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Abstract. Vegetation largely controls land surface–atmosphere interactions. Although vegetation is highly dy-
namic across spatial and temporal scales, most land surface models currently used for reanalyses and near-term
climate predictions do not adequately represent these dynamics. This causes deficiencies in the variability of
modeled water and energy states and fluxes from the land surface. In this study we evaluated the effects of inte-
grating spatially and temporally varying land cover and vegetation characteristics derived from satellite observa-
tions on modeled evaporation and soil moisture in the Hydrology Tiled ECMWF Scheme for Surface Exchanges
over Land (HTESSEL) land surface model. Specifically, we integrated interannually varying land cover from
the European Space Agency Climate Change Initiative and interannually varying leaf area index (LAI) from
the Copernicus Global Land Services (CGLS). Additionally, satellite data on the fraction of green vegetation
cover (FCover) from CGLS were used to formulate and integrate a spatially and temporally varying effective
vegetation cover parameterization. The effects of these three implementations on model evaporation fluxes and
soil moisture were analyzed using historical offline (land-only) model experiments at the global scale, and model
performances were quantified with global observational products of evaporation (E) and near-surface soil mois-
ture (SMs). The interannually varying land cover consistently altered the evaporation and soil moisture in regions
with major land cover changes. The interannually varying LAI considerably improved the correlation of SMs and
E with respect to the reference data, with the largest improvements in semiarid regions with predominantly low
vegetation during the dry season. These improvements are related to the activation of soil moisture–evaporation
feedbacks during vegetation-water-stressed periods with interannually varying LAI in combination with inter-
annually varying effective vegetation cover, defined as an exponential function of LAI. The further improved
effective vegetation cover parameterization consistently reduced the errors of model effective vegetation cover,
and it regionally improved SMs and E. Overall, our study demonstrated that the enhanced vegetation variability
consistently improved the near-surface soil moisture and evaporation variability, but the availability of reliable
global observational data remains a limitation for complete understanding of the model response. To further
explain the improvements found, we developed an interpretation framework for how the model development
activates feedbacks between soil moisture, vegetation, and evaporation during vegetation water stress periods.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

Land surface–atmosphere interactions are largely controlled
by vegetation, which is dynamic across spatial (local, re-
gional, and global) and temporal (seasonal, interannual, and
decadal) scales (Seneviratne et al., 2010). Land surface mod-
els (LSMs) aim to describe these interactions and are there-
fore a crucial aspect of models used for climate reanaly-
sis and climate predictions. However, most state-of-the-art
LSMs do not adequately represent the temporal and spatial
variability of vegetation, resulting in weaknesses in the asso-
ciated variability of modeled surface water and energy states
and fluxes (e.g., Alessandri et al., 2007; Pitman et al., 2009;
Ukkola et al., 2016; Fisher and Koven, 2020; Hersbach et al.,
2020; van Oorschot et al., 2021).

To improve the representation of land surface–atmosphere
dynamics, products based on satellite remote sensing data
have been widely used in LSMs. Global satellite-derived
maps of land cover and albedo have been directly used as
boundary conditions (Faroux et al., 2013; Alessandri et al.,
2017; Boussetta et al., 2021).). In addition, leaf area index
(LAI) derived from satellite remote sensing has been assim-
ilated in several LSMs for different spatial scales, generally
leading to improved water, energy, and carbon fluxes (Kumar
et al., 2019; Ling et al., 2019; Rahman et al., 2020, 2022).
Albergel et al. (2017, 2018) also combined LAI assimila-
tion with the assimilation of remote-sensing-based surface
soil moisture in the LSM called ISBA (interactions between
soil–biosphere–atmosphere). This resulted in reduced errors
of modeled soil moisture, evaporation, river discharges, and
gross primary production with respect to observations. Fur-
thermore, satellite products have been used to improve model
parameterizations of, for example, leaf phenology, surface
roughness, soil characteristics, and subsurface water storage
(Lo et al., 2010; Trigo et al., 2015; MacBean et al., 2015;
Yang et al., 2016; Orth et al., 2017). Moreover, LSMs have
been evaluated using global satellite products of, e.g., land
surface temperatures, snow depth, and soil moisture (Bal-
samo et al., 2018; Johannsen et al., 2019; Dong et al., 2020;
Nogueira et al., 2020, 2021; Boussetta et al., 2021).

Recent studies have exploited the latest satellite campaigns
to update land cover (LC) and leaf area index (LAI) rep-
resentation into the land surface model Carbon-Hydrology
ECMWF Tiled Scheme for Surface Exchanges over Land
(CHTESSEL) (Johannsen et al., 2019; Nogueira et al.,
2020, 2021; Boussetta et al., 2021) as part of the Inte-
grated Forecasting System (IFS) of the European Centre for
Medium-Range Weather Forecasts (ECMWF). These studies
replaced the original fixed map of land cover from the Global
Land Cover Characteristics (GLCC) dataset representing the
early 1990s (Loveland et al., 2000) with an updated map
obtained from the latest-generation estimates of land cover
from the European Space Agency Climate Change Initia-

tive (ESA-CCI) (Poulter et al., 2015). Similarly, the LAI cli-
matology from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) (Boussetta et al., 2013) was replaced
with updated climatology from the recent Copernicus Global
Land Service (CGLS) LAI dataset (Verger et al., 2014). The
integration of these satellite-derived variables considerably
reduced the bias of model land surface temperatures (Jo-
hannsen et al., 2019; Nogueira et al., 2020, 2021). In addi-
tion, Boussetta et al. (2021) showed an overall reduction of
model annual mean evaporation bias when using the updated
LC and LAI in CHTESSEL.

LAI in LSMs can be coupled to the effective vegetation
cover (Ceff), which characterizes the density of the vegetated
surface from a top view that effectively contributes to the wa-
ter and energy balances. The organization structure of leaves
inside the canopy is reported as vegetation clumping. In pre-
vious modeling studies, the seasonal variations in Ceff have
been described as an exponential function of LAI consider-
ing vegetation clumping in (C)HTESSEL (Alessandri et al.,
2017; Nogueira et al., 2020; Boussetta et al., 2021) and in
other land modeling efforts (Anderson et al., 2005; Krinner
et al., 2005; Le Moigne, 2012). The shape of the exponential
relation between Ceff and LAI in state-of-the-art land surface
models has, to our knowledge, been assumed to be constant
in time and space so far (Krinner et al., 2005; Alessandri
et al., 2017; Nogueira et al., 2020; Boussetta et al., 2021).
However, studies have shown that the degree of vegetation
clumping, and therefore the shape of this relation, actually
varies for different vegetation types (Chen et al., 2005; Ryu
et al., 2010; Zhang et al., 2014).

The research gap that we identified is that most previous
LSM studies using HTESSEL aimed at improving the tempo-
rally fixed boundary condition of land cover and the monthly
seasonal cycle of LAI, while not exploring the effects of in-
terannual variations of LC and LAI. Moreover, these stud-
ies have generally used one spatially fixed relationship be-
tween effective vegetation cover and LAI, while there is con-
siderable evidence that this relationship is vegetation-type-
dependent (Chen et al., 2005; Ryu et al., 2010; Zhang et al.,
2014).

