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Abstract

The numerical simulation of additive manufacturing techniques promises the acceleration of costly experimental procedures
o identify suitable process parameters. We recently proposed Floating Isogeometric Analysis (FLIGA), a new computational
olid mechanics approach, which is mesh distortion-free in one characteristic spatial direction. FLIGA emanates from
sogeometric Analysis and its key novel aspect is the concept of deformation-dependent “floating” of individual B-spline basis
unctions along one parametric axis of the mesh. Our previous work showed that FLIGA not only overcomes the problem of
esh distortion associated to this direction, but is also ideally compatible with material point integration and enjoys a stability

imilar to that of conventional Lagrangian mesh-based methods. These features make the method applicable to the simulation
f large deformation problems with history-dependent constitutive behavior, such as additive manufacturing based on polymer
xtrusion. In this work, we enhance the first version of FLIGA by (i) a novel quadrature scheme which further improves the
obustness against mesh distortion, (ii) a procedure to automatically regulate floating of the basis functions (as opposed to the
anual procedure of the first version), and (iii) an adaptive refinement strategy. We demonstrate the performance of enhanced
LIGA on relevant numerical examples including a selection of viscoelastic extrusion problems.
2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).

eywords: Floating Isogeometric Analysis; Large deformations; Viscoelasticity; Adaptive refinement; Mesh distortion

Dedication

We dedicate this paper to Tom Hughes, a giant of computational mechanics and a continuous source of
nspiration, for his incredible lifetime achievements. He shaped the computational mechanics field as well as the
cientific path of generations of scholars, who owe him a great debt of gratitude. The senior author of this paper is
ne of them.

. Introduction

Additive manufacturing (AM) is a wide-ranging class of modern fabrication technologies in which material is
uccessively added to build the final part, see [1] for an introduction to the field. Among others, a prominent concept
or the controlled addition of material is polymer extrusion. Polymer extrusion has long been a state-of-the-art
echnique also for the manufacturing of plastic profiles, where molten polymer is forced through a die to create a
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continuous strand. In its application to AM, on a smaller scale, geometrically simple strands are deposited under
movement of a heated robotic nozzle, thereby building products by adding strand to strand, and then layer to layer.
The technique is especially attractive as it facilitates the customized fabrication of parts with complex topology
and/or multi-material arrangement. However, the quality of the solidified end product is heavily dependent on the
suitable choice of the process parameters, which is often specific to the individual printing task. This motivates the
need for process simulations, to avoid costly and time-consuming trial-and-error experimental procedures.

The Lagrangian and Eulerian viewpoints of motion in continuum mechanics are usually preferred to describe
olid and fluid behavior, respectively. When it comes to the numerical approximation, the finite element method
FEM) and Isogeometric Analysis (IGA) [2] are often combined with the Lagrangian viewpoint for the discretization
f solid mechanics problems. Lagrangian FEM is highly sensitive to mesh distortion for very large deformations
nd therefore inapplicable to the simulation of fluid behavior. While showing a higher degree of robustness [3],
tandard (Lagrangian) IGA also suffers from the same issue. Eulerian formulations of FEM or IGA are inherently
ree from mesh distortion, but typically come along with additional efforts since a stabilization of the advective
erms as well as a special treatment of moving boundaries are required, see e.g. [4]. A challenge arises for problems
nvolving both very large (fluid-like) deformations and solid behavior. Polymer extrusion is one of such cases, as
he viscoelastic deformation response of most polymers lies somewhere in between fluid and solid behavior. In our
revious paper [5] we discussed the available computational techniques to handle such cases; as follows, we only
ention them very briefly along with a few areas requiring further improvements. The re-generation of undistorted
eshes, also known as remeshing, is computationally expensive and its success is highly dependent on suitable

echniques to control the errors of history data projection [6]. Adoption of remeshing in IGA is complex and
subject of ongoing research [7–9]. Though avoiding costly mesh generations, most meshless methods [10–12]

re still considered less efficient than their mesh-based competitors [13–15] and stabilization plays an important
ole in case of extreme deformations [16,17]. In many cases, accurate quadrature of meshless basis functions is
hallenging; moreover, for incompressible material behavior which is relevant for polymers, the construction of
ixed discretizations to avoid locking is not trivial [18]. The well-founded theory of mesh-based analysis and the
exibility of meshless methods have motivated some hybrid approaches, aiming to benefit from the complementing
dvantages of both settings, see e.g. [19–23]. Finally, mesh-based approaches combining Lagrangian and Eulerian
oncepts have also been devised, e.g. the Arbitrary Lagrangian Eulerian method (ALE) [24,25]. Unfortunately, the
ncrease in methodical complexity remains again a limitation to its further establishment [26].

Beyond the original goal to circumvent the expensive mesh generation in FEM, the adoption of basis functions
temming from Computer Aided Design (CAD) in IGA [2] proved beneficial for the analysis itself in many
pplications. Mostly due to the higher and tunable continuity of isogeometric basis functions at element boundaries,
GA was shown to lead to advantages in e.g., structural dynamics [27], the solution of higher-order partial differential
quations [28], and contact mechanics [29], among many others. As mentioned, like FEM, Lagrangian IGA also
uffers from mesh distortion; the basis functions are constructed first on a reference domain and a distorted mapping
o the physical space in case of large deformations negatively affects the numerical solution [3]. Yet, there is one
ignificant difference between FEM and IGA. While the reference (parent) domain in FEM collects a few basis
unctions which are mapped many times to different elements, the reference (parametric) domain in IGA collects

many basis functions and is mapped only a few times to different patches. In IGA, a patch is again subdivided into
(so-called Bézier) elements, so that the construction of the basis functions can be alternatively viewed as local or
elementwise (like in FEM) or global or patchwise (an alternative typical of IGA). While the first perspective was
adopted in the isogeometric counterpart of FEM remeshing techniques [7,8], the alternative one can be considered
the underlying viewpoint of the new strategy to overcome mesh distortion that we recently proposed and denoted
as Floating IGA (FLIGA) [5].

FLIGA approaches the numerical solution of a Lagrangian model from a global (patchwise) perspective. An
important starting assumption is that, in the problem at hand, extreme deformations occur along one (possibly
curved) physical axis, which can be mapped to one corresponding parametric direction, denoted as the characteristic
direction. The key idea is to comprise all Bézier elements along the characteristic direction in a so-called
characteristic element, as illustrated in Fig. 1 on the exemplary geometry of a material extrusion problem, while
preserving local support of its basis functions. The abolition of Bézier element boundaries in such direction confers a
meshless character to the basis functions limited to this direction, while the mesh is preserved in the other parametric

direction (also denoted as normal direction). The problem of mesh distortion along the characteristic elements is
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Fig. 1. Element concepts in IGA and FLIGA.

Fig. 2. Exemplary “floating” movement of four basis functions along the characteristic elements in the physical space.

hen solved by the mere update of the corresponding univariate B-Spline basis functions. The movement of basis
unctions that we denote as floating is schematically illustrated in Fig. 2 for the extrusion example and provides the

basis for a new class of boundary-fitted spline approximation spaces, which are distortion-free along one parametric
direction.

In our recent paper [5], we developed FLIGA following the isoparametric concept and demonstrated its
performance on the Taylor–Couette flow problem and on a polymer extrusion problem, both featuring viscoelastic
material behavior and extreme deformations. In this paper, we aim at improving upon three aspects of the initial
formulation. Firstly, in [5] we could solve the Taylor–Couette flow problem up to over five full turns of the cylinder,
after which we observed a rapid increase of the numerical error. We suspected the reason to be related to the
quadrature scheme, i.e. to the accumulation of quadrature error. Secondly, floating of the basis functions was
regulated by the movement of the so-called floating regulation points, which was connected to the control point
displacements through a manually designed level-set function. This manual design was based on a qualitatively
reasonable a priori guess about the displacements, which was not too difficult to obtain for the considered problems
ut may easily become impractical or even impossible in more general cases. Finally, while FLIGA solved the issue
f shear-driven distortion, the floating of one basis function was still associated to its elongational deformation. To
revent issues stemming from an excessive dilation for severe floating, we used very fine meshes, which led to a
igh computational cost.

In this paper, we address these three points and propose three corresponding enhancements. For the first problem,
new numerical quadrature concept is introduced to improve the numerical stability. The second issue is solved via
n automated procedure for floating regulation based on the actual (and not on an a priori guessed) deformation. To

3
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address the third issue, we devise a simple adaptive refinement strategy for FLIGA, which reduces the computational
cost. A number of numerical examples demonstrate the effect of these enhancements.

The remainder of this paper is organized as follows: In Section 2, after reviewing the concept of floating basis
unctions, we illustrate the three proposed enhancements. In Section 3 we focus on the Lagrangian modeling
f viscoelasticity and its standard IGA discretization, and eventually propose the enhanced version of FLIGA
ncorporating the new approaches of the previous section. Finally, Section 4 discusses the numerical examples
nd conclusions are drawn in Section 5.

. Floating B-Splines

At the heart of FLIGA are floating B-Splines, which we proposed in [5] as a generalization of conventional
B-Splines [30,31]. In this section, we illustrate the design of floating B-Splines in a further generalized fashion
compared to Hille et al. [5] and we introduce some new operations on them. These concepts are later applied to
analysis in Section 3.3, which outlines the enhanced version of FLIGA.

2.1. Basis construction

A univariate standard B-Spline basis is constructed on a parametric domain with coordinate ξ , here Ω̂ξ = [0, 1],
by means of the Cox-de Boor recursion formula [32,33]

p = 0 : N̂i,0 (ξ) =

{
1, for ξi ≤ ξ < ξi+1,

0, otherwise,

p ≥ 1 : N̂i,p (ξ) =
ξ − ξi

ξi+p − ξi
N̂i,p−1 (ξ)+

ξi+p+1 − ξ

ξi+p+1 − ξi+1
N̂i+1,p−1 (ξ) ,

(1)

where we define 0
0 = 0. The non-decreasing sequence of real numbers denoted as knots, ξi , constitutes the knot

vector Ξ and if the first (last) p + 1 knots are all 0 (1) we call the knot vector “open”. Here p is the polynomial
order of the B-Spline basis, which tunes its continuity at the knots. At a unique (not repeated) knot, continuity is
C p−1; each repetition of a knot decreases the order of continuity at the knot by one; between the knots, continuity
is C∞. In this paper, we always use open knot vectors and unique inner knots. Each knot span is also denoted as
an element.

Let us now define two different types of bivariate B-spline bases (trivariate bases are not treated in this paper).
To this end, a patch is spanned on a square parametric domain with coordinates ξ and η, here Ω̂ = Ω̂ξ × Ω̂η =

[0, 1]× [0, 1]. The first type of bivariate B-Spline basis has the classical tensor product structure (the one used in
IGA); this is obtained by combining one univariate basis in η with only one univariate basis in ξ , i.e.

B̂T P
i j (ξ, η) = N̂i (ξ) M̂ j (η) i = 1, . . . , I ; j = 1, . . . , J, (2)

with I and J as the total number of basis functions in the two parametric directions. The basis
{

M̂ j

}
j=1,...,J

is

constructed similarly to basis
{

N̂i

}
i=1,...,I

knowing the order q and the knot vector H along coordinate η. The
second type of bivariate B-Spline basis has the floating tensor product structure (the one used in FLIGA); here we
associate a different univariate basis in ξ to each j

B̂i j (ξ, η) = N̂i j (ξ) M̂ j (η) i = 1, . . . , I j ; j = 1, . . . , J. (3)

Note that no summation over repeated indices is implied in Eq. (3) (throughout the paper, to avoid any confusion we
will write all summation symbols explicitly). We denote

{
N̂i j

}
i=1,...,I j

for each fixed j = 1, . . . , J as characteristic

basis and
{

M̂ j

}
j=1,...,J

as normal basis. This floating tensor product structure allows us to construct bases as

depicted in Fig. 3. In the figure, starting from a classical bivariate tensor product basis we only modify the
characteristic bases for j = A, B, i.e.

