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Unifying the design space and optimizing
linear and nonlinear truss metamaterials by
generative modeling

Li Zheng 1, Konstantinos Karapiperis 1, Siddhant Kumar 2 &
Dennis M. Kochmann 1

The rise of machine learning has fueled the discovery of new materials and,
especially, metamaterials—truss lattices being their most prominent class.
While their tailorable properties have been explored extensively, the design of
truss-based metamaterials has remained highly limited and often heuristic,
due to the vast, discrete design space and the lack of a comprehensive para-
meterization. We here present a graph-based deep learning generative fra-
mework, which combines a variational autoencoder and a property predictor,
to construct a reduced, continuous latent representation covering an enor-
mous range of trusses. This unified latent space allows for the fast generation
of new designs through simple operations (e.g., traversing the latent space or
interpolating between structures). We further demonstrate an optimization
framework for the inverse design of trusses with customized mechanical
properties in both the linear and nonlinear regimes, including designs exhi-
biting exceptionally stiff, auxetic, pentamode-like, and tailored nonlinear
behaviors. This generative model can predict manufacturable (and counter-
intuitive) designs with extreme target properties beyond the training domain.

Architected metamaterials are rapidly redefining the boundaries of
achievable material properties. Supported by additive manufacturing,
the design of such cellular solids with tailored microstructural archi-
tecture has led to unprecedented functionality: from counter-intuitive
negative compressibility1,2 and negative Poisson’s ratio3,4 to mechanical
cloaking5, extreme energy absorption6–8, and guided acoustic waves9,10.
Among the myriad of available design spaces, truss metamaterials-
based on periodic lattices of beam networks—have emerged as the
dominant one, particularly due to their high stiffness and strength in the
ultralow-relative-density regime11–16 and the simple manufacturability.

Truss metamaterials offer an extensively tunable design space
based on both the lattice topology (i.e., the connectivity of the beam
network) as well as geometric features (e.g., the length, orientation, and
cross-sectional shape of each strut). However, most of this unlimited
design freedom has remained untapped. Many design applications17–21

have been limited to a small catalog of ad-hoc lattices (e.g., kagome,

octet, and octahedron22–28), which have been identified through a
combination of intuition and trial-and-error over the years. While the
catalog-based search space can be enriched by tuning geometric
features29 or base material properties19, it is strongly limited in topolo-
gical tunability and fails to exploit the full range of achievable designs
and hence of achievable effective metamaterial properties. Many truss
optimization solutions have adopted heuristic search strategies to find
optimal structures by iteratively adjusting the active beams and/or
nodes in the design domain, according tomechanics-based criteria30–33.
This, however, becomes computationally infeasible in large-scale pro-
blems due to the enormous and noisy search space. Recently, Lumpe
and Stankovic34 proposed an extensive catalog of truss lattices by
mimicking the molecular structure of crystalline lattices. Yet, the same
fundamental issue persists as for all such catalogs of truss lattices with
different topologies: there exists no finite-dimensional, continuous, and
seamless design space. For example, while the “kagome” vs. “octet”
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lattice is interpretable by humans, it is not directly cognizant to a
computer. The question is hence: howdoes one translate distinct lattice
topologies into a unified, finite-dimensional, vector-based para-
meterization that can be understood by an algorithm aiming to opti-
mize the latticedesign for certain targetmetamaterial properties?While
a pixeled/voxelated image-based parameterization (similar to conven-
tional topology optimization) is a solution in principle, capturing slen-
der beams in truss lattices warrants extremely high resolution, which
again becomes prohibitively expensive.

To address the aforementioned limitations, we introduce a graph-
theoretic approach to represent a vast design space of three-
dimensional (3D) truss topologies. Every truss lattice can be naturally
translated into a graph—a mathematical structure consisting of edges
and nodes (i.e., struts and their intersections, respectively). The edges
encode the lattice topology in the formof a nodal adjacencymatrix; the
nodes encode the geometric features in the formof spatial coordinates.
Additional graph-level information may include, e.g., strut thickness or
further cross-sectional information. While a graph as a data structure is
computationally interpretable, the discontinuities across different lat-
tice topologies are also persistent in the graph representation.

We introduce a machine learning (ML) framework to extract a
generalizable and unified design space for truss lattices with diverse
topologies. ML has made a significant impact in the design of meta-
materials—from data-driven surrogate models for accelerating multi-
scale simulations35–40 to the inverse design for tailored linear41–47 and
nonlinear48–51 properties. Of particular interest to our context are
generative ML models (using, e.g., variational autoencoders52 (VAEs)
and generative adversarial networks53 (GANs)), which aim to learn the
underlying distribution of the data itself (as opposed to discriminative
models that learn to predict labels for a given input) and have been
used to successfully design metamaterials21,54–56. However, unlike in
those approaches where the design parameterization can be for-
mulated as a finite-dimensional vector or image, we turn to the special
class of generative graph-based ML models for dealing with
graph representations of truss lattices. Graph-based learning has
recently gained prominence because of its ability to model non-
Euclidean data representing interrelations in irregular domains,
such as social networks57–59, chemical molecules60,61, and material
microstructures37,62. Distinct from existing works that utilize super-
vised graph-based models as surrogate models to provide real-time
predictionof various properties of interest, e.g., homogenized elastic63

and thermal properties64 or dominant deformation mechanism65 of
lattice architectures, the goal of the graph generative modeling fra-
mework proposed here is to construct a unified, continuous latent
representation of a vast and discrete truss design space and its
exploitation for the inverse design for both linear and nonlinear tar-
geted mechanical properties. We here demonstrate that a VAE can
successfully abstract a hidden or latent design representation of
diverse graph-based truss lattices. This is achieved by using a neural
network architecture, which contains an informational bottleneck and
enables compressing the high-dimensional graph representation into a
finite, low-dimensional, and smooth vector representation. In this
latent space, any two lattices with similar topological and geometric
features are located close to each other, whereas any two distant lat-
tices can be continuously transformed into each other. New lattice
designs can be straightforwardly generated by randomly sampling in
the latent space. Exploration of this latent space further allows us to
seamlessly search or optimize for truss lattices with exotic or tailored
properties—including those that lie outside the domain of the available
training data.