The objective of this research is to evaluate the effects
of integrating temporal and spatial variations of land cover
and vegetation characteristics derived from satellite obser-
vations on modeled evaporation and soil moisture in the
land surface model HTESSEL. Specifically, we will integrate
annually varying LC from ESA-CCI as well as seasonally
and interannually varying LAI from CGLS. Additionally, the
CGLS fraction of green vegetation cover (FCover; Verger
et al., 2014) is used to formulate and implement a spatially
(i.e., vegetation-dependent) and temporally (i.e., interannu-
ally) variable effective vegetation cover parameterization in
HTESSEL.
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2 Methods

This section describes how we integrated temporal and spa-
tial variations of land cover and vegetation characteristics in
HTESSEL. In Sect. 2.1 we describe the land cover and veg-
etation data used, in Sect. 2.2 we describe the model char-
acteristics with relevance to water dynamics, and in Sect. 2.3
the model developments performed in this study are reported.
Finally, the model experiments and model evaluation are de-
scribed in Sect. 2.4 and Sect. 2.5, respectively.

2.1 Land cover and vegetation data

Here we used yearly land cover maps at a 300 m spatial reso-
lution from ESA-CCI for the time period 1993–2019 (De-
fourny et al., 2017; Copernicus Climate Change Service,
2019). In this dataset the land cover is classified into 22
classes based on the United Nations Land Cover Classifica-
tion System (LCCS) (Di Gregorio and Jansen, 2005).

LAI and FCover data were obtained from CGLS for 1999–
2019 (Copernicus Global Land Service, 2022). We used the
1 km version 2 collection in which both products were de-
rived at a 10-daily resolution from the top-of-canopy re-
flectance measurements by the SPOT/VEGETATION (1999–
2013) and PROBA-V (2014–2019) sensors (Verger et al.,
2019). These two time series were homogenized using a
cumulative distribution function (CDF) approach following
Boussetta and Balsamo (2021). For model spin-up purposes,
the CGLS LAI (1999–2019) was further extended back-
wards with former-generation LAI data from the Advanced
Very-High-Resolution Radiometer (AVHRR) for 1993–1999
at a 0.05◦ resolution (Pacholczyk and Verger, 2020). The
AVHRR LAI (1993–1999) was interpolated using conserva-
tive interpolation (Schulzweida, 2022) to the CGLS 1 km res-
olution and harmonized with CGLS (1999–2019) using CDF
matching (Boussetta and Balsamo, 2021).

2.2 Relevant model components for water cycle
representation

Here we used the HTESSEL land surface model (Balsamo
et al., 2009) as it was developed and implemented for climate
predictions with the EC-Earth3 Earth system model (Döscher
et al., 2022). This version already implements a temporally,
but not spatially, varying effective vegetation cover, which is
further developed in this work (Alessandri et al., 2017). This
section describes the relevant model representations of land
cover (Sect. 2.2.1), leaf area index (Sect. 2.2.2), and effec-
tive vegetation cover (Sect. 2.2.3) in the current HTESSEL
version as part of the EC-Earth3 Earth system model (ESM)
and the role of these representations in the modeled water
cycle. Section 2.3 describes the adaptations of these model
components made in this study.

2.2.1 Land cover representation

In HTESSEL the vegetated area of a grid cell is divided into
high- and low-vegetation tiles. In the case of snow there are
separate model tiles for snow on bare ground with low veg-
etation and snow beneath high vegetation (Balsamo et al.,
2009). Figure 1a represents an example of the vegetation
types and cover fractions for a single grid cell that were orig-
inally based on the GLCC land cover dataset (Loveland et al.,
2000). The low-vegetation (L) and high-vegetation (H) types
with the largest cover fraction in each grid cell (see exam-
ple in Fig. 1a) are used in HTESSEL as dominant vegeta-
tion types TL and TH (Fig. 1b). The corresponding HTESSEL
vegetation cover fractions AL and AH are based on the total
low- and high-vegetation grid cell cover fractions.

TL and TH directly control surface water and energy fluxes
because model parameters such as vegetation root distribu-
tion, minimum canopy resistance, and roughness lengths for
momentum and heat are obtained from lookup tables based
on the vegetation type (ECMWF, 2015). Surface fluxes are
calculated separately for low- and high-vegetation tiles and
combined based on the fractions AL and AH. Here we only
focus on the surface evaporation flux that we define as the
sum of transpiration, soil evaporation, interception evapora-
tion, and, in the case of lakes, also open-water evaporation
(Savenije, 2004; Miralles et al., 2020). The subsurface in HT-
ESSEL consists of four soil layers with thicknesses of 7, 21,
72, and 189 cm, totaling a depth of 289 cm. In this study we
differentiate between near-surface soil moisture (SMs) in the
top layer (0–7 cm) and the subsurface soil moisture (SMsb)
in the three deeper layers (7–289 cm).

2.2.2 Leaf area index representation

LAI is defined separately for the high- and low-vegetation
tiles (LAIL and LAIH). In the original HTESSEL model,
LAIL and LAIH are prescribed as a seasonal cycle that is
derived from a satellite-based climatology based on MODIS
(Boussetta et al., 2013) and the vegetation cover fractions
AL and AH. The LAI controls the canopy resistance rc of the
high- and low-vegetation tiles through the following linear
relation:

rc =
rs,min

LAI
f1(Rs)f2(Da)f3(SM), (1)

with rs,min being the prescribed vegetation-specific minimum
canopy resistance that does not change in time and f1(Rs),
f2(Da), and f3(SM) being functions describing the depen-
dencies on shortwave radiation (Rs), atmospheric water va-
por deficit (Da), and weighted average soil moisture based on
the root distribution over the four soil layers (SM), respec-
tively. The effects of CO2 changes on rc are not explicitly
taken into account in the present study. The root fractions are
generally the largest in soil layers 2 and 3, and therefore tran-
spiration mostly originates from the SMsb. The transpiration
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Figure 1. Vegetation representation in a grid cell with example vegetation types and cover fractions. (a) Grid cell vegetation type and cover
fraction based on land cover dataset. (b) HTESSEL dominant low- and high-vegetation type (TL and TH) and cover fraction (AL and AH).
(c) HTESSEL effective vegetation cover with Ceff,L and Ceff,H being the effective low- and high-vegetation cover fraction, CB the bare soil
fraction, and Ceff = Ceff,L+Ceff,H, with the arrows indicating the temporal variability of Ceff as discussed in Sect. 2.2.3.

is linearly related to rc and atmospheric variables. Further-
more, the LAI controls the capacity of the model interception
reservoir W1 m by

W1 m =W1max · (CB+CL ·LAIL+CH ·LAIH), (2)

with W1max = 0.0002 m and CB, CL, and CH being the frac-
tions of bare soil, effective low vegetation, and effective high
vegetation, respectively (Sect. 2.2.3). The interception evap-
oration per time step follows from the water content of the
interception reservoir (calculated from precipitation), W1 m,
and the potential evaporation.

