths fx and fy . When estimating object pose, its z translation will be k times as large.

Another implication is that assuming a wrong camera intrinsic matrix affects rotation
estimations which are more apparent at the image border. Take the example in Figure 4.3:
two cameras differing in focal lengths by a factor of two are positioned such that their
projections of a head pose into the respective camera images are approximately equal
(close to the right image border). The camera with a larger field of view (smaller focal
length) is closer to the head and rotated. A pose-from-image estimation using these
different camera intrinsics from the same image results in a translation error of factor two
and a rotation error of > 11◦ (in this example).1

4.2.4. PROPOSED MODEL
See Figure 4.2 for an architectural overview. Given an image I, intrApose estimates full
6 DOF continuous head pose T cam←head

i for each head i within the image I. The major
building blocks are a Faster R-CNN module which predicts bounding box proposals along
with a faceness score. The prediction head performs RoI pooling on the backbone’s feature
maps based on the bounding box proposals to obtain RoI features. A raw pose prediction
net predicts an intermediate, unconstrained representation of raw pose features which
are typically of small size (such as six to 12 values, see Table 2.1) representing rotation
and translation. The Pose representation converts the potentially degenerate raw pose
features to a head pose ∈ SE(3) wrt. the isolated BBox. A Pose conversion module converts
BBox-local head pose to an image-global pose such that it projects approximately equal
within the (whole) image. This essentially performs scaling and rotation of the pose based
on image intrinsics and bounding box location and size (see Algorithm 1 and Figure 4.4).
The final step is a non-maximum suppression based on projected bounding boxes and
faceness scores and yields a set of head poses. Let us describe the components in more
detail.

Backbone, FPN + RPN: intrApose extends the two-stage object detection approach of
Faster R-CNN [105] with Feature Pyramid Networks (FPN) [73] by a head pose estimation
module. Faster R-CNN consists of a backbone network that extracts features on multiple
scales from the input image. Using these features and anchor bounding boxes of typical
object aspect ratio and shape, a region proposal network (RPN) predicts bounding box
proposals alongside an objectness score. An RoI pooling operation aggregates features for
each bounding box proposal into RoI features.

Head pose estimation module: As in img2pose [4], this chapter proposes a network
that regresses a BBox-local head pose and a faceness score pi for each RoI feature map i .
In contrast to img2pose, which regresses 6-element vectors representing head pose
directly (rotvec and translation), the proposed architecture allows for a generic scheme

1The estimated poses using camera A and camera B would differ by the rigid transform which brings camera A
into camera B .
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Figure 4.3: Motivational example of translation and rotation error introduced by assuming different focal lengths
resulting in similar projections. Left: Frusta of two cameras resulting in approximately the same projection of
face on the right border of the image. Blue: frustum of camera A with focal length f . Red: frustum of camera
B with focal length f /2. Camera B is closer to the object due to the larger field of view. In this example, it is
rotated against camera A by > 11◦. The right half depicts the projections into the image space, with camera A
on top and camera B with a larger field of view on the bottom.

by estimating an intermediate raw pose feature representation by a Raw pose prediction
net that is being converted to a head pose T cam←head

i ∈ SE(3) by a differentiable Pose
Representation module.2

Raw pose prediction net: The raw pose prediction net estimates unconstrained,
raw pose features fR,t (R: rotation, t: translation) wrt. the BBox for each RoI feature
map. It consists of a batch-normalized fully connected layer with 256 features and ReLU
activation followed by another fully connected layer reducing to the number of raw pose
features fR,t.

Pose representation: The Pose representation module converts the raw pose features
into a T cam←head

bbox ∈ SE(3) representation. Section 2.1.1 showed that there is a number
of pose representations available. As Zhou et al. [144] and Levinson et al. [69] pointed

2In the case of img2pose [4], raw proposal pose features are a 6-vector (rx ,ry ,rz , tx , ty , tz ) with (rx ,ry ,rz ) being
a rotation vector (rotvec). The Pose Representation module converts the rotation vector to a rotation matrix by
standard means (Rodrigues’ rotation formula).
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out, a continuous, differentiable rotation representation is favorable. This chapter will
analyze different rotation representations, such as the (discontinuous) rotation vector
representation of Albiero et al. [4], but also the Gram-Schmidt-based rotation representa-
tion Ortho6D proposed by Zhou et al. [144], and the symmetric-orthogonalization based
rotation representation SVDO+ proposed by Levinson et al. [69]. The translation part
of the pose is treated in a regular manner, meaning 3 DOF metric translation is being
regressed.

From an integration perspective, both Ortho6D and SVDO+ take six, respectively nine
unconstrained values as an input and create a rotation matrix R ∈ SO(3). One important
aspect is that the pose representation needs to be differentiable to allow for gradients to
pass during training. Both Ortho6D and SVDO+ are differentiable.

A common practice when predicting rotation is to estimate the delta from a normal-
ized rotation (zero mean, unit standard deviation). Normalization would in principle
happen within this module, though experiments showed that it is unnecessary with a
continuous rotation representation. Note that using a continuous pose representation
allows designing a network without bells and whistles, i.e. no coarse-to-fine approach, no
estimation of delta to a mean pose, no dealing with values at discontinuities, etc.

Pose conversion (BBox to image): As posed by Albiero et al. [4], each BBox proposal
is a cut-out of the image and lost its information about the location within the image.
Therefore, head poses are estimated wrt. their BBox and need conversion to the full
image. To that end, this chapter propose an intrinsics-, crop- and scale-aware BBox pose
to image pose conversion method that extends the conversion method of img2pose [4]
and is described in Algorithm 1 and illustrated in Figure 4.4. In essence, the conversion
method builds a homogeneous canonical BBox camera matrix Kbbox which has the same
focal length as the image camera matrix Kimage, and the principal point in the bounding
box center. The distance-to-camera tz is being scaled by the ratio of image focal length
to bounding box size. Therefore, BBox head pose is estimated within a canonical BBox
camera. Scaling accounts for the fact that a cut-out with a close-by head is tightly enclosed
by the bounding box and reflects a head further away in the image. Inter-individual head
sizes are learned implicitly from the training data. The pose is afterward projected into
the pixel space with Kbbox and back into the 3D space of the camera with the inverse of
Kimage. The homography K −1

imageKbbox is not orthonormal, meaning it does not keep the
basis vectors of the transform orthogonal and in unit length. Therefore, a successive (dif-
ferentiable) orthogonalization of the rotation is necessary to stay within SE(3).3 Overall,
Algorithm 1 makes the method intrinsics-, crop- and scale-aware.

Head Pose to Box: With head pose and camera intrinsics, well-defined bounding
boxes can be obtained at minimum additional cost. If a bounding box is defined as a
rectangle in the image which encloses all parts of the object of interest, then 3D points can
be defined representing extrema in the head frame (chin to the top of forehead, nose, ears),
and transformed into the camera frame and projected into image space using Kimage.
The image bounding box is defined by the extrema of the projected pixel coordinates. A
margin can be defined either in 3D space (by taking 3D points outside a typical head), or

3Note that Albiero et al. [4] do not explicitly formalize the orthogonalization of the degenerate rotation. In
their reference implementation, orthogonalization happens implicitly during the pose conversion step from
rotation matrix to rotation vector (rot_mat_to_rot_vec()). This thesis explicitly formalizes this step.
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Algorithm 1 Pose conversion (BBox to image).

def convert_pose_bbox_to_image(T_cam_head, bbox, K_image):
# create bbox intrinsic matrix with same focal lengths
# as image and principal point in center of bbox
K_bbox = copy(K_image)
K_bbox(cx) = get_center_u(bbox)
K_bbox(cy) = get_center_v(bbox)

# scale: ratio of image focal length and
# bbox size (canonical bbox camera)
f_image = K_image(fx)
size_bbox = get_w(bbox) + get_h(bbox)
scale = f_image / size_bbox
T_cam_head(z) *= scale # scale z

# apply 4x4 homography matrix to head pose
H_image_bbox = homogen(inv(K_image) @ K_bbox)
T_cam_head = H_image_bbox @ T_cam_head
T_cam_head = orthogonalize_svdo+(T_cam_head)

return T_cam_head # image-global

in image space (by adding a margin to the projected bounding box).
Formally: N typical extrema points pshead

extrema ∈ RN×[x y z1] given in the head frame,
are transformed to the cam frame by the head pose T cam←head: pscam

extrema
T = T cam←head ·

pshead
extrema

T
. These can be projected into the camera image with the camera matrix Kimage

by [us, v s,1s]T ∼ Kimage · pscam
extrema

T . The bounding box B is then [min(us), min(v s),
max(us), max(v s)], following the [left, top, right, bottom] convention.

Training objective: During training, the following objectives are optimized: (a) RPN
bounding box proposals (vanilla Faster R-CNN), (b) RPN objectness score (vanilla Faster
R-CNN), (c) Faceness score, and (d) Head pose outputs wrt. image, which is a multi-task
problem. For (a) and (b) one can refer to Ren et al. [105] (Lbbox: smooth L1 on positive
samples; Lobjectness: binary cross entropy Lcls). For the other representations, this chapter
defines the following loss functions.

Faceness score: ground truth bounding boxes (automatically generated from head
pose ground truth) are matched with proposal bounding boxes using Intersection over
Union (IoU). Positive matches yield a faceness loss of Lface = Lcls(pi ,1) for the predicted
faceness score pi . Negative matches get Lface = Lcls(pi ,0).

Head pose: The head pose matrix T cam←head can be decomposed into a 3×3 rotation
matrix R and a translation vector t = [tx , ty , tz ]T as in (4.1). Positive matches are consid-
ered for a head pose loss Lpose = LR+Lt, consisting of rotation loss LR and translation loss
Lt. The loss is applied to predicted poses wrt. full image.4

4This is a major difference to img2pose, which applies the loss in BBox domain, and needs an additional
image-to-bbox pose conversion during training, that in-turn increases the complexity of the architecture.
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Figure 4.4: Illustration of the pose conversion of Algorithm 1. Left: Frusta of whole image camera Cimage (blue),
BBox camera Cbbox (green) and a head pose (mesh). Right: projection of the 3D scene into the camera image
using Kimage and a bounding box of the head (green). Cbbox is a virtual camera with a focal length proportional
to its bounding box size, thus representing a canonical size. Cbbox is closer to the head pose and the principal
axis goes through the bounding box center. As a result, a nearly frontal pose estimated within the bounding box
will be converted to a head pose close to the right border of the whole image, rotated and further away from
Cimage.

This chapter defines the translation loss Lt(t , t̂) = ||t − t̂ ||22 for the estimated trans-
lation t and the ground truth translation t̂ . The rotation loss LR(R, R̂) = Lgeodesic =
arccos

(
tr(RR̂T )−1

2

)
corresponds to the geodesic distance between the predicted rotation R

and the ground truth R̂. Optimization target is the overall loss L:

L = Lobjectness +Lbbox +Lfaceness +LR +Lt (4.3)

4.2.5. INTRINSICS-CONSISTENT IMAGE AND POSE AUGMENTATIONS

Augmentations are a scheme to create further training data to obtain a more robust
model. The ground truth to the model is given by the tuple (image (h, w), camera
intrinsics K , head pose T cam←head). The invariant of each augmentation is that the tuple
remains consistent in the sense that the augmented head pose is being projected onto the
corresponding locations of the augmented image using the augmented camera intrinsics.
This chapter employs intrinsics-aware crop, scale, and flip augmentations.

Crop image with bboxcrop = [u, v, w,h] needs a shift of the principal point for the
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augmented camera intrinsics:

Kcrop =

 fx 0 cx −u

0 fy cy − v

0 0 1

 (4.4)

Head pose remains the same.
Scaling image height/width with factor sh/sw needs rescaling of focal lengths and

principal point: Kscale = diag(sw , sh ,1) ·K .
Flip (left-right) flips the principal point cx :

Kflip =

 fx 0 w − cx

0 fy cy

0 0 1

 (4.5)

The head pose needs to be flipped on the y z-plane of the camera frame, which can be
obtained by the following Hadamard product (◦, piecewise multiplication) and keeps the
transform right-handed:

T cam←head
flipped =


1 −1 −1 −1

−1 1 1 1

−1 1 1 1

1 1 1 1

◦T cam←head (4.6)

4.2.6. TRAINING DETAILS
The proposed intrApose model was implemented in PyTorch with a ResNet-18 back-
bone [50] which was pretrained on natural images. All implemented modules are differen-
tiable to allow gradients to flow backward from the losses. This includes orthogonalization
and pose conversion modules. Stochastic gradient descent (SGD) is used on mini-batches
of four images with an initial learning rate of 0.001 and a weight decay of 5 ·10−4. The
learning rate was reduced by a factor of 10 if the model has not improved over the last
three epochs on the validation set. Similarly, early stopping was performed after 5 epochs
without improvement on the validation set.

For training the RPN, 256 bounding box proposals were sampled randomly per image.
For training the faceness prediction net and the raw pose prediction net, 512 proposals
per image were sampled.

The training data were augmented by intrinsics-aware scaling, mirroring, and crop-
ping, as detailed in Section 4.2.5. Unbiasing: To make the model more robust in non-
frontal poses, training samples with non-frontal poses are sampled more frequently
compared to the dataset distribution which typically consists of more frontal driver head
poses in in-car settings.

Training converged after 11 epochs and took approximately 2.5 days on a single NVidia
Tesla V100 GPU. The model has 4.2·107 parameters. Inference time on the float32 model
is 18.4 samples per second.
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4.3. EXPERIMENTS
Evaluation of intrApose puts specific requirements on the evaluation dataset. Datasets
that do not provide camera intrinsics become out of scope as argued in Section 4.2.3.
The evaluation is therefore based on DD-Pose , the large-scale in-car dataset that was
introduced in Chapter 3 and depicts complex naturalistic driving scenarios. DD-Pose
offers dataset splits depending on occlusion annotation and angle-from-frontal (all, easy,
moderate, hard), see Section 3.2.7. Subjects {8, 19, 23} were chosen for validation, subjects
{3, 6, 10, 11, 14, 15, 16, 17} for testing and the other subjects for training.

