
 
 

Delft University of Technology

DESCAN
Censorship-resistant indexing and search for Web3
de Vos, Martijn; Ishmaev, Georgy; Pouwelse, Johan

DOI
10.1016/j.future.2023.11.008
Publication date
2024
Document Version
Final published version
Published in
Future Generation Computer Systems

Citation (APA)
de Vos, M., Ishmaev, G., & Pouwelse, J. (2024). DESCAN: Censorship-resistant indexing and search for
Web3. Future Generation Computer Systems, 152, 257-272. https://doi.org/10.1016/j.future.2023.11.008

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.future.2023.11.008
https://doi.org/10.1016/j.future.2023.11.008


Future Generation Computer Systems 152 (2024) 257–272

A
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

DeScan: Censorship-resistant indexing and search for Web3
Martijn de Vos ∗, Georgy Ishmaev, Johan Pouwelse
Distributed Systems, Delft University of Technology, Van Mourik Broekmanweg 6, Delft, 2624KM, Zuid-Holland, The Netherlands

A R T I C L E I N F O

Keywords:
Decentralized systems
Decentralized search
Web3
Blockchain technology
Censorship resistance
Skip graph

A B S T R A C T

The popularity of blockchain technology has bootstrapped many ‘‘Web3’’ applications, e.g., Ethereum and
IPFS, that apply distributed ledger technology to store transactions. The amount of transactions generated and
stored in such Web3 applications is significant and, in its raw form, usually not searchable by users. Existing
Web3 transaction indexing and search engines are predominantly centralized and, therefore, can manipulate
search results or censor particular queries. With the proliferation of Web3 transactions and applications, a
decentralized and censorship-resistant search primitive is becoming essential.

We present DeScan, a decentralized and censorship-resistant indexing and search engine for Web3. Users
index their local Web3 transactions using custom rules that output triplets. Generated triplets are bundled
in a distributed transaction graph that is searchable by other users. To coordinate search and distribute the
storage of the transaction graph over peers in the network, we build upon a Skip Graph (SG) data structure.
Since the Skip Graph does not provide any resilience against adversarial peers that censor searches, we propose
four modifications to improve its robustness. We implement DeScan and conduct experiments with up to 12 800
peers and 10 million Ethereum transactions. Our experiments show that DeScan with our modifications enabled
can tolerate 20% adversarial peers and 35% unresponsive peers without disruption. Moreover, we find that
searches in DeScan are usually completed well within a second, even when the network grows. Finally, we
show that storage and network costs are evenly distributed amongst peers as the network grows.
1. Introduction

Recently, there has been an stark increase in Web3 applications
driven by success of decentralized ledger technologies [1,2]. While
Web3 is a broad label, at the moment it de-facto refers to decentralized
and permissionless applications such as blockchains and blockchain-
based applications.

These Web3 applications can generate large volumes of transac-
tions. For example, Ethereum, one of the most popular Web3 platforms,
persists over 1 TB of transactions in its blockchain.1 Web3 data gen-
eration outpaces the development of tools for indexing and search.
Currently, indexing of and searching for Web3 data is predominantly
handled by centralized services, e.g., Etherscan [3] and Infura [4]. This
is contradictory given that independence of centralized parties is a key
focus of Web3 in general. Even though many users critically rely on
centralized services to track Web3 transactions, we argue that sustain-
able growth and success of Web3 ecosystems require data management
solutions that provide the same degree of decentralization and censorship
resistance as offered by Web3 application themselves.

Centralized Web3 search services may need to comply with reg-
ulatory requirements and may be forced to censor or taint specific

∗ Corresponding author.
E-mail address: martijn.devos@epfl.ch (M. de Vos).

1 See https://etherscan.io/chartsync/chaindefault.

transactions. This happened recently with Infura, which now actively
blocks access to transactions in the Tornado Cash application, a mixer
for Ethereum [5]. Generally speaking, blockchain accessing services with
censorship capacity are a fundamental bottleneck in any permission-
less solutions that aims to provide censorship resistance as a system
property [6].

Censorship capacity can also invite manipulation for economic
gains, for example, by withholding transactions to a smart-contract
based marketplace [7]. This can also enable secondary markets for
censorship called Censorship-as-a-Service [8]. Censorship can happen
at different layers of a Web3 system: at the network and consensus layer
(e.g., censoring transactions) or at the application layer (e.g., censoring
transaction metadata).

Decentralization is often seen as a solution for the problem of
censorship [9]. However, decentralization is a broad spectrum of sys-
tem designs rather than one specific approach, and different types of
solutions can present various trade-offs.

We find that in the context of transaction search and indexing
on public blockchains there is a trade-off between censorship resis-
tance and computational requirements. On the one hand, decentralized
vailable online 10 November 2023
167-739X/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.future.2023.11.008
Received 9 December 2022; Received in revised form 21 June 2023; Accepted 7 N
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ovember 2023

https://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:martijn.devos@epfl.ch
https://etherscan.io/chartsync/chaindefault
https://doi.org/10.1016/j.future.2023.11.008
https://doi.org/10.1016/j.future.2023.11.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2023.11.008&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Future Generation Computer Systems 152 (2024) 257–272M. de Vos et al.
Fig. 1. Indexing and searching Web3 transactions with DeScan. The Content Processing Engine (CPE) indexes content retrieved from a local Web3 data source, e.g., an Ethereum
RPC interface (step 1). The CPE generates triplets from Web3 content (step 2) that together form a transaction graph (TG). Each triplet is stored by multiple, random peers in
a decentralized overlay (step 3). We use a Skip Graph data structure to assign triplets to peers. DeScan users can issue queries in the decentralized overlay to obtain triplets
associated with particular content (step 4).
solutions based on local-first principles [10], require users to down-
load all transactions in a particular Web3 application which can then
be indexed and searched locally, e.g. by running a full blockchain
node. While this sidesteps censorship concerns, it also requires users
to download all these transactions and build local indices, which can
introduce significant storage and computation overhead. On the other
hand, other decentralized solutions for indexing and search based
on peer-to-peer storage may allow peers to index transactions in a
distributed manner [11]. This distributes the storage and computation
burden over the peers in the network, enabling search functionality for
low-resource devices, e.g. mobile phones. However, in this approach
searching critically depends on other peers and thus is vulnerable to a
censorship attack by adversarial peers. Ensuring censorship resilience
in peer-to-peer decentralized networks for Web3 applications is still
largely unexplored. This work therefore answers the following question:
How can we design, implement, and evaluate a Web3 indexing and search
system that is decentralized and resistant to censorship by adversarial peers?

We present DeScan, a decentralized indexing and search engine
that is robust against adversarial peers that attempt to censor content,
offers sub-second search latency, and is highly scalable as the network
grows. Fig. 1 shows how users can index and search Web3 transactions
with DeScan. DeScan includes a Content Processing Engine (CPE) that
indexes content sourced from a local Web3 data source (step 1), such
as an Ethereum RPC interface or an IPFS database. The CPE outputs
triplets, which are three-tuples that denote relations between entities,
e.g., ‘‘block X contains transaction Y’’. These triplets together form a
Transaction Graph, which is a graph structure that stores transactions
and their metadata. Developers can implement custom indexing logic,
rules, that prescribe which triplets are generated from particular Web3
content. Rules enable DeScan to index transactions stored in different
Web3 applications and enables DeScan to build a single, unified Trans-
action Graph. Triplets are digitally signed by their creator and users
can verify the integrity of triplets retrieved from the network.

Triplets are stored by peers in a decentralized overlay (step 3 in
Fig. 1). We build upon a Skip Graph data structure [12] to determine
which peer should store particular triplets. A Skip Graph is a distributed
data structure that offers searching functionality in peer-to-peer net-
works. Each peer in the Skip Graph maintains a local routing table and
route incoming message to neighbouring peers in the routing table.
Joining, leaving, and searching in a Skip Graph can be completed
with logarithmic time and message complexity. We argue that these
properties makes the Skip Graph a promising primitive to build a decen-
tralized Web3 search engine. We consider the analysis and integration
of incentive mechanisms to store and route data beyond the scope of
this work. However, DeScan can be extended with different bandwidth
and storage sharing incentives, including reciprocity-based mechanisms
and transaction fees [13].

At the same time, the naive design of a Skip Graph is vulnerable to
adversarial peers that attempt to censor searches performed by other
peers [14]. Since each search is routed through a single path, any
adversarial peer can, for example, refuse to forward an incoming search
message for a particular transaction to other peers (censorship) or
respond to the search initiator with a manipulated result. To address
258
this key issue, we replicate triplets over multiple peers and have users
issue multiple queries in multiple Skip Graphs simultaneously. We fully
implement DeScan and our modifications. Our experiments demonstrate
that these modification make DeScan robust against both adversarial
and unresponsive peers, effectively addressing the issue of censorship
when querying triplets in DeScan. These experiments also show that
triplet queries can be completed within a second, and that network and
storage overhead becomes evenly spread over the available peers as the
network size grows. This makes it feasible to implement decentralized
indexing in permissionless blockchains, such as Ethereum, on the basis
of light clients [15]. This is a novel approach as at the moment indexing
solutions are either centralized or require running a full node client
with significant hardware requirements.

In summary, our contribution is four-fold:

1. We present DeScan, a decentralized and censorship-resistant in-
dexing and search engine for Web3 (Section 4). DeScan indexes
Web3 content into a Transaction Graph, which is stored by
peers in the network. Search in DeScan is coordinated in a
decentralized manner using a Skip Graph.

2. We identify and apply four improvements that make DeScan
and the Skip Graph robust against both unresponsive peers
and adversarial peers that attempt to censor access to Web3
transactions (Section 5).

3. We fully implement DeScan and make its implementation avail-
able on GitHub (Section 6.1).2

4. We conduct experiments with an Ethereum dataset to evaluate
the robustness of DeScan against unresponsive and adversarial
nodes, and to quantify query latency and overhead (Section 6.2–
6.6). Our results reveal that DeScan tolerates 20% adversarial
peers or 50% unresponsive peers with minimal degradation of
quality-of-service.

2. Background and related work

2.1. Indexing and search in Web3

As Web3 applications generate and store increasing volumes of
transactions, indexing and searching these transactions is also becom-
ing increasingly important. Many blockchain fabrics provide an ex-
plorer that enables end-user to monitor transactions on the blockchain
and search for them. Prominent examples are Etherscan [3] and the
blockchain.com explorer [16]. These platforms continuously monitor
on-chain transactions, index them, and make them searchable by end
users. These platforms maintain central servers to index Web3 trans-
actions and serve search queries, and therefore allow operators to
censor the access to particular content. In comparison, peer-to-peer net-
works are considered more robust against censorship than centralized
servers [7]

2 See https://github.com/devos50/descan.

https://github.com/devos50/descan


Future Generation Computer Systems 152 (2024) 257–272M. de Vos et al.
DeScan is related to four existing systems that index Web3 trans-
actions: DeScan, The Portal Network, TrueBlocks, and The Graph. We
describe each of these systems below and compare these solutions with
DeScan.

DeSearch [17] is a search engine designed to index and search
transactions in decentralized Web3 services. By using secure hardware,
DeSearch enables users to verify the correctness and completeness of
search results and provides privacy by keeping search queries hidden
from workers. The DeSearch network consists of crawlers that fetch
transactions from Web3 sources, indexers that index crawled transac-
tions, and queries that process and respond to search requests. In line
with this work, DeSearch focuses on censorship and manipulation of
search results. An important difference between DeSearch and DeScan is
that DeSearch critically depends on trusted hardware which is sparsely
available in consumer hardware and therefore requires dedicated in-
frastructure. Another difference is that crawlers, indexers and peers in
DeSearch require significant resource availability. DeScan is designed
such that peers with lower resource capacities can also participate.

The Portal Network [18] is closely related to our DeScan approach.
The project aims to build a fully decentralized network that enables
lightweight access to historical Ethereum transactions by exposing the
functionalities of the Ethereum RPC API. The Portal Network is in
an early design stage and is built upon a custom DHT overlay. Even
though DHTs have been widely used as underpinning primitive for
storage and search of data in decentralized networks, it is known that
without additional countermeasures, adversarial peers can sabotage the
DHT [19,20]. In contrast to DeScan, The Portal Network does not focus
on the attack-resilience of the indexing and search layer. Understanding
and improving the attack resilience of different architectures other than
DHTs, such as Skip Graphs, can eventually lead to more diverse and
robust Web3 solutions. Another difference is that The Portal Network
is exclusively built around Ethereum transactions, whereas DeScan
enables transaction indexing across different Web3 applications.

TrueBlocks [21] is a desktop-first client for indexing and search-
ing Ethereum transactions. By default, it requires users to setup and
maintain an Ethereum full node. This solution provides censorship
resistance, assuming the Ethereum full node is also censorship-resistant.
TrueBlocks also offers a compromise solution that uses indices stored
on the IPFS network [22] for users unable or unwilling to maintain a
full node. However, the speed of transaction indexing by this solution is
slightly behind the main network, and the issue of censorship resistance
is outsourced to IPFS. In contrast to DeScan, TrueBlocks is oriented
towards power users, and being a desktop-first client makes TrueBlocks
currently unsuitable for integration in low-resource clients such as
mobile devices.