{
N̂i A

}
i=1,...,IA

and
{

N̂i B

}
i=1,...,IB

for better clarity (in practice, we will

typically use different characteristic bases for all j). Note that, unlike in our first FLIGA paper [5], here the

number of basis functions along the characteristic direction, I j , can vary for different j , a property crucial for
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Fig. 3. Examples of the two tensor product structures in parametric space.

ocal refinement (see Section 2.4.3). E.g. in Fig. 3 it is IA = 6 and IB = 10. Fig. 3 also shows that the element
boundaries of the characteristic bases are not required to stay aligned for the floating tensor product structure. In
fact, the element concept has been relaxed and element division is only kept in the η direction, associated to the
normal basis. This corresponds to the concept of characteristic elements schematized in Fig. 1.

The next question which arises is how to construct the different characteristic bases in the floating tensor product
structure. To this end, for each j = 1, . . . , J we construct a so-called parent basis

{
Ñi j

(
ξ̃
)}

i=1,...,I j
with order p

from parent knot vector Ξ̃ j on the parent domain Ω̃ = [0, 1] along coordinate ξ̃ . Then, for each j = 1, . . . , J we
define a scalar mapping G j : Ω̃ → Ω̂ξ , denoted as floating map, which transforms a given ξ̃ to

ξ j (•;H) = G j

(
ξ̃ ;H

)
=

I j∑
i=1

hi j Ñi j

(
ξ̃
)

, (4)

where the scalar linear coefficients hi j are termed floating regulation points and H denotes the set in which they
re grouped:

H =
{
hi j
}

i=1,...,I j ; j=1,...,J . (5)

he inverse mapping G−1
j : Ω̂ξ → Ω̃ transforms back a given ξ to

ξ̃ j (•;H) = G−1
j (ξ ;H) . (6)

ext, the characteristic basis functions are derived as the push-forwards of the respective parent basis functions

N̂i j (ξ ;H) = Ñi j

(
G−1

j (ξ ;H)
)
= Ñi j

(
ξ̃ j (•;H)

)
, (7)

hich corresponds to a pull back of the characteristic coordinate ξ to the parent space, see Fig. 4, where i = 5
nd i∗ = 8. In this sense, the modification of the floating regulation points allows to control the decoupled floating
f the characteristic bases. Let us highlight that, by construction of a parent basis function, its evaluation Ñi j

(
ξ̃
)

nly indirectly depends on H in case its argument ξ̃ does. In contrast, a characteristic basis function evaluation
N̂i j (ξ ;H) explicitly involves such parameter dependency even for a constant argument ξ . With the above parent
oncept, Eq. (3) now reads

B̂i j (ξ ;H) = N̂i j (ξ ;H) M̂ j (η) i = 1, . . . , I j ; j = 1, . . . , J, (8)

where ξ = (ξ, η)T . In the following equations we continue to indicate if a quantity or function has a parameter

dependency on the floating regulation points.

5
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Fig. 4. Function computations for two characteristic bases given ξ , H, and the parent bases. Numbers in circles indicate four consecutive
operational steps.

2.2. Physical map

Standard B-Spline free-form surfaces are constructed from a linear combination of a function basis and so-called
control points, mapping the parametric to the physical space, FT P

: Ω̂ → Ω

x = FT P (ξ) =

J∑
j=1

I∑
i=1

ci j B̂T P
i j (ξ) , (9)

where ci j are the position vectors of the control points. The basis functions can be pushed-forward to a given x in
physical space by

BT P
i j (x) = B̂T P

i j

((
FT P)−1

(x)
)
= B̂T P

i j (ξ) . (10)

Similarly, for a floating B-Spline basis we employ the following mapping, F : Ω̂ → Ω , from the parametric to
the physical space

x (•;H) = F (ξ ;H) =

J∑
j=1

I j∑
i=1

ci j B̂i j (ξ ;H) . (11)

The floating basis functions are pushed-forward to a given x in physical space by

Bi j (x;H) = B̂i j
(
F−1 (x;H) ;H

)
= B̂i j (ξ (•;H) ;H) . (12)

Note that in general, continuity in the mapping is limited at ξ if just one of all supported basis functions has limited
continuity. However, continuity of the map is always at least C p−1 when traveling along lines of constant η, and
Cq−1 when traveling along lines of constant ξ (recall that we assumed that inner knots are not repeated).

We summarize the entire construction concept of classical and floating tensor product B-Splines in Figs. 5 and
6, respectively, where two exemplary bivariate bases with p = 2, q = 1 are mapped to a free-form geometry in
physical space each. The colored circles in the physical domain indicate the control points (in Fig. 6, the colored
circles in the parametric domain denote the floating regulation points) connected to the control point ci j (floating
regulation point hi j ), for i = 4 and j = 3, which is highlighted with a star symbol. For the floating tensor product,
different j indices are referred to by a different color and the color legend of Fig. 6 equally applies to the following
figures on this tensor product. Until now, the exemplary surfaces and their parametrizations are the same for both
concepts, as all floating regulation points are aligned. However, the floating B-Spline representation allows for a
richer modification as will be seen next.

2.3. Effect of floating regulation

When using classical B-Spline representations for Lagrangian large deformation analysis, the extreme displace-

ment of control points can result in a distorted mesh. Fig. 7 visualizes again the tensor product mesh from

6
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l

Fig. 5. Summary of the construction procedure for classical B-Spline surfaces.

Fig. 6. Summary of the construction procedure for floating B-Spline surfaces. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

Fig. 7. Mesh distortion in IGA.
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Fig. 8. Overcoming shear mesh distortion in FLIGA.

Fig. 5, but for a deformed control point set, resulting in significant mesh distortion. Note that here control point
connectivities are rigid; e.g., the control point ci j still connects to the same (now displaced) control points as in the
previous configuration. Even though ci j has moved close to c(i∗)( j−1) (i∗ = 7, white star symbol), these two remain

nconnected.
For floating B-Splines, two control points ci j and c(i∗)( j−1) with a given i∗ ∈

{
1, 2, . . . , I j−1

}
are connected if the

ssociated N̂i j and N̂(i∗)( j−1) are both supported within a sub-range of Ω̂ξ . Hence, changing the floating maps (which
s possible by tuning the floating regulation points, recall Eq. (4)) allows to unconnect control points that are far
rom each other in physical space and/or connect those which are close neighbors. Such adjustment reparametrizes
he physical domain and reduces the shear distortion in the physical mapping F . As a consequence we observe the
floating” movement of the basis functions as initially illustrated in Fig. 2. In Fig. 8 we demonstrate this effect on
he same displaced control point set as in Fig. 7, but with a suitable deformation-dependent choice of the floating

aps, resulting in an update of connectivity. E.g., the control points ci j and c(i∗)( j−1) (i∗ = 7, red star symbol) are
ow connected. The question of how to automatically obtain robust choices of floating regulation points is addressed
n Section 2.4.2.

.4. Enhanced features

The construction of the basis functions has been presented with a level of generality that now allows us to
ntroduce three new features of floating B-Splines with respect to Hille et al. [5]:

• a modified quadrature (Section 2.4.1);
• the automated choice of floating regulation points (Section 2.4.2);
• local h-refinement (Section 2.4.3).

t this point, we also add one restriction, namely, the choice of the polynomial order of the normal basis as q = 1.
his choice may be surprising, but will be shown in the next subsection to lead to important advantages for numerical
uadrature in case of history-dependent material behavior. The B-Spline order p of the characteristic bases remains
unable and hence we preserve the smooth floating character along the characteristic direction, see Fig. 8.

.4.1. Numerical quadrature
Conventional quadrature in IGA makes use of the tensor product structure and combines quadrature coordinates of
he univariate bases to obtain quadrature points in parametric space. In the Lagrangian setting, the quadrature points

8
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are mapped to consistent material points in undeformed and deformed physical configurations. The renowned Gauss–
Legendre rule was the first quadrature coordinate stencil suggested in IGA [2] and, owing to its high robustness
and accuracy for regular integrands, established itself as one of the standards in the field. Other rules have gained
noteworthy attention as well, e.g. for cost critical applications and the quadrature of trimmed elements [34–39].

Conversely, the situation for floating tensor product B-Splines is more challenging, as the parametrization of a
atch changes during large deformation analysis in order to remove mesh distortion. In [5], we proposed to advect
he Gauss–Legendre points of the initial mesh, i.e. to treat them as material points in physical space (a procedure
orrowed from meshless analysis). This strategy enjoys the advantages of the fully Lagrangian viewpoint of motion,
owever it also has a few shortcomings, most notably:

• The physical material points must be mapped back to the parametric domain to compute basis function values.
• The quadrature locations in parent/parametric space change over time following the deformation by an a priori

unpredictable relation and thereby lose Gauss point character.
• The parent/parametric quadrature weights are also lost and the physical quadrature weights must be updated

explicitly under the assumption of affine deformations.

Ultimately, this may result in accumulation of quadrature error and thus numerical instability in the long run. To
address these shortcomings, after some preliminary considerations, we propose an improved Lagrangian quadrature
scheme for floating B-Splines exploiting the underlying floating tensor product structure.

Preliminaries. Let us assume that a quadrature point stays fixed in the parametric space, ξ ∗ = (ξ ∗, η∗)T , like in
IGA. For a floating B-Spline basis, the physical coordinate of this point reads Eq. (11)

x∗ (•;H) =

J∑
j=1

I j∑
i=1

ci j B̂i j
(
ξ ∗;H

)
=

J∑
j=1

I j∑
i=1

ci j N̂i j
(
ξ ∗;H

)
M̂ j

(
η∗
)
, (13)

where we used Eq. (8). Pulling the characteristic bases back to the parent space with Eq. (7), we obtain

x∗ (•;H) =

J∑
j=1

I j∑
i=1

ci j Ñi j

(
ξ̃ ∗j (•;H)

)
M̂ j

(
η∗
)
. (14)

As the evaluation locations of the static parent bases depend on the floating regulation points H, upon floating,
we change the physical position corresponding to ξ ∗ and hence lose the material point character of the quadrature
point.

Let us now assume that a quadrature point stays fixed in the parent space, at coordinate
(
ξ̃ ∗, η∗

)T
, and that it

is mapped to the parametric space by a certain Gs with s ∈ {1, 2, . . . , J }, such that with Eq. (4)

ξ ∗s (•;H) =
(
ξ ∗s (•;H) , η∗

)T
=

(
Gs

(
ξ̃ ∗;H

)
, η∗

)T
. (15)

Mapping to the physical space through Eq. (11) and using Eq. (8) gives

x∗s (•;H) = F
(
ξ ∗s (•;H) ;H

)
=

J∑
j=1

I j∑
i=1

ci j B̂i j
(
ξ ∗s (•;H) ;H

)
=

J∑
j=1

I j∑
i=1

ci j N̂i j
(
ξ ∗s (•;H) ;H

)
M̂ j

(
η∗
)
.

(16)

After pulling the characteristic bases back to the parent space with Eq. (7), the physical coordinate is alternatively
expressed as

x∗s (•;H) =

J∑
j=1

I j∑
i=1

ci j Ñi j

(
ξ̃ ∗s j (•;H)

)
M̂ j

(
η∗
)

=

Is∑
i=1

cis Ñis

(
ξ̃ ∗
)

M̂s
(
η∗
)
+

J∑
j=1
j ̸=s

I j∑
i=1

ci j Ñi j

(
ξ̃ ∗s j (•;H)

)
M̂ j

(
η∗
)
, (17)
9
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with ξ̃ ∗s j (•;H) = G−1
j

(
ξ ∗s (•;H) ;H

)
and, in particular, ξ̃ ∗ss = G−1

s

(
ξ ∗s (•;H) ;H

)
= ξ̃ ∗, see Eq. (6) and Eq. (15).