4.3.1. MODEL VARIANTS
Experiments were conducted with five different approaches, distinguished by model used
(img2pose vs. intrApose), training dataset (WIDER vs. DD-Pose), and rotational represen-
tation (rotvec vs. SVDO+). Recall, translation error, and rotation error are evaluated.

img2pose(WIDER, rotvec): Pretrained img2pose model provided by Albiero et al. [4] (see
Section 2.1.2). The authors trained the model on the WIDER face dataset, which does
not provide camera intrinsics. 3D head poses on the WIDER dataset were created by the
authors using Perspective-n-Point on facial landmarks with a large head model and an
assumed focal length equaling the sum of image width and image height, i.e., the same
focal length assumption the method makes internally. One important fact to mention is
that using the same focal length for the creation of the ground truth pose imposes a bias.
The large head model (width ≈ 1.5m, 10 times as large as a mean head) introduces head
translations about 10 times as far away from the camera.

img2pose(DD-Pose, rotvec): This is the same model as img2pose(WIDER, rotvec), but
trained on DD-Pose using the training scheme of Albiero et al. [4], i.e., using assumed
focal lengths instead of the true camera intrinsics provided with the DD-Pose dataset.
Bounding boxes and head poses were used as provided by DD-Pose . 3D head landmarks
of typical size (width ≈ 0.15m) were needed in the calibration point loss of img2pose for
the training to converge, potentially caused by points of the large model being projected
outside the image in the calibration point loss. Note that the points used by calibration
point loss are not to obtain a scale (as with landmark-based approaches), but rather to
guide the model in adapting its parameters for pose estimation during training.

intrApose(DD-Pose, rotvec): The proposed model with the discontinuous rotation vector
(rotvec) representation and the L2 loss function of img2pose. This model is intrinsics-
aware. Pose normalization was used as in img2pose, i.e., estimating the pose with zero-
centered mean and unit standard deviation. A head model of typical size was used for
the calibration point loss and applied the proposed intrinsics-aware crop, flip, and scale
augmentations defined in Section 4.2.5.

intrApose(DD-Pose, SVDO+): The proposed model with the continuous pose representa-
tion SVDO+ [69] and geodesic loss. The model is intrinsics-aware. Pose normalization
was found to be unnecessary. Anchor sizes and aspect ratios were tuned on the DD-Pose
training set. Compared to img2pose, no point calibration loss was necessary. A head
model of typical scale was used to create bounding boxes from the predicted head poses.

intrApose(DD-Pose, SVDO+, unbiased): Same model as intrApose(DD-Pose, SVDO+), but
trained with an unbiased dataset by sampling more non-frontal poses. The rationale is
to make the model more robust in non-frontal poses.
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Figure 4.5: Recall and data distribution over the angular difference from frontal pose for the DD-Pose test
set. Compared to the baseline (img2pose(WIDER, rotvec)), the recall improves incrementally by training on
DD-Pose (img2pose(DD-Pose, rotvec)), switching to the proposed architecture (intrApose(DD-Pose, rotvec)), using a
continuous rotation representation (intrApose(DD-Pose, SVDO+)) and training using an unbiased dataset with
more non-frontal poses (intrApose(DD-Pose, SVDO+, unbiased)).

4.3.2. RECALL

Recall defines on which percentage of the images a head hypothesis from head pose
estimation method exists. Images without a hypothesis are left out when evaluating
translation and rotation. For matching ground truth and hypotheses, an Intersection over
Union (IoU) threshold of 0.3 was used for the respective bounding boxes. Predicted head
poses with a faceness score of > 0.9 are considered.

Figure 4.5 depicts the recall over the angle difference from frontal head pose. The
rotation vector-based methods (rotvec) have a recall of > 0.8 for frontal faces and drop
towards 0.6 for rotations 60◦ off-frontal. Out of these, the model variants trained on
DD-Pose have a higher recall for close-to-frontal poses. The baseline img2pose(WIDER,
rotvec) offers a higher recall for highly off-frontal faces ([70◦,100◦]) compared to the other
rotation vector-based methods. This can be explained by the WIDER dataset having
a more homogeneous angular distribution compared to DD-Pose , which offers more
close-to-frontal faces (see histogram in Figure 4.5).

Using the continuous SVDO+ rotation representation (intrApose(DD-Pose, SVDO+))
shows a considerable benefit across the whole angular spectrum compared to the rotation
vector representation (intrApose(DD-Pose, rotvec)), keeping the recall above 0.6 for angles
up to 105◦ and dropping towards 0.4 for 110◦. The same model trained with an unbiased
dataset (intrApose(DD-Pose, SVDO+, unbiased)) shows remarkable improvement of recall for
extreme poses, keeping the recall above 0.8 across the whole angular spectrum until 105◦,
only afterward dropping towards 0.4. The right side of Table 4.1 shows recall aggregated
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Table 4.1: Rotation errors, translation errors and recall on the DD-Pose test set for the model variants on different
subsets (all, e: easy, m: moderate, h: hard). See Section 4.3.1 for details on the models. Rotation errors are given
in degrees (◦), and translation errors in millimeters (mm). ↑/↓: higher/lower values denote better performance.

Method BMAE (◦) ↓ MAER (◦) ↓ MAEt (mm) ↓ recall (%) ↑
all e m h all e m h all e m h all e m h

img2pose(WIDER, rotvec) 10.3 6.4 11.1 20.3 7.8 6.7 9.4 18.4 7849 7746 8068 8431 85 99 64 56

img2pose(DD-Pose, rotvec) 14.8 5.9 12.5 48.3 6.9 5.1 8.7 42.6 18 14 23 78 81 92 68 33

intrApose(DD-Pose, rotvec) 7.5 6.4 7.5 12.6 6.3 6.0 6.8 9.7 19 18 21 26 89 99 80 24

intrApose(DD-Pose, SVDO+) 8.0 4.0 8.0 15.3 5.0 4.0 5.9 16.0 21 18 24 47 95 100 90 71

intrApose(DD-Pose, SVDO+, unbiased) 5.8 4.2 6.2 9.5 4.8 3.9 5.9 8.9 25 22 29 41 97 100 93 93

over the subsets (all, easy, moderate, hard) in accordance with the observations from
Figure 4.5.

4.3.3. TRANSLATION ERROR

For translation error, the mean Euclidean distance mean absolute error (translation)
(MAEt) between ground truth head origin and predicted head origin is used.

The errors in head translation estimation (MAEt) are listed in Table 4.1. The pre-
trained baseline img2pose(WIDER, rotvec) depicts an error of over 7.7 m. Overestimated
distance to camera (tz) contributes most to the error. This is caused by two facts: for
one, img2pose(WIDER, rotvec) assumes a focal length defined by the image size which does
not correspond to the true intrinsics of the camera. Also, the WIDER dataset consists
of 2D facial landmark labels which Albiero et al. use to generate the ground truth head
poses by Perspective-n-Point and a 3D head model which is ∼ 1.5m wide. The model
trained on WIDER therefore estimates heads presented in DD-Pose further away. As
Albiero et al. use WIDER for both training and evaluation, this fact had not become
apparent. Albiero et al. emply the same large head model both for obtaining ground truth
(Perspective-n-Point) and within their model. This leads to a biased comparison in [4],
as the evaluation revealed by using a dataset that provides intrinsics and does not create
ground truth using the same assumptions of intrinsics.

In comparison, the img2pose-based model trained on DD-Pose (img2pose(DD-Pose,
rotvec)) shows a better estimation of the head translation, caused by the correct head pose
ground truth obtained by a measurement device. Overall, the head is estimated 18 mm
from the ground truth for the all subset and 78 mm for the hard subset. The non-unbiased
intrApose model variants perform similarly in translation estimation, being less than
21 mm off for the all subset. Comparing the SVDO+ model variants shows that unbiasing
the training dataset decreases translation error from 47 mm to 41 mm on the hard subset,
though sacrificing MAEt for the other subsets (easy, moderate). The worsening on the
latter subsets can be explained by the use of significantly fewer training samples from
these subsets while evaluation is biased in the sense that a large portion of samples resides
in the easy and moderate subsets (see data distribution in Figure 4.5). Another hypothesis
is a higher imbalance of rotation loss and translation loss (unbiasing is based on angle
from frontal).
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Figure 4.6: Mean absolute error (rotation) (MAER) on the DD-Pose test set. MAER increases with larger angular
distance from frontal. The model variant intrApose(DD-Pose, SVDO+, unbiased) provides a consistently low angular
error over the whole depicted angular spectrum.

4.3.4. ROTATION ERROR
Rotation error is evaluated by mean absolute error (rotation) (MAER) of the geodesic dis-
tance between ground truth rotation and predicted rotation. For an unbiased evaluation
of head rotation, this chapter uses balanced mean absolute error (BMAE) as proposed by
Schwarz et al. [119]. It splits the dataset in bins based on the geodesic distance from the
frontal pose and averages the MAER of the bins:

BMAEd ,k := d

k

∑
i
φi ,i+d ∀i ∈ dN∩ [0,k] (4.7)

where φi ,i+d is the MAER of all hypotheses, where the geodesic distance between ground
truth and frontal pose is between i and i +d . During evaluation, bin size d := 5◦ and
maximum angle k := 120◦ are used.

The overall MAER and BMAE are displayed in Table 4.1 and the MAER over the angular
difference from a frontal pose are depicted in Figure 4.6.

The pretrained baseline img2pose(WIDER, rotvec) shows a MAER/BMAE of 7.8◦/10.3◦
on the all subset of DD-Pose , though being trained on WIDER, a dataset based on images
downloaded from the internet, therefore shows good generalization to unseen data.

Retraining the img2pose model on DD-Pose (img2pose(DD-Pose, rotvec)) decreased the
MAER to 6.9◦, yet increasing the BMAE to 14.8◦. This is due to the worse performance for
non-frontal poses (see increasing MAER with increasing angle-from-frontal in Figure 4.6).
This can be explained by the majority of the training samples within DD-Pose being close-
to-frontal, making the model tend to estimate the mean pose with the discontinuous
rotation vector representation.
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intrApose(DD-Pose, rotvec) uses the same data and pose representation within the pro-
posed intrinsics-aware intrApose framework including the proposed augmentations. The
BMAE decreases to 7.5◦ on the all subset and considerably improves on the hard subset
to 12.6◦ (from 20.3◦ and 48.3◦ of the img2pose models trained on WIDER and DD-Pose ,
respectively). This improvement can be attributed to the intrinsic-aware model.

Switching to the continuous rotation representation SVDO+ (intrApose(DD-Pose, SVDO+))
decreases the MAER to 5.0◦, yet increases in terms of BMAE (8.0◦). A look at the corre-
sponding recall on the hard subset shows that it now predicts more extreme poses (71%
vs. 24%) and still tunes towards close-to-frontal poses, as shown by the best MAER on the
easy subset. Overall, one can say that the closer the BMAE of a model is to the MAER, the
better it covers data-imbalance.

The final, proposed model intrApose(DD-Pose, SVDO+, unbiased) resolves this data
imbalance by being trained with more off-frontal pose samples. An improvement of both
MAER and BMAE can be seen on the hard subset of DD-Pose . The model variant shows
a consistently low error along the full spectrum of angles from frontal (Figure 4.6) and
results in a BMAE of 9.5◦ on the hard subset, being very close to the corresponding MAER

of 8.9◦.

Experiments with the continuous Ortho6D rotation representation of Zhou et al. [144]
showed results similar to the SVDO+ rotation representation, in accordance with the
observations of Levinson et al. [69].

4.3.5. QUALITATIVE RESULTS

Figure 4.7 provides qualitative results of the baseline img2pose [4] and the proposed
model. The small axes of img2pose confirm the overestimated head translation observed
in Table 4.1. As designed, the unbiased proposed model depicts a smaller qualitative error
for off-frontal poses compared to the unbiased variant. Samples where only the proposed
model could provide a head pose estimate (faceness > 0.9) are depicted in Figure 4.8.
The model shows robustness towards high occlusions by hands and steering wheel, and
extreme poses, though with a larger qualitative error compared to the samples given in
Figure 4.7.

4.4. DISCUSSION
This chapter presented a 6 DOF head pose estimation method which employs a con-
tinuous rotation representation. For more than two decades, authors have committed
to Euler angles or quaternions and treated the values as a simple regression problem,
thus ignoring the underlying manifold at hand. This led to complex mitigations dealing
with the drawbacks of the representations, such as coarse-to-fine approaches, normal-
izing values (zero mean, unit standard deviation, quaternion normalization), explicitly
handling discontinuities (e.g., at 360◦) or proposing special losses (e.g., by encouraging
orthogonality or projection of calibration points). This chapter confirmed the importance
of the proper choice of rotation representation of Levinson et al.[69]: 3 DOF rotation could
be represented without special pre- or postprocessing, thus leading to a plain network
without bells and whistles.

When evaluating, representing rotation errors by Euler angles shows drawbacks due
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to their ambiguity (order of axes, direction, handedness). Therefore, this chapter employs
geodesic distance, making it agnostic of single angle components and the frame, but at the
cost of lacking insight into the contribution of individual axes to the geodesic distance.

The proposed architecture is based on the Faster R-CNN framework. In general, it can
be adapted to other, potentially deeper backbones or to single-shot detection networks.

The method is intrinsics-aware, therefore requiring camera parameters alongside
the image itself. However, Section 4.2.3 also showed that assuming incorrect camera
intrinsics can introduce large errors beyond accepted tolerances. With missing calibration
information the error behavior of the proposed method assimilates to methods that are
intrinsics-agnostic.

The pose prediction network operates on feature RoIs, therefore can only estimate a lo-
cal pose within the BBox. Albiero et al. [4] proposed a pose conversion to the whole image.
This chapter generalized the pose conversion algorithm by making it intrinsics-aware,
allowing for generic pose representations, and explicitly formalizing a necessary orthog-
onalization step. Essentially, this shows that the pose conversion is a rigid coordinate
transformation that approximates the projections of the BBox and the whole image.

