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Belief Control Barrier Functions for
Risk-Aware Control

Matti Vahs , Graduate Student Member, IEEE, Christian Pek , Member, IEEE, and Jana Tumova , Member, IEEE

Abstract—Ensuring safety in real-world robotic systems is often
challenging due to unmodeled disturbances and noisy sensors. To
account for such stochastic uncertainties, many robotic systems
leverage probabilistic state estimators such as Kalman filters to
obtain a robot’s belief, i.e. a probability distribution over possible
states. We propose belief control barrier functions (BCBFs) to
enable risk-aware control, leveraging all information provided by
state estimators. This allows robots to stay in predefined safety re-
gions with desired confidence under these stochastic uncertainties.
BCBFs are general and can be applied to a variety of robots that
use extended Kalman filters as state estimator. We demonstrate
BCBFs on a quadrotor that is exposed to external disturbances
and varying sensing conditions. Our results show improved safety
compared to traditional state-based approaches while allowing
control frequencies of up to 1 kHz.

Index Terms—Robot Safety, Sensor-based Control.

I. INTRODUCTION

AUTONOMOUS robotic systems are exposed to various
sources of uncertainty, such as noise in the robot’s sensor

readings or external disturbances, e.g., an unknown wind force
acting on a quadrotor, as shown in Fig. 1. Considering uncer-
tainty is thus crucial for safe operation of such robots. Safe and
robust control synthesis under external disturbances has been
thoroughly explored for a variety of robots with full state infor-
mation [1]. Observer-based Control Barrier Functions (CBFs)
consider measurement uncertainties through bounded estima-
tion errors [2], [3], [4]. However, these methods do not con-
sider the stochastic uncertainties that are commonly captured in
probabilistic state estimation techniques deployed in practice,
such as Kalman Filters (KFs). Such stochastic uncertainties
have been considered for instance in the state-of-the-art chance-
constrained nonlinear Model Predictive Control (MPC) [5],
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Fig. 1. Illustration of a quadrotor that is exposed to noisy measurements and
unknown wind forces. The uncertainty in the state estimate is shown as a purple
ellipsoid and the cuboid-shaped safe set is colored in red.

which bounds the probability of undersired events. However, to
make the method computationally tractable, theoretical safety
guarantees are sacrificed. In this paper, we consider both uncer-
tainties in the robot’s motion and its observations. We aim to
offer both safety guarantees under uncertainty and a practical
solution.

In practice, state estimation pipelines are used to obtain a
robot’s belief that accounts for the uncertainty arising from
stochastic motion and observations. Up to now, the Kalman filter
(KF) is still one of the gold standards in robotic state estimation
because of its simplicity and robustness [6]. The extended KF
(EKF), as its extension to nonlinear systems, is widely used for
state estimation of robots such as quadrotors, legged robots or
autonomous underwater vehicles [7]. One of the key properties
of KFs is that they not only provide an estimate about the
robot’s state but also quantify the uncertainty of that estimate
through the covariance matrix. For instance, Fig. 1 illustrates a
drone’s localization uncertainty as a Gaussian level set (purple
ellipsoid), i.e. a set containing the state with certain probability.
In this work, we leverage both the mean state estimate and the
covariance matrix.

Due to Gaussian state uncertainty, hard safety constraints on
the system states are generally infeasible. This gives rise to a
risk-aware perspective on safety: We consider specifications that
bound the probability of violating safety constraints on the state.
Fig. 1 shows a scenario in which a safety specification is encoded
as “the probability of leaving the safe region (red cuboid) should
be less than 1%”.

However, designing controllers that ensure satisfaction of
such risk-aware safety specifications is challenging as it requires
us to reason about the robot’s belief instead of its state. Belief
spaces in these applications suffer from the curse of dimen-
sionality and are hybrid in nature as robots evolve in continu-
ous time while sensors only provide measurements at discrete
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See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on November 30,2023 at 08:05:27 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-6046-7460
https://orcid.org/0000-0001-7461-920X
https://orcid.org/0000-0003-4173-2593
mailto:vahs@kth.se
mailto:tumova@kth.se
mailto:c.pek@tudelft.nl
https://doi.org/10.1109/LRA.2023.3330662


8566 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 12, DECEMBER 2023

timesteps. To enable risk-aware control, we introduce Belief
CBFs (BCBFs) that 1) serve as safety filters in the presence of
real-world stochastic uncertainties, 2) provide theoretical safety
guarantees under the hybrid nature of belief spaces, and 3) over-
come the curse of dimensionality and allow real-time control for
general robotic systems that employ EKFs as a state estimator.
We evaluate our approach in experiments with a quadrotor that
is exposed to external wind disturbances and varying sensing
conditions, see Fig. 1.