The Graph [23]is an indexing protocol for accessing on-chain trans-
actions (e.g., Ethereum) and data in decentralized storage networks
(e.g., IPFS). The Graph enables developers to write subgraphs, small
scripts written in the GraphQL language that index transactions in
particular Web3 applications. This idea is similar to building the Trans-
action Graph through rules in DeScan. A difference with DeScan is
that subgraphs generate isolated information, whereas DeScan builds a
unified Transaction Graph with all data stored in a single peer-to-peer
network. Another distinction is that The Graph is built around mon-
etary incentives and native tokens used to reward indexers (queried
by users) and curators (verifying the quality of indexed data). When
performing a search in The Graph, end users remunerate indexers and
curators for their services with fees. The Graph in the current version
is primarily oriented at smart contract developers and power users for
whom paid query services are economically rational. Unlike The Graph,
DeScan aims to provide free query functionality to end users.

2.2. Censorship resistance in Web3 systems

The problem of censorship resistance in Web3 is an under-explored
259

topic. Wahrstätter et al. provide a comprehensive review of the current
challenges regarding censorship of transactions in Ethereum [5]. Wang
et al. consider some security implications of censorship for permis-
sionless protocols [7]. Tithonus is a network-level protocol that builds
on the Bitcoin protocol to provide censorship-resistant communication
mechanisms [6]. It provides a communication protocol for Bitcoin
clients in a setting where an adversary can control (inspect, inject,
suppress) the Internet communications of users within an area. Red-
belly is a leaderless Byzantine consensus mechanism that addresses
censorship of transactions by misbehaving nodes in a permissionless
blockchain [24]. To the best of our knowledge, however, no sys-
tems focus specifically on censorship-resistant peer-to-peer search and
indexing of blockchain transactions.

2.3. Prior work on P2P overlay search

Indexing and search in peer-to-peer networks has received signif-
icant attention from the academic community. Gnutella, one of the
earliest peer-to-peer networks, floods search queries through all nodes
in the network [25]. This basic approach, however, turned out to
have limited scalability and would quickly result in congestion and
performance issues as more peers join the network [26]. This inspired
the development of indexing and search solutions based on structured
overlays such as Distributed Hash Tables (DHTs) [27].

Most traditional structured overlays such as Chord [28] and Pas-
try [29] are not designed to be censorship-resistant. Since their intro-
duction there have been efforts to devise search algorithms in struc-
tured overlays. Fiat et al. present the design of an overlay network
in which the probability of content availability remains high even
after an adversary removes arbitrary large fractions of peers in the
network [30]. Augustine et al. describe a distributed algorithm for
the decentralized storage and retrieval of documents under adversarial
churn [31].

Secure Routing Strategies. A key focus of our work is to achieve
robust search in a Skip Graph structure in the presence of adversarial
nodes. This is closely related to the problem of secure message routing
in structured overlays [32]. Castro et al. discuss various solutions to
deal with adversarial peers that attempt to disrupt a decentralized
overlay by not forwarding incoming messages [20]. The ideas discussed
in [20] are closely related to DeScan since dealing with adversarial
peers during a search operation is the key focus of our work. Bypass is
a mechanism that avoids sending messages to adversarial peers when
routing in a DHT structure by routing queries to redundant nodes at
each step of the search [33]. It then avoids forwarding subsequent
messages to peers that are considered unreliable. Bypass uses iterative
queries whereas DeScan uses a ‘‘receive-and-forward’’ message passing
model that incurs lower latency and communication cost.

In Section 5, we improve the robustness of the Skip Graph with
several modifications. Some of these modifications have been inspired
by prior research on structured overlays. Several works leverage ac-
knowledgement messages during a search operation to detect and
bypass unresponsive nodes [34]. Other works route search requests
over multiple, disjoint paths to increase resilience against failures
and dishonest peers [35–37]. Extending the routing table of peers,
i.e., having each peer track more neighbours in the network, has been
used to reduce the latency of search operations [38,39]. While not
all modifications proposed in Section 5 are unique, we are the first
to apply the combination of these techniques to the Skip Graph data
structure and theoretically and empirically analyse their robustness
against unresponsive and adversarial peers.

2.4. Transaction graphs

DeScan uses a transaction graph to index and structure Web3 transac-
tions. A transaction graph is a graph that embeds on-chain transactions,

their metadata, and relations between transactions. More specifically,



Future Generation Computer Systems 152 (2024) 257–272M. de Vos et al.

s
b
b
g
w
m
a
a

W
m
a
s
m
c
W
u
d

r
i
s
t
a
b
D
b
u
t
B
o
g
p

2

p
t
o
l
n
v

Fig. 2. A small transaction graph, reconstructed from transactions on the Ethereum
blockchain. The nodes in this transaction graph describe entities such as blocks, wallet
addresses, transactions, contracts, and loans. Edges between entities describe relations,
e.g., a block contains a transactions. This information is extracted from the processed
transactions.

the transaction graph is an acyclic directed graph (DAG) that con-
sists of triplets in the form (subject, relation, object). Fig. 2 shows a
mall transaction graph constructed from transactions on the Ethereum
lockchain. The nodes of this transaction graph contain entities such as
locks, transactions, and wallet addresses. The idea of the transaction
raph is inspired by knowledge graphs in the domain of the semantic
eb where they are used as a means to structure knowledge and to
ake Internet pages machine-readable [40,41]. Knowledge graphs are

lso, for example, used to enhance results in search engines like Google
nd Bing [42].

We argue that a transaction graph is a suitable primitive to index
eb3 transactions for the following two reasons. Firstly, it provides the
eans to bundle indexed transactions from different Web3 applications

nd in different formats into a single data structure. Besides data
uch as blocks and transactions, transaction graphs can also capture
ore semantically rich data such as market orders in particular smart

ontracts or even relations between transactions issued in different
eb3 applications. Secondly, a graph in general is increasingly being

sed for advanced data analytics in the Web3 domain, e.g., for fraud
etection [43], anomaly detection [44], and recommendation [45].

At the same time, constructing a transaction graph with accu-
ate and meaningful information is challenging. In DeScan, triplets
n the transaction graph are generated by small scripts that process
pecific Web3 transactions (also see Section 4.1). We assume that
hese scripts are peer-reviewed and audited by developers to generate
ccurate triplets. Since all generated triplets with DeScan are signed
y their creator, one can build a reputation mechanism on top of
eScan to identify peers that made meaningful and accurate contri-
utions to the transaction graph [46]. Additionally, several proposals
tilize machine learning techniques to automatically add triplets to
he transaction graph and remove erroneous triplets from it [47].
lockchain technology has also been proposed to aid the construction
f a transaction graph. For example, Wang et al. store a knowledge
raph in an Ethereum smart contract and remunerate volunteers that
ropose correct modifications to this knowledge graph [48].

.5. Skip graphs

DeScan uses a Skip Graph to distribute the storage of triplets amongst
eers in the network, and to handle searches by peers for particular
riplets [12]. The Skip Graph is a distributed data structure that is based
n skip lists [49] and enables search in a decentralized overlay with
ogarithmic message and time complexity. It consists of one or more
odes3 where each node 𝑛 has a key, denoted by 𝑛𝑘, and a membership
ector, denoted by 𝑛𝑣. The membership vector is usually a random bit

3 When using the term node, we specifically refer to a node in a Skip Graph.
We use the term peer to refer to a peer in the decentralized overlay.
260
Fig. 3. A skip graph with six nodes. Nodes at level 𝑖 are linked if the prefix of their
membership vector is at least 𝑖 bits. Level 0 contains all nodes, ordered ascendantly
by their key.

string. A node can represent a physical machine or a peer in a peer-to-
peer network, but it can also be more granular and describe some data
that is stored by a particular peer. In DeScan, each node in the Skip
Graph maps to a peer in the decentralized overlay. Nodes are linked
together on different levels and each level contains one or more double-
linked lists. Two nodes 𝑚 and 𝑛 are linked at level 𝑖 if the prefix of 𝑚𝑣
and 𝑛𝑣 have at least 𝑖 bits in common. Each peer maintains a routing
table and is aware its immediate left and right neighbour on each level
in the Skip Graph.

Fig. 3 visualizes a Skip Graph with six nodes and three levels.
Membership vectors in Fig. 3 are depicted as bit strings. All nodes
are included on level 0 and are linked ascendantly based on their
key. The node with key 9 on level 1 references the node with key 19
since the length of their common membership vector prefix is at least
one. Likewise, the nodes with key 5 and 13, respectively, are included
in each other routing tables on level 2 since they have two bits of
their membership vector prefix in common. In general, the distance
between the keys of two linked nodes increases on higher levels and
links become more ‘‘sparse’’.

Search. The Skip Graph structure enables peers to find nodes that
have a particular key, or are close to one. A search in a Skip Graph for a
particular key will either result in the node with the key being searched
for, or in the node with largest key smaller than the search target. The
search algorithm in a Skip Graph is similar to that of a Skip List, except
that search requests are routed between peers in the network. A Skip
Graph search initiated by node 𝑛 for key 𝑘 proceeds as follows. The
search start at the top-most level in the routing table of 𝑛 that includes 𝑛
and traverses downwards through the levels in the Skip Graph without
overshooting the search target. 𝑛 starts by determining whether the
search should be forwarded to a left or right neighbour. This depends
on 𝑛𝑘: the search is forwarded to a right neighbour if 𝑛𝑘 < 𝑘 and to a left
neighbour if 𝑛𝑘 > 𝑘. The search traverses downwards through the levels
in the routing table of 𝑚 until a neighbouring node 𝑏 with key 𝑏𝑘 ≤ 𝑘
is encountered, when left-routing the search, or until a neighbouring
node 𝑏 with key 𝑏𝑘 ≥ 𝑘 is encountered, when right-routing the search.
Assume that 𝑛 finds that the search request should be forwarded to node
𝑚 next. 𝑛 then sends a Search message to 𝑚, containing the key being
searched for, the current level of the search in the routing table, and the
details of the search originator. If the search reaches a node 𝑝 with key
𝑘, or if 𝑝 is unable to forward the search request to a next eligible node,
𝑝 sends a SearchResponse message to 𝑛 that includes the details of
node 𝑝.

We further illustrate a Skip Graph search with an example. Assume

that in the Skip Graph in Fig. 3 node 20 initiates a search for the node



Future Generation Computer Systems 152 (2024) 257–272M. de Vos et al.
with key 5. This search starts at level 2 in the routing table of node 20
and is forwarded to node 19 on level 2. Since node 19 does not have
a left neighbour on level 2, the search drops down to level 1 in the
routing table of node 19. Node 19 forwards the search to node 9 on
level 1. Node 9 then drops down the search to level 0 since it does not
have a left neighbour at level 1, and then forwards the search to node
5. Finally, since the key of node 5 is exactly the key being searched for,
node 5 sends a search response to node 20. This completes the search.

A search in a Skip Graph can ‘‘skips’’ large parts of the key space
at higher levels in the routing tables. Searches in a Skip Graph are
expected to take 𝑂(𝑙𝑜𝑔 𝑛) time using 𝑂(𝑙𝑜𝑔 𝑛) messages, where 𝑛 is the
number of peers in the network [12]. Additionally, nodes only needs to
store 𝑂(𝑙𝑜𝑔 𝑛) neighbours in their routing tables which makes the Skip
Graph an efficient and scalable data structure for resource management
in decentralized networks.

3. Problem formulation and system model

We now formulate the problem that this work addresses and present
our system model.

3.1. Problem formulation

The key focus of this work is on censorship resistance when storing
and retrieving Web3 transactions in decentralized overlays. Censorship
is a crucial issue in Web3 since individual peers can be motivated to
prevent other users from accessing specific transactions. For example,
if a peer stores a current-best order in a decentralized marketplace, it is
in the economic interest of that peer not to share this information with
other users. A user can then exploit its exclusive access to information,
e.g., by front-running on the order [50]. Censorship is trivial in central-
ized platforms such as Etherscan since the organization behind these
platforms controls all data flows. Since DeScan is a fully decentralized
system, we define censorship as the ability of an individual peer, or a
group of colluding peers, to prevent other users from accessing particular
Web3 transactions.

We argue that there is a trade-off between censorship resistance and
computational requirements. On the one hand, some existing solutions
index all Web3 transactions locally and conduct searches in the local
database. While this sidesteps censorship concerns, it also requires users
to download on-chain transactions and build local indices, which can
introduce significant storage and computation overhead. For example,
indexing the entire history of on-chain Ethereum transactions incurs
storage requirements in the order of terabytes. On the other hand,
fully decentralized solutions for indexing have peers jointly build a
distributed index. While this improves load balancing across peers,
searching now directly depends on other peers and is still vulnerable
to a censorship attack.

In DeScan, peers conduct searches in a Skip Graph to store and
retrieve indexed Web3 transactions. Using a Skip Graph in this context
is not trivial as naive implementations can be vulnerable to adversarial
peers that disrupt incoming search requests from other peers [14].
An adversarial peer can, for example, refuse to forward an incoming
search message for a particular transaction to other peers (censorship)
or reply with a manipulated result. Skip Graphs are also vulnerable
to unresponsive peers as any unresponsive peer on a ‘‘search path’’
will fail the search from reaching the target node being searched for.
Therefore, the technical challenge of this work is to ensure that searches
in a Skip Graph succeed with high probability, even in the presence of
adversarial or unresponsive peers.