Rendering a face mesh overlay is an appealing visualization of head pose. However,
using a fully opaque one makes the viewer tolerate more errors both in rotation and
translation, by still appearing natural. To that end, rendering the face mesh transparent
and also visualizing the frame axes is suggested.
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img2pose(WIDER) intrApose(DD-Pose) intrApose(DD-Pose)

rotvec SVDO+ SVDO+ (unbiased)

Figure 4.7: Qualitative head pose estimation results on samples with challenging off-frontal head poses. The
poses are projected into the camera image using the camera intrinsics. Ground truth head pose is denoted by a
white axis. Predicted head pose is denoted with an RGB axis and a transparent red face mesh of typical head size.
The translation error can be judged by comparing the axis length. Note that the small axes of img2pose(WIDER,
rotvec) are caused by overestimation of the distance-to-camera. All images are crops to ease judgment.
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Figure 4.8: Random subset of samples of the DD-Pose test set where a head pose estimate could only be provided
by the proposed model (unbiased). They show high occlusions by hands and steering wheel, and extreme poses.
All images are crops to ease judgment.



5
DEEP END-TO-END 3D PERSON

DETECTION FROM CAMERA AND

LIDAR

This chapter presents a method for localizing persons in the surrounding of an intelligent
vehicle. The 3D location of a person is a key information for modeling the interaction
with the driver/ego-vehicle in Chapter 6.

5.1. OBJECTIVES
In intelligent transportation systems, different sensors are commonly used for person
detection, such as cameras, radar and lidar sensors, each coming with their individual
advantages and drawbacks. While a monocular camera-based system offers a dense
projection of the light in the field of view, it lacks distance information. Lidar sensors
offer a sparse scan of the environment with precise distance information, even during
nighttime. However, even modern lidar sensors offer only 128 vertical layers.

In the last two decades, person detection performance has significantly improved
due to machine learning methods and the rise of large and representative datasets to
optimize and evaluate the methods on [12, 43]. In the past years, deep learning methods
have shown to be very accurate in the task of 2D person detection in camera images,
which in contrast to 3D person detection, does not estimate the distance of a person to
the camera sensor. 3D person detection remains more challenging, compared by the
detection performance on standard benchmarks, such as the KITTI 3D Object Detection
Evaluation [43]. Methods performing solely on 3D points clouds, or additionally taking
camera images as an input still perform mediocre with an average precision (AP) of 46.6%
on the moderate subset of the KITTI benchmark. For multi-modal methods, the problem
of sensor fusion has to be solved. Some methods rely on transforming the point cloud to
an image-alike structure, such as bird eye view (BEV), to employ methods known from
image recognition.
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Camera Image Lidar Point Cloud

3D Person Locations

Deep

Neural

Network

Figure 5.1: The proposed method estimates 3D person bounding boxes from camera images and 3D lidar
point clouds. The deep end-to-end model learns low-level features for both modalities, fuses their higher-level
representations, and predicts the 3D location of the persons in the scenes. Predictions are depicted by cyan
bounding boxes which are projected in the camera image. Ground truth bounding boxes are shown in red.
The numbers on top of each prediction denote (objectness, Intersection over Union (IoU)). Evaluations are
performed on the KITTI dataset [43].

Hand-crafted preprocessing of lidar point clouds raises questions such as “are there
representations which perform better?". This question is less likely to be raised for end-
to-end learning, where sensor input is kept as raw as possible to have representations
being learned in contrast to being designed.

This chapter presents a deep learning based method for 3D person detection, which
performs end-to-end learning on sensor data from camera and lidar. High-level represen-
tations from image and point cloud are learned from the raw sensor data. For the image
input, a VGG-like convolutional neural network extracts a high-level feature representa-
tion. For the point cloud input, a Voxel Feature Encoder (VFE) is employed for abstract
feature extraction. Features from both modalities are fused to serve as an input for a
regression model which estimates the 3D positions of persons. See Figures 5.1 and 5.2 for
an overview of the proposed system.

This chapter is based on the work published in [110] (©2019 IEEE).
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5.2. PROPOSED APPROACH
This chapter presents an end-to-end method for 3D person detection based on camera
images and lidar point clouds [56]. The proposed approach builds upon the architecture
of Aggregate View Object Detection (AVOD) [63]. As in AVOD, feature maps from both a
camera and lidar modality are extracted. A region proposal network (RPN) generates 3D
region proposals based on cut-outs of the feature maps of 3D anchors. The top region
proposals are refined by a second stage detection network which estimates the 3D location
and spatial extent (i.e., length, width and height) of the persons present in the scene.

In contrast to AVOD, which relies on hand-crafted bird-eye-view (BEV) for the lidar
input, the presented approach learns point cloud features by applying Voxel Feature
Encoding (VFE) layers followed by 3D convolutional layers for high level feature extraction
as introduced in VoxelNet [146]. The proposed architecture is depicted in Figure 5.2.

5.2.1. INPUT PREPROCESSING AND FEATURE EXTRACTION
Both camera images and lidar point clouds are preprocessed to allow for subsequent
feature extraction.

IMAGE PREPROCESSING

The RGB camera images are normalized by subtracting the mean RGB value of the train-
ing dataset. For image feature extraction, the VGG16 architecture [125] with the same
modifications as in [63] is used, i.e. half the number of filters in each convolutional layer,
no fifth convolutional stage and no max-pooling layer at the end of the fourth stage. The
resulting 256 feature maps are eight times smaller along each dimension. To attain higher
resolution feature maps, four times bilinear upsampling is applied.

POINT CLOUD PREPROCESSING

The lidar point cloud is cropped to reside in the volume ∆X = [−40m,40m], ∆Y =
[−1m,3m], ∆Z = [0m,70m] in the camera frame. The volume is partitioned into equally
sized voxels of size

(
sx , sy , sz

) = (0.2m,0.4m,0.2m). The voxelized input is processed
by a Feature Learning Network, as proposed in [146]. It consists of grouping, random
sampling and stacked voxel feature encoding (VFE) layers. Each point pi = (xi , yi , zi ) in
each voxel v forms an input vector

(
xi , yi , zi ,ri , x̃v , z̃v , z̃v

)
with point reflectance ri and

voxel mean coordinates (x̃v , z̃v , z̃v ). Each VFE layer learns a locally aggregated feature by
a fully connected layer on the input, followed by max-pooling and concatenation [146].
T = 45 points per voxel are randomly sampled, followed by a stack of two VFE layers. The
first VFE layer yields a 32 dimensional feature vector per voxel. The second VFE layers
yields a 128 dimensional feature vector per voxel.

Three 3D convolutional layers conv3D(c,k, s, p) with output channels c , kernel size k,
stride s = (sx , sy , sz ) and padding p = (px , py , pz ) aggregate voxel-wise features to obtain
an expanding receptive field to capture more context information [146]. The parameters
of the convolutional layers are:

conv3D1 (64,(1,2,1), (1,1,1))

conv3D2 (64,(1,1,1), (1,0,1))

conv3D3 (64,(1,2,1), (1,1,1))
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Reshaping is performed such that neighboring voxels along y dimension are flattened,
thus resulting in a voxel feature map with 128 channels per voxel.

ANCHOR GENERATION

As in [63], anchors are spawned in a 3D dense grid in the voxel volume, using an interval
of 0.5m along x and z direction and y coordinate to reside on the ground plane. The
spatial extents of the anchors are based on size clusters obtained for each class on the
training set. Anchors which are outside the camera view or not supported by any point
are discarded.

5.2.2. REGION PROPOSAL NETWORK
The region proposal network (RPN) projects anchors to the feature maps of each modality,
crops the respective feature residing in the anchor projections, resizes them and fuses
them. Subsequently, fully connected layers refine the location of anchor boxes towards
ground truth location to form the region proposals. The RPN is adopted from [63], but in
contrast the presented approach crops from the learned voxel feature map instead of the
bird eye view feature map. For the RPN, the feature maps are reduced in dimensionality
by performing a 1×1 convolution [63] which can be seen as a learned weighting of all
feature maps along the y dimension.

Crops of size 3×3 are extracted from the feature maps of each modality and the 1024
best proposals are obtained after non-maximum suppression. The crops are fused using
the mean operation. There are two fully connected layers with 2048 neurons each.

Proposals to optimize are selected by having an Intersection over Union (IoU) of > 0.8
with the projected ground truth box. The proposed method uses a Smooth L1 loss for
localization regression task and a cross-entropy loss for the classification task (person vs.
background).

5.2.3. DETECTION NETWORK
The second stage detection network is also based on [63], i.e. region proposals are cropped
from the feature maps of both modalities, fused and used to regress location, spatial extent
and class by fully connected layers.

Crops of size 7×7 of the feature maps of both modalities are concatenated. There are
three fully connected layers with 2048 neurons each.

The location and spatial extent of the detected persons are retained after a non-
maximum suppression.

5.2.4. FUSION SCHEMES
Both the RPN and the detection network fuse resized feature map crops from both modal-
ities. MV3D [23] proposes three different fusion schemes, namely early, late, and deep
fusion. Combinations of individual input can be concatenation or element-wise mean.

The fusion schemes differ in which order feature transformations (e.g. convolutions)
are applied compared to feature combinations. Early fusion: combine individual inputs,
then transform. Late fusion: transform inputs, then combine. Deep fusion: combine
inputs, then transform individually, and repeat. In deep fusion, the transformations of
each repetition learn different parameters.
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Table 5.1: Statistics of the KITTI dataset used for evaluation. Each scene represents a synchronized snapshot of
the environment at a point in time. The number of 3D annotations in the camera’s field of view is listed.

Dataset # Scenes
# 3D Annotations

Cars Cyclists Pedestrians

KITTI train 3712 14357 734 2207

KITTI val 3769 14385 893 2280

KITTI test 7518 - - -

5.2.5. TRAINING
The proposed end-to-end network is optimized using ADAM [59]. One scene per training
iteration is used, yielding 1024 proposals for training the network. The RPN and detection
network are trained jointly starting from a random initialization. The learning rate is set
to 0.0001.

5.3. EXPERIMENTS
The proposed method is evaluated on the pedestrian class of the KITTI 3D Object Detec-
tion Evaluation 2017 (KITTI) [43] using average precision (AP), which follows the standard
evaluation protocol of the KITTI benchmark.

5.3.1. DATASET
The KITTI dataset [43] captures 15k urban traffic scenes by camera images and lidar-based
point clouds. Traffic participants such as cars, cyclists and pedestrians are annotated by
3D bounding boxes. Three difficulty levels are defined (easy, moderate, hard) based on
object size in the camera image, occlusion state and truncation ratio.

The annotated scenes are divided into a training split (train) and validation split (val),
as in [22], which ensures that images from the splits are from disjoint sequences. See
Table 5.1 for an overview of the KITTI dataset and the provided annotations.

5.3.2. DATA AUGMENTATION
As the KITTI train split offers around 4 k scenes with around 2.2 k pedestrians, augmen-
tations are used to increase diversity in the training set. The image is flipped along the
vertical axis and the corresponding point cloud along the y z plane. The principal point
of the camera matrix is adapted accordingly to ensure valid projections into the flipped
camera image.

5.3.3. EVALUATION METRICS
The performance of the 3D object detection task is evaluated using average precision
(AP), as defined in [38, 43], i.e.

AP = 1

11

∑
r∈{0,0.1,...,1.0}

max
recall(c)≥r

precision(c) (5.1)
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Table 5.2: Selected experiments of hyper parameters and their performance on the val split of KITTI.1

Exp.
RPN Stage Detection Network Ped. AP (%)

Comb. Crop Fus. Comb. Crop Easy Mod. Hard

#1 mean 3×7 early mean 7×7 45.85 40.79 35.92

#2 mean 3×3 deep mean 7×7 44.18 37.11 30.36

#3 mean 3×3 late mean 7×7 49.56 43.68 38.36

#4 mean 5×5 early mean 9×9 50.00 44.47 38.70

#5 concat 3×3 early mean 7×7 51.91 46.38 40.86

#6 mean 3×3 early concat 7×7 53.29 46.23 40.28

#7 mean 3×3 deep concat 7×7 53.47 47.06 41.49

with recall(c) = tp(c)
tp(c)+fn(c) , and precision(c) = tp(c)

tp(c)+fp(c) , both for an objectness confidence
threshold c. tp(c) and fn(c) denote the number of true positives and false negatives,
respectively.

A 3D prediction bounding box is considered to correspond to a 3D ground truth
annotation bounding box, if the Intersection over Union (IoU) in xz coordinates is above
0.7. This follows the evaluation protocol of the KITTI 3D Object Detection Evaluation
2017 [43].

5.3.4. EXPERIMENTAL RESULTS
The train split is used to train the proposed model using different hyper parameters and
evaluate on the val split to evaluate the performance using AP. The hyper parameters
under test were fusion schemes and combination methods for both the RPN and the
second stage detection network, as introduced in Section 5.2.4. Additionally, the feature
crop size was varied.

QUANTITATIVE ANALYSIS

All models were trained starting from random initialization and continuously evaluated
on the val split every 1000 training iterations, stopping at maximum 120k iterations. For
all comparisons, the best-performing model over all training iterations was chosen.

Table 5.2 shows selected experiments whichwere conducted and their respective
performance on the val split. Using the late fusion scheme in the detection network
yields a higher performance than deep or early fusion when combining the individual
features via an element-wise mean (experiments #1 - #3). Increasing the crop sizes
increases AP when keeping element-wise mean (experiment #1 vs. #4). The highest
performing experiments are using concatenation feature combination in the detection
network (experiments #6 & #7). Among those experiments the deep fusion scheme

1As typical for high dimensional models, alterations in the hyper parameter space have a highly non-linear im-
pact on the model performance. Therefore only a subset of the conducted experiments with good performance
is shown.
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Table 5.3: Comparison of the proposed method vs. SoA at the time of publication [110]. Results on the KITTI 3D
detection benchmark. Test split is used, unless otherwise given. Numbers are given in % average precision (AP)
for IoU > 0.7.

Method Modality
Pedestrian

Easy Mod. Hard

F-PointNet [95] lidar 51.2 44.9 40.2

PointPillars [65] lidar 52.1 43.5 41.5

VoxelNet [146] lidar 39.5 33.7 31.5

AVOD [63] lidar & image 38.3 31.5 27.0

Proposed (val) lidar & image 53.5 47.1 41.5

performs slightly better than early fusion scheme. Therefore the model from experiment
#7 was chosen for further experiments.