Results
Creating the design space
We begin by introducing our definition of the design space of truss
lattices. From a practical standpoint, we focus our attention on lattices

based on the periodic tessellation of a cubic representative volume
element (RVE). Inspired by the cube decomposition approach66, we
partition the RVE into eight equal cubes, the octants, as shown in
Fig. 1a. By assuming symmetries across the three mutually orthogonal
symmetry planes, it is sufficient to define the truss only within a single
octant, which simplifies the complex optimization problem while
ensuring great flexibility and periodic tilability. Following the graph
representation of molecules63,67, truss-like structures can be described
by a set of nodes connected by solid beams, which form the nodes and
edges of the graph, respectively. To create a sufficiently large design
space of truss structures, we define a total of 27 possible node place-
ments within the octant (Fig. 1a): 8 vertex nodes {v0, v1, v2, v3, v4, v5, v6,
v7}, 12 edge nodes {e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11}, 6 face nodes
{f0, f1, f2, f3, f4, f5}, and a single body node {t0} within the volume. While
the body node is free tomove in 3D, edge and face nodes are restricted
to be displaced only along the edge and within the face, respectively,
and vertex nodes are fixed, as illustrated in Fig. 1a. We define the
offsets of nodes (as in ref. 66) in the natural coordinate system,
representing their relative positions with respect to the fixed vertex
nodes to ensure connectivity on the outer boundaries. The complete
set of node features x contains the offset of each node in its movable
direction(s).

Analogous to the above node features, the structural features of
theunit cell include the truss topology,which is fully describedby a list
of all edges (e.g., (e0, f1) represents a beam connecting edge node e0
and face node f1). By analogy with a graph structure, we represent the
lattice topology using an adjacency matrix A∈ {0, 1}n×n, where the
diagonal elements Aii = 1 (for all i = 1, …, n) and n = 27 is the total
number of nodes. The adjacencymatrix serves as a lookup table, where
the valueof 1 denotes an edgebetweennodes,whereas 0 indicates that
an edge is not present. With the graph representation, introducing or
removing beams from the truss can be easily achieved by operations
on the adjacency matrix (e.g., the superposition of two structures is
described by the logical disjunction, i.e., element-wise boolean OR, of
two adjacency matrices). Possible defects, such as isolated nodes or
struts, can be efficiently identified and resolved by examining the
adjacency matrix. Here we do not explicitly consider permutation
invariance or equivariance of graphs due to the inherent representa-
tion complexity in generative modeling tasks68,69. In other scenarios
(such as predicting frame-indifferent properties37,70), incorporating
permutation invariance or symmetry groups such as SE(3) in graph
representations71–74 could largely enhance the learning of the under-
lying relations of various structural configurations.

We leverage the above representation to construct a dataset
containing a large family of truss lattices covering a wide range of
mechanical properties. To this end, we begin with a set of three well-
known elementary trusses as initial topologies, including the octet,
body-centered-cubic, and simple cubic unit cells as 1 × 1 × 1 and
2 × 2 × 2 tessellations. Starting from those, an iterative stochastic per-
turbation algorithm generates novel structures by randomly inserting/
removing both nodes (of edge, vertex, face, or body types) and truss
connectivities. New connections are created by connecting newly
inserted nodes to at least one of their nearest neighbor nodes. Random
perturbations are added to the position of all nodes, while obeying the
corresponding positional constraints of the vertex, edge, and face
nodes. The aboveprocedure is repeated until the obtained truss lattice
satisfies the constraints on the graph connectivity (details provided in
Supplementary Note 1). We build a large preliminary library, which
includes a variety of trusses—from well-studied structures to uncon-
ventional ones, as shown in Fig. 1c. From the thus-obtained preliminary
library, new lattices are created by superimposing two randomly
sampled structures (with repetitions allowed). To ensure the physical
feasibility of structures generated by random perturbations and
superpositions, we enforce the constraint that the lattice is self-con-
nected; i.e., the truss graph must have exactly one maximally
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connected subgraph spanning the whole graph. Intersecting beams,
which may arise from the superposition of different topologies, are
fixed by splitting the involved beams and inserting a new node at the
intersection point. The resulting lattices constitute the design space as
well as the corresponding dataset for ML.

By perturbing both the topological and geometrical features of
the lattice, we create a rich database of anisotropic lattices, consisting
of 965,736 unique structures. As a representative and important
mechanical property, we study the full anisotropic 3D elastic stiffness
tensor. All lattices obtained from the cube decomposition approach
naturally possess three orthogonal plane reflection symmetries
and therefore only require nine independent components to describe
the orthotropic homogenized stiffness tensor; we select S = ðC1111,
C1122,C1133,C2222,C2233,C3333,C2323,C3131,C1212Þ. For each structure, the
effective mechanical stiffness tensor is computed by homogenization,
using a finite element (FE) framework, which models individual struts
as linear elastic Timoshenko beams with a circular cross-section75. We

assume a homogeneous base material with Poisson’s ratio νs = 0.3 and
unit Young’s modulus Es = 1 (i.e., all reported effective stiffness values
are relative to the base material’s Young’s modulus). The beam thick-
nessdof all struts is varied such that a constant relative densityρ =0.15
is maintained across all structures. This will be helpful during property
optimization, as it ensures that optimized mechanical properties do
not come at the cost of an increased weight.