2.2.3 Effective vegetation cover representation

The model effective low vegetation cover and high vegeta-
tion cover (Ceff,L and Ceff,H) represent the part of the model
vegetation cover fraction (AL and AH) that is actively con-
tributing to the water balance through transpiration and in-
terception evaporation (Fig. 1c). The fraction of the grid cell
not covered by effective vegetation is treated as bare soil
(CB), where only soil evaporation takes place. Soil evapora-
tion only occurs in the top soil layer (0–7 cm) and therefore
originates only from SMs. The model resistance to soil evap-
oration (rsoil) is described by

rsoil = rsoil,minf3(SMs), (3)

with rsoil,min = 50 sm−1 and f3(SMs) representing the de-
pendency on the first layer soil moisture content. The effec-
tive vegetation cover fractions Ceff,L and Ceff,H as well as
bare soil fraction CB are described by

Ceff,L = cv,L ·AL, (4)
Ceff,H = cv,H ·AH, (5)
Ceff = Ceff,L+Ceff,H, (6)
CB = 1−Ceff, (7)

with cv,L and cv,H representing the low and high vegeta-
tion density. Originally, cv,L and cv,H were described by a

lookup table with vegetation-specific values, allowing for
spatial variation of the Ceff,L, Ceff,H, and CB fractions. How-
ever, this approach does not represent temporal variations in
vegetation density. To allow for temporal variability in Ceff
(represented by the arrows in Fig. 1c), cv,L and cv,H were
linked to the seasonal variability of LAI by the following ex-
ponential relation (Alessandri et al., 2017):

cv,L = 1− e−k LAIL , (8)

cv,H = 1− e−k LAIH , (9)

with k being the canopy light extinction coefficient that rep-
resents the degree of vegetation clumping (Anderson et al.,
2005). Previously k was generally set to constant values of
0.5 (Krinner et al., 2005; Alessandri et al., 2017) or 0.6
(Boussetta et al., 2021) for all vegetation types. As a conse-
quence, the vegetation-dependent spatial variability in k was
not accounted for.

2.3 Model developments

2.3.1 The implemented land cover variability

Here we implemented the annually varying ESA-CCI land
cover (LC) data for the 1993–2019 period (Sect. 2.1), as de-
veloped by Boussetta and Balsamo (2021), for the HTES-
SEL vegetation types and spatial resolution. For consistency
with the other model adaptations and evaluations (Sect. 2.3.2,
2.3.3 and 2.5), our LC analyses were based on 1999–2018.
The interannually varying LC from ESA-CCI introduced a
change in TL in 5 % and TH in 4 % of the land grid cells
between the first (1999) and the last (2018) year of the con-
sidered study period (Fig. 2). Figure 2c shows the fraction
of land grid cells in which each vegetation type (dominant in
1999) is replaced by another type in 2018 (plain colors) and
conversely how often each vegetation type replaces the 1999
dominant one in 2018 (hatched colors). The figure shows that
crops and short grass relatively often replaced other low-
vegetation types (relatively large hatched bars), while ever-
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Figure 2. (a) Model low (TL) and (b) high (TH) dominant vegetation types in 1999 based on ESA-CCI land cover. (c) Changes in low- and
high-vegetation type as a percent of the total land points, with plain colors indicating that the vegetation type was replaced in 2018 compared
to 1999 and hatched colors that the vegetation replaced another type in 2018 compared to 1999. Note that low vegetation and high vegetation
are treated separately and do not replace each other. E stands for evergreen, D for deciduous, N for needleleaf, and B for broadleaf.

Figure 3. (a) Model low- (AL) and (b) high-vegetation (AH) cover fraction in 1999 as well as the absolute difference in (c) AL and (d) AH
between 2018 and 1999 (2018–1999) based on ESA-CCI land cover. Blue (red) indicates an increased (reduced) cover in 2018. The black
boxes highlight the three regions of the southern Amazon, Lapland, and central Asia that are further analyzed in Sect. 3.1.

green needleleaf (EN) and deciduous broadleaf (DB) trees
were relatively often replaced by other high-vegetation types
(relatively large plain bars). The low- and high-vegetation
cover fractions changed in many regions according to the
ESA-CCI LC dataset (Fig. 3). During the 1999–2018 period,
low vegetation replaced high vegetation in the southern Ama-
zon and northeastern Siberia. Conversely, high vegetation re-
placed low vegetation in the boreal regions of Lapland and
northwestern Siberia. Moreover, arid regions such as central
Asia and Australia experienced an expansion of low vegeta-
tion over the 1999–2018 period. In Fig. 3 we highlight the
southern Amazon, Lapland, and central Asia where the veg-

etation cover fraction changed considerably. These regions
are further analyzed in Sect. 3.1.

2.3.2 The implemented leaf area index variability

We used the monthly CGLS LAI data described in Sect. 2.1
to prescribe model LAI, representing both the seasonal cy-
cle and interannual variability of LAI. The 1 km LAI data
were interpolated using conservative interpolation to the HT-
ESSEL grid (Schulzweida, 2022). Next, LAI was disaggre-
gated into low and high LAI (LAIL and LAIH) based on the
low- and high-vegetation cover fractions (AL and AH) for use

https://doi.org/10.5194/esd-14-1239-2023 Earth Syst. Dynam., 14, 1239–1259, 2023
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Figure 4. Standard deviation (SD) of monthly interannual anomaly
CGLS LAI for 1999–2018 as implemented in experiment IAK5 (Ta-
ble 1).

in the HTESSEL model setup with separate low- and high-
vegetation tiles (Boussetta et al., 2021; Boussetta and Bal-
samo, 2021). Figure 4 shows the LAI interannual variability
as integrated here in HTESSEL, quantified with the standard
deviation. The effects of this added variability are presented
in Sect. 3.2.

2.3.3 The implemented vegetation-specific effective
vegetation cover parameterization

The CGLS FCover and LAI data were used (Sect. 2.1) to fur-
ther develop the model effective vegetation cover parameteri-
zation as described by Eqs. (4)–(9). The constant k = 0.5 pa-
rameter was replaced with a vegetation-specific k to improve
spatial and temporal variability of the model Ceff. We as-
sumed that the model Ceff is equivalent to the CGLS FCover
data. Following the model Ceff parameterization, FCover is
then described as follows:

FCover= 1− e−k LAI. (10)

We estimated k for different HTESSEL vegetation types by
solving the minimization problem in Eq. (11) using a nonlin-
ear least-squares optimization at a 1 km spatial resolution.

min‖1− e−k LAI
−FCover‖2 (11)

To discriminate vegetation types, the grid cells where each
vegetation type maximizes its cover fraction based on the
ESA-CCI LC developed in Boussetta and Balsamo (2021)
were selected for each year. For each set of grid cells corre-
sponding to each vegetation type, the FCover and LAI 10-
daily 1 km data for 1999–2019 were extracted. Here we used
a 1× 1 km resolution for LAI, FCover, and LC in order to
obtain the most representative discrimination of vegetation
types and to minimize vegetation mixing within each re-
solved grid cell. For the optimization of k, a randomly se-
lected subsample of 2000 grid points of the LAI and FCover
time steps (10-daily) for each vegetation type was used to
keep the analysis computationally feasible, while ensuring a
representative sample with robust significance of the fit. In
this way, we obtained a sample of 2000 grid cells times 36

time steps per year times 20 years, which equals 1 440 000
data points to be used for the optimization for each vegeta-
tion type. This optimization resulted in vegetation-specific k

values that were implemented in the HTESSEL code as in
Eqs. (4)–(9). The robustness of the optimization was verified
by repeating the random selection procedure several times,
which resulted in negligible changes in the k estimates.

2.4 Model experiments

We performed experiments with an offline, uncoupled ver-
sion of HTESSEL to evaluate the effect of the implemented
vegetation variability as described in Sect. 2.3. HTESSEL
was forced with atmospheric hourly forcing from ECMWF
Reanalysis v5 (ERA5) and simulations were performed from
1993–2019, with 1993–1999 as the spin-up period (details in
Table S1 in the Supplement). The model spatial resolution is
the n128 reduced Gaussian grid corresponding to grid cells of
∼ 75×75 km. In total, four different model experiments were
performed (Table 1). In the first experiment, as a benchmark
and control experiment (CTR) the land cover of all years
was set to the ESA-CCI land cover of 1993, the LAI of all
years was set to the 1993–2019 climatology, and the Ceff pa-
rameterization with k = 0.5 was used. This reflects standard
settings of the EC-Earth3 version of HTESSEL. In the sec-
ond experiment (IALC) the interannually varying ESA-CCI
LC was included, while in the third experiment (IAK5) we
further added interannually varying CGLS LAI. Finally, the
model sensitivity to the vegetation-specific Ceff parameter-
ization (see Sect. 2.2.3) was evaluated in the fourth exper-
iment (IAKV). The model experiments were evaluated for
1999–2018, which is the longest period to consistently assess
all three model implementations with the available evaluation
data described in Sect. 2.5.