Table 5.3 shows quantitative performance of the proposed model compared to se-
lected State-of-Art (SoA) methods on the KITTI 3D Detection Benchmark. F-PointNet [95]
and PointPillars [65] were chosen as they are among the best performing methods on the
KITTI benchmark2. VoxelNet [146] and AVOD [63] are of special interest for comparison,
as the former uses the same feature extraction for point cloud features and the latter
introduced the architecture the proposed method is based on.

As can be seen, the proposed method outperforms the baselines on all three difficul-
ties.

QUALITATIVE ANALYSIS

3D detection examples are presented in Figure 5.3. The detected 3D bounding boxes are
projected into the camera images.

Figures 5.3a to 5.3d represent examples with good detection performance. The pro-
posed model detects persons in crowded scenes (Figure 5.3a), as well as far away objects
(Figure 5.3b). The model is robust against occlusions and truncations on the image border
(Figures 5.3c and 5.3d).

Limitations of the system are presented in Figures 5.3e to 5.3h. While the system
detects some highly occluded persons, it misses others and creates false positives (Fig-
ure 5.3e). Figure 5.3f shows a traffic structure which is falsely detected as a person.
Figures 5.3g and 5.3h show confusions with cyclists.

2http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d, retrieved 2019-04-
09

http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.3: Qualitative results for the proposed model on the KITTI validation set. The model can estimate
the 3D location of people with different orientations and poses. (a) - (d): examples with good performance on
crowded scenes, far away objects, occluded and truncated objects. (e) - (h): failure cases with missed detections,
false positives and confusions with cyclists. Ground truth: red. Predictions: cyan. Numbers on top of boxes:
detector objectness, IoU.





6
DRIVER AND PEDESTRIAN MUTUAL

AWARENESS FOR PATH PREDICTION

AND COLLISION RISK ESTIMATION

Chapter 4 and Chapter 5 introduced two building blocks by looking-in (driver head pose
estimation) and looking-out (person detection) of the ego-vehicle. This chapter connects
these building blocks towards the overall goal of this thesis and presents a novel method
for path prediction of ego-vehicle and a pedestrian. It takes both head-pose of the driver
and a pedestrian into account to estimate the mutual awareness towards each other.

6.1. OBJECTIVES
Maneuvering urban environments consists of an abundance of interactions between the
driver and other traffic participants, such as pedestrians. Understanding these driver-
pedestrian interactions is key for early and robust prediction of the future paths of the
vehicle driven by the driver and pedestrians, allowing for assessing critical situations and
initiating counter-measures, such as emergency brakes.

This chapter considers the setting of a potentially crossing pedestrian and an ap-
proaching vehicle that has the right-of-way (i.e. no dedicated crossing location). A
method is presented which uses context cues about the spatial environment, driver-
pedestrian mutual awareness, and potential motion coupling to estimate the future paths
of both participants and associated collision risk. See Figure 6.1 for an illustration of the
overall system.

Specifically, this chapter extends the Dynamic Bayesian Network (DBN) method from
Kooij et al. [60, 61], which performs path prediction for an individual pedestrian, to the
mutual vehicle-pedestrian case. As in [60, 61], it is captured that pedestrian awareness of
the on-coming vehicle will likely affect his/her future path. The proposed method also
models that driver awareness of the pedestrian will likely affect the future ego-vehicle

71
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Figure 6.1: The system assesses mutual awareness of pedestrian and driver in a scenario of a potentially crossing
pedestrian. Cues about the driver, pedestrian, and spatial environment are collected from on-board sensors. A
probabilistic framework based on a Dynamic Bayesian Network (DBN) estimates latent states of awareness of
the driver and pedestrian to predict their future motion. Based on the predicted paths, collision risk is estimated.

path. It uses head pose (pedestrian, driver) and eye gaze (driver) as proxies for awareness,
as the latter cannot be determined directly.

There are several reasons for choosing a physics-based DBN approach for path pre-
diction, as opposed to the popular neural networks. First, a DBN allows more easily to
incorporate expert domain knowledge by means of its graphical model structure. Second,
a DBN is interpretable, one can inspect the values of its latent variables and follow how
it reaches its output. This is especially important for safety-critical applications. Third,
one can expect a DBN to deal well with smaller datasets, as it has a comparatively small
set of parameters, which will minimize the effects of over-training. Finally, recent work
by Pool et al. [93] suggests that a DBN can deliver competitive path prediction results
compared to a RNN, when its parameters are optimized by backpropagation as well.

This chapter is based on the work published in [111] (©2022 IEEE).
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6.2. JOINT VEHICLE AND PEDESTRIAN PATH PREDICTION
Kooij et al. [61] note that a pedestrian’s decision to continue walking or to stop in a
crossing scenario is mainly influenced by the presence of an approaching vehicle on
collision course, the pedestrian’s awareness thereof, and the position of the pedestrian
with respect to the curbside. This knowledge is encoded in a context-based Switching
Linear Dynamical System (SLDS) (a special DBN), where latent discrete states control the
switching probabilities between the continuous states dynamics of walking and standing.

This chapter covers vehicle-pedestrian collision risk, thus extends the prediction
component to the ego-vehicle. Analogously one can argue that the vehicle’s outcome of
continue moving or stopping is mainly influenced by the presence of an approaching
pedestrian on collision course, the driver’s awareness thereof and the distance of the
vehicle to the pedestrian’s crossing location. Pedestrian and vehicle motion is modeled
with two SLDSes which are linked to each other by a shared latent state, that captures the
motion coupling between the two objects. The proposed DBN is shown in Figure 6.2 (see
Table 6.1 for the corresponding node descriptions).

CCt

SP
t

HSP
t

M P
t

ALP
t

X P
t

Dmi n
t HOP

t Y P
t DLP

t

SV
t

HSV
t

ALV
t

MV
t

X V
t

HOV
t Y V

t DLV
t

t −1 t t +1

Figure 6.2: Graphical model representation of the Dynamic Bayesian Network (DBN). Discrete nodes are
rectangular, continuous nodes are circular. Grey nodes represent observable variables while the other nodes
represent latent states. Dashed lines depict temporal connections between latent context states in subsequent
time instances. Driver-related nodes are shaded in green while pedestrian-related nodes are shaded in blue.
Context state description and purpose are provided in Table 6.1.



6

74 DRIVER AND PEDESTRIAN MUTUAL AWARENESS (PATH PREDICTION, COLLISION RISK)

Table 6.1: Latent context states, their associated observation and the purpose within the DBN structure. States
are grouped by vehicle/driver (common superscript V ), pedestrian (superscript P ) and shared contexts.

Latent State Abbr. Observation Abbr. Purpose

driver-sees-pedestrian SV driver-head-orientation (gaze) HOV encodes driver’s awareness of the pedestrian

driver-has-seen-pedestrian HSV - - memorizes driver’s (past) awareness of the pedestrian

vehicle-at-location ALV vehicle-distance-to-location DLV manifests typical location of braking (ped. crossing location)

vehicle-motion-model MV - - switches between driving and braking LDS

vehicle-position-state X V vehicle-position Y V LDS for vehicle state estimation

pedestrian-sees-vehicle SP pedestrian-head-orientation HOP encodes pedestrian’s awareness of the driver/vehicle

pedestrian-has-seen-vehicle HSP - - memorizes pedestrian’s (past) awareness of the driver/vehicle

pedestrian-at-location ALP pedestrian-distance-to-location DLP manifests typical location of stopping (curb)

pedestrian-motion-model M P - - switches between walking and standing LDS

pedestrian-position-state X P pedestrian-position Y P LDS for pedestrian state estimation

collision-course CC minimum-future-distance Dmi n separates early crossings from critical crossing

6.2.1. DBN
The DBN consists of two sub-graphs, one for the pedestrian and one for the vehicle. The
pedestrian sub-graph is congruent with the DBN of Kooij et al. [61]. The vehicle sub-graph
displays analogous behavior for the vehicle, by encoding driver awareness by driver gaze
and braking manifestation by being close to the crossing location of the pedestrian.

PEDESTRIAN-RELATED CONTEXT STATES

The pedestrian P can exhibit one of two motion types: walking (M P
t = mP

move, constant ve-
locity) and standing (M P

t = mP
stop, constant position). The motion state of the pedestrian

contains two-dimensional positions and velocities: X P
t = [

xt , yt , ẋt , ẏt
]T . This results in

the linear state transformation matrices:

A(mP
move) =


1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1

 , A(mP
stop) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (6.1)

The vehicle observes pedestrian world positions Y P
t ∈R2 without velocities, resulting

in the corresponding observation matrix C P =
[

1 0 0 0

0 1 0 0

]
.

For the context-based SLDS, the switching state M P
t of the pedestrian motion model is

encoded in the DBN as a categorical distribution M P
t+1 = Cat

(
M P

t , ALP
t+1, HSP

t+1,CCt+1
)

as
shown in Figure 6.2. The pedestrian awareness context SP

t models whether the pedestrian
sees the approaching vehicle. Head orientation HOP

t forms the evidence. The context
variable HSP

t memorizes whether the pedestrian has seen the vehicle in the past, acting
as a logical OR between previous HSP

t−1 and current SP
t . The environment context ALP

t
models whether the pedestrian is near the curb, thus encoding where a pedestrian would
normally stop to yield for oncoming traffic.
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VEHICLE-RELATED CONTEXT STATES

The vehicle motion state is X V
t = [

xt , yt , ẋt , ẏt
]T . It uses a constant velocity model while

driving, and a velocity decay model for braking:

A(mV
move) =


1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1

 , A(mV
stop) =


1 0 ∆t 0

0 1 0 ∆t

0 0 d 0

0 0 0 d

 (6.2)

The decay parameter d = 10p0.5 ≈ 0.93 is empirically chosen to represent a velocity
half-life of 0.5 s, i.e., the velocity becomes d 10 = 0.5 of its initial value after 10 discrete time
steps (0.5 s). This results in a mean initial deceleration of ∼4.2m/s2 over the first second,
thus reflecting moderate braking.Also, the vehicle V observes its own velocity, resulting in

the observation matrix C V =

1 0 0 0

0 1 0 0

0 0 1 0

.

For the vehicle, the context-based SLDS’ switching state MV is encoded as a categor-
ical distribution MV

t+1 = Cat
(
MV

t , ALV
t+1, HSV

t+1,CCt+1
)

. The driver awareness context
SV

t models the driver’s awareness of the pedestrian. It is inferred from the attention
eccentricity HOV

t , i.e., the absolute visual angle difference between the driver’s center
of gaze (or head direction) and the pedestrian. The context variable HSV

t memorizes
whether the driver has seen the pedestrian analogous to HSP

t . The static environment
context ALV

t indicates whether the vehicle is at a distance from the pedestrian’s crossing
location where the driver can be expected to yield, assuming he/she has the intention to
do so.

SHARED CONTEXT STATE

Both pedestrian and vehicle dynamics depend on CCt , which indicates whether pedes-
trian and vehicle are on a collision course. It uses the minimum distance Dmi n

t obtained
when linearly extrapolating the paths with their momentary estimated velocities [90].

6.2.2. INFERENCE
During inference the DBN states are propagated over time by incorporating observations
in a forward filtering procedure (predict, update) following [61]. At each time step t ,
the entire state of the DBN is represented by the nine discrete latent states (four vehicle,
four pedestrian, one shared) and two partially observable continuous latent states (X V

t ,
X P

t ), see Figure 6.2. During the predict step, the value of each discrete latent state changes
according to a fixed transition table, based on the values of its input states, i.e., each
state’s input nodes in Figure 6.2, including the state from the previous time step t −1
(dashed line). During the update step, observations are incorporated based on the context
likelihood distributions, see Figure 6.3. The intermediate goal is to have the motion
model switching states for both vehicle (MV

t ) and pedestrian (M P
t ) which represent the

switching probability of the SLDS of each road user. The two continuous latent states X V
t ,

X P
t are propagated over time using observations (Y V

t , Y P
t ) by standard Linear Dynamical



6

76 DRIVER AND PEDESTRIAN MUTUAL AWARENESS (PATH PREDICTION, COLLISION RISK)

System (LDS) means, i.e., Kalman filter. Prediction into future without observation follows
the same procedure, but without the update steps. Overall, this results in predicted motion
states including uncertainties for both vehicle and pedestrian. To keep inference tractable,
Assumed Density Filtering [77] is applied, resulting in the probability distributions of X V

t ,
X P

t to be each modeled by a Gaussian Mixture (K=2).

6.3. MODEL PARAMETER ESTIMATION
The DBN model parameters are set by performing a data-driven initialization step, fol-
lowed by a gradient-based optimization step, using the dataset that is introduced in
Section 6.4.

6.3.1. MODEL PARAMETER INITIALIZATION
Model parameters relate to motion dynamics and context. They are initialized similar
to Kooij et al. [61].

MOTION DYNAMICS

The underlying motion models of MV and M P are represented by LDSes which model
process noise Q and observation uncertainty R . Process noise Q of vehicle and pedestrian
are set for both position and velocity states and are limited to diagonal matrix entries.
Values were selected to reflect model uncertainty under typical velocity changes of drivers
and pedestrians [82, 116]. Observation noise R is set to reflect typical variance of mea-
surement noise for pedestrian detection and vehicle movement observed on-board the
testing vehicle, see Section 6.4. The motion state transition matrices were obtained as
follows. The vehicle motion state MV was categorized as braking when such activity was
detected, analogous to ALV , and as driving otherwise. The pedestrian motion state M P

was categorized as standing in all scenarios where a pedestrian stops starting from three
frames preceding time-to-event (TTE) = 0 (see Section 6.4.2 for definition of TTE), simi-
larly to ALP below. The motion state at all other time instants was categorized as walking.
The motion state transition matrices were then obtained by counting and normalizing
the occurrences of the respective transitions. The initial motion states assume the vehicle
and pedestrian are driving and walking.