To visualize the property range reached by the established truss
catalog, Fig. 1d shows the effective directional Young’s moduli E and
the effective shearmoduliG along the three principle cubic directions
and their projections onto the x-y-, x-z-, and y-z-planes. Results show
that the established truss database covers a wide range of Young’s
moduli, spanning three orders of magnitude between 10−5 and 10−2

times the base material’s Young’s modulus. Although the initial
structures used as seeds are limited to cubic symmetry, the resulting
library generated by perturbing both the truss connectivity and
node positions exhibits strong anisotropy and has significantly
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Fig. 1 | Overview of the truss parametrization and the data generation scheme
used to create a diverse truss lattice dataset. a Cube decomposition generates
the irreducible truss patternwith possible nodeplacements and the nodes' degrees
of freedom defined on the octant. For example, an edge node has one degree of
freedom and is only allowed to traverse along the edge, while a face node with two
degrees of freedom can assume any position within the plane. b Graph repre-
sentation of an octet truss example (vertex nodes in blue colors, and face node in
purple colors), whose vertices and beams serve as input to the variational auto-
encoder (VAE) model. The lattice is defined by the adjacency matrix and node
features. c Examples of different truss lattices are realized by varying the topology
and the vertex degrees of freedom as well as the strut diameters, showcasing the

wide coverage of the design space. d Effective directional Young’s moduli E and
effective shear moduli G (normalized by the respective properties Es and Gs of the
basematerial) in the threemain directions and their projected values on the e1–e2-,
e1–e3-, and e2–e3-planes of 3000 structures randomly drawn from the dataset, and
selected examples with extreme properties. The size of themarkers is proportional
to the strut radius of the unit cell; their colors indicate the effective bulk modulus.
The effective stiffness was obtained by finite element (FE) homogenization with
periodic boundary conditions; the radius of circular cylindrical struts is scaled to
maintain a constant relative density of ρ =0.15. The resulting variety of truss con-
figurations in the dataset covers a large range of elastic properties.
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expanded the range of mechanical properties (e.g., the representative
examples shown in Fig. 1d reach effective Young’s moduli E33 of
ca. 36% higher than that of a simple cubic unit cell in the principle
direction at the same density). Of course, the dataset could be enri-
ched by more unique structures, using the above approach. Yet, we
limit our study to the current dataset based on the performance and
computational cost of the ML model (as detailed below). The data
generation could also be generalized to other truss families. For
example, while we only consider centrosymmetric unit cells, non-
centrosymmetric unit cells can be readily constructed in a similar
manner by allowing for different structures in each octant instead of
applying symmetries. Compared to prior approaches that have
focused on a truss unit cell catalog, our database achieves a sig-
nificantly wider design space of truss structures with a relatively
compact formulation based on graphs.

Generative modeling framework
The proposed design space for truss lattices is discrete and
discontinuous. For example, any two truss lattices may have
different numbers of nodes or nodes with different numbers of
degrees of freedom (such as edge vs. face nodes). However, repre-
senting the truss lattices by a graph structure, as described above,

enables the use of node features and adjacency matrix as inputs for a
ML model to learn a low-dimensional, continuous, and smooth
representation for the high-dimensional, discrete, and intractable
graph representation.

We use a VAE containing two neural networks—an encoder and a
decoder (see Fig. 2a for a schematic of the framework). Let G = (A, x)
denote the graph representation of a truss lattice, defined by its
adjacency matrix and node features. The encoder Qϕ (with the set of
trainable parametersϕ)maps an input graphG into two d-dimensional
vectors μðG;ϕÞ 2 Rd and σðG;ϕÞ 2 Rd , which, respectively, prescribe
the mean and covariance of a diagonal multivariate Gaussian dis-
tribution

z ∼N ½μ1, . . . ,μd �>, diag σ2
1 , . . . ,σ

2
d

� �>� �� �
: ð1Þ

Here, z 2 Rd denotes a low-dimensional vector encoding of the input
graph G, also known as latent representation. While the formulation is
presented in termsof σ, the neural networkpredicts logσ. Tomaintain
differentiability (required for backpropagation-based neural network
training), z is sampled using the reparameterization trick52 as

z =μ+ ε� ½σ1, . . . ,σd �> with ε∼N ð0,IÞ, ð2Þ

Encoder DecoderInput lattice Reconstructed 
latticeLatent space

Generative modeling of truss metamaterialsa

Start

Gradient-based optimization

Guess in latent space Optimal solutionReconstructed 
lattice

Machine learning based inverse designb

End

Start

EncoderDecoder

Achieved property: 

Initial / update guesses

Stiffness

Property
 predictor

Property
 predictor

Target property: 

Fig. 2 | Generative modeling framework. a The variational autoencoder (VAE)
model takes the graph representation G = (A, x) of truss lattices (defined by adja-
cency matrix A and node features x) as input to the encoder Qϕ and learns a
continuous latent space over the geometries of various trusses. μ and σ denote the
mean and covariance of the multivariate Gaussian distribution. The reduced
representation z of truss structures is then passed to the decoderPθ to reconstruct
the lattice. An augmented multi-layer perceptron (MLP) neural network Fω pre-
dicts the mechanical properties of trusses based on their latent representation z.