2.5 Model evaluation

2.5.1 Model variables

The effects of the vegetation-specific Ceff parameterization
on the model Ceff were assessed in IAKV compared to IAK5.
Furthermore, we analyzed the effects of the increasingly de-
tailed model land cover and vegetation variability in the three
experiments (IALC, IAK5, IAKV) on total evaporation (E)
and the evaporation components, i.e., transpiration (Et), soil
evaporation (Es), and interception evaporation (Ei). In addi-
tion, the effects on model near-surface soil moisture (SMs)
and subsurface soil moisture (SMsb) were analyzed.

2.5.2 Reference data

The modeled Ceff was compared to the CGLS FCover data
(Sect. 2.1) at the model spatial resolution. As a benchmark
for total evaporation we used the Derived Optimal Lin-
ear Combination Evapotranspiration version 3 (DOLCEv3),
which is a linear combination of estimates from ERA5-land,
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Table 1. Details of model experiments.

Experiment Land cover Leaf area index Effective vegetation cover

CTR ESA-CCI fixed CGLS climatology k = 0.5
IALC ESA-CCI interannual CGLS climatology k = 0.5
IAK5 ESA-CCI interannual CGLS interannual k = 0.5
IAKV ESA-CCI interannual CGLS interannual k vegetation-specific

GLEAM v3.5a and v3.5b, and FLUXCOM-RSMETEO that
was regionally weighted based on the performance in repro-
ducing FLUXNET tower evaporation observations (Hobe-
ichi et al., 2021). The associated uncertainty estimate is spa-
tially and temporally varying based on the gridded evapo-
ration and flux tower observations (Hobeichi et al., 2018).
This dataset was selected because it is intended to better cap-
ture evaporation temporal variations compared to previous
DOLCE versions (v1 and v2) and was therefore found to be
suitable for evaluating the effects of the modified temporal
and spatial variability of vegetation on evaporation (Hobeichi
et al., 2021). Daily evaporation and associated uncertainty at
a 0.25◦ resolution were used for 1999–2018 and were inter-
polated here using conservative interpolation (Schulzweida,
2022) to the model spatial resolution.

Model near-surface soil moisture (SMs) (0–7 cm) was
compared to the combined active–passive ESA-CCI soil
moisture product (ESA-CCI SM v06.1), which is generated
from satellite-based active and passive microwave products
that are combined using the absolute values and dynamic
range of the modeled soil moisture of the top 10 cm soil layer
from the Global Land Data Assimilation System (GLDAS)-
Noah LSM (Liu et al., 2012; Dorigo et al., 2017; Gruber
et al., 2017). This dataset provides near-surface (∼ 0–5 cm)
soil moisture at a daily resolution on a 0.25◦ grid. Here we
used the combined active–passive product interpolated using
conservative interpolation (Schulzweida, 2022) to the model
spatial resolution (∼ 75× 75 km) for 1999–2018 (European
Space Agency, 2022). The uncertainty estimates for ESA-
CCI SM were also considered as they were provided with
the data product and based on error variance of the data used
to generate the product (Dorigo et al., 2017). ESA-CCI SM
contains spatial and temporal gaps due to densely vegetated
areas (tropical forests) and snow coverage. Here only grid
cells with a temporal coverage larger than 60 % were used,
and, as a consequence, model performance metrics for SMs
were only calculated for these grid cells.

2.5.3 Evaluation metrics

The hourly model output was first averaged to monthly val-
ues, based on which annual means, monthly climatology, and
interannual anomalies were then calculated. To differentiate
the seasons (June, July, and August: JJA; September, Octo-
ber and November: SON; December, January, and February:

DJF; March, April, and May: MAM), the monthly values
were averaged to seasonal means, and interannual seasonal
anomalies were calculated. For the evaluation of E and SMs
with respect to reference data, we used the Pearson corre-
lation coefficients r of the interannual monthly and seasonal
anomalies. To calculate r of the interannual monthly and sea-
sonal anomalies, the anomalies were detrended assuming a
linear trend. Detrending was not applied for the effects of the
modified LC, as the interannually varying LC mostly influ-
enced the trend. In addition, we quantified the effects of the
improved vegetation variability with the root mean squared
error (RMSE). For Ceff and E RMSE we used monthly val-
ues, while for SMs we used standardized interannual anoma-
lies. Model SMs and reference ESA-CCI SM cannot be com-
pared directly in absolute terms due to the different represen-
tative soil layers and the imposed dynamic range from the
GLDAS-Noah model (Liu et al., 2012), potentially resulting
in different temporal variability (Sect. 2.5.2). To overcome
this limitation, we standardized the interannual anomalies for
model and reference SMs by dividing the monthly SMs by
the climatological standard deviation.

To test the significance of the r and RMSE differences be-
tween the experiments we used a bootstrap, in which 1000
data samples were randomly created by resampling the data
of model 1 and model 2 with replacement for each time step.
We tested the null hypothesis that the r and RMSE of model
1 and model 2 with respect to the reference data are not sig-
nificantly different from each other at the 10 % significance
level.

3 Results

3.1 Land cover interannual variability effects

The interannually varying land cover from ESA-CCI in ex-
periment IALC resulted in a shift in mean evaporation com-
ponents (i.e., Et, Es, and Ei) compared to the CTR exper-
iment (Fig. 5). The last 5 years of the simulations (2014–
2019) are considered because the effects of the interannually
varying land cover mostly emerge in this period. In the south-
ern Amazon, where AH was reduced on average from 0.64 to
0.57 in IALC compared to CTR (Fig. 3), the mean Et was re-
duced by 3 % from 633 to 615 mmyr−1 and Ei was reduced
by 6 % from 384 to 363 mmyr−1, while Es increased by 17 %
from 156 to 183 mmyr−1. In this region, the total evapora-

https://doi.org/10.5194/esd-14-1239-2023 Earth Syst. Dynam., 14, 1239–1259, 2023



1246 F. van Oorschot et al.: Improved vegetation variability in the HTESSEL land surface model

Figure 5. Annual mean evaporation fluxes (2014–2018) in experiment CTR with (a) total evaporation (E), (c) transpiration (Et), (e) soil
evaporation (Es), and (g) interception evaporation (Ei), as well as the relative difference (1rel) between annual mean evaporation fluxes in
experiments IALC and CTR ((IALC−CTR)/CTR) for (b) E, (d) Et, (f) Es, and (h) Ei. Blue (red) indicates an increased (reduced) flux.
Grey land areas indicate regions with annual mean E fluxes < 0.1 mmyr−1. The boxes highlight the three regions of the southern Amazon,
Lapland, and central Asia with major land cover changes (Fig. 3). Results with respect to DOLCEv3 E are presented in Fig. S1. See Table 1
for details of the experiments.

tion was reduced only by 1 % from 1174 to 1162 mmyr−1

in IALC compared to CTR because the reductions in Et and
Ei were partially compensated for by increased Es. The re-
duced E in IALC is closer to the DOLCEv3 E, which in this
region is 1160 mm yr−1. We also found an evaporation com-
pensation effect in Lapland, where AH increased from 0.24
to 0.30, and central Asia, where AL increased from 0.66 to
0.71 (Fig. 3). In Lapland and in central Asia E increased by
2 % and 0.1 %, respectively, moving closer to the DOLCEv3
E (Fig. 5b; Table S2). In contrast to the small changes in E,
the individual E fluxes changed considerably in these two
cases (Fig. 5d, f, h).