3.2. System model and assumptions

Peers in DeScan are connected together in a Skip Graph overlay.
We assume that peers a bootstrap server (a common assumption) and
261
join the Skip Graph after bootstrapping (also see Section 4.2). We use
the stateless UDP networking protocol for all communication between
peers. Each peer in the network possesses a cryptographic keypair.
The public key is used to identify the peer and the private key is
used to digitally sign outgoing network messages. We make standard
assumptions and assume that all cryptographic operations performed
by DeScan are secure. DeScan also assumes that the public key by peers
are generated by a uniform distribution. This is required to ensure
that network and storage overhead are balanced over the peers in the
network. The membership vector of each peer is derived from its public
key using a deterministic function.

Threat Model. The main focus of this work is on dealing with
adversarial peers during search operations that attempt to block access
to particular transactions. Adversarial peers are able to drop incoming
messages, forward incoming messages to arbitrary other peers, or reply
to the search originator with a wrong search result. They are, however,
unable to impersonate other peers by forging digital signatures. We
more formally define censorship resistance as the highest fraction of
adversarial peers DeScan can tolerate before the query success rate
drops below a particular target rate, say 95%.

A prominent attack in any decentralized system is the Sybil At-
tack in which an attacker joins the network under many different
identities [51]. This attack can enable censorship in DeScan, e.g., by
strategically positioning Sybil identities on the search paths to partic-
ular content. Since this attack is not the key focus of our work, we
assume that there is a mechanism that prevents unlimited identity cre-
ation. For example, one can use a peer-to-peer reputation mechanism
to achieve a desirable degree of Sybil tolerance [46]. Alternatively,
DeScan could track the behaviour and properties of connected peers on
the network layer and maintain reputation scores to identify suspicious
behaviour [52]. There is also a possibility that peers will collude with
many other peers to censor transactions. We do not consider this to be
a realistic scenario, however, given practical difficulty of coordination
if the network is large, and the lack of such incentives for peers in a
heterogeneous permissionless network.

4. DeScan : Decentralized Web3 indexing and search

This section outlines the search and indexing algorithms of DeScan.
We first explain in Section 4.1 how the collective indexing of Web3
transactions by peers results in a global transaction graph (Step 1
in Fig. 1). In Section 4.2 we then outline how peers store parts of
the global transaction graph, and how peers can retrieve parts of
the transaction graph. The system as described in this section is not
censorship-resistant yet; we present the modifications to DeScan to
achieve censorship-resistance later in Section 5.

4.1. DeScan : Web3 transaction indexing

The indexing process is performed by the Content Processing Engine
(CPE). The CPE first loads raw transactions from local Web3 sources,
for example, local databases or APIs, and then transforms these transac-
tions into nodes and edges of a transaction graphs. This transformation
is specified by rules, functions that take some content as input and
outputs nodes and edges of the transaction graph. Fig. 4 shows an
example with two rules (in green and blue, respectively) that indexes
raw Ethereum block data into a transaction graph. One rule processes
the ‘‘miner’’ field in the block data and the other rule processes the
transactions contained in the block.

Rules are written by developers and their implementations can be
shared on platforms like GitHub. Rules are also deterministic, meaning
that the resulting transaction graph when applying a rule is always the
same for the same input. We envision that each rule processes particular
content, for example, blocks, transactions, or smart contracts on the
Ethereum blockchain. Users running the DeScan software can import
and enable rules to be applied during the indexing procedure.



Future Generation Computer Systems 152 (2024) 257–272M. de Vos et al.

1
2
2
2

o
a
a
s

(

g
f
f
c

s
i
c
g

t
e
a
𝑇
t
w

a
b
t
s
b
a
(
w
𝑐
t

4

a
s

t
P
k
t
t
c
A
n
i
o
d
i
t
S
l
S
c
a
t
t

t
c
𝑇
w
o

0
m

Algorithm 1 The logic of the Content Processing Engine (CPE) executed
by user 𝑢.
1: Require: private key 𝑢𝑝𝑘
2: 𝐾 ← loadLocalKnowledgeGraph()
3: 𝑃 ← loadProcessedContent()
4: 𝑀 ← loadMerkleTrees()
5: 𝑅 ← loadRules()
6: 𝐶 ← loadContent()
7:
8: for 𝑐 in 𝐶 do
9: 𝑇𝑐 ← {} ⊳ the set 𝑇𝑐 contains generated triplets

10: for 𝑟 in in 𝑅 do
11: if (𝑐.𝑖𝑑, 𝑟.𝑖𝑑) in 𝑃 then
12: continue ⊳ 𝑐 is already processed by 𝑟
13: 𝑇 𝑟

𝑐 ← 𝑟.execute(𝑐) ⊳ apply rule 𝑟 to 𝑐
14: 𝑇𝑐 .append(𝑇 𝑟

𝑐 )
15: 𝑃 [(𝑐.𝑖𝑑, 𝑟.𝑖𝑑)] ← 𝑇 𝑟

𝑐

16:
17: 𝐾.add(𝑇 𝑟

𝑐 )
18: 𝑚𝑐 ← createMerkleTree(𝑇𝑐)
9: 𝑠 ← sign(𝑚𝑐 .root(), 𝑢𝑝𝑘)
0: 𝑀[𝑐] ← 𝑚
1: 𝑝 ← searchPeer(𝑐.𝑖𝑑)
2: storeTriplets(𝑝, 𝑇𝑐 , 𝑚, 𝑠)

We show the main logic of the CPE in Algorithm 1. The CPE operates
n content items where each content item is a two-tuple with raw data
nd an identifier (e.g., a hash of the data). These identifiers end up
s nodes in the transaction graph, as also shown in Fig. 4. When
tarting DeScan, the CPE first loads the local transaction graph (𝐾),

the identifiers of the content items that are already processed (𝑃 ), the
installed rules (𝑅) and the content items available for processing (𝐶).
This is shown in line 2–4 in Algorithm 1. The CPE iterates over all
content items 𝑐 ∈ 𝐶 and applies all installed rules (line 9–21). If 𝑐 has
already been processed by a particular rule 𝑟, 𝑟 is not applied again (line
10–11). Otherwise, 𝑟 is applied to 𝑐 by calling the execute method
line 12).

The execute method is expected to return a set of triplets, 𝑇 𝑟
𝑐 . A

triplet codifies a statement about an entity, for example, ‘‘The block
with hash 𝑥 contains the transaction with hash 𝑦’’. A triplet can be seen
as two endpoint nodes and an edge in the transaction graph. Triplets
are inspired by existing practices in the semantic web that are using
RDF triplets to structure and express semantic data. A triplet 𝑡 in DeScan
consists of the following four fields:

𝑡 = ⟨𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝐼𝐷, 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, 𝑡𝑎𝑖𝑙, 𝑟𝑢𝑙𝑒𝐼𝐷⟩

For example, consider the triplet generated by rule 1 in Fig. 4 (in
reen). The contentID field of this triplet is ‘‘0x3a...’’, the relation
ield is ‘‘miner’’, and the tail field is ‘‘0xf9...’’. Finally, the ruleID
ield contains the identifier of the rule that generated 𝑡. For presentation
larity, the ruleID fields are not explicitly shown in Fig. 4.

In Algorithm 1 the triplets generated for content 𝑐 by rule 𝑟 are
tored in the list 𝑇 𝑟

𝑐 . All resulting triplets for content item 𝑐 are merged
nto 𝑇𝑐 and stored in 𝑃 . When all rules have been applied to some
ontent, the resulting triplets are appended to the local transaction
raph 𝐾.

To ensure authenticity and prevent users from generating arbitrary
riplets, each triplet will be digitally signed by its creator. Instead of
mbedding each signature in a triplet 𝑡, the CPE instead constructs
Merkle Tree for content item 𝑐 with the hashes of each triplet in

𝑐 , sorted ascendantly, as leaf node in the tree (line 18). A user 𝑢
hen signs the root hash of the Merkle Tree with their private key 𝑢𝑝𝑘,
hich effectively acts as an irrefutable proof that 𝑢 has generated these
262
Fig. 4. Indexing raw Ethereum block data using two rules (shown in green and blue). In
this example, one rule processes the miner field in the data and the other rule processes
the transactions contained in the block. Applying these rules output a transaction graph.

triplets. The Merkle Tree 𝑚𝑐 is shared together with the set of generated
triplets 𝑇𝑐 for content item 𝑐 with other users. Signing a Merkle Tree
only requires a single signature for each content item and significantly
reduces storage requirements if a user generates millions of triplets,
compared to when signing each triplet individually.

In contrast to related systems for Web3 transaction indexing, DeScan
voids network-wide replication of the transaction graph which can
e costly in terms of storage and network overhead. Instead, the
ransaction graph is distributed over all peers in the network. More
pecifically, the triplets associated with each content item 𝑐 are stored
y a particular peer 𝑝. To determine which peer should store triplets
ssociated with 𝑐, a user will conduct a search in the Skip Graph overlay
line 21). This process is further explained in Section 4.2 and for now
e assume that peer 𝑝 is responsible for storing triplets associated with

. The CPE then invokes the storeContent method that will store
he triplets 𝑇𝑐 at peer 𝑝.

.2. DeScan : Web3 data storage and search

We now describe how DeScan distributes the triplets in the trans-
ction graph over the different peers in the network, and how users
earch for particular triplets.
Constructing a Skip Graph. DeScan uses a Skip Graph to coordinate

he storage of triplets and to route search queries to designated peers.
eers that index Web3 transactions join this Skip Graph overlay. The
ey of their Skip Graph node is the hash of their private key. Since
he focus of this work is on censorship-resilient searching of Web3
ransactions, we assume that DeScan uses established algorithms for the
onstruction and maintenance of the Skip Graph overlay. For example,
spen et al. present a Skip Graph construction algorithm where each
ode first inserts itself on the first level and then attempts to locate
ts neighbours on higher levels [12]. A peer 𝑢 only needs to know
ne other peer for 𝑢 to execute the joining algorithm. The algorithm
escribed in [12] is also used in our implementation. Later work
ntroduces more advanced construction algorithms that are also able
o deal with unresponsive peers. For example, Riko et al. describe
KIP+, a self-stabilizing Skip Graph that uses redundant neighbour
inks and that can repair itself when there are inconsistencies in the
kip Graph [53]. Gguerraoui et al. introduce a fault-tolerant overlay
onstruction approach based on message gossiping [54]. All of the
bove algorithms are capable of constructing the overlay with 𝑂(𝑙𝑜𝑔 𝑛)
ime and message complexity, where 𝑛 is the total number of peers in
he network.
Storing Triplets in the Network. A peer is responsible for storing

riplets associated with some content item 𝑐 if the identifier of 𝑐 is the
losest to their public key. Assume that a peer 𝑝 has generated triplets
for 𝑐 and is going to store these triplets in the network. To determine
hich peer should be storing 𝑇 , we conduct a search in the Skip Graph
verlay for 𝐻(𝑐.𝑖𝑑), which algorithm is given in Section 2.5.

In general, a peer 𝑢 with key 𝑘 and with a right neighbour on level
with key 𝑘𝑛 in the Skip Graph is responsible for storing items that
ap to a key in the range [𝑘, 𝑘 ). In other words, any search in the
𝑛



Future Generation Computer Systems 152 (2024) 257–272M. de Vos et al.

l
w
F
w
i
p
t

p

a
a
w
o
t
e

a

S
m
F
r
s
t
r

r
j
t
l
T
d
𝑛
𝑛
f
p
s
W

k
l
T
s

4

a
a

t
𝑛
s
h
e

o
i
a
b

Fig. 5. Example mapping from key to peers for a key with range [0, 20], and with
peers nodes with keys 5, 10, and 15, respectively.

Skip Graph for a key in the range [𝑘, 𝑘𝑛) will result in peer 𝑢. If peer 𝑢
has the lowest key of all peers, it is responsible for key range [0, 𝑘] and
ikewise, if 𝑢 has the highest key, it is responsible for key range [𝑘, 𝑘𝑚]
here 𝑘𝑚 is the highest possible key. We show an example of this in
ig. 5 that shows the responsible key ranges for each of the three peers
ith keys 5, 10 and 15. Since node 5 has the lowest key in the network,

t is responsible for the key range [0, 9]. Depending on the distribution
eer keys, a peer might be responsible for a larger or smaller key range
han others.

Peer 𝑢 stores its generated triplets 𝑇 , associated with content 𝑐, at
eer 𝑛 as follows.

1. 𝑢 first sends a storageRequest message to 𝑛. This message
contains the identifier of 𝑐, denoted as 𝑐.𝑖𝑑. Upon receiving the
storageRequest message by 𝑢, 𝑛 verifies that it is responsible
for storing the triplets associated with 𝑐. It does so by inspecting
the keys of its level-0 neighbouring nodes in its Skip Graph
routing table and by establishing that these neighbours are not
closer to 𝑐.𝑖𝑑. If 𝑛 is the designated peer to store triplets asso-
ciated with 𝑐, 𝑛 replies to 𝑢 with a storageAccept message.
Otherwise, 𝑛 replies to 𝑢 with a storageRefusal message.
These acceptance and refusal messages prevents malicious users
from placing content at arbitrary peers.