CONTEXT

To obtain the parameters for binary context states, their ground truth values need to be
established; this is done in a two-step approach. In the first step, ground truth values
were roughly obtained by setting some states to the same values for the entire scenario
based on its definition (SP , SV , CC ), by manual annotation (ALP = 1 ⇐⇒ TTE = 0), or by
an automatic observable criterion (ALV = 1 for all moments after first deceleration, i.e.,
pressing the brake pedal). This yields the context likelihood distributions as shown by the
histograms in Figure 6.3. Parametric distributions were fitted by Maximum-Likelihood-
Estimation and are shown by line plots. The parametric form of the distributions was
chosen heuristically: Gaussian (DLP , DLV ), Gamma (Dmi n , HOV ) or von-Mises distribu-
tion (HOP ).

In a second step, more accurate ground truth values for the context states were
obtained on the basis of the obtained context likelihood distributions. For context states



6.4. DATASET

6

77

ALV , ALP and CC , the values were re-assigned based on maximum likelihood criterion
(e.g., CC = 1 ⇐⇒ Dmi n < 2.6 m, see Figure 6.3a). For SP and SV , re-assignment was done
heuristically. SP = 1 ⇐⇒ HOP ∈ [−30,30]◦ was reassigned due to the largely overlapping
distributions caused by miss-estimation of the head pose estimation algorithm. Similarly,
SV = 1 ⇐⇒ HOV < 10◦ was reassigned whenever driver head orientation was used and
< 4◦ otherwise for the eye gaze orientation.

The transition matrices which represent the transition probabilities conditioned on
the input states (i.e., incoming links in the DBN graph) were obtained by counting and
normalizing the re-assigned binary context values between adjacent time steps. The
transition probabilities of HSV and HSP are implemented as a binary OR in order to
memorize the last state in accordance with their definition in Section 6.2.1.

The initial context states values were set conservatively at the beginning of each en-
counter: driver/pedestrian not looking, vehicle not near crossing location and pedestrian
not at curb.

6.3.2. MODEL PARAMETER OPTIMIZATION

The gradient-based method of Pool et al. [93] was employed to obtain optimized model
parameters. In short, the method performs back-propagation similar to neural networks
on the DBN parameters on a differentiable loss function. The observation log likelihood
of the vehicle and pedestrian under their respective predicted Gaussian distributions
is optimized, see Eq. (6.4). All intermediate time-steps up to the prediction horizon are
incorporated into the loss function to enforce a consistent path. Measurements with
TTE ∈ [−2.5s,3.0s] are considered for optimization, to cover periods of typical motion
dynamics. Missing intermediate measurements are ignored for optimization. TTE is
defined in Section 6.4.

Optimization has been performed while enforcing properties of the DBN variables
to keep the state representation interpretable, such as probabilities residing in [0,1] and
process and observation noises remaining positive definite. The latter is also enforced to
be diagonal matrices with variability along elements of main direction of travel to reduce
degrees of freedom and obtain more stable convergence in the optimization process.

The model parameters chosen for optimization are: process noises (Q) of pedestrian
and vehicle, transition probabilities, and context observation distribution parameters.
The model was implemented in Python 3 using PyTorch 1.4 and was optimized using
Adam [59].

6.4. DATASET

6.4.1. SCENARIOS

93 vehicle-pedestrian encounters with 4 trained drivers and 4 pedestrians were staged
on two empty public roads. Each encounter consisted of a single pedestrian with the
intention to cross the street in front of the approaching vehicle. The encounters repre-
sented nine disjoint scenarios (8-20 encounters each) with different combinations of
situation criticality (collision course/sufficient time to cross), pedestrian behavior (stop
at curb/cross), pedestrian awareness of the approaching vehicle (aware/unaware), ve-
hicle behavior (brake/continue) and driver awareness of the approaching pedestrian
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(aware/unaware). The included scenarios are listed in the left of Table 6.3.
All scenarios (except the anomalous scenario 9a) encode following behaviors:

• An aware pedestrian will yield to the vehicle. Pedestrian awareness is inferred from
pedestrian head pose.

• An aware driver brakes for an inattentive pedestrian approaching the curb. Aware-
ness is inferred from driver head or gaze orientation.

• In non-collision-course crossing scenarios, both participants continue walking,
respectively driving.

• Unaware participants continue walking/driving.

Scenarios 1 to 4 represent non-collision-course scenarios, meaning the pedestrian
has sufficient time to cross. Scenarios 5 to 7 are safe through a change in behavior by
either the driver or pedestrian due to awareness of the other participant. Scenario 8
represents a collision where both driver and pedestrian are unaware of each other’s
presence. Scenario 9a represents an anomalous scenario: the pedestrian crosses despite
being aware of the approaching vehicle. The anomalous scenario is not considered for
model parameter estimation.

Pedestrians were instructed to either “continuously observe the vehicle” or to “keep
facing forward and don’t look at the vehicle”. Drivers were instructed to either “keep
looking at the pedestrian” or to “avoid looking at the pedestrian” while approaching the
pedestrian.

While scenarios 8 and 9a represent collisions, naturally, no actual collision took place
during data collection. Instead, the vehicle was brought to a full stop before colliding with
the pedestrian. The vehicle’s velocity and position data were artificially replaced with a
constant velocity model starting just before the onset of braking.

To ensure safety, the road was overseen to halt the experiments when other traffic
entered the testing area. A co-driver provided verbal instructions on when to brake. Target
driving speed was 20 km/h and pedestrians adopted their preferred walking pace.
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(a) Dmi n : Minimum distance along approach (m) (b) DLP : Pedestrian distance to curb (m)

(c) DLV : Vehicle distance to crossing location (m) (d) HOP : Pedestrian head orientation (deg)

(e) HOV : Attention eccentricity (measured head
pose) (deg)

(f) HOV : Attention eccentricity (estimated head
pose) (deg)

(g) HOV : Attention eccentricity (estimated eye
gaze) (deg)

Figure 6.3: Original and fitted context likelihood distributions. See Section 6.3.1 for details.
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6.4.2. INSTRUMENTATION, MEASUREMENTS, AND GROUND TRUTH
All data were collected with a TU Delft experimental vehicle, whose instrumentation is
described in further detail in [40]. Vehicle position, orientation and velocity are obtained
from an ego-vehicle localization system which fuses differential GNSS, IMU, steering
wheel angle and wheel ticks. This was implemented by the Robot Operating System (ROS)
robot_localization package [79] and gained the transformations from vehicle frame
to the world coordinate frame, which is set to identity at the start of the system. The
GPS maintains a position accuracy of 4 cm while drift between GPS updates is limited to
0.8% per unit of distance traveled. The road was observed at 10 Hz using a forward-facing
stereo camera (baseline 22 cm, 1936 × 1216px) mounted behind the top-center of the
windshield to obtain a dense stereo depth image of the scene in front of the vehicle.

Driver head pose and gaze were recorded with two systems. Estimated eye gaze and
head pose were recorded with a high-end commercial off-the-shelf eye tracker (Smart-
eye: 4-camera Smart Eye Pro dx 5.0, software version 8.2, running at 60 Hz with a gaze
accuracy down to 0.5◦). Secondly, measured head pose is obtained by a head-worn
infrared-reflective marker tracked by an optical marker tracking system (Smarttrack)
mounted on the rear seat head rest [107, 109]. Additionally, the driver was observed by a
camera mounted above the speedometer for visual verification purposes. All sensor data
were spatially calibrated and resampled to a target rate of 20 Hz.

Measured pedestrian positions on the ground plane were obtained in three successive
steps:

1. 2D pedestrian bounding boxes were estimated from the forward facing camera by
the Single-Shot-Multibox-Detector (SSD) of Braun et al. [12].

2. Distance to camera was found by median stereo disparity [53] of the 2D bounding
box.

3. Transformation of this car-relative pedestrian position to ground plane positions in
world coordinate frame was performed via ego-vehicle localization.

The time between the first pedestrian detection and the pedestrian reaching the curb was
(min / max / mean = 1.3 s / 3.2 s / 2.9 s) over the various sequences. In that period, the
pedestrian detection recall was 83 %.

Similarly to Kooij et al. [60], the pedestrian’s focus-of-attention is inferred from pedes-
trian head orientation. The method of Braun et al. [13] is used to obtain a single yaw angle
representing pedestrian head orientation.

In order to temporally compare prediction performance among the various scenarios,
a semantically meaningful event was manually annotated for each sequence, as in [60],
[58]. For scenarios where the pedestrian crosses, it represents the first frame where a
pedestrian’s foot crosses the curb. For scenarios where the pedestrian stops, it represents
the moment where the last foot is placed on the ground near the curb. This implicitly
defines time-to-event (TTE) for each time-step of each sequence (negative TTE: before
event).

For each encounter, ground truth of the pedestrian position in the world coordinate
frame is obtained. The pedestrian’s target path of travel is defined in the world coordinate
frame as a straight line and corresponds to the path the participants were instructed to
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move along. The pedestrian ground plane location is then obtained by the intersection
of the annotated path of travel with the vertical plane spanned by the image column
of the hip point which was manually annotated in each frame. Map information and
ego-vehicle localization is employed to estimate the location of the curb side.

6.5. EXPERIMENTS
To evaluate the incremental benefits of the DBN model components for an intelligent
collision warning system, this section compares six models with varying access to the
used context cues on their joint prediction performance of vehicle- and pedestrian-path
and collision risk. Two evaluation metrics are adopted: the ability to predict driver and
pedestrian location 1.5 s into the future, and collision risk across multiple prediction
horizons. Evaluation is performed using 5-fold cross validation.

6.5.1. EVALUATION METRICS

For each time t , each model creates a predictive distribution P̃t→t+tp (X t ) for state X t

and prediction horizon tp . Based on the predictive distributions of both vehicle and
pedestrian, individual path prediction performance and combined collision risk are
evaluated.

PATH PREDICTION PERFORMANCE

Two performance metrics are used to evaluate path prediction performance [60] [58]: (a)
Euclidean distance error between predicted expected position and future ground truth
position GTt+tp :

error
(
tp |t

)= ∣∣∣E[
P̃t→t+tp (X t )

]
−GTt+tp

∣∣∣ (6.3)

and (b) the log likelihood of the future ground truth position GTt+tp under the predictive
distribution:

loglik
(
tp |t

)= log
[

P̃t→t+tp

(
GTt+tp

)]
(6.4)

loglik encapsulates both the spatial error and certainty about the position observation.
Larger loglik values denote better prediction performance.

COLLISION RISK

The probability for a collision is determined by taking the integral of the predictive distri-
butions over a collision area, which is defined by all possible intersections between vehicle
and pedestrian locations. Let P̃t→t+tp (X t ) = N (µt→t+tp ,σ2

t→t+tp
) bea single Gaussian

predictive position of either pedestrian P or vehicle V. The combined predictive position

is then defined as P̃φ
t→t+tp

(X P
t , X V

t ) =N (µP
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−µV
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, (σP
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)
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)

2
). The

collision risk predicted from t for t + tp is given by:

CR
(
tp |t

)= ∫
Aφ

P̃φ
t→t+tp

(X P
t , X V

t )d X P
t d X V

t (6.5)

with Aφ being the combined spatial spatial extent of vehicle and pedestrian. If the
predictive distributions for the vehicle and the pedestrian are represented as Gaussian
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Mixtures (SLDS and DBN variants), the overall collision risk is given by the weighted
pairwise collision risk between the Gaussian Mixture components. This extends the
collision risk estimation method of Braeuchle et al. [10].

For the application of collision risk warning, collision probability has to be classified
into collision or no collision, and classification performance requires a ground truth
for collision outcome. Collision ground truth is defined as true for any time instance
where the vehicle and pedestrian ground truth overlap given their position and spatial
spatial extent. In order to assess the collision risk prediction performance at various
prediction horizons, a fixed false positive rate (FPR) is selected and the attainable true
positive rate (TPR) is found for each prediction horizon tp .

6.5.2. MODEL VARIANTS
This chapter evaluates four context-aware models, including the method of Kooij et
al. [61], which differ in their access to pedestrian and vehicle context, and compare them
to two context-agnostic models. An overview of the used context cues of the models is
given in Table 6.2. All models were optimized individually as described in Section 6.3.

CONTEXT-AGNOSTIC LDS
Both linear dynamical systems for pedestrian and vehicle path prediction are instantiated
by constant velocity motion models.

CONTEXT-AGNOSTIC SLDS
Vehicle and pedestrian motion are both modeled by context-agnostic SLDSes with the
same underlying motion models as the context-aware models (driving/braking, walk-
ing/standing) described below.

CONTEXT-AWARE MODELS WITH VARYING PEDESTRIAN- AND VEHICLE-CONTEXT

This section analyzes four variants of the model presented in Figure 6.2 which take differ-
ent amounts of context into account: DBN.p represents the context-based pedestrian path
prediction method of Kooij et al. [61]. The method is pedestrian-aware, vehicle-agnostic

Table 6.2: Context cues and number of motion models per road user used in the models. DBN suffixes denote
used context: p: pedestrian [61]; v: vehicle (ALV ); h: driver head pose; g: driver gaze. E.g., DBN.pvg uses
pedestrian, vehicle and driver eye gaze awareness context.

Context cue LDS SLDS DBN.p [61] DBN.pv DBN.pvh DBN.pvg

Pedestrian at-curb - - x x x x

Pedestrian awareness - - x x x x

Collision course - - x x x x

Vehicle near-crossing - - - x x x

Driver awareness - - - - head pose eye gaze

# Ped. motion models 1 2 2 2 2 2

# Veh. motion models 1 2 2 2 2 2
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and driver-agnostic. It models the vehicle dynamics as a context-agnostic SLDS. DBN.pv
is pedestrian, vehicle-aware and extends DBN.p with vehicle static environment cues but
remains driver-agnostic. It includes proximity of the vehicle to the crossing location of
the pedestrian (ALV ). DBN.pvh additionally uses driver head pose as an awareness cue
(SV ). DBN.pvg uses driver eye gaze instead of driver head pose.

6.5.3. PATH PREDICTION

Table 6.3 depicts average path prediction performance over various encounters of a
certain scenario in terms of loglik and Euclidean distance error of both pedestrian and
vehicle for a prediction horizon tp = 1.5s averaged over periods where typical changes in
dynamics occur (pedestrian: TTE ∈ [−0.5s,2.0s], vehicle: TTE ∈ [−0.5s,3.0s]; TTE ranges
define times where predictions are made for). Let us consider three scenario types.