The changes in Et and Es also induced changes in soil
moisture because Es extracts water exclusively from the
near-surface soil layer (SMs), while Et originates mostly

from deeper soil layers (SMsb). However, we observed only
marginal differences between mean SMs and SMsb in IALC
compared to CTR (Fig. 6), except for the southern Ama-
zon SMs. The increased Es in the southern Amazon reduced
the SMs by 2 %, as more near-surface soil moisture was
extracted (Fig. 6b). Individual evaporation fluxes influence
the timing of total evaporation and soil moisture differently.
However, the overall minor magnitude of changes in total E

and SMs in IALC compared to CTR led to marginal changes
in RMSE and Pearson correlation coefficients with respect to
the reference data in the three highlighted cases (Table S3,
Figs. S1–S3).
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Figure 6. Annual mean soil moisture (2014–2018) (SM) in experiment CTR with (a) near-surface soil moisture (SMs) and (c) subsurface
soil moisture (SMsb), as well as the relative difference (1rel) between annual mean SM in experiments IALC and CTR ((IALC–CTR)/CTR)
for (b) SMs and (d) SMsb. Blue (red) indicates increased (reduced) soil moisture. Grey land areas indicate regions with annual mean
SM < 0.01 m3 m−3. The boxes highlight the three regions of the southern Amazon, Lapland, and central Asia with major land cover changes
(Fig. 3). See Table 1 for details of the experiments.

3.2 Leaf area index interannual variability effects

The inclusion of interannual LAI variability in IAK5 (Fig. 4)
generally led to an increased anomaly standard deviation
(i.e., variability) of E (Fig. 7a, b). This effect is mostly dom-
inated by Et (Fig. 7d), which, in the model, is linearly related
to LAI (Eq. 1). Figure 7d and h show that the variability in
Et and Ei was mostly increased in semiarid regions such as
the Great Plains region of the US, central Asia, and southern
Africa, with a stronger effect for Et than for Ei. In contrast,
the Es variability was reduced with the enhanced LAI vari-
ability in these semiarid regions but was increased in more
temperate regions such as in Europe, the eastern US, and
the La Plata Basin in South America (Fig. 7e, f). While the
Et anomaly variability considerably increased in IAK5 com-
pared to IALC in semiarid regions, the anomaly variability in
subsurface soil moisture (SMsb) that acts as the main source
of Et was reduced in these regions (Fig. 8c, d). On the other
hand, the anomaly variability of SMs increased (Fig. 8a, b),
while the Es variability was reduced.

Figure 9 shows that the Pearson correlation coefficient (r)
of anomaly E with respect to DOLCEv3 increased in IAK5
compared to IALC in 85 % of the land area in which the r

was significantly different in IAK5 compared to IALC. Con-
sistently, the r of anomaly SMs with respect to ESA-CCI
SM also improved in 85 % of the significantly changing land
area. For both E and SMs r increased mostly in semiarid re-
gions with predominantly low vegetation (Fig. 3).

3.3 Vegetation-specific effective vegetation cover
parameterization effects

The observed relationship of LAI and FCover in Fig. 10 is
broadly consistent with the shape of the exponential func-
tions with the vegetation-specific k, with RMSEs between
0.018 and 0.053 for the individual vegetation types. All op-
timized LAI–FCover relations are characterized by k values
that at 0.351–0.458 are consistently lower than the original
k = 0.5, which has been used as the constant default value
in most HTESSEL applications so far (Alessandri et al.,
2017; Boussetta et al., 2021). We found that the k values
for low-vegetation types (0.438–0.458) are higher than for
high-vegetation types (0.351–0.396), except for tundra re-
gions (0.375) (Fig. 10 and Table S3). These findings are in
line with our expectations, as leaf organization of low vege-
tation is more regular (larger k) than leaf organization of high
vegetation, where leaves are found more on top of each other
(smaller k) (Chen et al., 2005, 2021).

The vegetation-specific Ceff parameterization (IAKV)
generally reduced the k values compared to the k = 0.5 setup
(IAK5), and as a consequence the associated vegetation den-
sities cv,L and cv,H also decreased (Eqs. 8 and 9). On aver-
age, the global mean Ceff was reduced from 0.21 in IAK5 to
0.19 in IAKV (Fig. 11). The reduced Ceff considerably re-
duced the RMSE with respect to the FCover data in IAKV
compared to IAK5 (Fig. 12), as expected from the param-
eterization optimization presented in Fig. 10. The RMSE
was reduced the most over the boreal and tropical forests,
with an average RMSE reduction from 0.12 to 0.06 for ev-
ergreen needleleaf trees and from 0.05 to 0.03 for evergreen
broadleaf trees. On the other hand, the differences in regions
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Figure 7. Standard deviation (SD) of anomaly evaporation fluxes in experiment IALC with (a) total evaporation (E), (c) transpiration (Et),
(e) soil evaporation (Es), and (g) interception evaporation (Ei), as well as the relative difference (1rel) between the anomaly E SD in
experiments IAK5 and IALC ((IAK5−IALC)/IALC) for (b) E, (d) Et, (f) Es, and (h) Ei. Blue (red) indicates an increased (reduced) SD.
See Table 1 for details of the experiments.

with predominantly low vegetation were smaller because the
fitted k value was closer to the original k = 0.5, with an aver-
age RMSE reduction from 0.06 in IAK5 to 0.05 in IAKV for
crops and from 0.04 to 0.03 for short grass. For low vegeta-
tion, the effects were not consistent throughout the seasons,
with RMSE increasing at high latitudes in JJA (Fig. 12d).
Here the Ceff in IAK5 was smaller than the CGLS FCover
and is further reduced in IAKV, increasing the RMSE. This
was likely caused by a poor fit for short grass at LAI > 2
(Fig. 10b) and tundra at LAI > 1 (Fig. 10g).

The reduced model Ceff in IAKV compared to IAK5 led
to a shift in individual evaporation fluxes. On average, Es in-
creased and Et and Ei were reduced, while the total E was
not very affected (Fig. S6). These shifts led to changes in
the temporal distribution of the evaporation. Figure 13 shows
quite mixed results of the vegetation-specific Ceff parameter-
ization for the model E RMSE with respect to DOLCEv3.

The RMSE was consistently reduced during summer months
in temperate regions such as in Europe, the eastern US, and
eastern China (JJA), as well as in southeastern Brazil and
southern Africa (DJF). On the other hand, the results for trop-
ical and boreal regions were less consistent throughout the
seasons (Fig. 13). The effects of the vegetation-specific Ceff
on SMs RMSE with respect to ESA-CCI SM show consistent
RMSE reductions in the JJA period for Canada and south-
eastern Brazil and in the DJF period for the Sahel (Fig. 14).
Consistent with the Ceff RMSE increase in boreal regions in
JJA (Fig. 12), the Pearson correlation coefficient for monthly
anomaly E with respect to DOLCEv3 E was significantly
reduced in these regions in IAKV compared to IAK5, while
other regions were not very affected (Fig. S14). On the other
hand, the correlation of monthly anomaly SMs with respect
to ESA-CCI SM did not considerably change (Fig. S14).
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Figure 8. Standard deviation (SD) of anomaly soil moisture (SM) in experiment IALC with (a) near-surface soil moisture (SMs) and
(c) subsurface soil moisture (SMsb), as well as the relative difference (1rel) between the anomaly SM SD in experiments IAK5 and IALC
((IAK5–IALC)/IALC) for (b) SMs and (d) SMsb. Blue (red) indicates an increased (reduced) variability. See Table 1 for details of the
experiments.