2. If 𝑢 has received a StorageAccept message from 𝑛, it will
send a TripleHashes message to 𝑛. This message contains
𝑐.𝑖𝑑, a list with all hashes of the triplets in 𝑇 , and the signa-
ture 𝑠 of the root of the Merkle Tree associated with 𝑇 . Upon
reception of the TripletHashes message by 𝑛, 𝑛 reconstructs
the Merkle Tree from the hashes in the message and checks
the validity of 𝑠 using the public key of 𝑢. If 𝑠 is invalid, 𝑛
sends a storageRefusal message to 𝑢. Otherwise, 𝑛 sends
a TripleHashes message to 𝑢 with a list of hashes that 𝑛
does not have. This additional TripleHashes message avoids
duplicate transmission of triplets to 𝑛 if another user already
indexed the same content with the same rules.

3. Upon receiving a TripletHashes message by 𝑢, 𝑢 sends
triplets that 𝑛 is missing in serialized form to 𝑛 in a Triplets
message. 𝑛 verifies the validity of incoming triplets and whether
the hash of each of these triplets is included in the earlier-
sent Merkle Tree. 𝑛 then appends the incoming triplets to its
local transaction graph and replies with a storageComplete
message to 𝑢. The Merkle Tree and corresponding signature
of the root hash are stored by 𝑛 alongside with the incoming
triplets. This finalizes the storage procedure.

Querying Triplets. Users can query the network to retrieve triplets
ssociated with some content 𝑐. We use the term query to refer to the
ction of retrieving triplets from other peers, and we use the term search
hen we talk about a search in the Skip Graph. A triplet query consists
f two steps: (1) a search in the Skip Graph and (2) a request to the peer
hat holds the triplets. We outline each of the two steps below with an
xample where peer 𝑢 queries triplets associated with 𝑐.

1. Skip Graph Search. First, 𝑢 performs a search in the Skip Graph for
key 𝑐.𝑖𝑑 to determine the peer that stores the triplets associated
263
with 𝑐. This search can fail, for example, if a peer on the search
path is unresponsive or adversarial. Therefore, each Skip Graph
search has a timeout value 𝛥𝑡 which depends on the network
characteristics and acceptable search latency. If this timeout
triggers, the query fails and results in an empty set. This step
requires 𝑂(𝑙𝑜𝑔 𝑛) time and message complexity.

2. Requesting Triplets. Assume that the search resulted in peer 𝑛. To
retrieve the triplets associated with 𝑐 from, 𝑢 sends a Retrieve
message to 𝑛, with 𝑐.𝑖𝑑. When 𝑛 receives the Retrieve mes-
sage, 𝑛 inspects its local transaction graph for all triplets and
Merkle Trees associated with 𝑐. 𝑛 then sends a Triplets mes-
sage back to 𝑢, containing both the requested triplets, the Merkle
trees, and the signatures of their root hashes. Upon receiving this
Triplets message, 𝑢 verifies the authenticity of the incoming
triplets using the included Merkle Trees and signatures. Note
that 𝑢 is also able to detect if 𝑛 did not send a particular triplet
to 𝑢, or if 𝑢 sent a triplet which hash is not included in any of the
Merkle Trees. This step requires two messages between peers 𝑛
and 𝑢, one Retrieve and one Triplets message. 𝑢 now has
received the requested triplets which completes the query.

In summary, a triplet query can be completed with 𝑂(𝑙𝑜𝑔 𝑛) time
nd message complexity.
Relocating Triplets under Churn. Peers joining and leaving the

kip Graph gracefully (informing other peers) can invalidate the place-
ent of triplets. This subsequently can result in failed triplet queries.

or example, if in Fig. 5 peer 12 joins the Skip Graph, it takes over
esponsibility for the key range [12, 15] from peer 10. Any Skip Graph
earch for key 12 will now result in peer 10 which does not store
he requested triplets. Likewise, if peer 10 leaves the Skip Graph, the
esponsibility for the key range [10, 14] is passed over to peer 5.

Therefore, restoring the validity of triplet placement under churn
equires additional logic. DeScan relocates triplets when peers are
oining the overlay as follows. When peer 𝑛 with key 𝑛𝑘 has joined
he Skip Graph, it sends a TripletStoreSync message to its left
evel-0 neighbour, say peer 𝑣 with key 𝑣𝑘. When node 𝑣 receives the
ripletStoreSync message, it iterates over all stored triplets and
etermine the triplets that should be stored by the newly-joined peer
instead. These triplets and their associated Merkle Trees are sent to
in a Triplets message for storage and are subsequently deleted

rom the local transaction graph of 𝑣. As peers join DeScan and existing
eers relocate (some of) their stored triplets to newly-joined peers, the
torage burdens are effectively spread out over peers in the network.
e experimentally evaluate this property in Section 6.6.
DeScan deals with leaving peers as follows. Before some peer 𝑛 with

ey 𝑛𝑘 leave the network, it first sends its stored triplets to the left
evel-0 neighbour, say node 𝑣 with key 𝑣𝑘, in a Triplets message.
his makes node 𝑣 the new responsible node for the triplets priorly
tored by 𝑛. Peer 𝑛 then leaves the Skip Graph.

.3. Extensions

We now discuss two extensions of DeScan. While these extensions
re not required for the correct operation of DeScan, we believe they
re able to improve the user experience and capabilities of DeScan.
Supporting Nodes with Limited Storage Capacities. DeScan stores

riplets at random peers in the network. However, if a particular peer
is responsible for a large part of the key space, it might incur more

torage overhead than available on 𝑛. Another possibility is that users
ave allocated a limited amount of disk space for DeScan storage, for
xample, 1 Gigabyte.
DeScan can perform a load-balancing operation when 𝑛 is running

ut of storage, by moving some of its triplets to a level-0 neighbour
n the Skip Graph, say node 𝑣. 𝑛 then executes the triplet relocation
lgorithm described earlier and keeps track of the triplets that have
een offloaded to node 𝑣. When 𝑛 receives a Retrieve message from



Future Generation Computer Systems 152 (2024) 257–272M. de Vos et al.

n

Fig. 6. The effect of unresponsive and adversarial nodes on a Skip Graph search.
t
w
t
t
a
G
t
u
l
r
d

5

e
t
l
s
n
n
h
q
p
o
r

ode 𝑠 for triplets that have been offloaded to node 𝑣, 𝑛 informs 𝑠 of
node 𝑣. Subsequently, 𝑠 then also sends a Retrieve message to 𝑣.
Offloading triplets and querying offloaded triplets increases end-to-end
latency of triplet retrieval since more round-trip messages are required
to collect all triplets from multiple peers. A more similar algorithm that
rebalances content in a Skip Graph structure as response to capacity
limitations is provided in the work of Disterhöft et al. [55]. Even though
this extension is not part of our implementation and experiments,
dealing with storage limitations becomes important when devices with
lower resource capacities, e.g., mobile phones, participate in DeScan.

Range Queries and Ordered Indexing. A distinct benefit of the
Skip Graph structure is that it allows range queries, e.g., fetching all
Skip Graph nodes in a key range [56]. This is possible since nodes are
linked in incremental order on their key on level 0. For example, if
a peer 𝑛 wishes to retrieve all nodes in the key range [40, 70], 𝑛 first
performs a search for node 40. 𝑛 then iteratively queries the right level-
0 neighbour of the resulting node, continuing until a node with a key
equal to or higher than 70 is retrieved.

We can modify the indexing mechanism of DeScan to store ordered
transactions at adjacent nodes in the Skip Graph, a mechanism we call
ordered indexing. For instance, buy and sell orders can be stored based
on an increasing price in nodes in the Skip Graph, and retrieved using
the price range by end users.

5. Achieving censorship resilience and fault tolerance when
querying triplets

The approach to query triplets, as described in Section 4, is not
resistant against adversarial peers that attempt to censor particular
triplets, nor has any robustness against unresponsive peers on a search
path. We show how unresponsive and adversarial peers can make a
Skip Graph search, and consequentially a triplet query, fail in Fig. 6.
Fig. 6(a) shows how unresponsive node 5 causes the search for node 4,
initiated by node 13, to timeout. Since peers forward incoming Search
messages to other peers, any unresponsive peer will stall the search
since a Search message will not reach its final destination. In Fig. 6(a),
the Search message will never reach node 4.

Similarly, an adversarial peer can easily disrupt a Skip Graph search
by sending a SearchResponse message to the search initiator with
an incorrect search result, e.g., by reporting itself as the intended search
result. This is shown in Fig. 6(b) where node 13 searches for node 4.
Adversarial node 5 responds with a SearchResponse messsage to
node 13, after which node 13 will send a TripletsRequest to node
5. Node 5 can now respond with a Triplets message containing no
triplets, effectively preventing node 13 from obtaining the requested
triplets.

To quantify the impact of adversarial peers on the success rate
of queries, we experiment with the DeScan implementation (also see
264
Section 6). We construct a Skip Graph with 10 000 nodes in which the
key of each node is its numerical index, starting from 1. We make
10% of all joined peers adversarial, i.e., they will respond with an
invalid search result as shown in Fig. 6(b). We conduct 1000 Skip Graph
searches in total. Each query is initiated by a random honest peer and
has another random peer as a search target. This experiment reveals
that most Skip Graph searches, 58.4%, result in an incorrect node. This
result shows that the usability of DeScan degrades quickly, even when
a small fraction of peers is adversarial.

To achieve tolerance against both adversarial and unresponsive
peers, we make four modifications to DeScan: (1) acknowledgements of
Search messages, (2) extended routing tables, (3) replicating triplets
on the storage layer, and (4) operating multiple Skip Graph. We de-
scribe each modification in the following subsections.

5.1. Acknowledgements of Search messages

Our first modification enhances the Skip Graph search algorithm
described in Section 4.2. This modification allows peers to detect un-
responsive peers during Skip Graph searches and update their routing
tables accordingly. When a peer 𝑢 forwards a Search message to a
subsequent peer 𝑣, 𝑣 will now also send a SearchAck message back
o 𝑢. If 𝑣 fails to reply to 𝑢 with this message within a timeout, 𝑢
ill consider peer 𝑣 unresponsive and remove it from its local routing

able. This will prevent 𝑢 from routing subsequent Search messages
o 𝑣. To replace peer 𝑣 in the routing table of 𝑢, 𝑢 should locate
nother node to fill its place using the primitives provided by the Skip
raph construction algorithm. 𝑢 will then send the Search message

o the next eligible peer. This modification enables DeScan to deal with
nresponsive peers. However, this modification might increase the total
atency of triplet queries as any unresponsive peer on the search path
equires a peer forwarding a Search message to wait for the timeout
uration.

.2. Extended routing tables

By default, a peer stores at most one left and right neighbour at
ach level in the local routing table. Our second modification extends
he routing tables of peers such that each peer will maintain at most 𝑏
eft or right neighbours on every level. For example, in the Skip Graph
hown in Fig. 6 and with 𝑏 = 2, node 7 will store on level 0 both
ode 4 and 5 left as left neighbours, and node 10 and 13 as right
eighbours. Maintaining multiple neighbours reduces the number of
ops in Skip Graph searches since Search messages can now be routed
uicker to a destination node. Consequentially, it also reduces the
robability that a search hits an adversarial peer, assuming the fraction
f malicious peers is fixed. This modification also provides increased re-
outing opportunities of a search to other peers if unresponsive peers



Future Generation Computer Systems 152 (2024) 257–272M. de Vos et al.

t

m
s
d
c
t
t
𝑠
c
s

5

t
a
w
t
o
c
s
f
s
𝑗
o
w
p

𝐶

2

𝐶

2
𝑙
r
m
d

t
s
s
i
f
9
o
t
r
5
g

Fig. 7. The distribution of search hops for 𝑛 = 1600 and 𝑏 = 1, 𝑏 = 2, and 𝑏 = 3. For
each value of 𝑏, we perform 1000 searches and annotate the average number of search
hops with a dashed vertical line.

are encountered. However, this comes with additional storage and
coordination overhead since additional nodes must be maintained in
local routing tables.

To quantify the impact of this modification on the number of hops
for each search, we experiment with 𝑛 = 1600 and different values of 𝑏.
We keep track of the number of peers each Skip Graph search traverses
while excluding the search originator. Fig. 7 shows the impact of 𝑏 on
he number of hops in a search, for 𝑏 = 1, 𝑏 = 2, and 𝑏 = 3. For each

value of 𝑏 we perform 1000 searches. We also annotate for each value
of 𝑏 the mean number of search hops with a vertical dashed line. Fig. 7
shows that the average number of search hops decreases significantly
when increasing 𝑏 from 1 to 2, namely from 12.5 to 7.5. Increasing
𝑏 from 1 to 3 reduces the average number of search hops to 6.5, a
reduction of 48.0% compared to 𝑏 = 3. We also observe that increasing
𝑏 further has diminishing returns on the number of hops per search.

The search algorithm discussed in Section 2.5 should be modified to
support tracking multiple neighbours per level. Instead of forwarding
a search to the immediate left or right neighbour at a particular level
in the local routing table, a peer iterates over the list of left or right
neighbours until it finds the best candidate to forward the search
to. When left-routing the search, we iterate over the left neighbours
until we find a node with the lowest key higher than or equal to the
search target. When right-routing the search, we iterate over the right
neighbours until we find a node with the highest key less than or equal
to the search target.