b The inverse design framework aims to generate truss lattices with target prop-
erties. Starting with the 100 closest matches in the training dataset as initial
guesses, gradient-based optimization is applied to search for possible lattices with
desirable properties in the latent space (N ð0,IÞ denotes a uniform distribution of
zeromean and the identity as the covariancematrix). The inverse design candidate
structures are passed to the encoder to obtain their corresponding latent repre-
sentations, which are then forwarded to the property predictor to predict the
effective stiffness of the proposed lattices.
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where⊙ denotes element-wise multiplication. The decoder Pθ (with
set of trainable parameters θ) maps the latent vector z into a graph
representation G0 = ðA0,x0Þ=Pθðz; θÞ and attempts to accurately recon-
struct the original graph, i.e., G≈G0. The autoencoding of the input
graphs with such a neural network structure creates an information
bottleneck76 in the latent representation. The information bottleneck
only preserves the necessarymeaningful information to allow accurate
reconstruction of the graphs, with a significant reduction in the
dimension and complexity of the original data. Consequently, in the
latent space any two graphs/lattices with similar topology and
geometry are located close to each other; any two distant graphs/
lattices can be continuously transformed between each other by
traversing the latent space.

We here adopt the attributed network embedding method77 to
learn the individual dependencies of the structural topology and node
placements as well as their combined effects (details provided in
Supplementary Note 2.2). Specifically, the adjacency matrix (contain-
ing binary values) and node features (containing continuous values)
are serialized and passed through separate encoders to obtain the
respective latent space distribution means μA 2 RdA and μx 2 Rdx

and standard deviations σA 2 RdA and σx 2 Rdx . The embedding
dimensions dA and dx are chosen such that dAx = (dA + dx) − d > 0. Note
that, since the adjacencymatrix is symmetric, only theupper triangular
part is considered by the encoder. The final latent space distribution is
obtained by partial overlap of the adjacencymatrix and node features
embeddings. The mean is given by

μ=

μA
1

..

.

μA
dA�dAx

2
664

3
775

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
topology�specific

� 1
2

μA
dA�dAx + 1

..

.

μA
dA

2
6664

3
7775

0
BBB@

1
CCCA+

μx
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..

.

μx
dAx

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
shared topology and geometry

�

μx
dAx+ 1

..

.

μx
dx

2
6664

3
7775

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
topology�specific

, ð3Þ

where⊕ denotes vector concatenation (the logarithm of the standard
deviation, i.e., logσ, is obtained analogously using logσA and logσx).
Since the adjacency matrix and node features influence the topology
and geometry, respectively, subsets of the latent space dimensions
offer topology-specific, geometry-specific, and shared control over
the design space, the advantages of which will become apparent when
discussing the results. Similar to the encoding, two separate decoders
are used to output the graph G0 = ðA0,x0Þ from a latent vector z—the
topology-specific and shared dimensions of z are used to obtain the
adjacencymatrixA0; the shared and geometry-specific dimensions of z
are used to obtain the node features x0.

Towards the efficient data-driven design and the discovery of new
structureswith desirable properties, the latent space canbe associated
with specific properties that we seek to optimize by a neural network
surrogate model21,78 using the latent vectors as input, thus bypassing
the costly FE homogenization computation. Therefore, we adapt the
original VAE structure and link the latent space to the homogenized
effective stiffnessmeasures S by feeding themean of the latent vector,
i.e., μ(G;ϕ), into an additional neural network-based property pre-
dictor Fω (with trainable parameters ω).

Given a representative dataset D= fðGðnÞ,SðnÞÞ : n= 1, . . . ,Ng con-
taining N structure-property pairs, the VAE and property predictor are
jointly trained as

θ,ϕ,ω argmin
θ,ϕ,ω

1
N

XN

n= 1
AðnÞ � AðnÞ

0��� ���2 + xðnÞ � xðnÞ
0

��� ���2
� 	

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
reconstruction loss

+
1
N

XN

n= 1
SðnÞ � Fω½μðnÞ�

��� ���2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
property prediction loss

+
XN

n= 1
DKL N μðnÞ1 , . . . ,μðnÞd

h i⊺
,diag σðnÞ1

2
, . . . ,σðnÞd

2h i⊺� �� �
k N ð0,IÞ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Kullback�Leiblerdivergence

:

ð4Þ

The reconstruction loss enforces that the encoded graphs (equiva-
lently, truss lattices) are accurately reconstructed (in terms of both the
adjacency matrix and node features) by the decoder. The property
prediction lossenforces that thepropertypredictor outputs the stiffness
of a truss lattice accurately. The Kullback-Leibler divergence (KLD)52

penalizes the divergence of the probability distribution of the latent
space produced by the encoder from the standard Gaussian distribu-
tion N ð0,IÞ. This allows directly sampling the latent space using a
standard Gaussian distribution and decoding truss lattices during the
inference stage (as opposed to first encoding an a-priori known lattice
into a latent vector and then decoding back during training), which in
turn enables the design and discovery of novel trusses beyond the
dataset at hand. The KLD loss further simplifies to

DKL N μ1, . . . ,μd

� �>, diag σ1
2, . . . ,σ2

d

� �>� �� �
k N ð0,IÞ

� �

=
1
2

Xd
j = 1

σ2
j +μ

2
j � 1� log σ2

j

� �h i
:

ð5Þ

For detailed derivations of the reconstruction and KLD losses, see
ref. 52. All details pertaining to the neural network architectures,
training protocols, and hyperparameters are presented in Supple-
mentary Table 1.