From this equation we can see that the physical quadrature point coordinate becomes independent of the floating
regulation points if a Kronecker-delta property w.r.t. s holds for M̂ j at η∗, in which case

x∗s =
Is∑

i=1

cis Ñis

(
ξ̃ ∗
)

. (18)

For B-Splines we can easily realize a Kronecker-delta property of M̂ j by setting q = 1 and adopting a
Gauss–Lobatto quadrature scheme in the normal direction.

A new quadrature scheme. Let us now apply these concepts to construct a quadrature scheme in which the physical
location of quadrature points is independent of the floating regulation, i.e. quadrature points have material point
character. We set q = 1 (which is always assumed in the following) and choose the Gauss–Lobatto quadrature
scheme in η, as it places the quadrature points ηl , l = 1, . . . , 2J −2, at the Kronecker-delta positions of the normal
basis. At inner knots in H , this 1D Gauss–Lobatto scheme gives two quadrature points (one from each adjacent
knot span) and the total number of Gauss–Lobatto points is therefore larger than the number of characteristic
bases. Hence, we formulate an index map deriving the index s of the supported characteristic basis at ηl from the
Gauss–Lobatto point index l

s = S(l) = 1+
l − (l%2)

2
, (19)

here % is the modulo operator.
As a result of the above choices, all quadrature points are positioned at the boundaries of the characteristic

lements, along which we perform quadrature at Gauss–Legendre1 positions of the respectively supported parent
asis functions Ñis (which are static apart from refinement in Section 2.4.3). However, instead of working directly
ith the Gauss–Legendre points of the parent knot spans, we evaluate the Gauss–Legendre points of potentially

efined quadrature knot vectors Ξ̃ l
⊇ Ξ̃S(l) as supersets of the parent knot vectors. This strategy grants us flexibility

o adjust the point density of the quadrature set, which will be crucial in Section 2.4.3 within the context of adaptive
efinement. In that context we will need the dependency of the quadrature knot vectors on l (and not just j) in order
o perform manipulations dependent on which of the two adjacent characteristic elements a quadrature point belongs
o.

Thus, we obtain the quadrature locations starting from combining the G-point Gauss–Legendre schemes
Leg,G,l

= QLeg,G
(
Ξ̃ l
)

for the quadrature knot vectors Ξ̃ l (leading to a number of quadrature points nQ P,l for
ach l) with the 2-point Gauss–Lobatto scheme QLob,2

= QLob,2 (H) for the normal knot vector H , i.e.

ξ̃
gl
=

{
ξ̃ gl , ηl

}
, (20)

with fixed ξ̃ gl
∈ QLeg,G,l , g = 1, . . . , nQ P,l , and fixed ηl

∈ QLob,2, l = 1, . . . , 2J − 2. Note that ξ̃ gl corresponds to
ξ̃ ∗ in the above preliminary considerations.

The map of ξ̃ gl to the parametric space reads

ξ gl
s (•;H) = Gs

(
ξ̃ gl
;H
)

, (21)

ith s = S(l) given by Eq. (19), and the quadrature point vector reads Eq. (15)

ξ gl
s (•;H) =

(
ξ gl

s (•;H) , ηl)T
. (22)

Fig. 9 illustrates the novel concepts which we have introduced so far. We start the quadrature set construction
n the left of the figure, where we highlight the quadrature point ξ̃ gl (l = 4) that is the g = 5-th member of the

Gauss–Legendre point set QLeg,G
(
Ξ̃ l
)

(using a G = 3-point rule). Here, Ξ̃ l is twice as dense as Ξ̃s (s = 3); as
we do not have adaptive refinement yet, all other quadrature knot vectors are identical. Note that the quadrature
point is marked by a × symbol to emphasize its association to an even l, whereas for quadrature points associated
with an odd l we use a + symbol; in this way we distinguish between points with different l but the same s. We

1 In principle, other quadrature rules for isogeometric analysis might as well be used, see e.g. the introductory references of the section.
10
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Fig. 9. A novel quadrature stencil for FLIGA.

push forward the quadrature parent coordinate by Gs , obtaining the characteristic parametric coordinate ξ
gl
s which

is floating-dependent. Lastly, the combination of ξ
gl
s with ηl follows the idea of a floating tensor product (i.e., ξ

gl
s

depends on l, cf. Eq. (3)) and gives the parametric quadrature point vector ξ gl
s .

Let us now discuss the pull back of ξ gl
s to parent coordinates for two cases, cf. Eq. (17). The pull back with the

floating map in the first case, j = s, is trivial, as due to Eq. (21)

ξ̃ gl
ss = G−1

s

(
ξ gl

s (•;H) ;H
)
= ξ̃ gl , (23)

and in the following, we will always simply write ξ̃ gl . For the second case, j ̸= s, let us first introduce n as the
index of the other normal basis function contained in the knot span of ηl (than the one with index s)

n = N (l) = S(l)+ β,

{
β = 1, if l is odd,

β = −1, if l is even,
(24)

i.e., the index of the neighbor characteristic basis. Note that, due to compact support in normal direction (M̂ j
(
ηl
)
=

∂

∂η
M̂ j

(
ηl
)
= 0 if ( j ̸= s∧ j ̸= n)), it suffices for the second case to compute the pull back using only the neighbor

oating map G−1
n ,

ξ̃ gl
sn (•;H) = G−1

n

(
ξ gl

s (•;H) ;H
)
. (25)

n [5] we formulated a Newton method for the solution of scalar nonlinear equations of the type of Eq. (25).
Let us denote

ξ̃
gl
sn (•;H) :=

{
ξ̃ gl , ξ̃ gl

sn (•;H) , ηl
}

, (26)

as the set of all quadrature point coordinates, and highlight that the neighbor parent coordinate ξ̃
gl
sn , hence the set,

depends on the floating regulation points. Writing ξ̃
gl

without subscript sn, we exclude ξ̃
gl Eq. (20).
sn

11
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Computing basis functions and their gradients. Let us now compute the basis functions at quadrature point ξ gl
s

following Section 2.1 as

B̂i j
(
ξ gl

s (•;H) ;H
)
= N̂i j

(
ξ gl

s (•;H) ;H
)

M̂ j
(
ηl)
= Ñi j

(
ξ̃

gl
s j (•;H)

)
M̂ j

(
ηl)

=

⎧⎪⎪⎨⎪⎪⎩
Ñis

(
ξ̃ gl
)

M̂s
(
ηl
)
, for j = s,

Ñin

(
ξ̃

gl
sn (•;H)

)
M̂n

(
ηl
)
, for j = n,

0, otherwise,

=

{
Ñis

(
ξ̃ gl
)

, for j = s,

0, otherwise,

= B̂i j

(
ξ̃

gl)
,

(27)

onsidering the Kronecker-delta property of M̂ j . Note that, in the final expression, all univariate basis function
valuations are of Gauss–Legendre character. Basis function gradients with respect to ξ at the quadrature point are

∂

∂ξ
B̂i j

(
ξ gl

s (•;H) ;H
)
=

⎛⎜⎝
∂

∂ξ
N̂i j (ξ

gl
s (•;H) ;H) M̂ j (ηl)

N̂i j (ξ
gl
s (•;H) ;H)

∂

∂η
M̂ j (ηl)

⎞⎟⎠

=

⎛⎜⎝J j

(
ξ̃

gl
s j (•;H) ;H

)−1 ∂

∂ξ̃
Ñi j

(
ξ̃

gl
s j (•;H)

)
M̂ j (ηl)

Ñi j

(
ξ̃

gl
s j (•;H)

) ∂

∂η
M̂ j

(
ηl
)

⎞⎟⎠ .

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎝Js

(
ξ̃ gl
;H
)−1 ∂

∂ξ̃
Ñis

(
ξ̃ gl
)

Ñis

(
ξ̃ gl
) ∂

∂η
M̂s
(
ηl
)

⎞⎟⎠ , for j = s,

⎛⎝ 0

Ñin

(
ξ̃

gl
sn (•;H)

) ∂

∂η
M̂n

(
ηl
)
⎞⎠ , for j = n,(

0
0

)
, otherwise,

=
∂

∂ξ
B̂i j

(
ξ̃

gl
sn (•;H) ;H

)
,

(28)

ith the scalar Jacobian Js of the supported floating map Eq. (4) derived from

J j

(
ξ̃ ;H

)
=

∂

∂ξ̃
G j

(
ξ̃ ;H

)
=

I j∑
i=1

hi j
∂

∂ξ̃
Ñi j

(
ξ̃
)

. (29)

et us clarify that, while the neighbor normal basis function is not supported in terms of function value, M̂n
(
ηl
)
= 0,

it is supported in terms of the gradient
∂

∂η
M̂n

(
ηl
)
̸= 0. In the final expression of Eq. (28), including Eq. (29),

all univariate basis function evaluations are of either Gauss–Legendre or Gauss–Lobatto character, except for the
evaluation of Ñin

(
ξ̃

gl
sn (•;H)

)
appearing for j = n.

Basis function gradients with respect to x are

∂
B̂i j

(
ξ̃

gl
sn (•;H) ;H

)
= J

(
ξ̃

gl
sn (•;H) ;H

)−T ∂
B̂i j

(
ξ̃

gl
sn (•;H) ;H

)
, (30)
∂x ∂ξ

12
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N

Fig. 10. Evaluation point characteristics for the novel quadrature scheme. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

with the Jacobian of the physical map Eq. (11)

J
(
ξ̃

gl
sn (•;H) ;H

)
=

J∑
j=1

I j∑
i=1

ci j

(
∂

∂ξ
B̂i j

(
ξ̃

gl
sn (•;H) ;H

) T)
. (31)

With the basis functions at hand, the physical quadrature point position is derived Eq. (11) and Eq. (27) as

xgl
s (•;H) = F

(
ξ gl

s (•;H) ;H
)
=

J∑
j=1

I j∑
i=1

ci j B̂i j
(
ξ gl

s (•;H) ;H
)

=

J∑
j=1

I j∑
i=1

ci j B̂i j

(
ξ̃

gl)
=

Is∑
i=1

cis Ñis

(
ξ̃ gl
)
= xgl

s , (32)

which shows dependency only on the control points (not the floating regulation points) confirming the Lagrangian
character.

The evaluation of basis functions is demonstrated in Fig. 10 for two exemplary functions with i = 2, s = 3
(blue) and i∗ = 3, n = 2 (red), respectively, proceeding the example of Fig. 9. Most notably the figure shows how
the parent coordinates ξ̃ gl and ξ̃

gl
sn are different due to floating regulation (cf. Fig. 4). On a qualitative basis, we find

that all function evaluations of Ñis, M̂s, M̂n at G = 3 exemplary points of a given quadrature knot span are indeed
of Gauss–Legendre or Gauss–Lobatto character; however, not those of Ñ(i∗)(n).