5.3. Replicating triplets on the storage layer

Our third modification adds replication on the storage layer and
ensures that triplets remain available when peers that store them
become adversarial or unresponsive. By default, DeScan stores triplets
associated with particular content on exactly one peer. Similar to unre-
sponsive or adversarial peers encountered during a Skip Graph search,
unresponsive or adversarial peers storing triplets will not respond with
a Triplets message to a query initiator. Triplets stored on such peers
then become unavailable.

To address this, we replicate triplets on 𝑟 > 1 peer in the network,
where 𝑟 is the triplet replication factor. As 𝑟 increases, the probabil-
ity that at least one honest peer in the network stores particular
triplets also increases. A peer querying triplets now conducts 𝑟 parallel
searches. Redundant storage improves resilience against unresponsive
and adversarial peers but multiplies the storage overhead by 𝑟. Like-
wise, conducting multiple parallel searches in the Skip Graph increases
network overhead.

To determine the 𝑟 peers that are responsible for storing triplets
associated with content 𝑐, a query initiator 𝑝 compute 𝑘𝑖 = 𝐻(𝑐.𝑖𝑑 ∥ 𝑖)
where 𝑘𝑖 is the 𝑖𝑡ℎ key of the peer responsible for storing these triplets,
and 𝑖 is an index in the interval [0, 𝑟]. 𝑝 then conducts 𝑟 parallel Skip
Graph searches for each computed 𝑘𝑖 and sends a Retrieve messages
265

to each of the peers returned by the search. b
Fig. 8. The peers involved in a search operation initiated by node 3, searching for
node 19. Nodes with a red cross are unresponsive.

5.4. Constructing multiple skip graphs

Our fourth modification involves the network constructing and
maintaining 𝑠 Skip Graphs. Each peer in the network derives 𝑠 distinct

embership vectors from their public key. When starting the DeScan
oftware, a peer joins all 𝑠 skip graphs with the same key but with
ifferent membership vectors. This modification makes it much more
hallenging for adversarial peers to place themselves strategically in
he network since the links on level 𝑥 > 0 differ significantly between
he different Skip Graphs. Even though this requires peers to construct
Skip Graph overlays, we argue that these costs are reasonable since

onstructing the Skip Graph is an operation only performed upon
tartup of the DeScan software.

.5. Analysis

We now analyse the algorithmic complexity and censorship resis-
ance in DeScan. In our analysis, we assume that membership vectors
re uniformly random, resulting in well-balanced Skip Graphs. First
e derive the complexity of a Skip Graph search in terms of steps

aken (i.e., the length of a search path), and then analyse the impact
f our improvements on this complexity, which we denote by 𝑚. This
omplexity approximates the average number of messages we have to
end to complete a search. To derive the number of steps required
or a search, we do, analogue to [49], a backwards analysis of the
earch path. Let 𝐶(𝑗) denote the number of steps required to go up
levels in the Skip Graph. At each particular step during the search

peration, the search was either coming from a left or right neighbour
ith 50% probability, or moved down from an upward level with 50%
robability [49]. More formally, 𝐶(𝑗) is given by:

(𝑗) = 1 + 1
2
𝐶(𝑗 − 1) + 1

2
𝐶(𝑗)

𝐶(𝑗) = 2 + 𝐶(𝑗 − 1) + 𝐶(𝑗)

(𝑗) = 2 + 𝐶(𝑗 − 1) (1)

Eq. (1) shows that the expected number of steps at each level is
. Analysis in [12,49] derives that a Skip Graph contains, on average,
𝑜𝑔(𝑛) levels where 𝑛 is the total number of peers in the network,
esulting in an expected number of steps 𝑚 = 2 ⋅ 𝑙𝑜𝑔(𝑛), or 𝑂(𝑙𝑜𝑔 𝑛). The
essage complexity, i.e., the number of messages sent between peers
uring a search operation in the Skip Graph, is also 2 ⋅ 𝑙𝑜𝑔(𝑛).

Acknowledging Search messages (see Section 5.1) increases the
otal number of messages required for a search operation when unre-
ponsive peers are encountered but does not extend the length of the
earch path to reach the peer with the requested key. We show this
n Fig. 8, visualizing how a search initiated by node 3 and looking
or node 19 traverses through peers in the network. Node 4, 7 and

are considered unresponsive (indicated with a red cross) and the
ther peers are considered responsive (indicated in green). While the
otal number of messages increase compared to when all peers are
esponsive, the length of the search path to reach node 19 remains

regardless of encountering unresponsive peers during a search. In
eneral, acknowledging Search messages requires two messages to

e sent when taking a step during a search, and costs one message



Future Generation Computer Systems 152 (2024) 257–272M. de Vos et al.

u
f
e
𝑚

f

𝐶

𝑠
s
c
w
s
a

𝑃

q

𝑃

W

𝑚

r

6

g
t

when forwarding a Search message to an unresponsive peer (as
nresponsive peers do not send acknowledgements). Let 𝑓𝑢 denote the
raction of peers that are unresponsive. Assuming 𝑚 = 2 ⋅ 𝑙𝑜𝑔(𝑛), the
xpected number of messages required for a search becomes 2 𝑚 + 𝑓𝑢 ⋅
= 4 ⋅ 𝑙𝑜𝑔(𝑛) + 2𝑓𝑢 ⋅ 𝑙𝑜𝑔(𝑛), which still results in an overall 𝑂(𝑙𝑜𝑔 𝑛)

message complexity.
Extending the routing tables (see Section 5.2) does not modify the

expected number of levels but does enables a search to take ‘‘shortcuts’’
on a single level, therefore reducing the expected number of steps taken
at each level. When deriving Eq. (1) we assumed that a search is equally
likely to have originated from a left or right neighbour, as it originates
from an upward level. Increasing 𝑏, however, decreases the number of
peers visited on a single level and therefore increases the probability
that a search came down from an upwards level. For a particular value
of 𝑏, the probability that a search came from a left or right neighbour
on the same level becomes 1

2𝑏 . We rework Eq. (1) and integrate 𝑏 as
ollows:

(𝑗) = 1 + (1 − 1
2𝑏

)𝐶(𝑗 − 1) + 1
2𝑏

𝐶(𝑗)

2𝑏 ⋅ 𝐶(𝑗) = 2𝑏 + 2𝑏(1 − 1
2𝑏

)𝐶(𝑗 − 1) + 𝐶(𝑗)

= 2𝑏 + (2𝑏 − 1)𝐶(𝑗 − 1) + 𝐶(𝑗)

(2𝑏 − 1)𝐶(𝑗) = 2𝑏 + (2𝑏 − 1)𝐶(𝑗 − 1)

𝐶(𝑗) = 2𝑏
2𝑏 − 1

+ 𝐶(𝑗 − 1) (2)

Eq. (2) shows that the expected number of peers visited on each
level is now 2𝑏

2𝑏−1 which tends to go towards 1 as 𝑏 increases. The
expected total steps for a search operation now becomes 𝑚 = 2𝑏

2𝑏−1 ⋅
𝑙𝑜𝑔(𝑛).

The modifications described in Sections 5.3 and 5.4 do not impact
the structure of the Skip Graph, nor the flow of a single search op-
eration. Instead, these modifications initiate 𝑟 concurrent searches in

Skip Graphs to increase the probability that the search originator
uccessfully retrieves requested information. The query success rate
ritically depends on the fraction of adversarial peers in the network
hich we denote by 𝑓𝑎. We first derive the probability 𝑃𝑠(𝑞) that a

ingle search query 𝑞 succeeds, which happens when there are no
dversarial peers on the search path of 𝑞:

𝑠(𝑞) = (1 − 𝑓𝑎)𝑚 (3)

Next, we derive the probability 𝑃𝑠 that at least one of our 𝑟 ⋅𝑠 search
ueries succeed, which is:

𝑠 = 1 − (1 − 𝑃𝑠(𝑞))𝑟⋅𝑠

= 1 − (1 − (1 − 𝑓𝑎)𝑚)𝑟⋅𝑠
(4)

here 𝑚 is given by:

= 2𝑏
2𝑏 − 1

⋅ 𝑙𝑜𝑔(𝑛) (5)

Combining Eq. (4) and (5) reveals that the probability of a search
in DeScan succeeding depends on 𝑛, 𝑓𝑎, 𝑏, 𝑟 and 𝑠. Increasing 𝑛 and 𝑓𝑎
educe 𝑃𝑠 whereas increasing 𝑏, 𝑟 and 𝑠 increase 𝑃𝑠. We remark that

unresponsive peers do not affect the length of a search path (also see
Fig. 8) but they do increase the overall number of messages being sent.
Therefore, 𝑓𝑢 does not influence 𝑃𝑠.

6. Experimental evaluation

We now describe our experimental setup and evaluation of DeScan.
Our experiments answer the following questions:

1. What is the impact of unresponsive and adversarial peers on the
success rate when querying triplets (Section 6.2)?

2. What is the effect of parameters 𝑛, 𝑏, 𝑠 and 𝑟 on the success
rate when querying triplets, in the presence of unresponsive or
adversarial peers (Section 6.3)?
266
Table 1
The parameters used by DeScan and during our experiments.
Notation Parameter Description

𝑛 Number of peers in the network.
𝑏 Neighbours in the local routing table.
𝑠 Number of Skip Graphs.
𝑟 Triplet replication factor.
𝑓𝑢 Fraction of unresponsive peers.
𝑓𝑎 Fraction of adversarial peers.

3. What is the end-to-end latency of triplet queries in DeScan (Sec-
tion 6.4)?

4. How does the network usage overhead of DeScan change when
increasing the network size (Section 6.5)?

5. How does the storage overhead of DeScan change when increas-
ing the network size and the volume of indexed transactions
(Section 6.6)?

6. What is the storage requirement of DeScan when indexing and
storing all transactions in the Ethereum blockchain (Section 6.7)?

.1. Implementation and experimental setup

We implement all functionality of DeScan in the Python 3 pro-
ramming language. DeScan is built using the IPv8 networking library
hat provides tools to build decentralized overlays.4 We use the UDP

network protocol for packet exchange and adopt an event-driven pro-
gramming paradigm using the asyncio Python library. Triplets are
exchanged between peers using a binary transfer protocol based on
the Trivial File Transfer Protocol (TFTP). We open-sourced the full
implementation of DeScan and associated artefacts such as tests and
documentation.5

We use an overlay simulator already included in the IPv8 network-
ing library to conduct experiments with thousands of peers. Each peer
generates a random key pair and derives 𝑠 membership vectors from
their public key to join the Skip Graph. To evaluate the query duration
of DeScan in a realistic environment with pairwise network latencies,
we crawl ping times from WonderNetwork, providing estimations on
the RTT between their servers in 277 cities [57]. We then assign
each peer in our experiments to a city in a round-robin fashion and
apply outgoing network latency accordingly. All experiments are con-
ducted on a HPE DL385 Gen10 servers, equipped with 128 AMD EPYC
7452 CPUs, 512 GB of DDR4 memory, and running Debian 10. Even
though our experiments are conducted in a simulated environment,
it is straightforward to deploy DeScan since it is built with the IPv8
networking library, and its implementation requires minimal changes
to the logic in order to run it in a non-simulator environment.

Each experiment run starts with all peers joining the Skip Graph
and filling their routing tables. We then start the CPE on each peer (see
Section 4.1) and index all locally available content. This will generate
triplets and distribute them amongst the peers in the network. In each
experiment, we perform exactly 1000 queries. A triplet query is always
initiated by an honest, responsive peer. The triplets that these peers
query are randomly chosen from the dataset. During all experiments,
we monitor whether queries are successful, i.e., result in the requested
triplets for the query originator. We repeat each experiment at least ten
times and average all results. For reference, we have listed in Table 1
all the parameters considered during the evaluation of DeScan.

Dataset. Since we intend DeScan to be used in a Web3 context, we
evaluate our mechanism using a subset of Ethereum transactions. We
choose to evaluate with an Ethereum dataset since Ethereum is the most
popular Web3 platform at the time of writing. Specifically, we have
crawled the block with index 15 000 000 from the Ethereum mainnet

4 See https://github.com/tribler/py-ipv8.
5 See https://github.com/devos50/descan.

https://github.com/tribler/py-ipv8
https://github.com/devos50/descan


Future Generation Computer Systems 152 (2024) 257–272M. de Vos et al.
Fig. 9. The fraction of failed searches for different fractions of unresponsive and
adversarial peers. We fix 𝑛 = 1600 and 𝑏 = 𝑠 = 𝑟 = 5.

and the 55 000 subsequent blocks, which together contain just over
10 million Ethereum transactions. These blocks were created between
June 21, 2022 and July 1, 2022. We implemented two rules in DeScan
to process this data. The first rule analyses a block and creates triplets
using the Web3 library.6 This rule also queues any transaction data
contained in the block for processing. The second rule generates triplets
from Ethereum transactions. Except for the experiments that analyse
storage overhead, we experiment with a subset of our crawled dataset,
namely the first 1000 blocks that include 187 987 transactions in total.