The generative capability of the VAE enables us to explore novel
yet realistic truss structures, whose mechanical properties are imme-
diately available at minimal computational cost through the property
predictor Fω. With the joint property predictor as a regularizer, the
generativemodeling framework helps yield a deeper understanding of
the latent space, which lacks physical interpretation and hence pre-
sents new opportunities for various downstream tasks by modifying
the target of the structure-property predictor, e.g., towards the clas-
sification of deformation-mechanisms of truss lattices65, or the pre-
diction of dispersion relations79,80 and the nonlinear response50,81.
Furthermore, our framework can be expanded to the simultaneous
design of multiple properties by feeding the extracted features to a
multi-task property predictor82–84. By leveraging the correlations and
shared information among different targets, we can effectively guide
the design of truss lattices that have various desired properties by
integrating the multi-task property predictor into a multi-objective
optimization framework.

Performance of the VAE model
Our first goal is to correctly reconstruct truss structures: any given
input lattice is mapped by the encoder into the latent space, from
where the decoder reconstructs the truss lattice (Fig. 2a). Defining the
topology reconstruction accuracy as the percentage of correctly pre-
dicted links reveals that the trained VAEmodel accurately captures the
topological features of trusses with an accuracy score of 99.9% for the
adjacency matrix. The correlation plot between the true and recon-
structed node positions is presented in Supplementary Fig. 6a. The
model shows high quality in the reconstruction of the geometrical
features, demonstrated by R2 ≥ 99.9% across the 3D components (x, y,
z) of thenodepositions. A comparisonof representative reconstructed
truss structures and the corresponding original structures from the
test dataset is shown in Supplementary Fig. 6b.

Next, we assess the performance of the surrogate model for
predicting the 3D effective stiffness measures S of trusses on an
independent test set. As shown in the correlation plots between the
true and predicted stiffness components in Supplementary Fig. 7, the
trained model Fω overall achieves an R2 ≥ 98.2% accuracy across all
stiffness components. Altogether, this confirms that our VAE model
accurately reconstructs truss structures and predicts their effective
stiffness properties.
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With the jointly trained property predictor, the latent space is
better organized in the sense that structures with similar mechanical
properties are expected to cluster in the same region within the latent
space (see also SupplementaryNote 3.1),which gives important insight
into the originally high-dimensional and intractable design space.
Moreover, the property predictor works as an additional constraint,
enforcing that points in the latent space should decode into valid and
realistic truss structures, thus preserving some mechanical property
informationwhile reducing thedimensionality.Weevaluate thequality
and efficiency of the latent space generation by randomly sampling
1000 points from the latent space and using the decoder to recon-
struct the corresponding structures. Results show that on average
82.3% (evaluated on 1000 attempts of random sampling) of randomly-
selected samples canbe successfully decoded into valid (i.e., physically
meaningful) truss topologies—we refer to this fraction as the validity
score. While it is appealing to improve the quality of samples by
imposing stronger regularization, such as increasing the weight of the
KLD term in Equation (4) (also known as β−VAE85), the fidelity of the
reconstruction will degrade due to the inherent trade-off between
reconstruction accuracy and random sample quality in VAEmodels. In
this work, we therefore adopt the annealing schedule for the weight of
the KL-divergence term86 (details provided in Supplementary Note 2.1)
to dynamically tune the importance given to the regularization and
reconstruction losses, thus ensuring the flexibility of the VAE
reconstruction.

Exploration in the latent space of truss lattices
The continuous and low-dimensional latent space with generalization
ability is particularly advantageous for the design of new structures by
traversing the latent space through simple arithmeticoperations of the
latent representation z. While existing works that relied on a pixel/
voxel-based parameterization have shown success in mapping the
topology and mechanical properties in a latent space with a similar
data-driven design framework21, they did not consider the impact of
the different types of structural features (i.e., of connectivity and node
positions) separately. In fact, manipulating the truss connectivity vs.
moving nodeswill expand the property spacedifferently. For example,
changes to the truss topology can have a strong effect on its defor-
mation behavior (stretch- or bending-dominance depends primarily
on the connectivity87). To this end, we adopt the joint embedding
model (details provided in Supplementary Note 2.2) to encode the
topological and geometrical features in different dimensions of z,
while maintaining the total number of latent dimensions constant. A
major advantage of this adjustment is that the importance given to
each type of information can be adjusted by tuning the corresponding
number of latent dimensions without increasing the model complex-
ity. This provides flexibility and allows us to extract information that is
only related to the topology or to the node position or to their inter-
actions. As a consequence, traversals through the latent space along
different axes give rise to significantly different changes inmechanical
properties, which is enabled by the attributed latent embedding
approach; i.e., each axis (each component of z) stores specific infor-
mation about the structural pattern transformation. Figure 3 shows
an example of moving along three different latent axes (see also
Supplementary Information Movies 1–3), which encode the informa-
tion specifically for connectivity reconstruction, node positions
reconstruction, or both—in each case starting from the same truss—
which leads to the illustrated changes in structural topology, geo-
metry, or both and the corresponding 3D stiffness (visualized as elastic
surfaces).

While previous work has investigated the generation of new
structures by moving along a path in latent space21,78, it is usually
intractable to obtain a disentangled representation of the original data
space, since the complex correlation between entities is non-trivial to
decompose. By contrast, our model uses a systematic latent

representation for trusses, which admits human interpretation and
where the truss connectivity and node positions can be independently
altered. This is useful for many downstream tasks; e.g., for identifying
the roles of different geometrical features and their impact on the
effective truss performance.