A. Related Work

We review two relevant safety-critical control approaches for
robotic systems under uncertainties – CBFs and MPC.

Related work on observer-based CBFs assume a bounded
uncertainty around the current estimate that is used to account for
potential measurement errors [2], [3]. However, these methods
do not consider stochastic uncertainties that are commonly used
in probabilistic state estimators. Measurement-robust CBFs use
bounded errors in measurements and assume a given mapping
from measurements to state estimates [4]. In contrast, our
BCBFs explicitly provide this mapping to handle stochastic
measurements.

Control of stochastic systems using Kalman Filters as state
estimator has been addressed in various settings [5], [8]. Chance-
constrained nonlinear MPC (CCNMPC) [5] enforce obstacle
avoidance with a desired confidence level in which the un-
certainty in the state estimate originates from an unscented
KF. Unfortunately, solving NMPC problems in belief spaces
is computationally expensive due to the curse of dimensionality.
The problem was made tractable by neglecting the dynamics of
the covariance through linearization around the last trajectory
solution [5]. However, this linearization is only valid when the
subsequent trajectory does not significantly change. The belief
space planning approach SACBP operates in continuous-time
through sequential action control (SAC) [9]. The authors model
the belief dynamics as a hybrid dynamical system which we
build upon. However, SACBP cannot ensure safety as constraints
can only be included in the objective function.

In [10], invariance properties of deterministic CBFs are ex-
tended to systems that are described by stochastic differential
equations (SDEs). The proposed stochastic CBFs handle uncer-
tainty in the system’s dynamics and also in the measurements.
They guarantee safety under stochastic uncertainties by bound-
ing the estimation errors in an EKF. This CBF is used for systems
under sensor faults and attacks in [11] as well as risk-bounded
control in highway scenarios in [12]. Probabilistic safety barrier
certificates (PrSBC) have been proposed in [13] for multi-robot
collision avoidance under uncertainty. However, the guarantees
only hold for bounded uniform additive noise on the system dy-
namics and the observation model. Furthermore, the guarantees
in [10], [11], [12], [13] only hold for continuous-time observa-
tions, which is generally not consistent with real-world robotic
systems, e.g., when global positioning data is not available.

II. PRELIMINARIES

A. Control Barrier Functions

Consider a dynamical system in control affine form

ẋ = f (x) + g (x)u (1)

with state x ∈ X ⊆ Rn and control input u ∈ U ⊆ Rm. A safe
set C is constructed as the superlevel set of a continuously
differentiable function h : X → R such that

C = {x ∈ X | h (x) ≥ 0} ,
∂C = {x ∈ X | h (x) = 0} . (2)

Definition 1: A safe set C is forward invariant with respect to
the system (1) if for every initial condition x(t0) ∈ C it holds
that x(t) ∈ C, ∀t ≥ t0.

A prominent approach to render a safe set forward invariant
is to use CBFs.

Definition 2: Given a set C, defined by (2), h serves as a
zeroing CBF for the system (1) if ∀x satisfying h(x) ≥ 0, ∃u ∈
U such that

∂h

∂x
(f (x) + g (x)u) ≥ −h (x) . (3)

In case a valid CBF exists, it follows that a controller satisfying
(3) renders C forward invariant [14]. However, this only holds
for systems with relative degree rb = 1 because (∂h/∂x)g = 0
otherwise, thus u would not appear in (3) [15]. For systems
with rb > 1, exponential CBFs (ECBFs) can be used to ensure
forward invariance of C. We leverage second order CBFs as a
special case of ECBFs.

Definition 3: Given a setC in (2) and a system (1) with relative
degree rb = 2, h is called an exponential CBF, if there exists a
gain vector ζ ∈ Rrb and u ∈ U such that

ḧ (x) + ζT
[
h (x) ḣ (x)

]T ≥ 0. (4)

The gain vector can be obtained using classical tools from
control theory such as, e.g., pole placement. A proof of forward
invariance under ECBFs can be found in [15].

B. Gaussian Belief States

Gaussian filters are a family of state estimators that describe
a Bayesian approach in which the belief is constrained to follow
a multivariate Gaussian (MVG). Its probability density function
(pdf) is described by

p (x(t)) = N (μ(t),Σ(t)) , (5)

where μ ∈ Rn is the mean vector and Σ = ΣT ∈ Rn×n is
the positive semidefinite covariance matrix. The pdf in (5) is
uniquely described by the belief state b = [μ, vec(Σ)]T where,
due to symmetry, only the upper triangular matrix is stored which
is encoded in the vec(·) operator [16]. Thus, the dimensionality
of the belief state nb increases quadratically with the state
dimension n, i.e. nb = (n2+3n)/2. If not mentioned explicitly
otherwise, we refer to the belief state b as the belief.