Table 6.3: Scenario decomposition (left), mean path prediction performance in terms of loglik (center) and
Euclidean distance error (right) of various models for a prediction horizon of tp = 1.5s. The top and lower halves
of the table capture the prediction performances of pedestrian and vehicle along the dimension of main travel
(i.e. lateral and longitudinal vs. vehicle main axis). See Section 6.5.2 for model definitions. Higher loglik and
lower Euclidean distance error denote better prediction performance. Bold numbers denote best-performing
model per scenario. Grey rows denote scenarios with a change in dynamics of the respective road user.

Scen. CC
Ped.
stops

Ped.
sees

Veh.
stops

Driver
sees

LDS SLDS
DBN
p [61]

DBN
pv

DBN
pvh

DBN
pvg

LDS SLDS
DBN
p [61]

DBN
pv

DBN
pvh

DBN
pvg

Pedestrian 1.5 s loglik Pedestrian 1.5 s Euclidean error (cm)

1 0 0 0 0 0 −3.3 −2.2 −2.1 −2.1 −2.2 −2.2 64 99 48 51 52 51

2 0 0 0 0 1 −2.8 −2.7 −2.5 −2.5 −2.4 −2.4 83 140 112 110 110 111

3 0 0 1 0 0 −9.2 −3.5 −3.1 −3.1 −3.6 −3.7 77 133 68 71 77 73

4 0 0 1 0 1 −9.0 −2.3 −2.3 −2.2 −2.3 −2.3 54 73 55 50 46 49

5 1 1 1 0 1 −4.0 −2.4 −1.8 −1.8 −2.2 −2.2 122 131 84 86 91 91

6 1 1 1 0 0 −4.2 −2.5 −1.7 −1.7 −1.8 −1.8 114 131 83 87 87 87

7 1 0 0 1 1 −1.1 −1.5 −1.9 −1.8 −1.7 −1.7 58 90 71 70 70 70

8 1 0 0 0 0 −1.0 −1.3 −2.0 −1.9 −1.9 −1.9 52 74 63 61 63 63

9a 1 0 1 0 0 −1.5 −1.8 −2.1 −2.0 −2.0 −2.0 63 100 79 77 73 73

non-anomalous, motion change (5-6) −4.1 −2.5 −1.8 −1.8 −2.0 −2.0 118 131 84 87 89 89

non-anomalous, no motion change (1-4, 7-8) −4.4 −2.3 −2.3 −2.3 −2.4 −2.4 65 102 70 69 70 70

Vehicle 1.5 s loglik Vehicle 1.5 s Euclidean error (cm)

1 0 0 0 0 0 −6.2 −2.2 −2.8 −2.8 −2.8 −2.8 54 53 46 52 55 55

2 0 0 0 0 1 −38.0 −7.4 −8.8 −6.0 −6.1 −6.1 60 62 49 53 55 55

3 0 0 1 0 0 −31.2 −6.1 −7.9 −7.9 −7.0 −7.0 48 52 39 44 51 50

4 0 0 1 0 1 −12.9 −2.8 −3.7 −3.6 −3.7 −3.8 63 66 55 56 58 58

5 1 1 1 0 1 −4.5 −1.5 −2.4 −2.1 −2.0 −2.0 48 54 48 117 69 69

6 1 1 1 0 0 −3.4 −1.4 −2.0 −2.0 −1.8 −1.8 43 52 40 103 61 61

7 1 0 0 1 1 −7.8 −2.7 −2.6 −2.1 −2.2 −2.2 245 189 195 149 175 175

8 1 0 0 0 0 −1.0 −1.0 −1.6 −1.7 −1.6 −1.6 46 47 39 81 45 45

9a 1 0 1 0 0 −1.1 −1.1 −1.6 −1.8 −1.7 −1.7 38 47 34 78 45 45

non-anomalous, motion change (7) −7.8 −2.7 −2.6 −2.1 −2.2 −2.2 245 189 195 149 175 175

non-anomalous, no motion change (1-6, 8) −13.9 −3.2 −4.2 −3.7 −3.6 −3.6 52 55 45 72 56 56
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NORMAL SCENARIOS WITH NO MOTION CHANGE

First the normal scenarios are considered where no motion change occurs for a certain
road user (i.e. scenarios 1-4 and 7-8 for the pedestrian, and scenarios 1-6 and 8 for the
vehicle; the respective average performances are listed in two separate rows of Table 6.3).

It can be seen that the LDS for that road user has a comparatively poor loglik overall
(−4.4 and −13.9, resp.), as the uncertainty region of its single-Gaussian state representa-
tion is large to account for possible motion changes. On the other hand, its maximum
likelihood estimate is comparatively accurate: the Euclidean distance error is smaller
than that of other models (65 cm and 52 cm, for pedestrian and vehicle resp.); this is to be
expected as its linear model precisely fits the actual motion.

It can also be observed that context-aware models are at least on-par-with their
context-agnostic (multi-motion) counterparts; cases of outperformance suggest that
the context in the former provides more selective guidance when a motion change is
probable. Specifically, models that incorporate pedestrian context (all DBN variants) are
on-par-with (outperform) SLDS in terms of the loglik (Euclidean distance error) metric for
the pedestrian. Models that incorporate vehicle context (DBN.pv, DBN.pvh and DBN.pvg)
are on-par-with SLDS in terms of the loglik and Euclidean distance error metric for the
vehicle.

NORMAL SCENARIOS WITH MOTION CHANGE

Now the normal scenarios are considered where motion change occurs for a certain road
user (i.e. scenarios 5-6 for the pedestrian, and scenario 7 for the vehicle; the respective
average performances are listed in two separate rows of Table 6.3).

It can be seen that the context-aware models for a road user mostly outperform their
context-agnostic counterparts (LDS and SLDS) in terms of loglik and Euclidean distance
error for that road user. There is an observation that having the full context of a road
user does not necessarily improve performance for that road user as opposed to using
only partial context (e.g. for the vehicle, DBN.pvh and DBN.pvg underperform DBN.pv
on Euclidean distance error.)

Adding context related to the other user does not improve performance for the origi-
nal road user (e.g. adding vehicle context DBN.pvh and DBN.pvg does not outperform
pedestrian prediction performance by DBN.p). An outperformance might have been
expected, as a motion change indicates an interaction between the road users, where
such other road user context could be helpful. Apparently, the motion coupling by means
of the CC state variable in the DBN is (too) weak, and is possibly overshadowed by data
issues (e.g. measurement noise, insufficient data).

Figure 6.4 shows a temporal analysis of vehicle path prediction performance for se-
quences where the vehicle stops (scenario 7). While the vehicle approaches the pedestrian
with constant velocity (TTE <−0.2s), the three compared models (LDS, SLDS, DBN.pvg)
show similar performance. As the vehicle slows down, both LDS and SLDS increase in
spread over various sequences (shown by the standard deviations) and gradually decrease
in vehicle loglik. The SLDS model adapts more quickly to the change of dynamics (switch
from driving to braking) compared to the LDS. The DBN.pvg model variant anticipates
the change in motion dynamics resulting in a higher loglik and less uncertainty than the
context-agnostic models, therefore resulting in a better path prediction performance for
the vehicle.
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Figure 6.4: Loglik and standard deviation over time for a braking vehicle (scenario 7) for a prediction horizon
tp = 1.5s, and drawn at the moment for which the prediction was created (i.e., the values shown at TTE = 0.0 s
were predicted from measurements of TTE = −1.5 s). The vehicle initiates braking for the crossing pedestrian
between −1.8 s and 0.6 s, with most vehicles braking from 0.0 s onward.

ANOMALOUS SCENARIO

Finally, let us consider the anomalous scenario 9a. It is anomalous as the pedestrian
crosses despite seeing the vehicle. Table 6.3 shows a lower prediction performance of
the context-aware models (all DBN variants) regarding the pedestrian compared to the
context-agnostic models (SLDS and LDS). This is no surprise, as the context-aware models
were trained to expect stopping behaviour. Despite this, performance degrades gracefully,
since the measurements of the walking pedestrian allow the context-aware models to
infer decent motion state estimates.

Figure 6.5 shows a comparison between driver gaze (DBN.pvg) and driver head pose
(DBN.pvh) as contextual cue for SV (sees-pedestrian). For SV = 1, driver gaze provides
higher classification confidence in HSV (has-seen-pedestrian) compared to head pose.
For SV = 0, both models incorrectly believe that the driver has seen the pedestrian for a
similar fraction of sequences. However, this classification accuracy did not yield a better
vehicle path prediction performance when comparing DBN.pvg to DBN.pvh in Table 6.3.
This can be attributed to the memorizing effect of HSV .

Measured driver head pose (Smarttrack) provided virtually identical results to esti-
mated head pose (Smarteye) on all scenarios, and was therefor excluded from analysis.

6.5.4. COLLISION RISK ESTIMATION

This section first compares how collision risk estimates evolve over time for the LDS,
SLDS and DBN.pvg models on two exemplary sequences with changing vehicle dynamics
(scenario 7) and collision (scenario 8), followed by an assessment of overall collision risk
prediction performance as function of prediction horizon.

SCENARIO-BASED COLLISION RISK

Figure 6.6a shows collision risk prediction for a sequence from scenario 7, where the
vehicle brakes due to an aware driver. Thus, a low predicted collision risk is expected.
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Figure 6.5: Classification performance of DBN.pvg and DBN.pvh on the hidden HSV state on sequences where
driver is instructed to be attentive (SV = 1) and inattentive (SV = 0).

For a prediction horizon tp = 0.75s, all models predict a negligible collision risk (dashed
lines). Predicting tp = 1.5s into future, the LDS and SLDS models anticipate a collision
risk of 66% and 56% respectively while the DBN.pvg model keeps a collision risk below
10% throughout the sequence.

(a) Sequence from scenario 7. Lower collision risk denotes
better performance.

(b) Sequence from collision scenario 8. Higher collision risk
denotes better performance. The collision window CW is

shaded in red.

Figure 6.6: Collision risk estimates obtained from different models for a braking vehicle (a) and collision (b)
sequence. TTE indicates the time for which the predictions were made. Values are shown for prediction horizons
tp of 0.75s and 1.5s.

Figure 6.6b shows collision risk over time for one sequence from the collision scenario
(scenario 8), where both the vehicle and the pedestrian continue their respective motion,
being unaware of each other. The collision window depicts all time instances defined
as a collision in accordance with Section 6.5.1, i.e., where the geometries of vehicle and
pedestrian overlap. Predicting 0.75 s into the future, all compared models (LDS, SLDS,
DBN.pvg) depict similar maxima of collision risk within the collision window. With
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increasing prediction horizon, each model becomes less certain, resulting in a lower
predicted collision risk value.

The maxima are above 18% within the collision window for the exemplaricly depicted
sequence. Figure 6.6 further shows that only for DBN.pvg, there exists a range of collision
risk thresholds (10%–18%) for which a collision warning is triggered in the collision
sequence (Figure 6.6b) but not in the non-collision sequence (Figure 6.6a).

OVERALL COLLISION RISK PREDICTION

To examine how collision risk prediction performance changes with prediction horizon
tp , a FPR of 1% is selected and the attainable TPR as a function of tp is evaluated, see
Figure 6.7. One observes that the context-agnostic models (LDS and SLDS) significantly
under-perform the context-aware models (DBN variants). For a prediction horizon up to
0.75s, all DBN variants achieve a TPR close to 1.0. They continue to perform similarly until
a prediction horizon of about 1.3 s, after which point the driver-aware models DBN.pvh
and DBN.pvg obtain a small edge. Towards a horizon of 2.0 s, the TPR of the models drops
towards 10%.

Figure 6.7: Collision risk TPR of different models obtained under a 1% FPR for various prediction horizons.
Higher values denote better performance.

6.6. DISCUSSION
Path prediction performance was evaluated in three scenario types within a time interval
of a few seconds around a potential motion change: in normal scenarios with no mo-
tion change, in normal scenarios with motion change and in an anomalous scenario.
Reporting aggregate performance would not have been very insightful. This is because in
reality, the time steps in which “normal” scenarios apply with no motion changes vastly
outnumber the two other scenario types. Just considering aggregate performance would
strongly favor simple models like the LDS (or a parameter setting of a more complex
model that essentially implements such a simple model). However, the time instants
involving motion changes should arguably carry more weight, as they might strongly
induce changes in collision risk. Listing separate performance values for various scenario
types allows to side-step this weighting issue for now.
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For normal scenarios with no motion change, the single-motion model LDS performs
best in terms of Euclidean distance error, albeit with by far the worst loglik performance
of all models. Context-aware models (DBN.p, DBN.pv, DBN.pvh, DBN.pvg) were at least
on-par-with their context-agnostic (multi-motion) versions (SLDS). They remained com-
petitive with the LDS on Euclidean distance error. The normal scenarios with motion
changes are those settings where the context-aware models can potentially shine. Indeed,
the context-aware models were found to mostly outperform their context-agnostic coun-
terparts (LDS and SLDS). Anomalous situations which defy the anticipated motions, but
still occur in real-world traffic, provide a challenge to a context-aware model. They might
contradict the expert knowledge encoded in the DBN structure or will not adhere to the
parameters estimated on a training set. Fortunately, the probabilistic modeling allows for
softer decisions: the switch of motion dynamics not only depends on the pre-conditioning
context, but also on the current positional observations. Indeed, the performances of
context-aware models were shown to remain competitive with that of context-agnostic
counterparts.

Overall, one observes that the models using both pedestrian and vehicle context
(DBN.pv, DBN.pvg, DBN.pvh) performed best over the three time scenario types. Full con-
text was not shown to improve path prediction performance (i.e. DBN.pvg and DBN.pvh
not outperforming DBN.pv). While DBN.pv, DBN.pvh and DBN.pvg encode typical vehi-
cle braking locations, variation in braking behavior seems to limit the predictive value
of the driver awareness cue. Contrary to the initial expectations, measuring driver gaze
(DBN.pvg) yielded similar path prediction and collision risk estimation performance
compared to measuring driver head pose (DBN.pvh), i.e. see Figure 6.7.