6.2. The impact of unresponsive and adversarial peers

Setup. We first analyse the impact of unresponsive and adversarial
peers on the success rate of triplet queries. We model the behaviour
of unresponsive and adversarial peers as described in Section 5 and as
shown in Fig. 6. We fix 𝑛 = 1600 and 𝑏 = 𝑠 = 𝑟 = 5 to enable our
four modifications presented in Section 5. As a result, a peer initiating
a triplet query will issue 5 ⋅ 5 = 25 Skip Graph searches in parallel, five
in each of the five Skip Graphs. We evaluate DeScan under different
combinations of fractions of unresponsive peers (𝑓𝑢) and adversarial
peers (𝑓𝑎). We experiment with up to 50% unresponsive peers and 35%
adversarial peers.

Results. Fig. 9 shows the query success rate for different com-
binations of 𝑓𝑢 and 𝑓𝑎, with percentages in each cells. We observe
that queries remain highly successful with 𝑓𝑢 = 0 and 𝑓𝑎 ≤ 0.2. In
comparison, without our modifications enabled (𝑏 = 𝑠 = 𝑟 = 1) and with
𝑓𝑢 = 0 and 𝑓𝑎 = 0.2, 82.7% of all queries is unsuccessful. For 𝑓𝑢 = 0
and 𝑓𝑎 = 0.35, 12.2% of all triplet queries fail. In extreme circumstances
with 𝑓𝑢 = 0.5 and 𝑓𝑎 = 0.35 (i.e., merely 15% of all peers are honest
and responsive), we observe that 10.3% of all queries still are successful
and result in triplets.

Fig. 9 also shows that DeScan better tolerates unresponsive peers
than adversarial peers. Even when half of all nodes are unresponsive
(𝑓𝑢 = 0.5), 97.9% of all queries are successful. This is because unre-
sponsive peers can be detected by other peers and be removed from the
routing tables. It is more difficult to verify whether the search result
returned by an adversarial peer to a query initiator is correct [14].
We believe that detecting adversarial peers is an interesting extension
of our work and can further increase the robustness of DeScan against
adversarial peers.

6 See https://web3js.readthedocs.io/en/v1.8.0/.
267
Conclusion. Our experiment reveals that DeScan and the proposed
modifications in Section 5 exhibit some robustness against unrespon-
sive and adversarial peers. With 𝑛 = 1600 and 𝑏 = 𝑠 = 𝑟 = 5,
DeScan can deal with 20% adversarial peers or 50% unresponsive
peers without significant disruption. This robustness, however, comes
at an increased overhead of storing triplets, additional computational
costs, and increased network overhead. We analyse this overhead in
Sections 6.5 and 6.6.

6.3. The impact of DeScan parameters

We now explore the impact of different DeScan parameters listed
in Table 1 on the query failure rate. We analyse the effect of these
parameters on adversarial and unresponsive peers separately.

Adversarial Peers. We run experiments to analyse the effect of 𝑏,
𝑠, 𝑟, and 𝑛 while increasing 𝑓𝑎 up to 𝑓𝑎 = 0.5 and while fixing 𝑓𝑢 = 0.
Fig. 10 shows the query failure rate as 𝑓𝑎 increases, and each subplot
shows the impact of a different system parameter on this failure rate.
Unless otherwise stated, we fix 𝑏 = 𝑟 = 𝑠 = 5 and 𝑛 = 1600. Fig. 10(a)
reveals that storing additional left and right neighbours on each level
in the routing table (e.g., increasing 𝑏) decreases the query failure rate.
This is because increasing 𝑏 decreases the number of peers that a Skip
Graph search has to traverse, as also shown in Fig. 7. Fig. 10(a) shows
that increasing 𝑏 from 1 to 2 has the most effect, and the gains by
increasing 𝑏 beyond that are marginal.

Fig. 10(b) highlights the effect of storing triplets on multiple (𝑟)
peers. With 𝑟 = 1, the query failure rate increases roughly linear with
the increase of 𝑓𝑎. This linear relation is expected since with 𝑟 = 1,
the probability that an adversarial peer stores some triplets is 𝑓𝑎. As
such, the query failure rate is at least 𝑓𝑎. Additionally, there is a chance
that the Skip Graph search, performed before retrieving triplets from a
particular peer, hits an adversarial peer and fails. Increasing 𝑟 reduces
the query failure rate: with 𝑟 = 5 and 𝑓𝑎 = 0.5, there is already a
probability of 96.9% that at least one honest peer stores some triplets.
Fig. 10(b) shows that increasing 𝑟 reduces the query failure rate: for
𝑓𝑎 = 0.25, we see a decrease in unsuccessful queries for 𝑟 = 1 and 𝑟 = 5
from 40.2% to 1.6%, respectively.

Fig. 10(c) shows how constructing 𝑠 Skip Graphs reduces the query
failure rate in the presence of adversarial peers. For 𝑓𝑎 = 0.25, increas-
ing 𝑠 from 1 to 5 reduces the query failure rate from 34.0% to 2.3%.
We observe that increasing 𝑠 shows comparable effects as increasing
𝑟 (see Fig. 10(b)), probably because they both result in more parallel
Skip Graph searches being performed. However, 𝑟 controls the number
of searches performed within a single Skip Graph, whereas 𝑠 determines
the number of unique Skip Graphs the network constructs.

Finally, Fig. 10(d) shows how the query failure rate behaves as
more nodes join the network. Increasing the network size harms the
success of DeScan queries. This is because more peers in the network
will result in longer search paths for individual Skip Graph searches.
Thus the likelihood of hitting an adversarial peer during a search also
increases. The effect of increasing 𝑛 becomes more pronounced when
𝑓𝑎 also increases. For 𝑓𝑎 = 0.5, the query failure rate increases from
39.4% to 68.7% for 𝑛 = 800 and 𝑛 = 12 800, respectively. This effect
is less for 𝑓 = 0.25 in absolute terms, where the same increase is from
1.2% to 4.65%.

Unresponsive Peers. We repeat the above experiments but vary
the fraction of unresponsive nodes, 𝑓𝑢 and fixing 𝑓𝑎 = 0. Since Fig. 9
indicates that DeScan is highly robust against unresponsive nodes with
parameters 𝑏 = 𝑠 = 𝑟 = 5, we lower 𝑏, 𝑠 and 𝑟 to 3. This also helps to
distinguish results in the plots better. The results of these experiments
are visible in Fig. 11. Fig. 11(a) shows that increasing 𝑏 has a high
impact on the query failure rate: 83.1% of all queries fail with 𝑓𝑢 = 0.5
and 𝑏 = 1. This number is reduced to 11.3% for 𝑏 = 5. Extending the
routing tables with more nodes decreases the query failure rate since
a Search message can always be forwarded to another neighbour on
level 𝑖 if an unresponsive peer is detected.

https://web3js.readthedocs.io/en/v1.8.0/


Future Generation Computer Systems 152 (2024) 257–272M. de Vos et al.
Fig. 10. The effect of parameters 𝑏, 𝑟 and 𝑛 on the query failure rate, while increasing the fraction of adversarial peers, 𝑓𝑎. Unless otherwise stated, we fix 𝑏 = 𝑟 = 𝑠 = 5 and
𝑛 = 1600.
Fig. 11. The effect of parameters 𝑏, 𝑟 and 𝑛 on the query failure rate, while increasing the number of unresponsive peers, 𝑓𝑢. Unless otherwise stated, we fix 𝑏 = 𝑟 = 𝑠 = 3 and
𝑛 = 1600.
Fig. 11(b) shows the effect of increasing 𝑟 on the query failure rate.
When increasing 𝑟 from 1 to 5 for 𝑓𝑢 = 0.35, the query failure rate
reduces significantly, from 35.1% to 0.5%. Comparing Figs. 11(b) and
10(b), we find the effect of increasing 𝑟 in the presence of unresponsive
peers is more than when having adversarial peers. This is because
adversarial peers have a more profound impact on the failure of Skip
Graph searches than unresponsive peers. Specifically, an unresponsive
peer on a search path does not necessarily fail the search — the
unresponsive peer can simply be removed from the routing table, and
the Search message can be forwarded to another peer. In contrast,
any adversarial peer on a search path can fail a search and conducting
searches in multiple Skip Graphs is an effective approach to deal with
such nodes. Fig. 11(c) highlights that increasing 𝑠 also increases the
query success rate, although this effect is less pronounced than in the
presence of adversarial peers as in Fig. 10(c). For 𝑠 = 1 and 𝑓𝑢 ≥ 0.3,
we see that the query failure rate quickly increases.

Fig. 11(d) shows that the network size has little impact on the query
failure rate. Even though a larger network size increases the number of
peers that a Skip Graph search traverses, with 𝑏 = 𝑟 = 𝑠 = 3, there
is sufficient redundancy in the routing tables to handle unresponsive
peers and to ensure that most queries are still successful.

Conclusion. We have analysed the effect of 𝑏, 𝑠, 𝑟 and 𝑛 on the query
failure rate for different values of 𝑓𝑎 and 𝑓𝑢. In general, increasing 𝑏,
𝑠, and 𝑟 reduces the query failure rate, both in the presence of adver-
sarial and unresponsive peers. To resist adversarial peers, increasing
𝑟 and 𝑠 is the most effective since that increases the number of Skip
Graph searches performed for each query. To resist unresponsive peers,
increasing 𝑏 is the most effective since it allows a Skip Graph search to
be routed to other peers in the routing table when an unresponsive peer
is detected.

6.4. Latency of triplet queries

The ability for users to quickly retrieve relevant triplets is a key
268

property of DeScan. Our next experiments measure the duration of
Fig. 12. The distribution of query durations as the network size increases. We fix
𝑠 = 𝑟 = 5 and experiment with 𝑏 = 1 and 𝑏 = 3.

Fig. 13. The distribution of query durations as the fractions of adversarial and
unresponsive peers (𝑓𝑎 and 𝑓𝑢) increases. We fix 𝑏 = 𝑟 = 𝑠 = 5 and 𝑛 = 1600.

triplet queries, for different network sizes and in the presence of
adversarial and unresponsive nodes.

Setup. We first analyse the duration of individual queries as the
number of peers in the network (𝑛) increases. This allows us to analyse



Future Generation Computer Systems 152 (2024) 257–272M. de Vos et al.

t
d
t
i
e
p

o

Fig. 14. The total network usage per peer, for increasing values of 𝑛. The horizontal
axis is a dimensionless unit denoting the peer indices, ascendantly ordered by total
network usage. We fix 𝑏 = 𝑠 = 𝑟 = 5.

he performance of DeScan as the network grows. We keep track of the
uration of each query, which is the elapsed time between initiating
he query until retrieving all edges from at least one other peer. We
ncrease 𝑛, starting from 100 and up to 12 800, multiplying 𝑛 by four
very step. Then we analyse the effect of unresponsive and adversarial
eers on the query durations.
Results. Fig. 12 shows the distribution of query durations in sec-

nds for increasing network sizes, and for 𝑏 = 1 and 𝑏 = 3. We
find that query durations in DeScan scale very well with the network
size: there only is a marginal increase in the average query duration
when the network size grows. For 𝑏 = 1, the average query duration
increases from 0.31s for 𝑛 = 200 to 0.53s for 𝑛 = 12 800, an increase
of just 225 ms. For 𝑏 = 1 and 𝑛 = 12 800, 99% of all queries are
answered within 1.1s. Fig. 12 also shows that increasing 𝑏 reduces
query durations since Skip Graph searches can be completed more
efficiently when maintaining more neighbourhood information in local
routing tables. For 𝑏 = 3 and 𝑛 = 12 800, queries are answered in 0.42s
on average, a reduction of 21.3% compared to the experiment with
𝑏 = 1.

Fig. 13 shows the impact of increasing the fractions of adversarial
and unresponsive peers (𝑓𝑎 and 𝑓𝑢) on the duration of successful
queries. For 𝑢𝑎 = 0.05 and 𝑓𝑢 = 0.05 the average query duration is
360 ms and 364 ms, respectively. Average query durations increase to
406 ms and 439 ms for 𝑢𝑎 = 0.2 and 𝑢𝑓 = 0.2, respectively. As such,
adversarial and unresponsive peers have a low impact on the query
durations. Fig. 13 does reveal that unresponsive peers increase query
durations slightly more than adversarial peers.

Conclusion. Our experiment demonstrate that queries in DeScan
are usually completed well within a second, even with adversarial or
unresponsive peers, and when the network size increases.

6.5. Network usage

Our following experiments quantify the network usage induced by
DeScan.

Setup. During this experiment, we measure the amount of in-
coming and outgoing network traffic for every peer when conducting
10 000 searches. We repeat the experiment for increasing values of 𝑛 to
determine how network traffic is distributed over peers in the network.

Results. Fig. 14 shows the total network usage in MB per peer when
increasing the network size. For each value of 𝑛, we have sorted all
peers based on their network usage in ascending order. For 𝑛 = 800,
we see significant differences in network utilization amongst peers.
The peer with the lowest utilization incurs 0.94 MB of network traffic,
whereas the peer with the highest utilization incurs 6.71 MB of network
traffic. As 𝑛 increases, we also find that the network usage per peer
decreases and the variation between peers also lowers. In other words,
the network load is more evenly balanced amongst peers. For 𝑛 =
12 800, the average network usage per peer is just 0.21 MB and the peer
269

with the highest network utilization processed 0.59 MB of traffic. This
Fig. 15. The storage overhead by individual peers as 𝑛 increases. For each value of 𝑛
we annotate the median, and maximum storage overhead. We fix 𝑟 = 5.