C. Chance Constraints and Risk Measures

Chance constraints handle safety constraints under uncer-
tainty by bounding the probability of undesired events. We
use safety specifications in the form of half-spaces αTx ≥ β.
Consider a Gaussian distributed random variable x with belief
state b. We calculate the probability of satisfying a half-space
constraint as [5]

Pr
[
αTx ≥ β

]
=

1

2

(
1− erf

(
αTμ− β√
2αTΣα

))
, (6)
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where erf(·) is the standard error function.
To quantify the outcome of violating a chance constraint

Pr[αTx ≥ β] ≥ 1− δ, we use the Value-at-Risk (VaR).
Definition 4: The VaR of a random variable x ∈ R with pdf

p(x) at level δ ∈ (0, 1] is the (1− δ) quantile, i.e.

VaRδ(x) = inf
τ∈R

{τ | Pr [x ≥ τ ] ≥ 1− δ} (7)

VaR allows us to formulate constraints that are qualitatively
equivalent to chance constraints, i.e.

Pr
[
αTx ≥ β

] ≥ 1− δ ⇔ VaRδ(α
Tx− β) ≥ 0. (8)

III. PROBLEM SETTING

We consider the robot’s stochastic motion and observations
in the form

ẋ = f (x) + g (x)u+w, w ∼ N (0,Q) (9)

zk = � (xk) + vk, vk ∼ N (0,Rk) (10)

where Z ⊆ R� is the observation space and w,v are the motion
and observation noise, respectively. We model the robot’s motion
as a continuous-time differential equation. The observations are
always provided in discrete time due to the sensor’s sampling
time. Especially for exteroceptive sensors like GPS, measure-
ments occur much less frequently than the robot’s control rate,
encouraging us to consider discrete-time formulations. A refer-
ence controller, e.g. a controller that drives the robot to a goal
state, is given as uref.

Problem 1: Given the stochastic dynamics in (9), a reference
controller uref, a safe set Cx = {x ∈ X | αTx ≥ β} defined in
state space and a confidence level δ ∈ (0, 1], synthesize a control
law u that maps x× uref �→ u such that at any time Pr[x(t) ∈
Cx] ≥ 1− δ.

Ideally, to solve Problem 1, we would use the Bayes filter to
capture the exact time evolution of the belief given an initial
belief p(x(t0)), controls u and observations z. However, exact
belief calculations only exist in specialized cases which is why
approximations need to be considered [6]. Thus, we use an EKF
as a tractable implementation of the Bayes filter in which beliefs
are Gaussian. While the Gaussian belief of an EKF is exact for
linear systems, it is only an approximation of the true belief
in the nonlinear case. This assumption, however, is common in
many practical scenarios [7], especially if the true probability
distribution is unimodal [6]. In future work, we aim to consider
the mismatch between the modeled belief and the true belief.

To approach Problem 1, we reason about Gaussian belief
states b instead of statesx so that we can solve a relaxed problem
under stochastic uncertainties. We propagate the belief through
the nonlinear model in (9)-(10) by exploiting the fundamental
EKF step that systems are linearized around the current mean.

Assumption 1: To propagate the mean and covariance of a
random variable x through a nonlinear function η, we use a
first-order Taylor series expansion

E {η (x)} ≈ η (E {x})

Var {η (x)} ≈
(
∂η

∂x
(E {x})

)
Var {x}

(
∂η

∂x
(E {x})

)T

.

We translate the safety specification over states in Problem 1
to a safe set over belief states

Cb = {b ∈ Rnb | hb(b) ≥ 0} , (11)

Fig. 2. Drone with uncertain position x and its pdf p(x) is moving in one
dimension. A safety specification is defined as a bounded probability of collision
with the wall. The resulting safe set over belief states is shown in blue and the
current belief of the robot is depicted in red.

where hb defines a risk-aware half-space

hb (b) := VaRδ

(
αTx− β

)
= αTμ− β − erf−1 (1− 2δ)

√
2αTΣα. (12)

Problem 2: Given the model (9)-(10) and a risk-aware safe
set Cb defined over beliefs, find a control input u that renders Cb
forward invariant.

By solving Problem 2, we ensure that the belief satisfies a
VaR formulation which is qualitatively equivalent (see (8)) to
satisfying the chance constraint in Problem 1.