Connectivities. Due to the local support of the basis functions, the implementation needs the connectivities at a
quadrature point. With ξ̃ gl

∈

[
ξ̃k , ξ̃k+1

]
for ξ̃k, ξ̃k+1 ∈ Ξ̃s and ξ̃k ̸= ξ̃k+1, the connectivities of ξ̃ gl (alternatively

expressed as ξ̃
gl
ss , Eq. (23)) to the supported parent basis

{
Ñis

}
i=1,...,Is

are

N gl
ss = {k − p, k − p + 1, ..., k} . (33)

ote that these are independent of the floating regulation points. Instead, with

ξ̃ gl (•;H) ∈
[
ξ̃ , ξ̃

]
, (34)
sn k k+1

13
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for ξ̃k, ξ̃k+1 ∈ Ξ̃n and ξ̃k ̸= ξ̃k+1, the connectivities of ξ̃
gl
sn to the neighbor parent basis

{
Ñin

}
i=1,...,In

are

N gl
sn (•;H) = {k (•;H)− p, k (•;H)− p + 1, ..., k (•;H)} , (35)

and update upon floating. Then, with Eq. (19) and Eq. (24) the constant connectivities of ηl to the normal basis{
M̂ j

}
j=1,...,J

, sorted in ascending order, are

Ml
= sort ({s, n}) . (36)

Hence, the updating connectivities of ξ̃
gl
sn (•;H) to the bivariate basis

{
B̂i j

}
i=1,...,I j ; j=1,...,J

are easily derived from

he floating tensor product structure as the set of tuples

Bgl
sn (•;H) =

{
(i, j)

⏐⏐⏐ i ∈ N gl
s j (•;H) , j ∈Ml

}
. (37)

s with the classical tensor product structure, the total number of supported basis functions at ξ̃
gl
sn is (p+1) ·(q+1),

.e., (p+1)·2. For implementation purposes, the translation of a tuple (i, j) into a single running index m = 1, . . . , M
s most convenient by

m =

⎛⎝ j−1∑
γ=1

Iγ

⎞⎠+ i, (38)

here
∑0

γ=1 Iγ := 0 and Iγ is the number of basis functions in the characteristic basis with index γ . This expression
llows to fill two arrays for associating m ← (i, j) and (i, j)← m.

eights. The parametric weights w
gl
s are obtained from the weights of the Gauss–Legendre schemes W Leg,G,l

=

Leg,G
(
Ξ̃ l
)

and of the Gauss–Lobatto scheme W Lob,2
=W Lob,2 (H) with Eq. (29) by

wgl
s (•;H) = Js

(
ξ̃ gl
;H
)

w̃gl wl , (39)

here w̃gl
= w̃g

∈W Leg,G,l and wl
∈W Lob,2. The physical weight is obtained as

W gl
s (•;H) = det

(
J
(
ξ̃

gl
sn (•;H) ;H

))
wgl

s (•;H) . (40)

inally, numerical approximation of a physical integral follows as∫
Ω

[•] dΩ ≈
2J−2∑
l=1

nQ P,l∑
g=1

[•]x=xgl
s

W gl
s (•;H) . (41)

ummary. Summarizing the new strategy, we highlight that the quadrature point ξ̃
gl
sn

• is Lagrangian, i.e. moves as material point;
• has a constant parent coordinate ξ̃ gl hence is part of a G-point Gauss–Legendre scheme for the associated pth

order supported characteristic basis
{

Ñis

}
i=1,...,Is

;

• has a floating-dependent neighbor parent coordinate ξ̃
gl
sn hence is not part of a Gauss–Legendre scheme for the

associated pth order neighbor characteristic basis
{

Ñin

}
i=1,...,In

;

• has a constant normal coordinate ηl hence is part of a 2-point Gauss–Lobatto scheme for the 1-st order normal
basis

{
M̂ j

}
j=1,...,J

;

• has constant parent and normal weights w̃gl , wl .

.4.2. Automated floating regulation
In [5] we proposed the concept of a problem-specific level function to determine suitable floating regulation point

ositions for the reduction of mesh distortion. This function was designed so as to express the desired association

f characteristic and physical coordinates, ξ and x, respectively, and floating regulation points were then chosen so

14
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Fig. 11. Schematics of the old (a) and new (b) concept for the undistorted parametrization of physical space w.r.t. ξ . Colors indicate values
of ξ . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

as to establish this relation. The level function construction was manual and based on an a priori guess about the
deformations which is generally difficult to obtain. The significant construction effort suggested the use of only one
level function to be applied to all load steps (and a local blending to force the levels in the rectangular shape of the
parametric domain). We graphically summarize the old procedure in Fig. 11(a) on a simple example of extrusion,
where the qualitative path of material flow is easy to predict.

In this paper, we replace this manual method with an automated approach, where the characteristic coordinate
field is adjusted by recurrently solving a partial differential equation (PDE) on different deformed configurations;
an exemplary time step result is illustrated in Fig. 11(b). In fact, the concept of PDE-based parametrization
has been investigated before to determine analysis-suitable control point positions in IGA, especially in the
context of ALE methods, see [8,40,41] and references therein. In our case however, an important requirement
on the reparametrization procedure is to preserve the Lagrangian character of the quadrature points introduced in
Section 2.4.1 which are dependent on the control points Eq. (32). For this reason, the control points are kept constant
throughout the following procedure.

We start with introducing a floating B-Spline ansatz (indicated by superscript h) which expresses the parametric
oordinate ξ at a physical point x in terms of the control and floating regulation points,

ξ h (x;H) =

M∑
m=1

hm Bm (x;H) = ξ (•;H) , (42)

ee Appendix A for a proof. Here we consider the running index convention m = 1, . . . , M from Eq. (38) and we
mit denoting parameter dependencies on the control points. Let us highlight that also the basis functions in this
nsatz depend on the floating regulation point coordinates which are unknown variables.

In the PDE-based reparametrization concept the differential-type Laplace operator is applied to this ansatz in
hysical space

∂

∂x
·

∂

∂x
ξ h (x;H) = 0 in Ω , (43)

omplemented by the Dirichlet boundary conditions

ξ h
= 0 on ξ̃ = 0,

h ˜
(44)
ξ = 1 on ξ = 1,

15
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Fig. 12. Restoring an analysis-suitable parametrization by automated adjustment of floating regulation points.

nd by the Neumann boundary conditions

∂

∂x
ξ h (x;H) · n = 0 on η = 0,

∂

∂x
ξ h (x;H) · n = 0 on η = 1,

(45)

here n is the outward normal unit vector at the boundary. Let us now express Eq. (43) in weak form as

Ri =

2J−2∑
l=1

nQ P,l∑
g=1

M∑
m=1

∂

∂x
B̂i

(
ξ̃

gl
sn (•;H) ;H

)
·

∂

∂x
B̂m

(
ξ̃

gl
sn (•;H) ;H

)
hm W gl

s (•;H)
!
= 0 ∀ i, (46)

where Eq. (44) is incorporated in the solution space (by setting h1 j = 0, h(I j )( j) = 1 ∀ j = 1, . . . , J ) and Eq. (45) is
atisfied naturally. Here we make use of numerical integration by the concept introduced in Section 2.4.1. Obviously,
he obtained problem is nonlinear in hm (recall that H also contains the floating regulation points) and requires

solution e.g. by the iterative Newton–Raphson procedure (with tangent stiffness provided in Appendix B). We
irectly propose the solution H as suitable floating regulation point coordinates.

Note that Eq. (43) acts as a smoothing operator on the parametrization, while Eq. (44) ensures that the new
arametrization fits the parametric domain. Eq. (45) forces the levels of ξ h perpendicular to the physical domain
oundaries along ξ , cf. Fig. 11(b). Hence we expect the procedure to determine floating regulation point positions
uch as to restore a regular ascent of ξ along the characteristic elements in physical space.2 Importantly, the physical

positions of the novel quadrature points along the characteristic element interfaces Eq. (32) are independent of the
floating regulation point positions, such that no history data projection is required upon reparametrization.

In Fig. 12, we illustrate the restoration of an undistorted parametrization by the above procedure. The distorted
(left) and reparametrized (right) B-Spline discretizations only differ in terms of the floating regulation points, whose
appropriate choice resolves the problem of shear distortion of the basis functions along the characteristic direction.
However, a distortion of the basis functions in terms of elongation or compression (seen e.g. from the control point
distances) remains. This is addressed in the next section.

2.4.3. Local h-refinement
In the following, we describe an adaptive procedure for knot insertion and/or removal, which solves the problem

of distortion of the basis functions in terms of elongation or compression. We finally outline the effect of this
procedure on the quadrature scheme described in Section 2.4.1.

Adaptive knot insertion. We propose the standard knot insertion strategy [31] for h-refinement along the charac-
teristic direction of a floating B-Spline geometry:

2 Note that we here assume that the characteristic element interfaces inside the domain always reasonably align to the outer physical
domain boundaries, and have spared the imposition of additional constraints on ξ h at such interfaces.
16
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• Choose a j ∈ {1, . . . , J } specifying the characteristic basis to be refined;
• choose a knot ξ̃+ to insert which lies within knot span

(
ξ̃k, ξ̃k+1

)
of parent knot vector Ξ̃ j ;

• for each k − p + 1 ≤ i ≤ k: Compute the ratio ai =
ξ̃+ − ξ̃i

ξ̃i+p − ξ̃i
with ξ̃i , ξ̃i+p ∈ Ξ̃ j as well as the

new floating regulation point h+i j = (1− ai )h(i−1) j + ai hi j

new control point c+i j = (1− ai )c(i−1) j + ai ci j

new control variable for each field approximation, e.g. d+i j = (1− ai )d(i−1) j + ai d i j ;

• for each k − p + 1 ≤ i ≤ k − 1: remove the

old floating regulation point hi j

old control point ci j

old control variable for each field approximation, e.g. d i j ;
and insert in the gap the respective p new quantities;

• insert ξ̃+ in Ξ̃ j obtaining the refined parent knot vector Ξ̃+j =
{
..., ξ̃k, ξ̃+, ξ̃k+1, ...

}
.

Note that the number of characteristic basis functions associated to the specific j as well as the global number of
basis functions hereby increase by one. This refinement has local nature since we construct the other characteristic
bases from different parent knot vectors (recall Section 2.1). For spline order q = 1 in η direction all
parametrizations G j and F are preserved by the proposed refinement concept, hence also the material point character
of the quadrature points.

We determine the knots to be inserted adaptively during the analysis by evaluating for each (non-zero) parent
knot span Ω̃k j =

[
ξ̃k, ξ̃k+1

]
with ξ̃k, ξ̃k+1 ∈ Ξ̃ j the length of its physical representation as curve segment

Lk j =

∫
Ωk j

1 · ds ≈
∑

g

Lgl
=

∑
g

w̃gl
 I j∑

i=1

ci j
∂

∂ξ̃
Ñi j

(
ξ̃ gl
) 

2

, (47)

where Ωk j = F
(
G j

(
Ω̃k j

))
; we choose l : S(l) = j (inner interfaces are associated to two quadrature knot vectors,

we can choose either one); and summation is over all g : ξ̃ gl
∈ QLeg,G,l

∩ Ω̃k j . We set a length threshold Tins , and
if

Lk j > Tins, (48)

we insert a new knot

ξ̃+ = 0.5 ·
(
ξ̃k + ξ̃k+1

)
, (49)

at the center of Ω̃k j .

Adaptive knot removal. The inverse process of knot insertion is called knot removal. Note that unlike knot insertion,
removal of knots conserves the exact parametrization only under specific circumstances [31]. For this reason, we
follow one of the strategies proposed in [42] for standard B-Spline curves, minimizing the change of geometry and
parametrization in the sense of a certain L∞ norm. Its transfer to the floating tensor product structure yields an
algorithm as follows:

• Choose a j ∈ {1, . . . , J } specifying the characteristic basis to be coarsened;
• choose a knot ξ̃− = ξ̃k to remove which bounds the knot span

[
ξ̃k, ξ̃k+1

)
of parent knot vector Ξ̃ j ;

• if p > 1 :

compute or set:

lr =
ξ̃− − ξ̃k−p+r−1 for r = 1, . . . , p + 1,

ξ̃k+r − ξ̃k−p+r−1

17
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γ∞ =

p∑
t=1

[
p

t + 1

]
,

µr =
1

γ∞

r−1∑
t=1

[
p

t + 1

]
for r = 1, . . . , p − 1,

with bracket operator

[
b
a

]
:=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
la

∏b
r=a

1− lr+1

lr+1
, for a ≤ b

1
la

, for a = b + 1

1
1− la

, for a = b + 2,

cI
1 = c(k−p−1)( j); cI

r =
1
lr

c(k+r−2)( j) +

(
1−

1
lr

)
cI

r−1 for r = 2, . . . , p,

cII
p+1 = c(k)( j); cII

r =
1

1− lr+1
c(k+p−r−1)( j) +

(
1−

1
lr+1

)
cII

r+1 for r = p, p − 1, . . . , 2

;
for r = 1, . . . , p − 1: replace the old control point c(k−p+r−1)( j) = (1− µr ) cI

r+1 + µr cII
r+1;

• remove the old control point c(k−1)( j);
• remove ξ̃− from Ξ̃ j obtaining the coarsened parent knot vector Ξ̃−j =

{
..., ξ̃k−1, ξ̃k+1, ...