Fig. 16. The evolution median storage overhead when indexing and storage Ethereum
transactions with DeScan and 𝑛 = 1600, for 𝑟 = 1 and 𝑟 = 3. The error bars indicate the
standard deviation across runs.

indicates that DeScan effectively disperses the communication burdens
amongst peers as the network grows.

Further analysis reveals that 92.7% of all network traffic is related
to Skip Graph searches. The remaining 7.3% of traffic is attributed to
transferring triplets to the query initiator. With 𝑛 = 12 800, each query
results in roughly 252.8 KB of network traffic. This number can be
reduced by lowering 𝑠 and 𝑟. In comparison, with 𝑠 = 𝑟 = 1, each query
only results in 10.1 KB network traffic.

Another insight is that many of the parallel searches performed are
effectively ‘‘wasted’’ since they might result in triplets after a search
originator already received triplets from a faster parallel search. To
address this, we could perform Skip Graph searches in linear instead
of in parallel and stop when one of the searches and subsequent triplet
retrievals are successful. Linear execution of searches increases query
latency since one has to wait for a Skip Graph search to complete or
for the timeout trigger before the next one is initiated.

Conclusion. As the DeScan network grows, the communication
overhead becomes more evenly distributed over participating peers.

6.6. Storage cost

We now explore the storage cost of peers when increasing the
network size or the number of indexed transactions.

Setup. After each experiment ends, we compute the storage require-
ments of DeScan for each peer by summing the size of all stored triplets
and Merkle Trees in serialized form. When increasing the network size
𝑛, we fix 𝑟 = 5. We note that changing 𝑏 and 𝑠 does not affect the storage
requirements of individual peers.

Results. Fig. 15 shows a plot with the number of peers in the
network on the horizontal axis and the storage overhead of each peer
in Megabyte on a logarithmic vertical axis. This figure indicates that
the storage overhead per peer reduces as more peers join the network.
With 𝑛 = 12 800, the median storage cost per peer is only 48.1 KB.
In comparison, if the network only had a single peer (𝑛 = 1), this
single peer would incur a storage overhead of 174.8 MB. Fig. 15 shows



Future Generation Computer Systems 152 (2024) 257–272M. de Vos et al.

𝑟
s
m

a

6

e
b
i
S
a
t
t
c

p
o

Table 2
The estimated number of peers necessary to ensure various average storage costs when
storing all indexed transactions on the Ethereum blockchain for different values of 𝑟.

Average storage cost Peers necessary

𝑟 = 1 𝑟 = 3 𝑟 = 5

1 GB 1824 5472 9120
100 MB 18 672 56 016 93 360
10 MB 186 714 560 142 933 570
1 MB 1 867 137 5 601 411 9 335 685

that DeScan effectively distributes the storage burdens over peers as the
network grows.

We also observe from Fig. 15 that triplets are unevenly balanced
amongst peers. We observe considerable differences in storage cost
between peers for a fixed 𝑛. For example, with 𝑛 = 100, one peer is
required to store 46.6 MB of data, which is 8.2 times the median storage
cost (5.7 MB). At the same time, several peers are storing less than 100
KB.

This imbalance in storage cost has two causes. First, the number
of triplets generated by rules varies for different content items, which
can result in significant storage imbalances. Second, node keys are
unevenly distributed within the key space. This is because each peer in
our experiment generates a uniformly random cryptographic keypair.
It is likely that a peer is ‘‘responsible’’ for a larger or smaller key range
compared to other peers. This issue can, for example, be alleviated
by having a coordinator assign keys to joining peers, or by using a
load-aware key assignment algorithm that considers load balancing.
Offloading triplets to adjacent nodes in the Skip Graph, as described
in Section 4.3, can also alleviate this issue. These results show that as
the network grows, storage burdens decrease and it becomes possible
for low-resource devices (e.g., mobile wallets) to join the system and
persist indexed transactions.

Fig. 16 shows the number of indexed transactions on the horizontal
axis and the median storage cost across peers in the network on the
vertical axis for 𝑟 = 1 and 𝑟 = 3. We index up to 10 million Ethereum
transactions and fix 𝑛 = 1600. The error bar indicates the standard
deviation of the median storage costs across the ten experiment runs,
indicating the sensitivity of this metric to the key space. Fig. 16 shows
that the median storage cost increases linearly with the number of
stored transactions. After indexing all ten million transactions, the
average median storage cost is 4.1 MB and 12.1 MB for 𝑟 = 1 and

= 3, respectively. We also observe that the deviation of median
torage costs across runs (e.g., the error bars length) increases when
ore transactions are indexed.
Conclusion. DeScan evenly distributes the storage costs over peers

s the network grows.

.7. Indexing and storing the full Ethereum blockchain

Finally, we estimate the storage costs with DeScan when storing the
ntire Ethereum blockchain. Ethereum is currently the most popular
lockchain in terms of transaction volume, and at the time of writ-
ng contains close to 2 billion transactions. The experimental data in
ection 6.6 reveals that an indexed transaction, on average, results in
storage overhead of 979 bytes when storing it at a single peer in

he network without replication. We estimate that, to store 2 billion
ransactions with a replication factor of 5, we require a network storage
apacity of 1.8 TB.

Table 2 lists the estimated number of peers necessary to ensure
articular average storage costs when storing all indexed transactions
n the Ethereum blockchain for different values of 𝑟. To ensure an

average storage cost of 1 MB while replicating each triplet across five
peers, we require the involvement of approximately 9.3 million peers.
While this number might seem high, we also suspect that there is an
270

abundance of lightweight Internet devices that can easily store 1 MB of
content or more. If each peer can store 100 MB, we require 93 360 peers
to store the entire Ethereum blockchain. In practice, the storage capa-
bilities of participating peers are likely to differ significantly, resulting
in the situation where some peers store more triplets than others. The
extension introduced in Section 4.3 can help to rebalance triplet storage
across the network.

We also note that the rules used by the CPE are relatively simple
and only process high-level metadata of each Ethereum block and
transaction. More advanced rules that index content items with higher
granularity generate additional triplets, resulting in additional storage
overhead per indexed content item. The above analysis also ignores the
situation where Web3 data from multiple applications are indexed and
stored with DeScan. Nonetheless, our experiments hint that DeScan is
a scalable solution in which the storage costs decrease as the network
grows.

7. Conclusions

We have presented DeScan, a fully functional decentralized and
censorship-resistant Web3 system for indexing and search. DeScan uses
rules to transform Web3 transactions into triplets, which together form
a transaction graph. The storage of this transaction graph is distributed
over peers in the DeScan network. We leverage a Skip Graph data
structure to coordinate this storage process and to enable users to
search for triplets. Through a series of modifications, we improve the
robustness of the DeScan against both adversarial and unresponsive
peers. In particular, we extend local routing tables, replicate triplets
over multiple peers and conduct parallel searches in multiple Skip
Graphs.

We provide a formal analysis of the algorithmic complexity and cen-
sorship resistance of DeScan, which establishes a relation between the
probability of a search succeeding and the DeScan system parameters.
We provide an experimental evaluation of this analysis. It shows that
the increase of two specific parameters, namely the triplet replication
factor (𝑟) and the number of Skip Graphs (𝑠), serve as an effective
countermeasure against adversarial peers. Our experiments with a real-
world transaction trace from the Ethereum blockchain showed that
DeScan, with our modifications, can deal with up to 25% adversarial
peers and 35% unresponsive peers without significant system degra-
dation. We show that queries for triplets are completed well within a
second, even when there are over 10 000 peers. As the network grows,
the communication overhead becomes more evenly distributed among
peers. Finally, we establish that the network and storage overhead
induced by individual peers decreases as the network grows.

CRediT authorship contribution statement

Martijn de Vos: Conceptualization, Methodology, Software, Val-
idation, Formal analysis, Writing – original draft, Funding acquisi-
tion. Georgy Ishmaev: Conceptualization, Writing – review & editing,
Funding acquisition. Johan Pouwelse: Resources, Writing – review &
editing, Supervision, Project administration.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Martjn de Vos reports financial support was provided by Ethereum
Foundation. Georgy Ishmaev reports financial support was provided by
Ethereum Foundation.

Data availability

The link to the research data and code is available as URL in the

article.



Future Generation Computer Systems 152 (2024) 257–272M. de Vos et al.
Acknowledgements

This work is funded by the Ethereum Foundation under grant
FY22-0833.

References

[1] L.V. Kiong, Web3 Made Easy: A Comprehensive Guide to Web3: Everything you
need to know about Web3, Blockchain, DeFi, Metaverse, NFT and GameFi, Liew
Voon Kiong, 2022.

[2] A. Pentland, Building a new economy: data, AI, and Web3, Commun. ACM 65
(12) (2022) 27–29, http://dx.doi.org/10.1145/3547659, URL https://dl.acm.org/
doi/10.1145/3547659.

[3] Etherscan, Etherscan: The ethereum blockchain explorer, 2022, URL https://
etherscan.io.

[4] Infura, Infura, 2022, URL https://infura.io.
[5] A. Wahrstätter, J. Ernstberger, A. Yaish, L. Zhou, K. Qin, T. Tsuchiya, S.

Steinhorst, D. Svetinovic, N. Christin, M. Barczentewicz, et al., Blockchain
censorship, 2023, arXiv preprint arXiv:2305.18545.

[6] R. Recabarren, B. Carbunar, Tithonus: A bitcoin based censorship resilient
system, Proc. Priv. Enhanc. Technol. 1 (2019) 68–86.

[7] Z. Wang, X. Xiong, W.J. Knottenbelt, Blockchain transaction censorship:(in)
secure and (in) efficient? Cryptol. ePrint Arch. (2023).

[8] S. Brown, MEV driven centralization in ethereum: Part 1, 2022, URL https:
//simbro.medium.com/mev-driven-centralization-in-ethereum-ec829a214f18.

[9] A.E. Gencer, S. Basu, I. Eyal, R.v. Renesse, E.G. Sirer, Decentralization in bitcoin
and ethereum networks, in: International Conference on Financial Cryptography
and Data Security, Springer, 2018, pp. 439–457.

[10] M. Kleppmann, A. Wiggins, P. van Hardenberg, M. McGranaghan, Local-first
software: you own your data, in spite of the cloud, in: Proceedings of the 2019
ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, ACM, Athens Greece, 2019, pp. 154–
178, http://dx.doi.org/10.1145/3359591.3359737, URL https://dl.acm.org/doi/
10.1145/3359591.3359737.

[11] C. Böhm, D. Hefenbrock, F. Naumann, Scalable peer-to-peer-based RDF manage-
ment, in: Proceedings of the 8th International Conference on Semantic Systems,
2012, pp. 165–168.

[12] J. Aspnes, G. Shah, Skip graphs, ACM Trans. Algorithms 3 (4) (2007) 37–es.
[13] V.H. Lakhani, L. Jehl, R. Hendriksen, V. Estrada-Galinanes, Fair incentivization

of bandwidth sharing in decentralized storage networks, in: 2022 IEEE 42nd
International Conference on Distributed Computing Systems Workshops, ICDCSW,
IEEE, 2022, pp. 39–44.

[14] S.T. Boshrooyeh, O. Ozkasap, Guard: Secure routing in skip graph, in: 2017 IFIP
Networking Conference (IFIP Networking) and Workshops, IEEE, 2017, pp. 1–2.

[15] P. Chatzigiannis, F. Baldimtsi, K. Chalkias, Sok: Blockchain light clients, in:
Financial Cryptography and Data Security: 26th International Conference, FC
2022, Grenada, May 2–6, 2022, Revised Selected Papers, Springer, 2022, pp.
615–641.

[16] Blockchain.com, Blockchain.com, 2022, URL https://blockchain.com.
[17] M. Li, J. Zhu, T. Zhang, C. Tan, Y. Xia, S. Angel, H. Chen, Bringing decentralized

search to decentralized services, in: 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 21), 2021, pp. 331–347.

[18] The Portal Network, The portal network, 2022, URL https://github.com/
ethereum/portal-network-specs.

[19] G. Danezis, C. Lesniewski-Laas, M.F. Kaashoek, R. Anderson, Sybil-resistant DHT
routing, in: European Symposium on Research in Computer Security, Springer,
2005, pp. 305–318.

[20] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, D.S. Wallach, Secure routing
for structured peer-to-peer overlay networks, Oper. Syst. Rev. 36 (SI) (2002)
299–314.

[21] TrueBlocks, TrueBlocks: Lightweight indexing for any EVM-based blockchain,
2022, URL https://trueblocks.io.

[22] J. Benet, Ipfs-content addressed, versioned, p2p file system, 2014, arXiv preprint
arXiv:1407.3561.

[23] The Graph Foundation, The Graph Network, 2022, URL https://thegraph.com/
blog/transitioning-to-decentralized-graph-network/.

[24] T. Crain, C. Natoli, V. Gramoli, Red belly: A secure, fair and scalable open
blockchain, in: 2021 IEEE Symposium on Security and Privacy, SP, IEEE, 2021,
pp. 466–483.