Example: Consider a drone operating in one dimension with
position x ∼ N (μ, σ2), as shown in Fig. 2 and the Gaussian
belief state b = [μ, σ2]T ∈ R2. A safety specification over states
is to stay within the collision-free space with 90% probability,
given by δ = 0.1 and Cx = {x ∈ R | x ≤ 2}. The correspond-
ing safe set Cb in belief space is defined through

h (b) = VaRδ (2− x) = 2− μ+ erf−1(1− 2δ)
√
2σ2 ≥ 0,

which is illustrated in blue in Fig. 2. In the depicted point in
time, the belief state, shown as red circle, is right at the boundary
of the safe set ∂Cb as the probability of colliding with the wall is
exactly 10%. Solving Problem 2 keeps the belief state (red circle)
in Cb which in turn satisfies the original safety specification over
states that 90% of the drone’s probability mass should be left of
the wall.

IV. RISK-AWARE CONTROL

Our solution to Problem 2 is divided into two main steps.
First, we derive a stochastic hybrid system that accounts for
uncertainties in the robot’s motion and observations. Given this
hybrid system describing the evolution of the robot’s belief, we
propose BCBFs to ensure forward invariance of our safe set
defined over beliefs. BCBFs serve as a computationally efficient
risk-aware safety filter that can be applied to various robotic
systems under stochastic uncertainties.

A. Hybrid Belief Dynamics

In the belief dynamics, it is important to distinguish between
two evolutions: 1) The belief advances in continuous time as
the state dynamics (9) also evolve in continuous time. 2) At
discrete timesteps tk when a new sensor observation is available,
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the belief changes instantaneously since the state distribution is
conditioned on the measurement. This naturally leads to a hybrid
dynamical system which is derived from a continuous-discrete
EKF [9], [17].

1) Continuous-Time Belief Dynamics: The continuous-time
evolution of the belief directly follows from the derivation of
the continuous EKF and is given by a set of ordinary differential
equations (ODEs)

μ̇ = f (μ) + g (μ)u, (13)

Σ̇ = AΣ+ΣAT +Q, (14)

where A is the Jacobian of the noise-free motion model in (9)
evaluated at the current mean μ. For the design of BCBFs, the
dynamics are required to be in control-affine form which has
been proven to be true in [9].

Since the belief vector b is comprised of the mean and the
covariance matrix, we can express the continuous-time belief
dynamics as a vector-valued ODE

ḃ =

[
μ̇

vec
(
Σ̇
)] =

[
f (μ)

fΣ (b)

]
︸ ︷︷ ︸

fb(b)

+

[
g (μ)

gΣ (b)

]
︸ ︷︷ ︸

gb(b)

u, (15)

where fΣ = vec(FΣ) and gΣ = vec(GΣ) are the vector fields
of (14) in control-affine form. Note that GΣ ∈ Rn×n×m and,
thus, the vec(·) operator maps it to a matrix gΣ ∈ Rn(n+1)/2×m.

Consequently, if the control signal u is known, the belief
at any point in time is obtained by forward integrating the
belief dynamics in (15). However, when a new sensor reading is
available, the belief changes instantaneously which is covered
in the discrete-time Kalman update.

2) Discrete-Time Kalman Update: Every time a new ob-
servation zk is available, we obtain the posterior distribution
p(x(t+k ) | z1:k−1, zk) = N (μ+,Σ+) by conditioning the prior
distribution parameterized by b− = b(t−k ) on zk. Note that t−k is
infinitesimal smaller than tk = t+k . The conditioning leads to a
discrete belief transition which is governed by the discrete-time
Kalman update [6]

b+ = Δ
(
b−

)
=

[
μ− +K (zk − � (μ−))
vec ((I −KH)Σ−)

]
, where (16)

K = Σ−HT
(
HΣ−HT +R

)−1
and H =

∂�

∂x

∣∣∣
µ−

denote the Kalman gain and the Jacobian of the observation
model, respectively. The measurement obtained at a discrete
timestep is not known in advance which makes it generally
difficult to do planning or control in belief space. However,
the unknown measurement can be treated as a random variable
making the measurement update (16) stochastic [16].

Proposition 1: Under Assumption 1, the innovation term θ =
K(zk − �(μ−)) in (16) is a random variable with distribution
θ ∼ N (0,Λ) where

Λ = K
(
HΣHT +R

)
KT . (17)

The proof is straight-forward by applying Assumption 1 to
the innovation term and is omitted for brevity.

Finally, combining the ODE in (15) and the discrete-time
Kalman update in (16) leads to the hybrid system

S =

{
ḃ = f b (b) + gb (b)u, ∀t ∈ [tk−1, tk)

b+ = Δ (b−) t = tk,
(18)

describing the evolution of the robot’s belief over time. Fig. 3
illustrates an example trajectory of the belief. Our formulation
has the advantage that we can allow arbitrary sampling times
δt = tk − tk−1. This is particularly useful for the analysis of
scenarios where e.g., a sensor does not provide any information
for a certain duration as in the case of GPS data inside a building.