}
.

he procedure for deriving the new floating regulation points and control variables of each field approximation is
ully equivalent. Like knot insertion, knot removal along the characteristic direction is a local process for floating
-Splines, initiated for any parent knot span with physical span length

Lk j < Trem, (50)

here Trem is the removal threshold. Fig. 13 demonstrates how the elongational/compressive mesh distortion that
emained in Fig. 8 is cured by adaptive knot insertion and removal in Ξ̃ j (with j = 3) at the locations indicated by
rrows.

ffect on quadrature. The quadrature knot vectors Ξ̃ l introduced in Section 2.4.1 are unaffected by knot insertion
r removal in the parent knot vectors along the course of analysis. While we cannot precisely predict in advance
hich parent knot spans will be split how often, we simply initialize the quadrature point set by sufficiently dense
uadrature knot vectors Ξ̃ l . The insertion of new quadrature points along with the mapping of history data is
hereby avoided even upon adaptive refinement. To this end, before the analysis, we estimate (in terms of knot span
ensity) the maximum refinement of the parent knot vectors occurring during the analysis, and accordingly construct
ll Ξ̃ l . With the convention to insert new parent knots only at centers of parent knot spans Eq. (49) the one-time
onstruction of Ξ̃ l is straightforward and preserves all beneficial properties of the novel quadrature concept. To
uild the quadrature vectors, we propose a simple split of each knot span of the (assumed uniform3) initial parent
not vectors into a certain number of subspans, according to

Ξ̃ l
= K

(
max

(
ρS(l)nS

S(l), 2ρN (l)nS
N (l)

)
, p
)
, (51)

here K(nS, p) denotes an open uniform knot vector with nS (non-zero) knot spans for polynomial order p. Further,
S
j denotes the number of knot spans in the initial (unrefined) Ξ̃ j , and ρ j ≥ 1 (chosen as a power of 2) is the
ssumed maximum parent knot span relative shrinkage due to (possibly nested) refinement in Ξ̃ j . We recommend to

multiply a factor of two to ρN (l) in Eq. (51), in order to improve quadrature accuracy for integration of the neighbor
haracteristic basis (as its quadrature is not of Gauss character, recall Section 2.4.1). Note that an overestimation

3 The idea is readily generalized to the non-uniform case as well, but Ξ̃ l must be a superset of Ξ̃ .
j
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Ξ

Fig. 13. Removed shear and dilatational mesh distortion in FLIGA.

of the quadrature knot span density does not lead to any difficulties (except for an increase in computational cost),
whereas an underestimation may cause problems due to under-integration after repeated knot insertion in the parent
knot vectors.

To make this clearer, let us give an example of how to construct the quadrature knot vectors for adaptive
refinement, assuming that the course of refinement is known in advance. To this end, we consider once more
the example of Fig. 9, for simplicity in an “unfloated” configuration without loss of generality. In the figure,
as refinement was not yet introduced in Section 2.4.1 (ρ j = 1), we had equal and uniform parent knot vectors
˜ j = Ξ̃ = K(nS, p) and equal and uniform quadrature knot vectors Ξ̃ l

= K
(
2nS, p

)
, with nS

= 3. Now we
assume that the knot spans of parent knot vector Ξ̃3 are expected to undergo a split to half the size, i.e. ρ3 = 2,
while for j = 1, 2, 4, 5 no refinement is expected, ρ j ̸=3 = 1, see Fig. 14. In this setting, according to Eq. (51), we
construct the quadrature knot vectors:

• l = 1, 2, 7, 8: Ξ̃ l
= K

(
2ρ j ̸=3nS, p

)
= K (6, p)

• l = 3, 6: Ξ̃ l
= K

(
2ρ j=3nS, p

)
= K (12, p)

• l = 4, 5: Ξ̃ l
= K

(
2ρ j ̸=3nS, p

)
= K

(
ρ j=3nS, p

)
= K (6, p).

We now see the motivation for the introduction of quadrature knot vectors related to l and not to j in Section 2.4.1,
in that superfluous points are avoided in Ξ̃ 2 and Ξ̃ 7. These are associated to either one of the two outer characteristic
elements in which the refined basis functions of

{
B̂i3

}
i=1,...,I3

are not supported.

In many cases, the exact refinement is a priori unknown, hence ρ j is just estimated. We highlight once more
that the quadrature stencil is designed for the most refined state and employed at all load steps. Mapping of history
data is not required.4

A remark on p-refinement. In this paper we assume that all characteristic bases are of the same polynomial order
p. In principle, it is as well possible to assign to them different p j , enabling a p-refinement along ξ which is local
in the normal direction. This could be beneficial for the adjustment of approximation spaces to the smoothness of
the solution. E.g., in the context of extrusion problems, boundary conditions may suddenly change (most notably at
the exit of the nozzle, see Sections 4.3 and 4.4), while a highly smooth deformation behavior is expected inside the
strand. Hence, the selection of lower polynomial orders at the characteristic strand boundaries (with locally small

4 For history-independent behavior the quadrature knot vectors can be adapted to the current parent knot vectors for cost reduction.
19
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Fig. 14. Quadrature and refinement.

h-refinement thresholds) and higher polynomial orders in the interior (with large thresholds) could be an attractive
alternative.

2.4.4. Function properties
Among others, enhanced floating B-Splines possess the following analysis-suitable properties inherited from

conventional B-Splines:

• partition of unity
• weak Kronecker-delta property at the boundaries
• first-order consistency
• boundary preservation
• interface preservation

In [5] we provided proofs for the first four of these properties whose extensions to the enhanced splines are trivial
and therefore omitted here. The interface preservation property follows immediately from the Lagrangian character
of the interface points which was shown in Section 2.4.1.

2.4.5. Enhancements summary
Let us conclude the overview of the enhancements with a brief summary. Firstly, the novel quadrature concept

resolves all the drawbacks of the previous advection procedure in [5], however, it solves the problem of loss of
Gauss point character only to a large extent. Secondly, we have proposed an automated procedure for floating
regulation to comfortably overcome shear distortion of the basis functions along the characteristic direction. Thirdly,
adaptive knot insertion and removal prevent excessive basis function elongation/compression in the same direction.
The combination of distortion-free approximation spaces with fully Lagrangian, yet highly systematic quadrature
provides an ideal basis for numerical analysis of extreme, history-dependent deformations. As a limitation, the
effectiveness of the proposed concepts relies on the orientation of the extreme deformations along one characteristic
direction. Hence, the application to viscoelastic extrusion-based processes (Section 1) is a natural choice. The related
analysis concepts are introduced next.

2.4.6. Comparison with ALE
The ALE method that was mentioned in the introduction shares some fundamental concepts with FLIGA. Let us

briefly compare the two. Firstly, both techniques rely on boundary-fitted approximation spaces, with the behavior
20
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of the basis functions lying in between the Lagrangian and Eulerian viewpoints to compensate for mesh distortion.
Similar is also the practice to construct the analysis-suitable meshes by application of a PDE-based parametrization
operation. However, in (IGA-based) ALE this operation modifies the control point positions, whereas in FLIGA
it only affects the positions of the floating regulation points (see Section 2.4.2). Therefore, in ALE (unlike in
FLIGA) the movement of the control points is decoupled from the material deformation. This leads to different
choices of the viewpoint of motion at the quadrature points in the two approaches: ALE typically employs Gauss
point quadrature, which brings the benefit of accurate integral evaluations. Unfortunately, the loss of Lagrangian
character at the control points immediately translates to the Gauss points and relative advection terms must be added
to the model equations. Such terms do not appear in FLIGA, where the control points are updated according to the
deformations and, hence, material points are a favorable choice for quadrature. The general downside of material
point quadrature is that the locations of the points at which the basis functions are evaluated are fully determined
by the course of deformation, making the accurate computation of integrals more challenging (see Section 2.4.1).
Finally, ALE (unlike FLIGA) does not require the presence of a characteristic direction in the problem to be solved.

3. Continuum model, IGA and enhanced FLIGA

In this section we first present the continuum mechanical model for viscoelastic finite deformation problems
ollowing the Lagrangian viewpoint of motion, and then illustrate the conventional IGA and enhanced FLIGA
iscretizations.

.1. Continuum problem

Consider the quasi-static balance of linear momentum

∂

∂x
· σ + f = 0 in Ω , (52)

where σ is the Cauchy stress and f the external body force, with Dirichlet boundary conditions on the velocity v

v = vD on ∂ΩD, (53)

s well as Neumann boundary conditions

σ n = hN on ∂ΩN . (54)

ere, hN is the surface traction vector. Further, the velocity is derived as v = u̇ from the displacement u. We also
nforce the incompressibility condition

∂

∂x
· v = 0 in Ω , (55)

and in preparation for viscoelastic material models, we split the Cauchy stress in a hydrostatic, a solvent, and a
polymeric extra stress

σ = −pI+ 2ηs∇
sv + τ p. (56)

ere, p is the pressure, ∇s (•) =
1
2

(
∂ (•)

∂x

)
+

1
2

(
∂ (•)

∂x

)T

the symmetric gradient of vector (•), and ηs the solvent

viscosity. The polymeric extra stress τ p evolves according to an ordinary differential equation in time

τ̇ p = τ̇ p

(
∂v

∂x
, τ p; {Ck}

)
, (57)

tarting from the initial value τ 0
p. The set of material parameters {Ck} may include parameters such as relaxation

ime λ and polymeric viscosity ηp. A detailed introduction to viscoelastic modeling is given in [43]. In our work,
e focus only on the classical Oldroyd-B model where

τ̇ p =
∂v

τ p + τ p

(
∂v
)T

−
1 (

τ p − 2ηp∇
sv
)
. (58)
∂x ∂x λ
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Upon loading the body deforms over time, so that

x (X, t) = X + u (X, t) = X +
∫ t

0
v (X, τ ) dτ, (59)

here X is a generic coordinate in the initial configuration. By referring the description of motion to the initial
onfiguration, we apply the Lagrangian viewpoint of motion. Note that the (material) time derivative ˙( ) in Eq. (57)
nd Eq. (58) describes the change of stress over time focusing on a material point X .

For problems involving contact, we devise a penalty formulation with respect to wall penetration and penetration
ate, augmented by another penalty formulation to regularize the no-slip constraint, v = 0. We arrive at the contact

boundary condition at the wall interface ∂ΩC

σ n = −κ∗P Pn− κ∗R Ṗn− κ∗Sv on ∂ΩC , (60)

where P is the wall penetration, Ṗ the wall penetration rate and n the outward normal unit vector. Finally, the
ctive penalty parameters, κ∗P , κ∗R, κ∗S are,

κ∗P =

{
κP , for P > 0,

0, otherwise,
κ∗R =

{
κR, for Ṗ > 0,

0, otherwise,
κ∗S =

{
κS, for P > 0,

0, otherwise,
(61)

ased on the constant penalty coefficients, κP , κR, κS , respectively.