As an illustration, we define an interpolation path between two
points in latent space and reconstruct a continuous family of new
trusses along the path with the decoder. The high validity score of our
latent space ensures that the majority of generated new samples are
physically feasible. (Possible issues such as a lack of connectivity or
structural instability can be resolved by a light post-processing step.)
For example, let us assume that two points in the high-dimensional
latent space lie on the surface of a hypersphere rather than on a
straight line, sowe can interpolate between any two truss structures by
applying the spherical linear interpolation88 (slerp)

SLERP ðz1,z2;αÞ=
sin ð1� αÞθð Þ

sinθ
z1 +

sin αθð Þ
sinθ

z2, ð6Þ

where z1 and z2 are the vectors of two points in the latent space,
α∈ [0, 1] is the interpolation parameter, and z1 � z2 = cosθ. A detailed
discussion on slerp and its comparison with linear interpolation is
provided in Supplementary Note 3.2. Figure 4 presents two examples
of interpolating between two truss structures that have significantly
different mechanical behavior (e.g., structures with the largest and
smallest Young’s modulus E11, and with the largest and smallest uni-
versal anisotropy index AU, which quantifies the degree of structural
anisotropy89 (details are provided in Methods)). Selected structures
generated by the decoder along the interpolation path are visualized
along with their respective elastic surfaces obtained from FE homo-
genization (see also Supplementary Movie 4). Our smooth and con-
tinuous latent space ensures that, while the start- and end-point
structures have opposite extremes of mechanical properties among
the dataset, the transition of the structural geometries is smooth. This
provides new opportunities for the design of continuous families of
truss structures with property grading, which bypasses complex
optimization algorithms operating in the high-dimensional, discrete
design space. In the secondexampleof Fig. 4 (SupplementaryMovie5),
we observed that—along the interpolation path between two points
with extreme anisotropy values AU– new structures are generated that
have a considerably higher AU-value than all trusses in the training
dataset. This is possible, as we interpolate in the latent space insteadof
the property space. The jointly trained property predictor encourages
structures with similar mechanical performance to be located in the
same region in latent space. Therefore, sampling in the vicinity of a
point in latent space results in a rich family of trusses with similar
properties (see also Supplementary Note 3.1). Moreover, new
structures generated along a smooth interpolation path, or in the
vicinity of the extreme values in the dataset, are expected to exhibit
continuous property changes, including unprecedented extreme
values.

Gradient-based optimization in the latent space
The continuous latent space successfully captures the underlying
mechanical features of trusses rather than simply memorizing the
training data. This enables the use of gradient-based optimization
techniques to guide the tailoring of truss lattices to achieve desired
properties and, furthermore, to extrapolate beyond the training
domain. While the forward mapping from structure to property is
straightforward, the inversedesign problem is ill-poseddue to the one-
to-manymapping from the property space to the geometry space (i.e.,
multiple different truss candidates may lead to the same effective
properties). This can be overcome by searching for a potential struc-
ture candidate, whose reconstructed stiffness matches the queried
stiffness44. To generate physically realistic truss structures or to obtain
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the sensitivities of properties with respect to structural features, we
leverage automatic differentiation and use a backpropagation algo-
rithm to obtain the gradients through the VAEmodel and the property
predictor. Due to the discrete nature of truss topologies, uncon-
strained optimization in the latent space can be problematic and may
result in invalid structures even with the variational term as a reg-
ularization, since there is no explicit constraint on the validity of
generated samples when searching the whole latent space. As a
remedy, we adopt an indirect approach by first reconstructing truss
structures from their latent representation given by the optimizer, and
passing them to the encoder to obtain the actual latent variables,
which are then forwarded to the property predictor to predict the
effective stiffness of generated structures (see Fig. 2). The additional
encoding-decoding process ensures that candidate structures pro-
posed by the optimizer are valid.

To demonstrate the inverse design capabilities, we apply our
generative modeling framework to design truss structures
with extreme mechanical properties. Considering the one-to-many
mapping of properties to structures and to have a reference, we first
evaluate all structures in the training dataset towards the target
property. Based on that data, initial guesses are chosen as the
100 closest matches in terms of the target property. Gradient-based
optimizations for each initial guess are performed in parallel, and the
best solution is identified by examining the FE-reconstructed prop-
erties of the 100 optimal solutions (the property predictor only
serves as a computational shortcut to obtain the effective response
during optimization). This approach identifies multiple candidate
truss structures, which exhibit similarmechanical behavior—allowing
for the selection of optimal structures under consideration of
additional target attributes such as manufacturability or further

properties of interest (see the detailed discussion in Supplementary
Note 3.3).

Figure 5 illustrates three examples of the optimal design of truss
lattices towards extreme properties. In all three cases, the trained
generative models produce robust designs with properties far outside
of the training domain through careful tuning of architectures, thus
greatly expanding the limits of the property range. The first example
maximizes the directional Young’s modulus E22, for which Fig. 5a
shows the optimization path in the property space. Intermediate
truss lattices are visualized to demonstrate the effect of the structural
evolution (including the Voigt upper bounds EVoigt = Es ⋅ ρ and
GVoigt =Gs ⋅ ρ). The optimization scheme gradually adjusts the beam
arrangements along the e2-direction, exceeding themaximumYoung’s
modulus in the training dataset (E22,max = 0:068) by 51.5%. The second
example in Fig. 5b shows structures optimized for a maximum auxetic
behavior (i.e., for a maximum negative Poisson’s ratio ν21) in the e1-e2-
plane. The optimization scheme reaches an optimal structure with
ν21 = − 2.711, which is a 42.9% improvement over the most negative
Poisson’s ratio in the training set (ν21,min = � 1:897). Finally, Fig. 5c
illustrates the search for near-pentamode structures90, i.e., for fluid-
like trusses with a high bulk-to-shear modulus ratio—being soft to
shear but (close to) incompressible. The gradient optimization scheme
here maximizes the ratio of the bulk modulus to the shear modulus.
(Since the structures are anisotropic, we use the Voigt average bulk
and shear moduli91, KV and GV, respectively, for optimization.) Results
show how the optimal structure yields a ratio of KV/GV that is 28.6%
higher than the maximum value contained in the training dataset
(which is 14). While this may not be an impressive improvement
compared to existing pentamode designs, we stress that—in all three
optimization examples—the generative model improved the target
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Fig. 3 | Representative examples of interpolation in the latent space. Samples
are generated by traversals along three different latent axes: a taken from the
topology-specific, b shared topology and geometry, and c geometry-specific
dimensions of the latent space. Their corresponding 3D elastic surface evolution