B. Belief Control Barrier Functions

The dynamical system S of the belief allows us to introduce
BCBFs for safe control under stochastic uncertainties. BCBFs
are defined similarly as CBFs (2), but they are defined over
beliefs instead of states.

Definition 5: (BCBF) Given a safe set Cb defined by (11),
hb(b) serves as a Belief Control Barrier Function (BCBF) for the
stochastic dynamical system (9)-(10) if ∀b satisfying hb(b) ≥
0, ∃u ∈ U such that

∂hb

∂b
(f b (b) + gb (b)u) ≥ −hb (b) . (19)

Using this definition of a BCBF, the following theorem pro-
vides a condition for the forward invariance of the safe set Cb
under the continuous-time evolution of the belief.

Theorem 1: If a locally Lipschitz control input u(t) satisfies
(19) ∀t ∈ [tk, tk+1) for a given safe set with valid BCBF hb(b),
then Pr[hb(b(t)) ≥ 0] = 1, provided that b(tk) ∈ Cb.

The proof is straight-forward since we only reason about the
continuous-time evolution in the interval [tk, tk+1) in which the
belief dynamics in (15) are deterministic. Thus, interested read-
ers are referred to the proof for traditional state-based CBFs [14].

Next, we analyze the effects of measurements on the forward
invariance of Cb. Since measurements are treated as random
variables, we do not have control of the discrete belief transition.
As a result, outlier measurements may cause the belief to leave
the safe set Cb even though the considered state is safe, see Fig. 3.
We show how to ensure forward invariance even in the presence
of outlier measurements. To that end, we exploit the asymptotic
stability of zeroing CBFs.

Remark 1: Our BCBFs are zeroing CBFs that not only ren-
der Cb forward invariant but also asymptotically stable as the
continuous-time belief dynamics are deterministic [1]. Thus, if
an initial belief is outside the safe set, it will be driven back to
Cb over time.

In the following theorem, we derive an upper bound on the
probability of leaving Cb under a discrete transition.

Theorem 2: If the control input u(t) satisfies (19), the prob-
ability of leaving the safe set under a discrete transition, i.e.
Pr[hb(b

+) < 0], is bounded by

Pr
[
hb

(
b+

)
< 0

] ≤ 1

2

(
1− erf

(
ξ (b−)√
2αTΛα

))
, (20)

with Λ defined as in Proposition 1 and

ξ
(
b−

)
= erf−1 (1− 2δ)

(√
2αTΣ−α (21)
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−
√

2αT (I − KH) Σ−α
)
. (22)

Proof: Since u satisfies (19) we know that hb(b
−) =

hb(b(t
−
k )) ≥ 0. Consequently, the value of the BCBF is

hb

(
b+

)
= αTμ+ − β − erf−1(1− 2δ)

√
2αTΣ+α

in which we replace the posterior mean μ+ by its stochastic
update equation from Proposition 1. Further, we add a covariance
term that adds up to zero,

hb

(
b+

)
= αT

(
μ− + θ

)− β − erf−1(1− 2δ)
√

2αTΣ+α

+ erf−1(1− 2δ)
(√

2αTΣ−α−
√

2αTΣ−α
)
.

which we rearrange to obtain hb(b
−). This yields a Gaussian

distribution over possible BCBF values

hb

(
b+

)
= hb

(
b−

)
+αTθ + ξ

(
b−

)
. (23)

Finally, the probability that an outlier measurement causes the
belief to leave Cb is calculated using (6) as

Pr
[
hb

(
b+

)
< 0

]
= Pr

[−αTθ ≥ hb

(
b−

)
+ ξ

(
b−

)]
=

1

2

(
1− erf

(
ξ (b−) + hb (b

−)√
2αTΛα

))

≤ 1

2

(
1− erf

(
ξ (b−)√
2αTΛα

))
�

Theorem 2 provides us with a natural bound on the probability
of leaving the safe setCb under discrete sensor observations when
the belief state b− is on the boundary ∂Cb. The derived natural
bound only depends on our observation model �(x), the noise
covariance R and the prior covariance Σ−. Thus, the specific
bound varies for different robotic systems and sensor types.

Example: (Cont.) Consider the one-dimensional drone ex-
ample introduced before. The drone is equipped with a sensor
that provides noisy state observations zk = x(tk) + v where
v ∼ N (0, r = 0.1). The prior variance is σ− = 0.3 and a con-
fidence level is set to 1− δ = 0.99, then

Pr
[
hb

(
b+

)
< 0

] ≤
1

2

(
1− erf

(
erf−1 (1− 2δ)

(√
σ− + r −√

r√
σ−

)))
≈ 0.09

meaning that the probability of leaving Cb is at most 9%. Note
that this is a tight bound if the prior belief state is right at the
boundary of the safe set and strictly smaller otherwise.