Figure 9. Pearson correlation difference (1r) between experiments IALC and IAK5 (IAK5–IALC) for (a) monthly anomaly total evapora-
tion (E) with respect to DOLCEv3 evaporation and (b) monthly anomaly near-surface soil moisture (SMs) with respect to ESA-CCI SM.
Blue (red) indicates an increased (reduced) correlation in IAK5 compared to IALC, white indicates small and/or insignificant 1r , and grey
indicates no data points. See Table 1 for details of the experiments. Similar figures for seasonal anomalies are presented in Figs. S4–S5.

3.4 Combined effects of land cover, leaf area index, and
effective vegetation cover

The results presented in Sect. 3.2 demonstrate that the in-
terannually varying LAI in experiment IAK5 considerably
improved the correlation of E and SMs with respect to ref-
erence data. On the other hand, the annually varying LC and
vegetation-specific Ceff affected correlations merely to a mi-
nor degree (Sect. 3.1 and 3.3). Here, we further elaborate on
the effects of combining the enhanced variability in LC, LAI,
and Ceff on correlation of E and SMs.

Figure 15 shows that the E correlation improved in 68 %
(JJA) and 54 % (DJF) of the land area in which the r sig-
nificantly changed in IAKV compared to CTR. Significant
reduction of r is found over boreal regions, which is related
to the effects of the effective vegetation cover parameteri-
zation, as discussed in Sect. 3.3 and shown in Fig. S14. Fig-
ures 15b and d show that the SMs correlation consistently and
significantly improved in 83 % (JJA) and 76 % (DJF) of the

land area in which the r significantly changed in IAKV com-
pared to CTR. The E and SMs correlations got consistently
stronger during dry periods in regions with a semiarid cli-
mate and predominantly low vegetation (Figs. 3 and 15). For
example, in northeastern Brazil during the dry JJA season,
the correlation coefficient for E increased from r = 0.79 in
CTR to 0.84 in IAKV with respect to DOLCEv3 and for SMs
from r = 0.57 to 0.67 with respect to ESA-CCI SM. Simi-
larly, in western India during the dry DJF season, the corre-
lation coefficient for E increased from r = 0.78 to 0.85 and
for SMs from r = 0.45 to 0.73. To further explore the effects
in these semiarid regions, we zoom in to northeastern Brazil
for the 2010–2013 period (Fig. 16). This period is charac-
terized by positive LAI and Ceff anomalies in JJA 2011 and
negative LAI and Ceff anomalies in JJA 2012 (Fig. 16a, b).
The negative LAI and Ceff anomalies in 2012 characterize a
dry period in which the negative E anomaly was magnified
in IAKV compared to CTR (Fig. 16c). During this dry pe-
riod, Et was reduced, while Es increased. This is consistent
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Figure 10. (a–j) LAI vs. FCover for a subsample (5000) of the selected points used for the least-squares optimization for all vegetation types
with the optimized LAI–FCover relation in red (Eq. 10) and the k = 0.5 relation in light blue, with RMSE values of the data points with
respect to the curve. The colors indicate the point density, with purple indicating low density and yellow high density. (k) The optimized
LAI–FCover relation for all vegetation types. E stands for evergreen, D for deciduous, N for needleleaf, and B for broadleaf. Values of k and
RMSE are also presented in Table S3.

with the soil moisture response presented in Fig. 16d, as the
SMs was reduced (due to more Es) and the SMsb increased
(due to less Et) during the 2012 dry period. Opposite effects
were found for the 2011 period with positive LAI and Ceff
anomalies. So in this specific case, the variability in Et and
SMs anomalies was enhanced in IAKV compared to CTR,
while the variability in Es and SMsb anomalies was damp-
ened. This is consistent with the results presented in Figs. 7
and 8, in which the effects of the interannually varying LAI
on the variability of E and SM are presented.

The opposing effects of the enhanced LAI variability on
anomaly Et and SMsb can be explained by a negative feed-
back between vegetation and soil moisture schematized on
the right side in Fig. 17a. During dry periods, the soil mois-
ture is reduced; this lower soil water availability can result in
vegetation water stress, consequently leading to lower vege-
tation activity in terms of transpiration and primary produc-
tion, which is reflected, for example, in the typical dry sea-
son browning of grass species in low-vegetation regions and
in the model represented by negative LAI and Ceff anomalies
(Fig. 16a, b). As transpiration is reduced (Fig. 16c), the neg-
ative subsurface soil moisture anomaly is similarly reduced

because less water is extracted (Fig. 16d). On the other hand,
the enhanced vegetation variability activated a positive feed-
back between anomaly vegetation activity and anomaly SMs,
as illustrated on the left side of Fig. 17a. Reduced vegetation
activity is reflected in the model by a reduced Ceff and an
increased bare soil fraction (Sect. 7), which leads to an in-
creased Es (Fig. 16b) and, as a consequence, less SMs during
a dry period as long as soil moisture is available (Fig. 16d).

Figure 17b and c show that the positive feedback between
Es and SMs, as introduced by the improved vegetation vari-
ability, is the strongest over semiarid regions with low vege-
tation, while the negative feedback between Et and SMsb is
more pronounced for temperate regions with deciduous veg-
etation and crops, where the interannual LAI variability is
larger (Fig. 4).
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Figure 11. (a) Mean monthly model effective vegetation cover (Ceff) in experiment IAK5 and (b) the absolute difference between IAKV
and IAK5 (IAKV−IAK5) mean monthly Ceff. Red (blue) indicates a reduced (increased) Ceff in IAKV compared to IAK5. Details of model
experiments are in Table 1.

Figure 12. Root mean squared error (RMSE) of model seasonal Ceff in experiment IAK5 with respect to CGLS FCover for DJF (a) and JJA
(c), with red indicating a larger RMSE. The difference between RMSE in IAK5 and IAKV (IAKV–IAK5) for DJF (b) and JJA (d) with blue
(red) indicating a reduced (increased) RMSE. White indicates small and/or insignificant 1RMSE. See Table 1 for details of the experiments.
Similar figures for monthly values and all the seasons are presented in Figs. S8–S9.

Figure 13. Root mean squared error (RMSE) of model seasonal E in experiment IAK5 with respect to DOLCEv3 E for DJF (a) and JJA
(c), with red indicating a larger RMSE. The difference between RMSE in IAK5 and IAKV (IAKV–IAK5) for DJF (b) and JJA (d) with blue
(red) indicating a reduced (increased) RMSE. White indicates small and/or insignificant 1RMSE. See Table 1 for details of the experiments.
Similar figures for monthly values and all the seasons are presented in Figs. S10–S11.
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Figure 14. Root mean squared error (RMSE) of model standardized interannual seasonal anomaly SMs in experiment IAK5 with respect
to ESA-CCI SM for DJF (a) and JJA (c). The difference between RMSE in IAK5 and IAKV (IAKV–IAK5) for DJF (b) and JJA (d) with
blue (red) indicating a reduced (increased) RMSE. White indicates small and/or insignificant 1RMSE, and grey indicates no data points. See
Table 1 for details of the experiments. Similar figures for monthly values and all the seasons are presented in Figs. S12–S13.