(obtainedbyfinite element homogenization) is shown along the interpolationpath,
which indicates the effective directional Young’s modulus E(d) normalized by the
Young’s modulus Es of base material.
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properties significantly by only small structural modifications (com-
pare, e.g., the initial and final structures in Fig. 5b and c). Such small
changes, which are unlikely to be found by design intuition and
experience, demonstrate the complexity of the design and property
spaces and highlight the benefits of our approach.

Design for tailored nonlinear mechanical response
In addition to target properties in the linear regime, we further verify
the efficiency and generalization ability of our framework by the
inverse design of nonlinear mechanical metamaterials. We consider a
subset of the training dataset that contains 383,729 unique structures,
striking a balance between computational cost and model perfor-
mance. To characterize the effective behavior of truss structures, we
homogenize the stress–strain response of the truss unit cells with
periodic boundary conditions under uniaxial compression subjected
to a compressive strain of up to 25% in the z-direction. The established
truss database and their corresponding nonlinear stress–strain
responses are used to train the generative modeling framework with
the objective of enabling the design of novel metamaterials with
desired nonlinear responses. To facilitate training of theMLmodel, we
reduce the dimensionality of the learning labels and describe the
stress–strain curve by a vector σt = [σ(0.5%), σ(2.5%), . . . , σ(24.5%)]T,
which contains the compressive stress values at 13 equally
spaced strain points along the range of applied compressive strains.
Figure 6a shows the comparison between the predicted vs. true
stress–strain curves for four representative examples from the test

dataset, exhibiting nonlinear distinct behaviors. The trained property
predictor accurately predicts the nonlinear responses for unseen truss
structures, achieving an overall normalized root mean square error
(NRMSE) of 4.5%, which confirms that the property predictor provides
an effective estimate of the nonlinear responses of diverse trusses.

Next, we demonstrate the inverse design capabilities of themodel
by applying our generative modeling framework to design truss
structures matching a given target stress–strain response. Figure 6b
shows two benchmark examples of different stress–strain response
targets. First, we select a design target that exceeds the stiffest
response in the considered training dataset by 30%. As shown in Fig. 6b
(i), the optimal truss structure closely matches the target response
with an NRMSE of 3.8%, which showcases the capability of the frame-
work to design truss structures that exhibit specific desired responses,
even beyond the range of observed behaviors in the training dataset.
Second, we consider a target stress–strain curve displaying pro-
nounced softening behavior, with aminimumNRMSE between the top
pick within the training dataset and the target of 9.1%, as illustrated in
Fig. 6b (ii). The generated optimal design significantly outperforms the
best match in the training dataset for the considered target (with an
NRMSE of 3.0%). This demonstrates that the constructed continuous
latent space effectively captures the essential features and (some of
them) underlying physics of periodic trusses, which enables the
inverse design of novel truss designs that closely match unseen
responses in both the linear and nonlinear regimes, clearly surpassing
the limits of the training dataset.

Start EndIntermediate path

Start

End

Start

End
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1

0.5

0
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Fig. 4 | Representative examples of interpolation in the latent space. Samples
are generated by interpolation between two points in latent space, whose corre-
sponding trusses exhibit extreme mechanical properties (in terms of directional
Young’s modulus E11 and the universal anisotropy index AU). Their corresponding

3D elastic surface evolution (obtained by finite element homogenization) is shown
along the interpolation path, which indicates the effective directional Young’s
modulus E(d) normalized by the Young’s modulus Es of base material.
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Discussion
Thepresentedgenerativemodeling framework constructs a continuous,
low-dimensional latent space of truss metamaterials. By analogy with
molecules, we leverage the graph representation to interpret periodic
trusses as graphs, thus providing an efficient, consistent, and general
parameterization, which covers a wide range of truss structures and a
tremendous space of anisotropic mechanical properties. Encoding the
information related to the truss connectivity, the node positions, and
their shared information in different dimensions of the latent repre-
sentation enables a human interpretation of the otherwise intractable
latent space. It also provides flexibility and tunability in manipulating
structural features of truss lattices to achieve optimal properties. A
major advantage of the unified and continuous latent representation is
that novel truss structures can be conveniently generated by simple

operations in the latent space, including sampling in the vicinity of
known data points, traversing along the latent axes, and interpolating
between two points. While classical VAEs often suffer from the issue of
opacity and a lack of a physically meaningful representation, the pro-
posed framework tackles this challenge by a jointly trained neural net-
work to predict the truss properties from the latent space—thus allowing
us to creatively navigate the latent space and to extrapolate with
gradient-based optimization techniques to unseen, extreme properties
outside the original training domain. This admits identifying optimal
lightweight truss lattices with target combinations of, e.g., the elastic
constants in 3D and nonlinear stress–strain responses. The proposed
design framework admits extension to other properties of truss
metamaterials45,92,93 by modifying the property predictor as well as to
other types of metamaterials37,44,94–97 by modifying the design
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Fig. 5 | Inverse-designed truss metamaterials based on gradient optimization.
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Source Data file.
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parameterization. This highlights the potential of our framework to
analyze and optimize a broad range of metamaterials. The physical
interpretability and extrapolation ability open up new avenues for the
discovery of new metamaterials and lend inspiration for designing cel-
lular structures with tailored properties by tuning the architectural
features.