Fig. 3 shows a scenario in which the posterior belief b+ leaves
the safe set due to an outlier measurement. Although the state
x still satisfies the original half-space constraint at time tk, the
belief switches instantaneously from hb(b

−) ≥ 0 to hb(b
+) <

0. This highlights the importance of keeping the belief state
inside Cb: Initially, the state x is considered to be safe, i.e. x ∈
Cx, but as time evolves, the only statement we can make is that
the belief trajectory b(t) is asymptotically stable, see Remark 1.
However, during this period x could leave Cx while the belief
is driven back to Cb as shown in Fig. 3. We thus need to ensure
that the belief state does not leave Cb in the first place, in order
to guarantee that x remains in Cx with desired probability.

Fig. 3. Example belief trajectory subject to an outlier measurement and the
corresponding safe set shown as half-space. The initial belief b− is within the
safe set Cb whereas the posterior belief b+ leaves the safe set under the discrete
transition. An asymptotically stable belief trajectory is shown in red while the
true evolution of the state is shown in blue. The plot on the right shows value of
hb(b), depicted in green.

To ensure that the belief state does not leave Cb, we modify Cb
such that the probability of leaving Cb is bounded with a desired
confidence. We define an augmented safe set C̃b ⊆ Cb

C̃b =
{
b ∈ Rnb | h̃b(b) ≥ 0

}
, (24)

with h̃b(b) = hb(b)− γ for some γ ≥ 0. This safe set is essen-
tially a shrunk version of the original safe set Cb. In the following
theorem, we choose γ such that the belief stays within Cb with
desired probability.

Theorem 3: The belief state b+ remains in the safe set Cb
with probability Pr[b+ ∈ Cb] ≥ 1− ε under the discrete reset
map b+ = Δ(b−) if the control input u(t) satisfies (19) for the
function h̃b(b) (thus h̃b is a valid BCBF) and h̃b(b

−) ≥ 0 for

γ ≥
√
2αTΛα

(
erf−1(1− 2ε)

)− ξ
(
b−

)
.

Proof: Similarly as for Thm. 2, we calculate the probability
of staying in the safe set Cb using (23),

Pr
[
h
(
b+

) ≥ 0
]
=

1

2

(
1 + erf

(
ξ (b−) + h (b−)√

2aTΛa

))

≥ 1

2

(
1 + erf

(
ξ (b−) + γ√
2aTΛa

))
= 1− ε.

�
Note that Theorem 3 provides probabilistic safety guarantees

for the case that b− ∈ C̃b. If the posterior belief state ends up in
the set Cb \ C̃b, it will be driven back to the augmented safe set
if h̃b is a valid BCBF. If an outlier measurement occurs during
this asymptotically stable convergence to C̃b, the natural bound
in Theorem 2 holds. Once b ∈ C̃b, the desired confidence in
Theorem 3 holds again.

C. Risk-Aware Control Synthesis

To synthesize risk-aware control inputs under stochastic
uncertainties arising from state estimation, we formulate the
quadratic program (QP)

u∗ = arg minu∈U (u− uref)
T (u− uref)

s.t.
∂h̃

∂b
(f b (b) + gb (b)u) ≥ −h̃ (b) , (25)

where uref is a reference control input. This synthesis problem
can be solved efficiently using off-the-shelf QP solvers.
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Consider for example a quadrotor operating in 3D: It has 6 de-
grees of freedom (3D pose and orientation) and 4 control inputs
(thrusters) which leads to a 12 dimensional state. Consequently,
the belief state is of dimension b ∈ R90 which showcases the
curse of dimensionality and complicates the use of common
optimization-based controllers such as MPC. We overcome the
dimensionality problem of belief spaces by only optimizing
over control inputs u which enables real-time applicability. The
resulting control inputs satisfy the entire belief dynamics.

V. EXPERIMENTS

We evaluate our BCBFs in challenging scenarios in which
uncertainties cannot be neglected 1. Specifically, we show

1) improved adherence to safety specifications through risk-
awareness and computational efficiency over stochastic
CBFs and CCNMPC in simulations in Section V-A,

2) safety under changing sensing conditions, such as sensor
rates and measurement variances, in Section V-C,

3) robustness to external disturbances as well as the general-
ity to different sensor systems in Section V-D.