4 Discussion

4.1 Synthesis and implications

The results presented in Sect. 3.4 indicate overall improve-
ments of correlation coefficients of E and SMs with all
three aspects of vegetation variability implemented. We at-
tribute these effects primarily to the implementation of in-
terannually varying LAI, as the effects of the LC variabil-
ity and vegetation-specific Ceff on E and SMs were smaller
(Sect. 3.1 and 3.3). The pronounced improvements in SMs
and E correlation in semiarid regions (Fig. 15) are directly
related to the feedback mechanisms typical of water-limited
regions that were activated by the vegetation variability. Re-
gions where the positive feedback is strong (Fig. 17b) coin-
cide with the regions that exhibit a strengthening of the corre-
lations. In the model setup with seasonally varying LAI only
(experiments CTR and IALC), the feedbacks in Fig. 17 are
not represented because the interaction between SM and LAI
is activated by the interannually varying LAI. In particular,
the interactions between LAI, Ceff, and bare soil cover are
only captured if model Ceff is exponentially related to LAI
(Sect. 2.2.3). This finding complements the arguments from
previous studies for using the exponential LAI–Ceff rela-
tion instead of the lookup-table Ceff in HTESSEL (Alessan-
dri et al., 2017; Johannsen et al., 2019; Nogueira et al.,
2020, 2021).

Recent studies also applied data assimilation methods to
integrate satellite-based LAI in LSMs. For example, Rahman
et al. (2022) found improved anomaly correlations of tran-
spiration in many areas when integrating satellite-based LAI
in the LSM called Noah-MP (Noah Multi-Parameterization),
with the largest effects in the regions where E and SMs
anomaly correlations consistently improved in our results

(Fig. 9). However, this study also found limited sensitivity
of model surface and root zone soil moisture when only LAI
assimilation was applied (Rahman et al., 2022). Similarly,
Albergel et al. (2017) concluded that LAI assimilation only
affected deeper SM. In contrast, our results showed consider-
able changes in near-surface soil moisture when integrating
CGLS LAI; this can be explained by the interplay between
LAI, effective vegetation cover, soil evaporation, and near-
surface soil moisture schematized in Fig. 17, which appar-
ently differs from the interplay in Noah-MP (Rahman et al.,
2022) and ISBA (Albergel et al., 2017).

The vegetation-specific effective vegetation cover param-
eterization presented in Sect. 3.3 generally resulted in an im-
proved match of model Ceff and CGLS FCover (Fig. 12),
which was expected because the FCover data were used for
the estimation of the exponential coefficient k based on least-
squares minimization (Sect. 2.3.3). CGLS FCover explicitly
represents the fraction of green vegetation cover and there-
fore matches the model actively transpiring vegetation frac-
tion Ceff. However, the non-green vegetated area cover also
affects the atmosphere by, e.g., modifying albedo and rough-
ness lengths, which is not considered in the model, as non-
green vegetation is represented as bare soil. This is a limita-
tion for the present implementation of the vegetation-specific
effective vegetation cover parameterization. The results pre-
sented in Fig. 13 showed both increased and reduced RMSE
for E with respect to the reference data in IAKV compared to
IAK5. Consistent reductions of E RMSE in Europe and the
eastern US in the JJA period were found. These regions co-
incide with regions with a high density of FLUXNET tower
observations used for generation of the DOLCEv3 E (Hobe-
ichi et al., 2021). The lack of tower observations in the trop-
ics, in the Sahel, in southeastern Asia, and at high latitudes
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Figure 15. Pearson correlation coefficient difference (1r) between experiment IAK5 and IAKV (IAKV−IAK5) for (a, c) seasonal anomaly
total evaporation (E) with respect to DOLCEv3 evaporation for DJF and JJA and (b, d) seasonal anomaly near-surface soil moisture (SMs)
with respect to ESA-CCI SM for DJF and JJA. Blue (red) indicates an increased (reduced) correlation in IAKV compared to IAK5, white
indicates small and/or insignificant 1r , and grey indicates no data points. The red box is highlighted in Fig. 16. See Table 1 for details of the
experiments. Similar figures for all the seasons and monthly anomalies are presented in Figs. S17–S19.

Figure 16. Time series of the northeastern Brazil case highlighted in Fig. 15 for (a) LAI anomalies. (b) Effective vegetation cover (Ceff)
anomalies with the CGLS FCover data in black as a reference. (c) Evaporation anomalies with E total evaporation, Et being transpiration, Es
soil evaporation, and Ei interception evaporation; DOLCEv3 E is in black as a reference. (d) Soil moisture standardized anomalies with SMs
near-surface soil moisture and SMsb subsurface soil moisture; ESA-CCI SM is in black as a reference. Dashed lines in (c) and (d) represent
experiment CTR and solid lines IAKV. The shading in (c) and (d) represents the uncertainty associated with the reference data. For this case
TL is short grass, TH is deciduous broadleaf trees, AL= 0.84, and AH= 0.16.

may potentially explain the mixed RMSE results in these re-
gions presented in Fig. 13. For high latitudes (e.g., northern
Canada and eastern Siberia) the RMSE for both E as Ceff in-
creased and the Pearson correlation was reduced (Fig. S14)
in IAKV compared to IAK5 for the JJA period. This might be
at least in part related to the poor fit of the parameterization
for high LAI values for short grass and tundra, as explained
in Sect. 3.3 (Fig. 10).

The interannually varying land cover locally affected the
model E and SM as expected, with reduced (increased)
E driven by corresponding reductions (increases) in high-
vegetation cover fraction (Figs. 5 and 6). However, the ef-
fects on E and SM are likely underestimated due to the HT-
ESSEL land cover structure in which the dominant vegeta-
tion type and cover fraction are used and vegetation mix-
ing within high- or low-vegetation types is not represented
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Figure 17. (a) Processes contributing to the anomaly vegetation–soil moisture feedback mechanisms as activated with the improved vegeta-
tion variability in IAKV compared to CTR. Upward (downward) arrows indicate positive (negative) change in the involved variables. Positive
(blue) arrows indicate positive feedback and negative (yellow) arrows indicate negative feedback. The ± symbols refer to the resulting posi-
tive or negative feedback loop relative to the sign of the change in the involved variables. The strength of the feedbacks (b, c) is quantified as
the absolute correlation between anomaly 1Es and 1SMs (b) and between 1Et and 1SMsb (c), with 1 representing the difference between
anomaly CTR and IAKV (IAKV–CTR).

(Fig. 1). With this, only major changes in the ESA-CCI vege-
tation types and fractions are captured by the model. In IALC
we evaluated the effects of interannually varying LC individ-
ually, but for internal consistency LAI and LC interannual
variations should ideally be used together as they are inter-
dependent. The local effects of the interannually varying land
cover on the total E were considerably smaller than on the in-
dividual E fluxes (Fig. 5). The reduced (increased) Et and Ei
were compensated for by increased (reduced) Es. This com-
pensation is related to the Ceff parameterization (Eq. 6) and
also to the offline setup, which does not allow for couplings
with the atmosphere. Reduced AH in the Amazon (Fig. 3) led
to a reduced Ceff and an increased bare soil fraction (Sects. 4–
7) and therefore reduced Et and Ei as well as increased Es in
order to fulfill the atmospheric evaporation demand defined
by the prescribed atmospheric forcing. Similarly, the on av-
erage reduced Ceff with the vegetation-specific Ceff parame-
terization (Fig. 11) introduced in experiment IAKV led to a
shift in annual mean individual E fluxes, with increased Es
and reduced Et and Ei (Fig. S6).