Methods
Data generation
Supplementary Fig. 1 shows the details of the generation of a diverse
truss lattice dataset. We define the truss graph in the octant within a
domain Ω0 = ½0,1�3 � R3, which is populated into truss structures in
the domain Ω= ½�1,1�3 � R3 through reflections about the three
mutually orthogonal symmetry planes. Starting from the five elemen-
tary truss lattices shown in Step 1 of Supplementary Fig. 1, new struc-
tures are created by randomly perturbing both the node positions and
connectivities for several iterations. Supplementary Fig. 2 shows the
node positions and connectivities of the five considered elementary
truss structures. Node positions are altered by offsets defined in the
natural coordinate system66 and sampled from the uniform

distribution λ∼Uð�0:5,0:5Þ. Based on the initial truss structures, new
connectivities may be introduced by removing available nodes or
inserting new nodes with the following constraints: (1) the established
structure is a single connected component; (2) all beams are shorter
than rmax =

ffiffiffi
3
p

=2 (times the unit side length of the unit cell); the
maximum permissible length of a beam connection rmax is chosen
according to the longest connection in the initial five elementary
trusses; (3) no dangling connections exist within the structure (every
node has at least two connected beams). Each geometry is perturbed
for 10 iterations togenerate a library that contains awide rangeof truss
structureswith several unique topologies. From the established set, we
randomly sample two lattices with repetitions allowed, which are then
superimposed according to their matching nodes to yield a more
diverse dataset. The full dataset considered for training the generative
models contains 965, 736 lattices and their homogenized effective
stiffness properties.

Computational homogenization
The effective stiffness tensor C of all truss structures in our library is
computed by FE homogenizationwith periodic boundary conditions75,
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using on an in-house C++ FE code (available at http://ae108.ethz.ch).
Each strut in the truss unit cell is modeled as a linear elastic Timosh-
enko beam with a circular cross-section. The strut radius of each unit
cell is scaled to maintain a constant relative density of ρ = 0.15. We
visualize the 3D anisotropic stiffness of truss lattices as elastic surfaces,
which indicate the effective directional Young’s modulus E(d) for all
directions d∈ S2 as

EðdÞ=
X3

i, j,k,l = 1

C�1ijkldidjdkdl

0
@

1
A
�1

: ð7Þ

In Figs. 3 and 4, we presented representative samples of novel truss
lattices generated by interpolating between known structures that
exhibit extreme universal anisotropy values AU89. AU can be interpreted
as a generalization of the Zener index98, which applies to structures
with cubic symmetry and can be expressed as

AU = 5
GV

GR
+
KV

KR
� 6, ð8Þ

whereGV andKV are the Voigt estimates for, respectively, the shear and
bulk moduli91, and GR and KR are the Reuss estimates for, respectively,
the shear andbulkmoduli99. Specifically, Reussproposed the following
relations for the bulk modulus K and shear modulus G in terms of the
compliance components Sijkl :

K�1R = ðS1111 +S2222 +S3333Þ+2ðS1122 +S1133 +S2233Þ, ð9Þ

15G�1R =4ðS1111 +S2222 +S3333Þ � 4ðS1122 +S1133 +S2233Þ +3ðS4444 +S5555 +S6666Þ:
ð10Þ

Analogously, we adopt the Voigt average bulk and shear moduli,
calculated from the anisotropic stiffness components Cijkl as,
respectively,

9KV = ðC1111 +C2222 +C3333Þ+2ðC1122 +C1133 +C2233Þ, ð11Þ

15GV = ðC1111 +C2222 +C3333Þ � ðC1122 +C1133 +C2233Þ+ 3ðC4444 +C5555 +C6666Þ:
ð12Þ

ML framework
Details of the optimized dimensions and hyperparameters (e.g., the
number of hidden layers and nodes in each layer, activation functions,
learning rates, etc) of the VAE model and the property predictor are
provided in Supplementary Table 1. Thresholding is applied at the end
of the connectivity decoder by a sigmoid function to achieve a binary
connectivity matrix. 1% of the generated dataset is used for the tuning
and optimization of hyperparameters. We used the PyTorch100 pack-
age throughout the implementation of the proposed generative
learning framework and leveraged its automatic differentiation engine,
autograd, to automatically obtain the gradients of the homogenized
effective properties with respect to the structural and geometrical
features towards the optimization and inverse design of truss lattices.
To remedy the issue of vanishing KL-divergence term101, we schedule
the weight of the KL-divergence term β via the cyclical schedule86

shown inSupplementaryFig. 3. The trainingprocess is split into several
cycles, and in each cycle β is gradually increased from 0 to 1, using a
linear function after 50 epochs. For a detailed performance compar-
ison of various annealing schemes for β, see refs. 86,101,102.

Details of the data generation (Section 1), the ML protocols
(Section 2.1), the implementation of the overlapping embedding

model (Section 2.2), the NN model performance (Section 2.3),
exploration in the latent space including sampling (Section 3.1) and
interpolation (Section 3.2), details on the gradient-based optimization
in the latent space (Section 3.3), details on the inverse design of truss
metamaterials with target nonlinear responses (Section 3.4), and the
computational efficiency estimates (Section 4) are summarized in
the Supplementary Information.

Data availability
The training data including truss structures and their effective
homogenized properties generated in this study have been deposited
in the ETHZ Research Collection103. Source data are provided with
this paper.

Code availability
The code used to train the generativemodeling framework and obtain
inverse designs of truss structures has been uploaded toGithub104. The
FE code used for homogenization in this study is available in the ae108
library105.
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