A. Safety Analysis of BCBFs

a) Setup: We compare our BCBFs to two baselines in an
obstacle avoidance scenario. We consider a unicycle robot [18]
with state x = [px, py, v, ϕ]

T and dynamics and observations

ṗx = v cos (ϕ) + wx, v̇ = a+ wv

ṗy = v sin (ϕ) + wy, ϕ̇ = ω + wϕ

zk = xk + vk,vk ∼ N (0,R)) . (26)

The nominal dynamics are corrupted by Gaussian
noise [wx, wy, wv, wϕ]

T ∼ N (0,Q) with motion noise
Q = diag([0.12, 0.12, 0.0052, 0.0052]) and observation noise
R = diag([0.22, 0.22, 0.12, 0.12]) with a sensor update rate of
10 Hz. The control input is given as u = [a, ω]T . We obtain the
belief dynamics in (18) by applying the method described in
Section IV-A where b ∈ R14. The objective is to steer the robot
towards a goal at [8,0] while avoiding collisions with a circular
obstacle O = {p ∈ R2 | ‖p− c‖2 < r} where c = [5, 0]T and
r = 1 as shown in Fig. 4. The safety specification for collision
avoidance is given as

Pr [x /∈ O] = Pr [‖x− c‖2 − r ≥ 0] ≥ 1− δ (27)

with δ = 0.01. Due to the non-linearity of the obstacle descrip-
tion, we use the common approach to linearize (27) around
the mean state which is a strict overapproximation of the true
collision condition as shown in [5]. The resulting risk-aware safe
set is given by

Cb =
{
b ∈ R14 | VaRδ

(
αT (x− c)− r

) ≥ 0
}

(28)

where VaRδ(·) with α = (µ−c)/‖µ−c‖2 serves as a BCBF can-
didate. Due to a relative degree rb = 2 in our BCBF candidate,
we use second order formulations as in (4).

We solve the resulting SDE (26) using the DifferentialEqua-
tions.jl package [19] in the Julia programming language. The
reference control uref is given by a Linear-quadratic Regula-
tor (LQR) that uses the mean estimate μ to steer the system

1Video available at https://www.youtube.com/watch?v=va_wXkasOPQ
https://www.youtube.com/watch?v=va_wXkasOPQ

Fig. 4. Comparison of different control strategies for a two-dimensional
avoidance scenario. The initial state follows a Gaussian distribution x0 ∼
N ([0, 1.5, 0, 0], diag([0.32, 0.22, 0.12, 0.12])) and the goal is at [8, 0]. Simu-
lated trajectories are shown in blue and the obstacle is depicted in red.

TABLE I
COMPARISON OF BCBFS TO BASELINES

towards the goal without any knowledge of the obstacle. The
parameters chosen for the LQR are QL = diag[10, 5, 5, 5] and
RL = diag[5, 10]. We compare two versions of BCBFs, namely
one with only the natural bound (ε = 0.5) and one bounding the
probability of leaving Cb by ε = 0.01.

b) Baselines: We compare our BCBFs to two different
baselines: 1.) Stochastic CBFs with incomplete state information
which require cont.-time observations as well as a bounded esti-
mation error. To enable continuous estimation, we use maximum
likelihood observations between actual measurements which is
not true in practice. The bounded estimation error was obtained
by running a monte carlo study and take the maximum error.
2.) chance-constrained NMPC (CCNMPC) [5] that formulates
an MPC problem which includes (28) as a constraint. Since
MPC operates in discrete-time while we simulate a continuous
system, we use a zero order hold to apply the control input. We
run the MPC at 30 Hz and use a planning horizon of N = 40.
The cost function is the same quadratic cost as in the reference
LQR controller. 3.) In hardware experiments, we compare to a
traditional state CBF that only considers the mean dynamics.

c) Safety and computational efficiency: Fig. 4 shows 100
simulated trajectories for different initial conditions sampled
from a Gaussian while the quantitative results are summa-
rized in Table I. BCBFs have the lowest number of collisions
(0 for ε = 0.01) and outperform both baselines. Interestingly,
SCBFs cannot ensure safety almost surely as the assumption
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of cont.-time observations does not apply. Similarly, CCNMPC
results in multiple collisions although it tries to satisfy the same
safety specification. This is due to the fact that the optimization
problem sometimes becomes infeasible in which case we need
to relax the safety constraint. In [5], the authors reported that
the percentage of infeasible solutions in their experiments was
2.8%. Infeasibility is not an issue for BCBFs, since they allow
to formulate the control synthesis as QP over controls instead
of a nonlinear program over states and controls, overcoming the
curse of dimensionality. QP formulations are computationally
efficient and can be run with up to 1 kHz, see Table I.