However, when multiple road users or driving distractions are introduced, it is likely
that driver awareness will be dis-ambiguated more accurately from gaze compared to
head-pose. Other fixation-related metrics may provide further insights in driver aware-
ness, such as number of fixations, total fixation duration and angle of first saccade landing
within 2◦ of the pedestrian [128], though such evaluations would require natural as op-
posed to instructed viewing behavior, and other spatial regions competing for attention.

In this chapter, mutual awareness and interaction between vehicle and pedestrian
were chosen to be modeled loosely, by means of the shared context state CC (collision
course) of the respective DBN sub-graphs. This has the advantage that it could easily
scale-up to multiple road users, as their DBN sub-graphs can be designed and optimized
individually, and the number of dependencies grow linearly. On the other hand, some
limitations result from this loose motion coupling. The driver-aware models (DBN.pvh,
DBN.pvg) encode the following: if one road user A is aware of the other B, this influences
the motion of A which affects the shared collision course latent state CC , which in turn
influences the motion of B. Not modeling the dependency between awareness of A and
motion of B directly might lead to decreased performance. Consider the path prediction
performance of the vehicle in scenarios 5 and 7. In both scenarios, the driver sees the
pedestrian, however, only in scenario 7 the vehicle stops (due to the unaware pedestrian).
The fact that the vehicle motion in the driver-aware models is not directly influenced by
the pedestrian’s awareness might contribute to whyDBN.pvh and DBN.pvg are not the
best performing models for scenario 7.
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CONCLUSION AND FUTURE WORK

T HIS thesis addressed the perception of driver and pedestrian to extract mutual aware-
ness for path prediction in the domain of intelligent vehicles. It has contributed to

multiple components along the processing chain of an intelligent vehicle. Firstly, a large,
naturalistic driver head pose dataset has been created as a foundation to develop a head
pose estimation method, which estimates continuous, 6 degrees of freedom (DOF) head
pose from single camera images. Perceiving the outside environment of an intelligent
vehicle, this thesis has presented a person detection system that estimates 3D location,
spatial extent (i.e., length, width and height), and yaw orientation of pedestrians around
the vehicle from camera and lidar. Finally, driver head pose, vehicle ego-motion, and
pedestrian features (like location, body and head orientation) have been used to develop
a probabilistic path prediction system that takes into account the mutual awareness of
driver and pedestrian, therefore allowing for an improved, probabilistic prediction of
ego-vehicle and pedestrian paths in scenarios where a pedestrian might or might not
cross the road in front of the approaching vehicle.

7.1. CONCLUSION
This section presents the main findings and draws conclusions along the methodical
chapters.

DRIVER HEAD POSE BENCHMARK

Chapter 3 introduced DD-Pose , a large-scale driver head pose benchmark featuring
multi-camera images of 27 drivers captured during 12 naturalistic driving scenarios.
The benchmark contains 330 k frames with high-resolution stereo images from a driver
camera, accompanied by an interior camera and driving metadata such as velocity and
yaw rate. It provides per-frame head pose measurements and occlusion annotations.
Precise head pose is measured by a novel calibration device. All sensors have been
calibrated extrinsically and intrinsically, and are synchronized.

Compared to bounding box annotations, which are defined in image-space, 6 DOF
head pose ground truth has been shown to be more difficult to obtain. An invasive, head-
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worn measurement device has been employed to get accurate ground truth (as opposed to
head pose “measured” in the camera image or from depth data). While the measurement
device needs to be calibrated once per subject (<1 minute), all successive head pose
annotations come with no additional manual effort. Diversity by a large number of
training subjects (i.e., different drivers) is more difficult to obtain in contrast to collecting
pedestrian images in urban scenes. Subjects have to drive the vehicle – and in the scope
of a research vehicle – also require permission to drive the vehicle.

Compared to previous datasets, DD-Pose depicts a broader distribution of head
poses at a higher resolution while providing absolute 6 DOF head pose. The experiments
showed that DD-Pose provides challenges for a current State-of-Art (SoA) method due to
its richness in extreme non-frontal head poses. At the time of writing, 58 researchers from
23 different countries have registered for the use of the dataset. It has proven valuable for
the development of the head pose estimation method presented in Chapter 4 which will
be discussed in the next section.

HEAD POSE ESTIMATION LEVERAGING CAMERA INTRINSICS

Chapter 4 has tackled the problem of 6 DOF head pose estimation from single camera
images and their associated camera intrinsics in the domain of driver observation. This
domain poses interesting in-car applications and challenges such as difficult illumination
conditions and large out-of-plane rotations.

It was shown that explicit use of camera intrinsics is required for precise head pose
estimation and it is used consistently within the presented novel intrinsics-aware head
pose estimation method.

For decades, Euler angles or Quaternions have dominated the rotation representation
within head pose estimation methods. This has led to several drawbacks (such as gimbal-
lock, discontinuities, normalization, and ambiguities) which were mitigated by more
complex models. The method presented in Chapter 4 employs a continuous rotation
representation (SVDO+) which simplifies the network architecture to a simple regression
head and a pose conversion which yields a rotation in SO(3), the special orthogonal group
spanning all rotations in 3D space.

Evaluations on the challenging in-car dataset DD-Pose from Chapter 3 have shown
that leveraging camera-intrinsics alongside a continuous rotation representation results
in a balanced mean absolute error (BMAE) of 5.8◦ compared to the intrinsics-agnostic
SoA baseline (14.8◦). Also, using an unbiasing data sampling strategy lowered the BMAE
on the hard subset (extreme non-frontal rotations and occlusions) from 15.3◦ to 9.5◦. The
proposed method showed translation errors of 22/29/41mm over the easy/moderate/hard
subsets in the DD-Pose test set.

Overall, intrinsics-awareness and using a continuous rotation representation allowed
for a simple architecture that yields robust head pose estimates across a broad spectrum
of head poses. Furthermore, a runtime of <20 ms makes in-vehicle deployment possible.

DEEP END-TO-END 3D PERSON DETECTION FROM CAMERA AND LIDAR

Chapter 5 presented a novel deep end-to-end method for 3D person detection from
camera images and lidar point clouds. The method does not rely on hand-crafted features.
Instead, it learns high-level features from both camera images and lidar point clouds.
Point cloud features are extracted using voxel feature encoders. Experiments on the KITTI
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3D object detection benchmark show that the presented method outperforms the prior
SoA by 2.2 percentage points with an average precision of 47.1% on moderate difficulty
(validation set).

The method described in Chapter 5 is an early adopter of the end-to-end scheme
training of multi-modal data (camera and lidar). Since then, the SoA has advanced in
the research area of end-to-end training, by extending the differentiable path along the
functional chain from detection via fusion up to motion planning [142], but also by
extending in terms of fusing multiple cameras [71, 92].

DRIVER AND PEDESTRIAN MUTUAL AWARENESS FOR PATH PREDICTION

Chapter 6 presented a novel method for vehicle-pedestrian path prediction that takes into
account the awareness of the driver and the pedestrian towards each other. The method
jointly modeled the paths of a vehicle and a pedestrian within a single Dynamic Bayesian
Network (DBN). Subsequently, collision risk was estimated by a probabilistic intersection
operation. Overall, this work demonstrated an integrated system from on-board sensing
up to collision warning.

Incremental benefits of pedestrian- and vehicle-context in six models with vary-
ing access to the used context cues were evaluated, namely Linear Dynamical System
(LDS, one motion model), Switching Linear Dynamical System (SLDS, two motion mod-
els), DBN.p (pedestrian-aware), DBN.pv (pedestrian-aware, vehicle-aware and driver-
agnostic), DBN.pvg (driver gaze as awareness cue) and DBN.pvh (driver head pose as
awareness cue). For validation, real-world data obtained by on-board vehicle sensing
(stereo vision, GNSS, and proprioceptive) were used and consisted of vehicle and pedes-
trian encounters, spanning various awareness conditions and dynamic characteristics of
the participants. For normal scenarios with no motion change, the single-motion model
LDS performed best in terms of Euclidean distance error, albeit with the worst loglik
(log-likelihood of ground truth position within predicted distribution) by far of all models.
Context-aware models (DBN.p, DBN.pv, DBN.pvh, DBN.pvg) were at least on-par-with
their context-agnostic (multi-motion) versions (SLDS). They remained competitive with
the LDS on Euclidean distance error. In the normal scenarios with motion changes the
context-aware models were found to mostly outperform their context-agnostic counter-
parts (LDS and SLDS). Even in an anomalous scenario, the performances of context-aware
models were shown to remain competitive with that of context-agnostic counterparts.
Overall, models using both pedestrian and vehicle context (DBN.pv, DBN.pvg, DBN.pvh)
performed best on path prediction. This was also reflected in collision risk estimation
performance. For example, the collision risk warning true positive rate (TPR) was raised
from 18% (pedestrian-aware model DBN.p of Kooij et al. [61]) to 27% for DBN.pvg for a
prediction horizon of 1.5 s and a false positive rate (FPR) of 1% over the dataset.

One of the main insights of Chapter 6 is that context cues can help to improve path
prediction. However, simply using more complex motion models with additional context
cues does not necessarily help prediction performance, if those context cues are not
sufficiently informative or they cannot be reliably inferred from sensor measurements.
Differences in path prediction performance between context cues can be subtle and might
also not materialize due to small data sample effects and due to errors in the estimation
of ground truth.
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DBNs provide a versatile structure to model expert knowledge. E.g., in the presented
DBN, it is predefined what type of motion models are used per traffic participant, and
which observations influence which latent states. Similarly, awareness of the other traffic
participant is represented by “having turned one’s head towards the other traffic partici-
pant”. This faces two issues. First, having turned a head in a certain direction does not
necessarily reflect the focus of attention. Second, there is no “forgetting of awareness”,
i.e., the model assumes awareness persists over the duration of the encounter. Encoding
expert knowledge implicitly encodes further assumptions. One assumption the model has
is that there is a single pedestrian in the ego-vehicle’s environment, and that the model
has knowledge of a potential location of crossing, such as a zebra crossing or a crossing
hot-spot, potentially obtainable by a map. More assumptions are implicitly represented
by the dataset which is used for training the model, but also for validation. The dataset
used in Chapter 6 covers multiple combinations of the vehicle braking/not braking, the
driver looking/not looking, the pedestrian stopping/not stopping and the pedestrian
looking/not looking. Yet this only covers a subset of the complex traffic interactions that
can occur. The complex interactions need to be covered representatively in the dataset.
At some point modeling interactions with a DBN structure reaches limitations and purely
data-driven approaches need to be employed.

OVERALL OBJECTIVE

The overall goal of this thesis is a safer navigation of traffic with driver-pedestrian en-
counters. Towards this goal, this thesis presented a framework for joint path prediction
of ego-vehicle and a pedestrian working on data of on-board sensors of a vehicle. The
main components working together are: a camera-based driver head pose estimation
component (looking-in; Chapter 4), a 3D pedestrian detection component (looking-out;
Chapter 5), and a path prediction component combining the output obtainable by the
two latter components over time (Chapter 6). Technical challenges in integrating the
sensors into research vehicles have been overcome, such as calibration of sensors of
different modalities inside and outside the vehicle, time synchronization and recording.
The components can be integrated in a common framework, yet they have been devel-
oped and evaluated independently within the scope of this thesis. While it makes sense
to optimize each component in isolation to obtain optimal outputs for their task, what
eventually matters more is the output performance of the overall system. The evaluations
of Chapter 6 have shown that fine-grained driver eye gaze performed equally good in
terms of path prediction compared to coarse head pose. Admittedly, this might be due to
limitations of the path prediction component.

What is the gap to close when integrating the framework into an Advanced Driver-
Assistance System (ADAS) of a series-vehicle? The key performance indicators measuring
the performance of the overall system would be the number of true positive emergency
brakes (or warnings) for pedestrian crossing encounters, and the number of false positive
emergency brakes for non-crossing encounters on a large, complex, representative valida-
tion dataset. While those target numbers are not clear to define, vehicle manufacturers
tune ADAS in an SAE level 0–2 system towards a low number of false positive brakes
for customer acceptance reasons. This is possible because the driver is still responsible
at those SAE levels. Leaving the driver out of the picture for once, the Euro New Car
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Assessment Program (NCAP) have defined a catalog of AEB VRU tests to perform on
crossing pedestrian dummies [35]. These reflect important, yet isolated scenarios. E.g.
Car-to-Pedestrian Nearside Adult 25% (CPNA-25) is defined as follows: “a collision in
which a vehicle travels forwards towards an adult pedestrian crossing its path walking
from the nearside and the frontal structure of the vehicle strikes the pedestrian at 25% of
the vehicle’s width when no braking action is applied.” The pedestrian dummy speed is
fixed to a static direction and constant velocity of 5 km/h. The datasets and experiments
presented in this thesis show this setting does not reflect the complex movement pedes-
trians exhibit in real-life and therefore defines a lower bound for series vehicles. For now,
customer acceptance puts a higher requirement on current systems, e.g., a vehicle known
to slowly navigate urban traffic with pedestrians present on the sidewalk will find less
acceptance.

The components presented in this thesis can be deployed into an ADAS with little
adaptation, and improved further along the road. Driver cameras have found their way
into the series market. Cameras facing the outside world are already part of series vehicles
with an NCAP five star rating. The method of Chapter 5 relies on a lidar sensor besides the
camera. It can be replaced by a camera-only pedestrian detection system. The presented
methods run in real-time and can be deployed onto in-vehicle computers. The traffic
scenario covered in this thesis is limited to a single pedestrian potentially crossing the
road. Despite its current limitations the presented collision warning system would already
improve road safety and can be extended to more complex traffic situations in future.
Potential performance gaps are to be closed by representative data of the inside and the
outside of the vehicle.

7.2. FUTURE WORK
This section discusses potential improvements in driver observation, environment per-
ception, and driver-road-user interaction for path prediction. It concludes with the
importance of data and a recommendation on how to use and share data to accelerate
the development of automated driving.

DRIVER OBSERVATION

This thesis has demonstrated a robust method for driver head pose estimation in Chap-
ter 4. Besides an accurate estimate, a component that consumes head pose will also
benefit from the (un)certainty of the head pose estimate. To that end, uncertainty can be
integrated into the neural network and trained alongside the head pose estimate. As the
rotation of the presented method is represented in SO(3), the special orthogonal group
spanning 3D rotations, representation of rotation uncertainty via Bingham belief [91]
would be a natural choice.