It is important to note that the partitioning of evaporation
into the three individual components Et, Es, and Ei in the
model remains problematic to compare with observations.
There is widespread consensus that, globally averaged, tran-
spiration is the largest land evaporation flux component, fol-
lowed by soil evaporation and interception evaporation (Mi-

ralles et al., 2011; Wei et al., 2017; Nelson et al., 2020).
However, estimates of the average global Et contribution to
total terrestrial evaporation are subject to major uncertain-
ties, with the global Et contribution quantified in the range
of 35 %–80 % (Schlesinger and Jasechko, 2014; Coenders-
Gerrits et al., 2014). The global mean modeled partitioning
of evaporation in our study is on the low end of these esti-
mates with 39 % Et, 38 % Es, and 20 % Ei in CTR and 38 %
Et, 41 % Es, and 20 % Ei in IAKV (the values do not add
to 100 % due to open-water evaporation). Despite the con-
sistent improvements in anomaly correlation coefficients of
E and SMs found in IAKV compared to CTR (Fig. 15), the
apparently low contribution of Et to total E needs further
evaluation, which was out of scope in this study.

4.2 Methodological limitations

Our model experiments were performed in an offline mode
with prescribed atmospheric forcing, which allowed us to an-
alyze individual hydrological processes in detail. However,
the fixed atmospheric model input considerably constrains
changes in model surface fluxes. Moreover, the ERA5 forc-
ing used here is based on an LSM that does not represent
land cover and vegetation variability, which is partially cor-
rected for by data assimilation of observations (Hersbach
et al., 2020; Nogueira et al., 2021). The potential mismatch
between our LSM and the ERA5 atmospheric forcing may
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have also influenced the observed model effects. Another
possible limitation is the absence of recalibration of model
parameters, such as roughness lengths and minimum stom-
atal resistances. Fixed model parameters were originally cal-
ibrated using the lookup-table Ceff parameterization, MODIS
LAI, and GLCC LC, and they have not been adjusted for
the three new model scenarios tested here (IALC, IAK5,
and IAKV). This was also emphasized by Johannsen et al.
(2019), Nogueira et al. (2020, 2021), and Boussetta et al.
(2021), who concluded that model vegetation changes should
be implemented in an integral context and recalibration of
model parameters is needed.

This study emphasizes the importance of realistic repre-
sentation of vegetation variability for modeling land surface–
atmosphere interactions. However, for further applications
exploring how the vegetation variability influences atmo-
spheric variables in a coupled model setup is needed. The
availability of reliable reference data is therefore fundamen-
tal to properly understand and model the processes of rel-
evance for the land surface and interaction with the atmo-
sphere. Here, the evaluation of model performance was lim-
ited to total evaporation and near-surface soil moisture. The
evaluated performances of model E and SMs need to be in-
terpreted in a careful way, bearing in mind the uncertainties.
For total evaporation we used the DOLCEv3 evaporation
data that merge FLUXNET tower observations with evap-
oration from FLUXCOM-RSMETEO, GLEAM v3.5a and
v3.5b, and ERA5-land, which all include very specific model
assumptions on vegetation representations. Although these
data are considered suitable for time series and trend anal-
yses, the associated uncertainty estimates are large (Hobe-
ichi et al., 2021) (Fig. 16). Figure 16c shows that the DOL-
CEv3 interannual variability is systematically smaller than
the modeled variability. This limited interannual variability
in DOLCEv3 could be at least in part related to the combi-
nation of several products because the averaging based on
FLUXNET towers unavoidably dampens the anomalies, re-
ducing the interannual variability. Evaluation of the modeled
near-surface soil moisture was limited by missing data due to
dense forests or snow cover and the lack of information on
the representative soil depth. While the ESA-CCI combined
active–passive SM product was generated using the absolute
values and the dynamic range of GLDAS-Noah soil mois-
ture, preserving the dynamics and trends of the original re-
trievals (Liu et al., 2012), it is important to note that during
dry-downs the soil moisture dynamics can also be impacted
to some extent, as highlighted by Raoult et al. (2022). How-
ever, we still find the ESA-CCI SM to be the best-suited glob-
ally available reference data for our study because they repre-
sent a direct product of remote sensing observations, without
directly blending land surface model dynamics as done for
DOLCEv3.

5 Conclusions

This study aimed to address the limitations of state-of-the-
art land surface models in representing spatial and tempo-
ral vegetation dynamics. We evaluated the effects of improv-
ing the representation of land cover and vegetation variabil-
ity based on satellite observational products in the HTES-
SEL land surface model. Specifically, we directly integrated
satellite-based interannually varying land cover and season-
ally and interannually varying LAI. In addition, we formu-
lated and integrated an effective vegetation cover parame-
terization that can distinguish between different vegetation
types. The effects of these three implementations were ana-
lyzed for soil moisture and evaporation in offline experiments
forced with ERA5 atmospheric forcing.

The interannually varying land cover locally altered the
model evaporation and soil moisture. In regions with major
land cover changes, such as the Amazon, the model evapora-
tion fluxes and soil moisture responded consistently, captur-
ing the effects of increased or decreased high or low vegeta-
tion cover. The interannually varying LAI led to significant
improvements of the correlation coefficients computed with
the available reference data on near-surface soil moisture
and evaporation. This was specifically true in semiarid re-
gions with predominantly low vegetation during the dry sea-
son. The interannually varying LAI and effective vegetation
cover allow for an adequate representation of soil moisture–
evaporation feedback by activating the couplings with veg-
etation during vegetation-water-stressed periods (Fig. 17).
From these results, we conclude that it is essential to realisti-
cally represent interannual variability of LAI and to include
the exponential relation between LAI and effective vegeta-
tion cover to correctly capture land–atmospheric feedbacks
during droughts in HTESSEL. The developments of the ef-
fective vegetation cover parameterization considerably im-
proved the spatial and temporal variability of the model ef-
fective vegetation cover and regionally reduced the model
errors of evaporation and near-surface soil moisture. Over-
all, our results emphasize the need to represent spatial and
temporal vegetation variability in LSMs used for climate re-
analyses and near-term climate predictions. In climate pre-
dictions, we obviously cannot rely on satellite retrievals, and
therefore the development and validation of dynamical or sta-
tistical models able to reliably predict vegetation dynamics,
from leaf to ecosystem scales, remain an important challenge
for the future in the land surface modeling community.

Code and data availability. ESA-CCI land cover data were
taken from https://doi.org/10.24381/cds.006f2c9a (Copernicus Cli-
mate Change Service, 2019). CGLS LAI and FCover data were
downloaded from https://land.copernicus.eu/global/products/ (last
access: January 2022) (Copernicus Global Land Service, 2022).
AVHRR LAI was accessed from https://www.ncei.noaa.gov/access/
metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C01559 (last ac-
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cess: June 2021). The preparation of the ESA-CCI land cover,
CGLS LAI, and AVHRR LAI for use in HTESSEL is explained in
Boussetta and Balsamo (2021). DOLCEv3 was accessed through
https://doi.org/10.25914/606e9120c5ebe (last access: May 2022)
(Hobeichi et al., 2021) and ESA-CCI SM v06.1 through https:
//esa-soilmoisture-cci.org/data (last access: May 2022). The of-
fline HTESSEL model was provided by EC-EARTH, together
with the ERA5 forcing data as well as vegetation and soil data.
The scripts underlying this https://doi.org/10.5281/zenodo.8254556
(van Oorschot, 2023b). Data underlying this publication are
available at https://doi.org/10.5281/zenodo.8307861 (van Oorschot,
2023a).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/esd-14-1239-2023-supplement.
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