.2. Isogeometric discretization

For classical IGA discretization of the problem presented above, we describe the geometry of the undeformed
omain based on isogeometric basis functions, e.g. standard B-Splines (see Section 2 and references therein). With
he geometry representation available, discretization in space (indicated by index h) and in time (indicated by time
tep index n for time step tn) of the unknown velocity and pressure fields follows in case of a mixed method, using
q. (10), as

vh,n (x) =

M∑
m=1

BT P
m (x) dn

m =

M∑
m=1

B̂T P
m (ξ) dn

m = vh,n (ξ) , (62)

ph,n (x) =

Z∑
z=1

AT P
z (x) qn

z =

Z∑
z=1

ÂT P
z (ξ) qn

z = ph,n (ξ) , (63)

where
{

B̂T P
m

}
m=1,...,M

and
{

ÂT P
z

}
z=1,...,Z

are classical B-Spline bases and dn
m and qn

z are the current velocity and

pressure control variables, respectively. Further, the isoparametric concept is applied, meaning that
{

B̂T P
m

}
m=1,...,M

here is the same basis that describes the mapping between parametric and physical space, Eq. (9). Inserting the
velocity ansatz in the weak form of Eq. (52) leads to the equilibrium of internal and external force vectors at each
control point cn

m and each time step n

Fn
int,m =

nQ P∑
g=1

[(
σ h,n ∂

∂x
B̂T P

m

)⏐⏐⏐⏐
ξ g

W g,n

]
!
=

nQ P∑
g=1

[(
f n B̂T P

m

)⏐⏐⏐
ξ g

W g,n
]
= Fn

ext,m . (64)

Here we assume hn
N = 0 on the Neumann boundary, which is satisfied naturally in the weak formulation. Dirichlet

oundary conditions can be incorporated a priori in the solution space. Numerical integration is applied over Gauss–
Legendre quadrature points with coordinates ξ g and physical weights W g,n , where g = 1, . . . , nQ P . Note that each
ξ g is constant over time in standard IGA.

Likewise, we insert the velocity ansatz in the weighted residual form of Eq. (55), obtaining one equation for
each pressure control variable at each time step

Qn
z = −

nQ P∑[(
∂

∂x
· vh,n ÂT P

z

)⏐⏐⏐⏐
g

W g,n

]
!
= 0. (65)
g=1 ξ
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We multiply here by −1 to obtain a symmetric stiffness matrix later. The discretized Cauchy stress evaluated at ξ g

is given by

σ h,g,n
= −ph,g,nI+ 2ηs∇

svh,g,n
+ τ h,n,g

p

(
∂vh,g,n−1

∂x
, τ h,g,n−1

p ; {Ck} ;∆t
)

, (66)

here ∆t is the time step size. This expression makes use of the time discretization of Eq. (57) by the forward
uler method, so that the polymeric extra stress is independent of the current unknown solution. In the Lagrangian

ramework, history data at each Gauss–Legendre point are available from the previous time step n − 1. For the
ldroyd-B model in Eq. (58), we obtain the current polymeric extra stress by

τ h,g,n
p = τ h,g,n−1

p +∆t

[
∂vh,g,n−1

∂x
τ h,g,n−1

p + τ h,g,n−1
p

(
∂vh,g,n−1

∂x

)T

−
1
λ

(
τ h,g,n−1

p − 2ηp∇
svh,g,n−1)] . (67)

Let us also discretize the rate form of Eq. (59) in space and time

ẋh,n (F0 (ξ)
)
= vh,n (F0 (ξ)

)
, (68)

where F0 is the physical mapping at the initial time step n = 0, or equivalently

ẋh,n (ξ) = vh,n (ξ) . (69)

nserting the basis functions Eq. (9) and Eq. (62) yields
M∑

m=1

ċn
m B̂T P

m (ξ) =

M∑
m=1

dn
m B̂T P

m (ξ) , (70)

hich is then discretized again by the forward Euler method, resulting in

cn
m = cn−1

m +∆t dn−1
m . (71)

ence the construction of basis functions at the current configuration is independent of the current velocity solution.
ollecting the individual equations from Eq. (64) and Eq. (65) for each time step, we obtain the global residual
ectors

Rn(Un) = Fn
int (U

n)− Fn
ext

!
= 0, (72)

nd

Qn(Un) != 0, (73)

espectively. Un contains the control variables dn
m and qn

z . Here, the linearization of
[

Rn T
, Qn T

]T
w.r.t. Un gives a

ymmetric global stiffness matrix K n (Appendix C) which is independent of Un and involves only current physical

asis function values
∂

∂x
B̂T P

m

(
ξ g) and ÂT P

z

(
ξ g) and physical quadrature weights W g,n . Note that linearity of the

discrete system is due to the explicit Lagrangian treatment of Eq. (67) and Eq. (71).
For contact problems the translation of Eq. (60) into weighted residual form and discretization gives the nodal

contact force at a boundary b = 1, 2, 3, 4 of the patch

Fn
C,m = −

nQ P
b∑

g=1

[(
κ

h,∗
P Ph,nnh,n

+ κ
h,∗
R Ṗh,nnh,n

+ κ
h,∗
S vh,n

)
B̂T P

m

]
ξ=ξ g

Lg,n, (74)

where Ph,n and Ṗh,n
= vh,n

·nh,n are the discrete penetration and penetration rate; nh,n is the discrete current outward
normal unit vector; and numerical quadrature is applied over g = 1, . . . , nQ P

b boundary Gauss–Legendre points with
weight Lg,n along the respective physical boundary. We define the active penalty parameters, κ

h,∗
P , κ

h,∗
R , κ

h,∗
S in

the discrete setting as

κ
h,∗
P =

{
κP , for Ph > 0,

κ
h,∗
R =

{
κR, for Ṗh > 0,

κ
h,∗
S =

{
κS, for Ph > 0,

(75)

0, otherwise, 0, otherwise, 0, otherwise.
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The nodal contact forces are added to the external force vector

Fn
ext,C,m = Fn

ext,m + Fn
C,m, (76)

leading to the nodal balance

Fn
int,m = Fn

ext,C,m . (77)

The final global system becomes

Rn
C (Un) = Fn

int (U
n)− Fn

ext,C (Un) != 0, (78)

supplemented with Eq. (73). It is nonlinear in Un due to contact and we solve it with the Newton–Raphson method.
The again symmetric global tangent matrix K n

C (Un) is assembled from the nodal tangent matrix contributions as
formulated in Appendix D.

Let us add the remark that, since we assume incompressible material behavior as per Eq. (65), it is important
to properly select the discretization spaces for velocity and pressure to preclude effects of volumetric locking.
Two important candidates are (i) the so-called Taylor–Hood pair where the pressure basis

{
Â
}

z=1,...,Z
is of one

polynomial degree less than the velocity basis (see [44]), and (ii) the construction of the velocity basis
{

B̂
}

m=1,...,M
as a subdivision of the pressure basis (see [45]). Due to the tensor product structure of the B-Spline bases, these
concepts are applicable at the level of the constituent univariate bases.

The reviewed IGA procedure is conceptually straightforward. Unfortunately, due to the movement of the control
points, the mapping of the parametrically static basis functions undergoes a distortion, recall Fig. 7. When extreme
deformations take place, this may lead to complete failure of the analysis.

3.3. Enhanced FLIGA

We now outline a discretization method following IGA (Section 3.2) but with the floating tensor product B-
Splines and the enhancements (improved quadrature, automated floating regulation, adaptive refinement) from
Section 2. The most important modifications to the IGA discretization described in Section 3.2 are the following:

• Enrich the approximation bases by floating regulation points (Sections 2.1–2.3).
• Use linear polynomial basis functions in η (Section 2.4).
• Place all quadrature points at the characteristic element boundaries along ξ (Section 2.4.1).
• Update floating regulation points after regular time step increments (Section 2.4.2).
• Introduce an adaptive local refinement procedure along ξ (Section 2.4.3).

The governing equations are easily transferred to FLIGA by replacing

B̂T P
m ← B̂n

m

ξ g
← ξ gl,n

s

W g,n
← W gl,n

s ,

(79)

in Eq. (72) or Eq. (78), respectively, and in Eq. (73). Here we need the current floating B-Splines B̂n
m , novel

quadrature points ξ gl,n
s and weights W gl,n

s .
Further, we propose the construction of stable mixed approximation spaces in enhanced FLIGA following

the subdivision strategy in the normal direction, as well as the Taylor–Hood or subdivision approach along the
characteristic direction. Subdivision in normal direction is preferred as we have q = 1 and, by nesting two velocity
spans within one pressure span, we can conveniently reuse the floating maps G j=1,3,5,...,J applied to the velocity basis
for floating regulation of the pressure basis. This facilitates the overall procedure as we avoid the introduction of
additional floating regulation points for pressure, and we can even use the same quadrature coordinates to compute
all velocity and pressure contributions. The concepts for combining the sets of univariate bases to a bivariate floating
basis (Section 2.1) are then correspondingly employed. (As in Section 3.2, we apply the physical map F for the
velocity basis also to the pressure basis.)

In Fig. 15 we schematically overview the procedures followed by IGA (a) and enhanced FLIGA (b). The

introduction of floating regulation points in FLIGA mainly leads to modification of the basis computation in

24



H.C. Hille, S. Kumar and L. De Lorenzis Computer Methods in Applied Mechanics and Engineering 417 (2023) 116346

w

Fig. 15. Algorithm flow chart comparison. (For interpretation of the references to color in this figure legend, the reader is referred to the

eb version of this article.)
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Fig. 16. Patch test problem.

parametric coordinates (red block). Moreover, the operations for the three blocks highlighted in blue correspond to
the three enhancements of this work. Let us add a remark on optimizing the computational cost. In the flow chart, we
group a certain number of time steps and perform the new “floating” operations on the parametric bases only after
each group, i.e., say, every n f = 5 time steps. During the 5 time steps of each group, the mesh distorts (slightly),

hich is then “relaxed” after the subsequent floating operations. Groups of 5+ time steps are often unproblematic
(this obviously also depends on the choice of the time step size) and quadrature points remain fully Lagrangian.
Following this strategy the increase of average cost per load step introduced by the floating procedures is quite
limited, for more details see Section 4.2.

4. Numerical examples

In this section, we conduct a numerical study of enhanced FLIGA. The patch test, Taylor–Couette flow, planar
extrusion and a small set of extrusion-based AM processes serve as examples. Where possible, we directly compare
results to those of the first version of FLIGA proposed in [5], denoted as FLIGA 1.0 in the following. Accordingly,
we denote enhanced FLIGA also as FLIGA 2.0.

Numerical approximations are assessed in terms of the logarithmic L2 error norm

L2 (vh)
= log10

⎛⎝
√∫

Ωh

(
v − vh

)2 dΩ√∫
Ωh v2 dΩ

⎞⎠ , (80)

where v and vh are components of the analytical and numerical solutions, respectively.

4.1. Patch test

We start with a two-dimensional patch test, similar to the one in [5]. Here we consider a square domain occupied
by Newtonian fluid (ηs = 50, ηp = 0) subjected to Dirichlet boundary conditions in the normal directions as shown
in Fig. 16. The imposed velocity is chosen as v0 = 1. The pressure is set to p = 0 and the incompressibility
constraint is removed, so as to enable a simple volumetric expansion of the domain with analytical solution

v =

(
vx

vy

)
=

(
x
y

)
, (81)

ith a gradient of

∂v

∂x
=

(
1 0
0 1

)
. (82)

ence, the velocity component in x (in y) has a constant gradient pointing in the x (in the y) direction.
In order to enable an easier comparison with Hille et al. [5], we adopt the control and floating regulation points

mployed there and the automated placement procedure on the floating regulation points introduced in Section 2.4.2
s not applied. We consider three test cases p = 1, 2, 3 (while, as always, q = 1). Note that due to the fixed number
f control points, the open uniform parent knot vectors Ξ̃ j = K

(
nS

p, p
)

are different for each p (as we have the
S S S ˜ l

(
S

)

knot span counts n1 = 4, n2 = 3, n3 = 2), and we construct the quadrature knot vectors Ξ = K 2n p, p to be
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Table 1
L2 error in log10-scale for the patch test. The bracketed values are obtained for quadrature knot spans eight
times smaller than the parent knot spans.