The single-frame method has a recall of 93% on the hard subset which is not suffi-
cient for safety-relevant applications. A driver observation system would integrate the
6 DOF estimates in a temporal filtering scheme to obtain more robust pose estimates and
increase the recall. The presented head pose estimation method employs a two-stage
detection network and relies on bounding box proposals (anchors). Aspect ratio and
size of bounding box proposals have already been optimized for human heads. Still,
further work could experiment with adapting one-stage detection networks which skip
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the bounding box proposal stage, e.g., YOLOv3 [102] or Single-Shot Multi-boxDetector
(SSD) [74], or do not rely on proposals at all [67].

The current approach uses a single intensity image of a driver camera. In extension,
the method could employ multiple cameras, such as the in-cabin camera provided by
the dataset of Chapter 3, as the trend of holistic driver monitoring shows [57, 85]. A
larger observed in-car volume also allows for the analysis of multiple passengers, further
broadening the scope to comfort and multi-media applications in SAE level 3 and above.
In that case, one can generalize the term driver observation to occupant observation. There
is an abundance of information the human body expresses besides head pose: eye gaze,
facial landmarks and their configuration, and body posture, to name a few. Detecting
these for can gain understanding about the emotions, vigilance of each individual, their
interaction with each other inside the vehicle, with the vehicle they occupy, and with
the environment. As soon as occupant observation sensors become a commodity in
series vehicles (i.e., at an affordable price as opposed to being part of expensive extras),
more advanced functions may be developed in the future for both convenience and
entertainment. For instance, occupants can get information about the outside world from
the vehicle, like nearby sights or mountain peaks which can be conveniently displayed in
an augmented-reality fashion since the location of the occupants eyes are known.

VEHICLE ENVIRONMENT PERCEPTION

Pedestrians are the main object class of interest in the vehicle’s environment within the
scope of this thesis. Chapter 5 contributed to the multi-sensor 3D person detection,
namely from camera and lidar. It showed improvements by learning raw features instead
of hand-crafting, therefore following the trend of end-to-end learning. A component
of the architecture that is still manually defined is the anchor proposals that reside
on the ground plane. It is therefore dependent on a robust ground plane estimation
algorithm. Possible improvements lead in the direction of anchor-free methods, similar
to the aforementioned anchor-free extensions of the head pose estimation method.

In Chapter 6 pedestrian head pose was estimated as an additional feature besides the
location of the pedestrian. Pedestrian head pose serves as a context cue for obtaining the
pedestrian’s awareness of the approaching vehicle. One can think of further features of
the pedestrian which play useful for understanding its behavior and interaction with the
environment. Specifically, 3D body pose (i.e., 3D location of joint points) can be used for
obtaining gestures and to serve as a context cue for awareness or the direction of travel.
A different direction could be to use additional sensors for environment perception,
such as radar. Radar sensors could bring additional context cues by micro-Doppler
measurements [137], allowing for instant extraction of pedestrian leg movement. Early
fusion of data from multiple sensor modalities which perceive the 360◦ surrounding of
the vehicle may also improve detection performance and robustness to adverse weather.
This defines the current trend.

The methods of Chapter 5 and Chapter 6 showcase the perception of pedestrians.
Looking beyond the scope of this thesis, any other object which the driver or the pedes-
trian might interact with is also of interest. E.g., a pedestrian might walk towards a bus
station on the other side of the road, or cross based on traffic light status [130]. Similarly,
the driver can interact with other traffic participants besides pedestrians, such as cyclists.
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DRIVER-ROAD USER INTERACTION FOR PATH PREDICTION

The presented framework for driver-pedestrian path prediction has shown a positive
impact of incorporating mutual awareness on the head pose estimates of the road users.
The analyzed scenario of a single, potentially crossing pedestrian is, without a doubt,
very important. Yet, there are many even more complex interactions in real-life traffic
environments. Extensions towards the path prediction of multiple traffic participants
are reasonable next steps, especially incorporating their joint awareness of each other.
Dependencies amongst pairs of road users could be added to the DBN, but limiting them
to close spatial proximity, to remain scalable with increasing number of road users. The
DBN architecture of Chapter 6 has computational limitations in scaling up the number of
traffic participants, mainly restricted by the number of edges between discrete states. After
all, it might be beneficial to learn the dependencies from data, which are hand-crafted for
now. To that end Girase et al. [44] propose to use a data-driven multi-agent approach with
long-term goal prediction, short-term intention classification and optimization of paths
over a scene graph. This would counteract one limitation of the DBN-based “open loop”
system which predicts future paths based on observations from the past, and does not
consider future actions and interactions the traffic participants might undergo. A further
potential direction could be to model agent interactions in a graph structure within a
neural network [3].

The work of Chapter 6 showed a synergy between expert knowledge and a data-driven
approach. The former enables explainability (i.e., allow for introspecting the intermediate
representations, such as the latent awareness states), while the latter uses data to optimize
the parameters. There is expert knowledge integrated into the DBN, such as switching
linear vehicle motion models and switching linear pedestrian motion models. Similarly,
mutual awareness is a crafted attribute of the model and could be further improved
by more sophisticated models of driver and pedestrian awareness (e.g., fixation cues),
potentially extracted from data and over time, e.g., by attention networks [24, 130]. A clear
goal would be “exchanged” awareness [132], i.e., modeling the driver’s belief about the
pedestrian’s awareness in addition to the driver’s awareness of the pedestrian’s presence.

There is a balance to find, as purely data-driven models based on convolutional neural
networks (CNNs) [103], LSTMs [3] or GANs [48] might find suitable features (spatially and
temporally), yet at the lack of explainability. Going forward, end-to-end models trained
along the full functional chain from raw sensor data up to predicting future behavior
distributions of multiple agents [142] define the current trend. An ideal multi-agent path
prediction system would allow to encode expert knowledge where needed, restrict a
subset of intermediate representations to be interpretable (e.g. motion states), and allows
all other parts to be learned from representative data.

AN END-TO-END SYSTEM

Some common themes transcend the individual chapters of this thesis. For instance,
end-to-end training has been employed in Chapter 4 and Chapter 5, and features and
internal representations have been learned in the differentiable models of Chapter 4,
Chapter 5 and Chapter 6. Note that the DBN of Chapter 6 is differentiable despite not
being a neural network. These themes can be extended along the whole processing
chain of driver observation, environment perception and path prediction. Therefore,
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the following two aspects will be beneficial for overall system performance in future
systems. The first key aspect is developing end-to-end optimization for a system that
predicts behaviors and probabilistic paths of traffic participants (including the driver)
from multi-modal sensor input (including the vehicle’s interior). This requires a full
differentiable model which optimizes all intermediate representations directly towards
the end objective. Intermediate representation optimized in isolation might be optimal
for an intermediate objective (e.g., pedestrian locations), but not necessarily for the
quality of the overall system predictions.

The second key aspect is uncertainty: the DBN performs probabilistic path prediction.
Extending the input components, such as the driver head pose estimation, as well as the
pedestrian measurements to also estimate uncertainties will improve the overall handling
over uncertainty up to the predicted paths (i.e., the predicted paths will be more spatially
spread in case of larger uncertainties). Overall, these attributes will likely show benefits in
the temporal aspect of the predictions, as time-series can be used during optimization of
the end-to-end system. Other important aspects for realizing such an end-to-end system
are data sufficiency and data quality. They are discussed next.

DATA TO ACCELERATE AUTOMATED DRIVING

While this thesis made contributions towards better driver head pose, person detection,
and driver-pedestrian path prediction for ADAS in intelligent vehicles, there is still a long
way to go for the complex task of automated driving in urban areas. Data is a key factor in
developing and evaluating intelligent vehicles.

The driver head pose dataset DD-Pose presented in this thesis provides a large number
of head pose annotations and allowed for robust head pose estimation performance.
Despite being large in size (330 k images), still, only a small number of different persons are
present in the dataset. The experiments have shown a good generalization of the model to
the unseen persons of the test subset. Yet, showing generalization on a broader spectrum
of age and ethnicity would be favorable. Towards that end, there is the challenge of
obtaining ground truth head pose annotations, which need to be acquired invasively, i.e.,
by a head-worn device. This thesis presented a quick-to-calibrate head pose measurement
device. Increasing the usability by reducing the per-subject calibration effort further could
simplify fleet data collection that is needed to obtain head-pose data from potentially
hundred or thousands of different drivers. Since the release of DD-Pose , other driver-
related datasets have been published. They follow the trend towards multiple cameras
capturing the driver in a more holistic view, also covering body and hands from multiple
perspectives [57, 85] and also recording audio inside the vehicle [57]. Some follow a hybrid
approach of naturalistic driving and simulator data [85]. Besides estimating head-pose,
the focus goes towards estimating driver attention, alertness and behavior recognition.

Only a few publicly available driver-based datasets have integrated sensor data cap-
turing the surrounding of the vehicle (including the dataset of Chapter 3). A challenge
arises when data is incomplete in terms of sensor modality (e.g., missing lidar or radar
data), temporal (e.g., sparse sampling of scenes), perceived environment (e.g., missing
driver observation), or traffic scenarios (e.g., underrepresented pedestrian interactions),
to name a few. Lacking a ‘universal’ dataset, the work of this thesis worked with three
disjoint datasets: the KITTI dataset [43], containing exterior camera and lidar data was
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used for developing the 3D person detector (Chapter 5), lacking in-cabin sensing. The
DD-Pose dataset (Chapter 3) was created in the course of this thesis to develop a head
pose estimation method (Chapter 4). While it provides images from a camera pointing
outside, its scenarios covered naturalistic driving in urban scenes, yet with a small number
of pedestrian crossing interactions. To that end, yet another dataset was collected to
advance driver-pedestrian path prediction (Chapter 6), containing data from inside the
vehicle (driver camera) and outside the vehicle, and focusing on pedestrian-crossing sce-
narios. Obtaining the data required effortful buildup of a research vehicle, data selection,
preprocessing, and annotation. Going forward, the scientific community would greatly
benefit from representative, worldwide, naturalistic, multi-sensor, temporal data which
cover the outside environment as well as the inside of the vehicle. Great advances in
that direction have already been made in the research community by publicly releasing
ECP2.5D [11], View-of-Delft [88], NuScenes [15], ArgoVerse2[136], and the Waymo Open
Dataset [34], despite lacking interior sensing.

When it comes to datasets for neural networks in general, it is commonly believed
that ‘more is better‘. While it has been shown that network performance increases with
the amount of training data, it also comes with the cost of potentially increased training
time. To some degree this can be mitigated by having a network with good generalization
capabilities, which allows reduction of training epochs with increased training data (i.e.,
how often will a single training sample be used during the learning process). So from a
perspective of “maximum tolerated training time”, the problem becomes: “which data
has the most value in training to yield a good model?”. To that end, smart data collection
and sub-selection strategies are needed, such as active learning approaches [104] which
support selecting data with rare and difficult cases. Perhaps rare and difficult cases
can best be addressed by collecting such data through generative models or advanced
simulations. This becomes especially important for collision scenarios, as was assimilated
in the dataset of Chapter 6.

The experience gained through the creation of this thesis leads to the following three
proposals for the community working towards automated driving, may it be researchers,
suppliers, or OEMs with the goal of earlier releases of better systems. First, data sharing:
the large predicted market of autonomous driving has motivated suppliers and OEMs
to invest in worldwide data collection, yet keeping data private, partly for competitive
reasons. Imagining vehicles from multiple competitors recording the same geolocation
and investing in annotating the same scenes motivates the thought of sharing data to
make a larger earlier societal impact. An additional factor to consider when recording data
in public and sharing among parties is handling data protection and privacy regulations,
such as general data protection regulation (GDPR). Second, data standardization: data
sharing demands a unified standard of data representation (raw sensor data, but also
annotations), as Robot Operating System (ROS) has achieved in part [42]. Third, central
storage: a central storage to share data with a unified API to access and add new interesting
data could further speed up development, and make it accessible for research institutions
that have not committed to investing in building up an own research vehicle.

Yet, the automotive industry might need a legislative framework to follow this track.

Summarizing, this thesis presented a framework looking-in and looking-out an intel-
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ligent vehicle to perceive driver and pedestrians. It led to advancements in head pose
estimation, 3D person detection, and path prediction. It combined the perception of
the outside and the inside of the vehicle. Future challenges have been identified along-
side ideas improving the proposed methods to further contribute to understanding the
behavior of humans inside and outside an intelligent vehicle.

It is the author’s hope that continuation of the research in this thesis will lead to safer
ADAS for upcoming consumer vehicles, as well as fully self-driving vehicles of the future.
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PROPOSITIONS

accompanying the dissertation

DRIVER AND PEDESTRIAN MUTUAL AWARENESS FOR PATH PREDICTION IN
INTELLIGENT VEHICLES

by

Markus ROTH

1. Using the head pose distribution of naturalistic driving leads to inferior head pose
estimation systems.
This proposition pertains to Chapter 4.

2. The choice of head pose representation has a significant influence on the complex-
ity of the developed head pose estimation method architecture.
This proposition pertains to Chapter 4.

3. Future path prediction systems will outperform current systems by learning supe-
rior context cues from data. This comes at the cost of lack of interpretability.
This proposition pertains to Chapter 5.

4. A 3D pose cannot be judged sufficiently by observing its projections onto a camera
image.

5. The effort of dataset collection and curation increases super-linear with the number
of sensors in-use.

6. “Driver” observation is also relevant for self-driving vehicles.

7. Sharing data among the automotive industry will considerably speed up the devel-
opment of automated driving.

8. Pedestrians who understand the pedestrian motion models employed in intelligent
vehicles will take advantage of them.

9. The principles of planning apply equally to research. This includes planning fallacy.

10. Writing a thesis is easy: just backpropagate the error from the doctoral regulations.

These propositions are regarded as opposable and defendable, and have been approved
as such by the promotor prof. dr. D.M. Gavrila and the copromotor dr. J.F.P. Kooij.
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