[25] M. Ripeanu, Peer-to-peer architecture case study: Gnutella network, in: Proceed-
ings First International Conference on Peer-to-Peer Computing, IEEE, 2001, pp.
99–100.

[26] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, S. Shenker, Making
gnutella-like p2p systems scalable, in: Proceedings of the 2003 Conference
on Applications, Technologies, Architectures, and Protocols for Computer
Communications, 2003, pp. 407–418.

[27] M. Castro, M. Costa, A. Rowstron, Should we build gnutella on a structured
overlay? ACM SIGCOMM Comput. Commun. Rev. 34 (1) (2004) 131–136.
271
[28] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, H. Balakrishnan, Chord: A scalable
peer-to-peer lookup service for internet applications, ACM SIGCOMM Comput.
Commun. Rev. 31 (4) (2001) 149–160.

[29] A. Rowstron, P. Druschel, Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems, in: IFIP/ACM International Confer-
ence on Distributed Systems Platforms and Open Distributed Processing, Springer,
2001, pp. 329–350.

[30] A. Fiat, J. Saia, Censorship resistant peer-to-peer content addressable networks,
in: SODA, Vol. 2, Citeseer, 2002, pp. 94–103.

[31] J. Augustine, A.R. Molla, E. Morsy, G. Pandurangan, P. Robinson, E. Up-
fal, Storage and search in dynamic peer-to-peer networks, in: Proceedings of
the Twenty-Fifth Annual ACM Symposium on Parallelism in Algorithms and
Architectures, 2013, pp. 53–62.

[32] R. Villanueva, M.d. Pilar Villamil, M. Arnedo, Secure routing strategies in dht-
based systems, in: International Conference on Data Management in Grid and
P2P Systems, Springer, 2010, pp. 62–74.

[33] M. Sanchez-Artigas, P.G. Lopez, A.F.G. Skarmeta, Bypass: providing secure
DHT routing through bypassing malicious peers, in: 2008 IEEE Symposium on
Computers and Communications, IEEE, 2008, pp. 934–941.

[34] B. Heep, R/kademlia: Recursive and topology-aware overlay routing, in: 2010
Australasian Telecommunication Networks and Applications Conference, IEEE,
2010, pp. 102–107.

[35] K. Hildrum, J. Kubiatowicz, Asymptotically efficient approaches to fault-tolerance
in peer-to-peer networks, in: Distributed Computing: 17th International Confer-
ence, DISC 2003, Sorrento, Italy, October 1-3, 2003. Proceedings 17, Springer,
2003, pp. 321–336.

[36] I. Baumgart, S. Mies, S/kademlia: A practicable approach towards secure key-
based routing, in: 2007 International Conference on Parallel and Distributed
Systems, IEEE, 2007, pp. 1–8.

[37] S. Serbu, P. Felber, P. Kropf, HyPeer: Structured overlay with flexible-choice
routing, Comput. Netw. 55 (1) (2011) 300–313.

[38] H. Nagao, K. Shudo, Flexible routing tables: Designing routing algorithms for
overlays based on a total order on a routing table set, in: 2011 IEEE International
Conference on Peer-to-Peer Computing, IEEE, 2011, pp. 72–81.

[39] M. Hojo, R. Banno, K. Shudo, Frt-skip graph: A skip graph-style structured
overlay based on flexible routing tables, in: 2016 IEEE Symposium on Computers
and Communication, ISCC, IEEE, 2016, pp. 657–662.

[40] D. Fensel, U. Şimşek, K. Angele, E. Huaman, E. Kärle, O. Panasiuk, I. Toma,
J. Umbrich, A. Wahler, Introduction: what is a knowledge graph? in: Knowl.
Graphs, Springer, 2020, pp. 1–10.

[41] P.A. Bonatti, S. Decker, A. Polleres, V. Presutti, Knowl. graphs: New directions
for knowledge representation on the semantic web (dagstuhl seminar 18371),
in: Dagstuhl Reports, Vol. 8, No. 9, Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2019.

[42] X. Zou, A survey on application of knowledge graph, J. Phys. Conf. Ser. 1487
(1) (2020) 012016.

[43] H. Kanezashi, T. Suzumura, X. Liu, T. Hirofuchi, Ethereum fraud detection with
heterogeneous graph neural networks, 2022, arXiv preprint arXiv:2203.12363.

[44] V. Patel, L. Pan, S. Rajasegarar, Graph deep learning based anomaly detection
in ethereum blockchain network, in: International Conference on Network and
System Security, Springer, 2020, pp. 132–148.

[45] R. Mars, A. Abid, S. Cheikhrouhou, S. Kallel, A machine learning approach for gas
price prediction in ethereum blockchain, in: 2021 IEEE 45th Annual Computers,
Software, and Applications Conference, COMPSAC, IEEE, 2021, pp. 156–165.

[46] B. Nasrulin, G. Ishmaev, J. Pouwelse, MeritRank: Sybil tolerant reputation for
merit-based tokenomics, in: 2022 4th Conference on Blockchain Research &
Applications for Innovative Networks and Services (BRAINS), IEEE, Paris, France,
2022, pp. 95–102, http://dx.doi.org/10.1109/BRAINS55737.2022.9908685, URL
https://ieeexplore.ieee.org/document/9908685/.

[47] Z. Chen, Y. Wang, B. Zhao, J. Cheng, X. Zhao, Z. Duan, Knowledge graph
completion: A review, IEEE Access 8 (2020) 192435–192456.

[48] S. Wang, C. Huang, J. Li, Y. Yuan, F.-Y. Wang, Decentralized construction of
knowledge graphs for deep recommender systems based on blockchain-powered
smart contracts, IEEE Access 7 (2019) 136951–136961.

[49] W. Pugh, Skip lists: a probabilistic alternative to balanced trees, Commun. ACM
33 (6) (1990) 668–676.

[50] S. Eskandari, S. Moosavi, J. Clark, Sok: Transparent dishonesty: front-running
attacks on blockchain, in: International Conference on Financial Cryptography
and Data Security, Springer, 2019, pp. 170–189.

[51] J.R. Douceur, The sybil attack, in: International Workshop on Peer-to-Peer
Systems, Springer, 2002, pp. 251–260.

[52] D. Vyzovitis, Y. Napora, D. McCormick, D. Dias, Y. Psaras, GossipSub: Attack-
resilient message propagation in the Filecoin and ETH2. 0 networks, 2020, arXiv
preprint arXiv:2007.02754.

[53] R. Jacob, A. Richa, C. Scheideler, S. Schmid, H. Täubig, SKIP+ A self-stabilizing
skip graph, J. ACM 61 (6) (2014) 1–26.

[54] R. Guerraoui, S.B. Handurukande, K. Huguenin, A.-M. Kermarrec, F. Le Fessant,
E. Riviere, Gosskip, an efficient, fault-tolerant and self organizing overlay using
gossip-based construction and skip-lists principles, in: Sixth IEEE International
Conference on Peer-to-Peer Computing, P2P’06, IEEE, 2006, pp. 12–22.

http://refhub.elsevier.com/S0167-739X(23)00413-2/sb1
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb1
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb1
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb1
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb1
http://dx.doi.org/10.1145/3547659
https://dl.acm.org/doi/10.1145/3547659
https://dl.acm.org/doi/10.1145/3547659
https://dl.acm.org/doi/10.1145/3547659
https://etherscan.io
https://etherscan.io
https://etherscan.io
https://infura.io
http://arxiv.org/abs/2305.18545
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb6
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb6
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb6
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb7
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb7
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb7
https://simbro.medium.com/mev-driven-centralization-in-ethereum-ec829a214f18
https://simbro.medium.com/mev-driven-centralization-in-ethereum-ec829a214f18
https://simbro.medium.com/mev-driven-centralization-in-ethereum-ec829a214f18
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb9
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb9
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb9
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb9
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb9
http://dx.doi.org/10.1145/3359591.3359737
https://dl.acm.org/doi/10.1145/3359591.3359737
https://dl.acm.org/doi/10.1145/3359591.3359737
https://dl.acm.org/doi/10.1145/3359591.3359737
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb11
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb11
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb11
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb11
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb11
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb12
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb13
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb13
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb13
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb13
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb13
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb13
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb13
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb14
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb14
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb14
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb15
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb15
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb15
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb15
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb15
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb15
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb15
https://blockchain.com
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb17
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb17
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb17
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb17
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb17
https://github.com/ethereum/portal-network-specs
https://github.com/ethereum/portal-network-specs
https://github.com/ethereum/portal-network-specs
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb19
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb19
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb19
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb19
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb19
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb20
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb20
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb20
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb20
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb20
https://trueblocks.io
http://arxiv.org/abs/1407.3561
https://thegraph.com/blog/transitioning-to-decentralized-graph-network/
https://thegraph.com/blog/transitioning-to-decentralized-graph-network/
https://thegraph.com/blog/transitioning-to-decentralized-graph-network/
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb24
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb24
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb24
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb24
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb24
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb25
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb25
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb25
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb25
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb25
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb26
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb26
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb26
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb26
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb26
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb26
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb26
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb27
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb27
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb27
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb28
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb28
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb28
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb28
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb28
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb29
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb29
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb29
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb29
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb29
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb29
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb29
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb30
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb30
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb30
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb31
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb31
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb31
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb31
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb31
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb31
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb31
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb32
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb32
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb32
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb32
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb32
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb33
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb33
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb33
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb33
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb33
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb34
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb34
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb34
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb34
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb34
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb35
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb35
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb35
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb35
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb35
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb35
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb35
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb36
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb36
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb36
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb36
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb36
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb37
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb37
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb37
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb38
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb38
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb38
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb38
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb38
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb39
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb39
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb39
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb39
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb39
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb40
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb40
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb40
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb40
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb40
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb41
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb41
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb41
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb41
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb41
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb41
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb41
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb42
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb42
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb42
http://arxiv.org/abs/2203.12363
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb44
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb44
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb44
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb44
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb44
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb45
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb45
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb45
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb45
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb45
http://dx.doi.org/10.1109/BRAINS55737.2022.9908685
https://ieeexplore.ieee.org/document/9908685/
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb47
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb47
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb47
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb48
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb48
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb48
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb48
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb48
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb49
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb49
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb49
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb50
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb50
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb50
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb50
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb50
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb51
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb51
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb51
http://arxiv.org/abs/2007.02754
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb53
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb53
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb53
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb54
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb54
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb54
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb54
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb54
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb54
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb54


Future Generation Computer Systems 152 (2024) 257–272M. de Vos et al.
[55] A. Disterhöft, A. Funke, K. Graffi, Packetskip: Skip graph for multidimensional
search in structured peer-to-peer systems, in: 2017 IEEE 11th International
Conference on Self-Adaptive and Self-Organizing Systems, SASO, IEEE, 2017,
pp. 21–30.

[56] A. González-Beltrán, P. Milligan, P. Sage, Range queries over skip tree graphs,
Comput. Commun. 31 (2) (2008) 358–374.

[57] WonderNetwork, Global ping statistics, 2022, https://wondernetwork.com/pings.
(Accessed 12 August 2022).

Martijn de Vos (m.a.devos-1@tudelft.nl) is a postdoc-
toral researcher at the Distributed Systems section of TU
Delft. His research focusses on developing lightweight
decentralized solutions and decentralized machine learning.
272
Georgy Ishmaev (g.ishmaev@tudelft.nl) is a postdoctoral
researcher at the Distributed Systems section of Software
Development department of TU Delft. His research is fo-
cused on the ethics of decentralized systems, with specific
focus on blockchain technology, identity management, and
data ethics.

Johan Pouwelse (j.a.pouwelse@tudelft.nl) is an associate
professor at the Distributed Systems section of Software
Development department of TU Delft, specialized in large-
scale cooperative systems. He is the founder of Tribler, a
living laboratory and proving ground for next generation
self-organizing systems research and ledger technology.

http://refhub.elsevier.com/S0167-739X(23)00413-2/sb55
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb55
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb55
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb55
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb55
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb55
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb55
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb56
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb56
http://refhub.elsevier.com/S0167-739X(23)00413-2/sb56
https://wondernetwork.com/pings
mailto:m.a.devos-1@tudelft.nl
mailto:g.ishmaev@tudelft.nl
mailto:j.a.pouwelse@tudelft.nl

	DeScan: Censorship-resistant indexing and search for Web3
	Introduction
	Background and Related Work
	Indexing and Search in Web3
	Censorship Resistance in Web3 Systems
	Prior Work on P2P Overlay Search
	Transaction Graphs
	Skip Graphs

	Problem Formulation and System Model
	Problem Formulation
	System Model and Assumptions

	DeScan : Decentralized Web3 Indexing and Search
	DeScan : Web3 Transaction Indexing
	DeScan : Web3 Data Storage and Search
	Extensions

	Achieving Censorship Resilience and Fault Tolerance when Querying Triplets
	Acknowledgements of Search Messages
	Extended Routing Tables
	Replicating Triplets on the Storage Layer
	Constructing Multiple Skip Graphs
	Analysis

	Experimental Evaluation
	Implementation and Experimental Setup
	The Impact of Unresponsive and Adversarial Peers
	The Impact of DeScan Parameters
	Latency of Triplet Queries
	Network Usage
	Storage Cost
	Indexing and Storing the full Ethereum Blockchain

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