Polynomial order Velocity component p = 1 p = 2 p = 3
q = 1 q = 2 q = 3

IGA
x −16.28 −15.67 −15.73
y −16.02 −15.85 −15.63

FLIGA 1.0
x (characteristic) −1.93 −2.46 −2.88
y (normal) −2.86 −3.78 −3.94

Polynomial order p = 1 p = 2 p = 3
q = 1 q = 1 q = 1

FLIGA 2.0
x (characteristic) −3.79 −4.80 −7.13

(−4.73) (−6.67) (−8.50)
y (normal) −3.04 −4.45 −6.18

(−4.32) (−5.95) (−8.11)

twice as dense. Each knot span of any Ξ̃ l collects G = p + 1 quadrature points and a total of roughly nQ P
= 100

uadrature points is obtained for each p, allowing for a fair comparison to the FLIGA 1.0 patch test, where we
mployed a similar number.

An overview of the patch test results for the L2 errors Eq. (80) w.r.t. the analytical velocity components Eq. (81)
s provided in Table 1, where we also reproduce the errors obtained previously for IGA and FLIGA 1.0, however
ith q = p [5]. As expected, IGA passes the patch test up to machine precision. With FLIGA 1.0 we had
bserved a limited accuracy for the small number of integration points. Conversely, for FLIGA 2.0 the patch
est reveals distinctive reductions of the error by employment of the novel quadrature stencil. The improvements
re most pronounced for higher polynomial orders and solution field gradients along the characteristic direction
corresponding to the solution component vh

x , see Eq. (82)). The numerical error further decreases as the knot span
ensity in Ξ̃ l is increased. E.g., the values in brackets in Table 1 are obtained for Ξ̃ l

= K
(
8nS

p, p
)
. This error

eduction is possible up to machine precision due to the first-order consistency property of floating B-Splines.

.2. Taylor-Couette flow

Next, we revisit the two-dimensional problem of Taylor–Couette flow for Newtonian as well as viscoelastic
ldroyd-B fluid behavior, which we investigated with FLIGA 1.0 in [5]. We represent the annulus of fluid by a

ingle patch, treating the circumferential direction as the characteristic one and employing a periodic boundary
ondition to close the ring structure.5 While with FLIGA 1.0 we had q ≥ 1, here q = 1, thus we increase the

number of elements in normal direction in order to retain a comparable accuracy. Quadrature is performed by the
novel procedure constructing Ξ̃ l

= K
(
2nS, p

)
twice as dense as Ξ̃ j = K

(
nS, p

)
with nS

= 36. For the study of
the Oldroyd-B model, we double the time step size w.r.t. Hille et al. [5]. In addition, we reduce the computational
cost by applying the floating operations only every n f = 20 time steps. All other parameters are given in Table 2.

We compute the L2 errors Eq. (80) of horizontal velocity and pressure for different rotation states of the outer
ylinder (with the inner one fixed). The analytical (steady-state) solutions are

vx,Newt = vx,Old = sin(ϕ)
(

αr +
β

r

)
, pNewt = 0, pOld = 2πβ2λ

(
1
r4 −

1
R4

O

)
, (83)

with

α = ΩO ·
R2

O

R2
O − R2

I
, β = −αR2

I , (84)

nd the polar coordinates r =
√

x2 + y2, ϕ = atan
( y

x

)
. Results are provided in Fig. 17 and demonstrate the

significantly improved stability of enhanced FLIGA over FLIGA 1.0. We emphasize that adaptive refinement is

5 In [5] we provide the details about how to construct periodic floating B-Spline bases.
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Fig. 17. Transient L2 errors in log10-scale w.r.t. the analytical steady-state solutions for the Taylor–Couette problem.

ot applied here and that very similar results are also obtained when using the old manual procedure for updating
oating regulation points (instead of the new automated one). Consequently, we believe that the improvements are
ue to the novel quadrature concept.

We study the computation cost for enhanced FLIGA. To this end, let us consider the case p = 2, q = 1 with
patial discretization according to Table 2 and viscoelastic behavior. Different floating update intervals are tested,
f ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}. For each n f we measure the computation time needed to process

the first 1024 analysis load steps for the time discretization ∆t = 1e−5 s. Additionally, we test the two cases
of, one, quadrature knot vectors identical to the parent knot vectors, Ξ̃ l

= K
(
nS

p, p
)
, and two, twice as dense,

Ξ̃ l
= K

(
2nS

p, p
)
; and it holds G = 3. All tests are performed in fivefold replication. We compare the computation

times relative to the one of IGA with identical discretization, except that classical Gauss–Legendre quadrature (3 × 2
points per velocity element) is employed (and no floating operations are performed).

Results for the relative computation cost are provided in Fig. 18. We observe a decreasing trend of the cost for
increasing floating update intervals n f . For the case Ξ̃ l

= K
(
nS

p, p
)

the total quadrature point count in enhanced
FLIGA and IGA is identical, and the cost converges towards 1 in the limit of no floating operations being applied.
Conversely, for the case Ξ̃ l

= K
(
2nS

p, p
)

some extra cost remains in that limit due to a larger quadrature point

set. We confirm that a suitable adjustment of n f notably reduces the cost overhead due to the floating operations
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Table 2
Parameters for the Taylor–Couette problem. Value pairs in braces refer to p = 2 and p = 3, respectively.

Problem parameter Variable Value Unit Simulation parameter Variable Value Unit

Radius Polynomial order
Inner cylinder RI 0.1 m Characteristic axis p {2, 3}
Outer cylinder RO 0.2 m Normal axis q 1

Angular frequency Element count
Inner cylinder ΩI 0 rad/s Velocity 36× {24, 72}
Outer cylinder ΩO 7.5 rad/s Pressure 18× {12, 36}

Relaxation time λ 0.1 s Time step Newtonian ∆tNewt 5e−5 s
Polymeric viscosity ηp 1.5 Pa s Time step Oldroyd-B ∆tOld {5e− 5, 1e− 5} s
Solvent viscosity ηs 0.5 Pa s Floating update interval n f 20
Polymer stress at t = 0 τ 0

p 0 Pa

Fig. 18. Computation cost for p = 2, q = 1 with standard deviations.

(e.g., in the previous computations we had n f = 20). Based on the current study we conclude that the majority of
such overhead is avoided, even with smaller floating update intervals; as a rule of thumb, n f ≈ 5.

4.3. Planar extrusion

The problem of planar extrusion from a straight nozzle is investigated. We adopt as reference the computational
fluid dynamics (CFD) steady-state study in [46]. Due to the Lagrangian treatment in our work, we modify the
problem setup as follows (Fig. 19). To circumvent the inflow condition, a convergent segment (4 : 1) is attached
to the nozzle and fluid motion is driven by a Dirichlet boundary condition (vin = 0.5 mm/s); the length of the
straight part is much longer (l = 10 mm) compared to the radius (rout = 0.2 mm); the strict contact and no-slip
onditions are relaxed by penalty enforcement; the penalty coefficients are set as κP = 7.5e5, κR = 1.5e3, κS = 1e3,
espectively, with a ramp (0→ 1e3) on κS in the region indicated in the figure; a small radius re =

ro

8
is added at

the nozzle exit; all discretization parameters are listed in Table 3. Note that, in our setting, we are investigating a
transient problem.

We focus on the Oldroyd-B model with solvent viscosity ratio

β =
ηs

=
1
, (85)
ηs + ηp 9
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Fig. 19. Planar extrusion problem.

Table 3
Simulation parameters for the planar extrusion problem.

Simulation parameter Variable Value Simulation parameter Variable Value

Polynomial order Element count
Characteristic axis Velocity (adaptive) × 16

Velocity p 2 Pressure (adaptive) × 8
Pressure p 1 Quadrature point count (adapt. initialized)

Normal axis Per initial element × (q + 1)
Velocity q 1 Time step ∆t 5e−4 s
Pressure q 1 Floating update interval n f 10

obtained by the choice ηs = 1000 Pa s, ηp = 8000 Pa s. The relaxation time is adjusted so as to produce a given
eissenberg number Wi according to

λ =Wi ·
1
γ̇
=Wi ·

rout

12vin
, (86)

here γ̇ is a maximum shear rate estimate in the straight part of the nozzle. The initial condition for the polymer
tress is τ 0

p = 0.
In Fig. 20(a–d) we visualize for Wi = 2.5 the build-up of the free surface behind the nozzle exit at different

ime steps, which is controlled by viscoelastic swelling. Contours of vertical velocities in the nozzle exit area
oncentrate close to the wall tip. After t = 7.5 s, steady-state behavior is reached in the region, see Fig. 20(e).
oreover, Fig. 21(a) shows the velocity magnitude contours during steady state at t = 7.5 s, indicating a parabolic-

ype velocity profile inside the nozzle as well as a transition towards plug profile behind the exit. Our qualitative
bservations agree well with the description in [46]. The corresponding control point set is illustrated in Fig. 21(b)
nd adaptive refinement is recognized from the nodal distances. The a priori chosen thresholds for knot insertion
q. (48) and removal Eq. (50) are illustrated in Fig. 22.

Finally, we provide a quantitative comparison to Comminal et al. [46] for the swell ratios

S =
rs

rout
, (87)

t different Wi ∈ {0, 0.5, 1, 1.5, 2, 2.5}.6 Here rs is the steady-state extrudate radius, see Fig. 20(e). Results are
epicted in Fig. 23 and compared to the results obtained in [46] using a selection of CFD techniques. In view of
he deviations between results of the different CFD techniques, our results show very satisfactory agreement for
igh Wi . The small underestimation of swell ratios for (fluid-like) low Wi may due to our approximate enforcement
f the no-slip condition at the wall.

.4. Extrusion-based AM

Lastly, we apply enhanced FLIGA to the simulation of extrusion-based AM. The problem setup is adopted from
he previous benchmark of planar extrusion, however with the following modifications: the complete setup is rotated
uch that the nozzle opens in downwards vertical direction; the symmetry assumption is removed and the entire
lane represented; the lengths of the contraction segment and of the straight part (l = 0.2 mm) are decreased;
he nozzle exit radius is increased (re = ro/4); and the penalty coefficients are adjusted (κP = 1e4, κR = 1e3,

6 For the Newtonian fluid, Wi = 0, we adjust κ = 250.
S
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Fig. 20. Vertical velocity contours during transient strand formation (a–d) and steady-state (e) in the exit region.

S = 100). In addition, we model a substrate below the nozzle exit by imposing homogeneous Dirichlet boundary
onditions for the vertical velocity on all control points penetrating a user-defined substrate shape. We simulate the
orizontal movement of the nozzle by imposing a constant Dirichlet boundary condition for the horizontal velocity
vn = 2.4 mm/s) to the control points in contact with the substrate. We proceed similarly to simulate a vertical
ovement of the nozzle. For simplicity, a renewed material detachment from the substrate is not considered here.
he discretization parameters are summarized in Table 4.

We investigate the viscoelastic Oldroyd-B material with the same parameters as in the planar extrusion example
or the case Wi = 1.5. Four different combinations of substrate shape and nozzle movement are tested, see Fig. 24.

The first case (a) corresponds to an idealized setup with mere horizontal nozzle movement along a linear path
and deposition on a planar substrate. Secondly (b), we investigate an imperfection of the nozzle movement in
terms of a superposed harmonic vibration. The third case (c) explores substrate imperfections in terms of surface
variations. And finally (d), we put an obstacle of parabolic shape and adjust the nozzle path. In all examples, the
center of the nozzle exit starts at the left black circles in the figure, following the dashed path until the final state,
represented by the black circles on the right. Also, we add a small step to the front segment of the substrates so
as to avoid a singularity in the physical map of the rectangular parametric domain at the respective corner. The
characteristic element division in the undeformed state is illustrated by the white curves in Fig. 24. Finally, the
31
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Fig. 21. Velocity magnitude during steady state (t = 7.50 s) in the exit region.

Fig. 22. Refinement thresholds.

Fig. 23. Die swell ratios.
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Table 4
Simulation parameters for the extrusion-based AM problem.

Simulation parameter Variable Value Simulation parameter Variable Value

Polynomial order Element count
Characteristic axis Velocity (adaptive) × 16

Velocity p 2 Pressure (adaptive) × 8
Pressure p 1 Quadrature point count (adapt. initialized)

Normal axis Per initial element × (q + 1)
Velocity q 1 Time step ∆t 1.6e−3 s
Pressure q 1 Floating update interval n f 5

predefined thresholds for knot insertion and removal used in the present study are depicted in Fig. 25. Note that
the threshold definitions inside of the black box are always in the same reference to the nozzle position.

Simulation results are illustrated in Fig. 26. For the first printing scenario (a), the characteristic element interfaces
white curves) align evenly along the extrusion strand. A vibration of the nozzle (b) causes deviations in the
lignment leading to a periodic, wavy pattern of material arrangement. For the uneven substrate (c), the extrudate
dapts to the substrate shape. Interestingly, the effect is local and almost completely fades out up to the top edge
f the strand, resulting in an even surface. The nozzle path we have designed for case (d) allows to overcome the
bstacle with the material being pressed also in the two corners. For all examples (a–d), we show the vertical velocity
agnitudes at the final configuration by contour plots. The approximately enforced no-slip condition is recognized

rom the blue colors at the nozzle walls, indicating low material speed. This is an important enhancement with
espect to the extrusion-based AM problem investigated for FLIGA 1.0 in [5], where the resolution of the resulting
xtreme elongation rates behind the nozzle exit would not have been possible due to the lack of adaptive refinement.

We confirm a good overall stability and robustness of enhanced FLIGA limited to the validity of the assumption
rom Section 2.4.2, i.e., that inner characteristic element interfaces reasonably align to the outer patch boundaries.
rom the element topology in the above AM test cases, we see the assumption fulfilled even when modeling
oderate process imperfections.

. Conclusions

In this paper, we have proposed enhancements for Floating Isogeometric Analysis with respect to the initial
ormulation in [5]. A new quadrature concept conserves the material point character of quadrature points, while
educing the relative errors in the patch test up to four orders of magnitude and improving the range of numerical
tability in the Taylor–Couette benchmark from five to more than 25 turns. The novel procedure for floating
egulation removes shear mesh distortion along the characteristic direction in a fully automatic fashion and allows
or the prediction of complicated strand geometries in extrusion-based additive manufacturing simulation, where
he manually designed floating regulation of Hille et al. [5] would have been prohibitively complicated. Moreover,
ilatational mesh distortion is overcome by adaptive refinement, enabling the solution of extrusion problems
eaturing extremely extensional flow.

While offering an effective solution to extreme mesh distortion along the characteristic direction, enhanced
LIGA shares many discretization concepts with Lagrangian IGA, as well as many of its benefits. These include
xcellent stability, direct imposition of boundary conditions, easy construction of stable mixed ansatz spaces,
djustable smoothness of the basis functions (in the characteristic direction), absence of advection terms, and natural
reatment of free surface evolution. On the other hand, there are still some limitations. It is not possible to apply
he strategy to problems with critical mesh distortion along the normal direction. The conceptual generalization to

ulti-patch geometries appears limited to the separate floating within each patch coming along with a distortion of
atch interfaces. Finally, the polynomial order is fixed to q = 1 in the normal direction. These limitations may well
e addressed in future investigations. In addition, it would be useful to thoroughly investigate stability and accuracy
rom a numerical analysis perspective. Also, while we focused on spatial discretization, further investigations may
onsider the aspect of time discretization in more detail. Finally, further significant applications of FLIGA beyond
iscoelastic extrusion are worth exploring.

The extension to 3D appears interesting for the application to industrially relevant problems. This would require

he introduction of a third parametric direction ζ , i.e. another normal direction (again with polynomial order r = 1).
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Fig. 24. Extrusion-based AM problems.
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Fig. 25. Refinement thresholds.

Gauss–Lobatto points in the normal directions are again to be placed at the Kronecker-delta positions of the normal
basis functions M̂ j in η and L̂k in ζ . The floating tensor product structure would yield the trivariate basis by coupling
he two normal directions with the unique characteristic direction

B̂i jk (ξ ;H) = N̂i jk (ξ ;H) M̂ j (η) L̂k (ζ ) i = 1, . . . , I j ; j = 1, . . . , J ; k = 1, . . . , K . (88)

here now ξ = (ξ, η, ζ )T . Note that this equation is the 3D version of Eq. (8). Regarding the implementation, we
o not foresee specific problems from our current viewpoint. Along the characteristic direction, mesh distortion is
vercome in the same sense as so far for 2D simulations. However, depending on the deformations, the bivariate
ormal elements might undergo a distortion in physical space. E.g., in the simulation of extrusion processes, small
istances between nozzle and substrate may lead to severe cross-sectional strand deformations as was shown in [47].
n such cases, the associated normal element distortion may possibly affect the numerics and require additional
emedies.
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ppendix A. Parametrization ansatz

The exact representation of ξ by the ansatz in Eq. (42) is shown as

ξ h (x;H) =

M∑
m=1

hm Bm (x;H) =

M∑
m=1

hm B̂m
(
F−1 (x;H) ;H

)
=

M∑
m=1

hm B̂m (ξ (•;H) ;H)

=

J∑
j=1

⎛⎝ I j∑
i=1

hi j N̂i j (ξ (•;H) ;H)

⎞⎠ M̂ j (η (•;H))

=

J∑
j=1

⎛⎝ I j∑
i=1

hi j Ñi j

(
G−1

j (ξ (•;H) ;H)
)⎞⎠ M̂ j (η (•;H))

=

J∑
G j

(
G−1

j (ξ (•;H) ;H) ;H
)

M̂ j (η (•;H))

j=1
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Fig. 26. Final strand geometries. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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=

J∑
j=1

ξ (•;H) M̂ j (η (•;H)) = ξ (•;H)

J∑
j=1

M̂ j (η (•;H))

= ξ (•;H) .

Appendix B. Tangent matrix for solving the parametrization equation

Let us denote

J gl
sn (•;H) := J

(
ξ̃

gl
sn (•;H) ;H

)
.

Then the global tangent to Eq. (46) is given as

K R
ik =

∂

∂hk
Ri =

2J−2∑
l=1

nQ P,l∑
g=1

M∑
m=1

2∑
a=1

[
∂2

∂hk∂xa
B̂i

(
ξ̃

gl
sn (•;H) ;H

) ∂

∂xa
B̂m

(
ξ̃

gl
sn (•;H) ;H

)
hm W gl (•;H)

+
∂

∂xa
B̂i

(
ξ̃

gl
sn (•;H) ;H

) ∂2

∂hk∂xa
B̂m

(
ξ̃

gl
sn (•;H) ;H

)
hm W gl (•;H)

+
∂

∂xa
B̂i

(
ξ̃

gl
sn (•;H) ;H

) ∂

∂xa
B̂m

(
ξ̃

gl
sn (•;H) ;H

)
δmk W gl (•;H)

+
∂

∂xa
B̂i

(
ξ̃

gl
sn (•;H) ;H

) ∂

∂xa
B̂m

(
ξ̃

gl
sn (•;H) ;H

)
hm

∂

∂hk
W gl (•;H)

]
,

∂2

∂hk∂xa
B̂i

(
ξ̃

gl
sn (•;H) ;H

)
=

[
−

M∑
o=1

2∑
b=1

2∑
p=1

2∑
q=1

(
J gl

sn

)−1

bp
(•;H)

(
J gl

sn

)−1

qa
(•;H) cop

∂

∂ξb
B̂i

(
ξ̃

gl
sn (•;H) ;H

)
∂2

∂hk∂ξq
B̂o

(
ξ̃

gl
sn (•;H) ;H

) ]
+

2∑
b=1

(
J gl

sn

)−1

ba
(•;H)

∂2

∂hk∂ξb
B̂i

(
ξ̃

gl
sn (•;H) ;H

)
,

∂2

∂hk∂ξ
B̂i

(
ξ̃

gl
sn (•;H) ;H

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎝−Js

(
ξ̃ gl
;H

)−2 ∂

∂ξ̃
Ñts

(
ξ̃ gl
)

M̂s
(
ηl) ∂

∂ξ̃
Ñus

(
ξ̃ gl
)

0

⎞⎠ , for j = s ∧ v = s,

(
0

0

)
, for j = s ∧ v = n,⎛⎝ 0

Jn

(
ξ̃

gl
sn (•;H) ;H

)−1 ∂

∂ξ̃
Ñtn

(
ξ̃

gl
sn (•;H)

) ∂

∂η
M̂n

(
ηl) Ñus

(
ξ̃ gl
)⎞⎠ , for j = n ∧ v = s,

⎛⎝ 0

−Jn

(
ξ̃

gl
sn (•;H) ;H

)−1 ∂

∂ξ̃
Ñtn

(
ξ̃

gl
sn (•;H)

) ∂

∂η
M̂n

(
ηl) Ñun

(
ξ̃

gl
sn (•;H)

)⎞⎠ , for j = n ∧ v = n,

(
0

0

)
, otherwise,

∂

∂hk
W gl (•;H) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
∂

∂ξ̃
Ñus

(
ξ̃ gl
)

det
(

J gl (•;H)
)
+∑M

o=1
∑2

a=1
∑2

b=1 Js

(
ξ̃ gl
;H

)
det

(
J gl (•;H)

) (
J gl (•;H)−1)

ba coa

∂2

∂hk∂ξb
B̂o

(
ξ̃

gl
sn (•;H) ;H

) ]
w̃glwl , for v = s,

∑M
o=1

∑2
a=1

∑2
b=1 Js

(
ξ̃ gl
;H

)
det

(
J gl (•;H)

) (
J gl (•;H)−1)

ba coa

∂2

∂hk∂ξb
B̂o

(
ξ̃

gl
sn (•;H) ;H

)
w̃glwl , for v = n,

0, otherwise,

for (t, j)← i and (u, v)← k according to Eq. (38) as well as s = S(l) and n = N (l) according to Eq. (19) and
Eq. (24), respectively.
37



H.C. Hille, S. Kumar and L. De Lorenzis Computer Methods in Applied Mechanics and Engineering 417 (2023) 116346
Appendix C. Tangent matrix for solving the governing equations

The node-wise linearizations of the discrete governing equations Eq. (64) and Eq. (65) are:

K n
(m)( j) =

∂ Fn
int,m

∂dn
j
=

nQ P∑
g=1

ηs

[(
∂

∂x
B̂T P

m ·
∂

∂x
B̂T P

j

)
I +

∂

∂x
B̂T P

m

(
∂

∂x
B̂T P

j

)T
]

ξ=ξ g

W g,n (2× 2)

K n
(m)(M+ζ ) =

∂ Fn
int,m

∂qn
ζ

= −

nQ P∑
g=1

[
∂

∂x
B̂T P

m ÂT P
ζ

]
ξ=ξ g

W g,n (2× 1)

K n
(M+z)( j) =

∂ Qn
z

∂dn
j
= −

nQ P∑
g=1

[
ÂT P

z

(
∂

∂x
B̂T P

j

)T
]

ξ=ξ g

W g,n (1× 2)

K n
(M+z)(M+ζ ) = 0. (1× 1)

Appendix D. Tangent matrix for solving contact problems

The linearization of the discrete nodal contact force Eq. (74) in addition to Appendix C leads to the node-wise
stiffness tangent for contact problems

K n
C,(m)( j) =

∂ Rn
C,m

∂dn
j
= K n

(m)( j) −
∂ Fn

C,m

∂dn
j
= K n

(m)( j) +

nQ P
b∑

g=1

[(
κ

h,∗
R nn

W nn
W

T
+ κ∗S I

)
B̂T P

m B̂T P
j

]
ξ=ξ g

Lg,n (2× 2)

K n
C,(m)(M+ζ ) = K n

(m)(M+ζ ) (2× 1)

K n
C,(M+z)( j) = K n

(M+z)( j) (1× 2)

K n
C,(M+z)(M+ζ ) = 0. (1× 1)
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