d) Effect of augmented safe set: We analyze the effect of
the augmented safe set defined in Theorem 3. If no additional
safety margin is used (ε = 0.5), the belief leaves Cb in 0.42%
of all simulated trajectories. When bounding the probability of
leaving the safe set by Pr[h(b+) < 0] ≤ 0.01, the belief remains
in Cb for all trajectories while keeping larger distances to the
obstacle.

e) Control efficiency: Lastly, we evaluate the efficiency in
terms of the average norm of the control input and the time tg
to reach the goal. In this case CCNMPC is superior to all other
approaches since it optimizes controls over a planning horizon
whereas CBF approaches are purely reactive. This motivates to
combine state-based MPC with BCBFs to achieve both, control
efficiency and rigorous safety properties. In future work, we aim
to explore this.

B. Setup of Hardware Experiment

We use the Bitcraze Crazyflie 2.1 quadrotor inside an Opti-
Track motion capture (mocap) system, as shown in Fig. 1. The
state of the drone is given as its 3D position p and velocity ṗ.
Its motion and observations are modeled as

ẋ =

[
ṗ

p̈

]
=

[
0 I

0 0

] [
p

ṗ

]
+

[
0

I

]
u+w, (29)

zk = pk + vk (30)

where u ∈ R3 are the drone’s desired accelerations and w ∼
N (0,Q) with a variance of 0.052 along the diagonal of Q. In
our setting, we can only observe the drone’s position p. We add
Gaussian noise v ∼ N (0,R) to the mocap data and reduce the
sampling rate of the measurements. These parameters R and fs
are varied throughout the experiments. We use the uncorrupted
mocap data as ground truth to evaluate the performance of
BCBFs.

We use the EKF in Section IV-A to obtain the belief dynam-
ics with b ∈ R27, where the ODE is discretized using Euler’s
scheme. We convert the desired acceleration u synthesized
by our BCBFs into a setpoint consisting of desired roll and
pitch angles as well as thrust for the real quadrotor using [20].
Setpoints are sent to the Crazyflie at 100 Hz and tracked by
the onboard PID controller which serves as uref. We compare
BCBFs only to traditional CBFs as we were not able to run
CCNMPCs in real-time with our setup.

C. Experiment I - Changing Sensing Conditions

In our first experiment, we showcase the robustness of BCBFs
to changing sensing conditions. For that purpose, we navigate the
drone along a U-shaped corridor as shown in Fig. 5. The corridor
is given as the union of three polytopes. In each of the three

Fig. 5. Ground truth trajectories of 20 different runs of Exp. I for CBFs
and BCBFs. The sampling rate fs changes throughout the corridor segments.
The measurement variances are given as R1 = diag[0.082, 0.082], R2 =
diag[0.22, 0.22], and R3 = diag[0.152, 0.152], respectively.

polytopes, we change the measurement noise R and sampling
rates fs according to Fig. 5. In the third polytope, we additionally
place a circular obstacle to increase the difficulty of the scenario.
The safety specification is given as an intersection of risk-aware
half-spaces with a collision probability of δ = 0.05. The half-
spaces are given by the polytope representation of the corridor.

Fig. 5 shows the ground truth trajectories of 20 different runs
for a state-based CBF and a BCBF. It can be observed that
the state-based approach cannot satisfy the safety specification
whereas all 20 trajectories are collision free for the BCBF.
Interestingly, there are no trajectories for the BCBF passing the
obstacle on the right side since it is too risky to navigate through
the narrow passage. As a consequence, the drone stops in front
of the obstacle and slowly moves around the left side which
took about 5-10 seconds. Although this behavior ensures safety,
it highlights that a robot can get stuck in a local minimum when
using a CBF approach. This could be overcome by combining
BCBFs with a motion planner such as MPC.

D. Experiment II - External Disturbances

In this experiment illustrated in Fig. 1, we additionally study
the effect of disturbances on the nominal dynamics. To that end,
we define a safe set as a cuboid that we want the drone to stay
in with 95% probability. The drone is exposed to both, sensing
uncertainties as well as an external wind disturbance from a
fan. Instead of position measurements, we measure the drone’s
velocity through an added optical flow sensor. These velocity
measurements are given by

zk = ṗk + vk, v ∼ N (
0, diag(0.22)

)
.

Since we only measure the drone’s velocity and neglect the
global position measurements from mocap, there is an inevitable
drift in the position estimate obtained from integrating the ve-
locity. A human operator is generating reference acceleration
commands uref using a gamepad and actively tries to steer the
drone outside the safe set.

Fig. 6 shows the mean belief trajectory as well as ground
truth for the described setting. The ellipses indicate the position
uncertainty at selected points in time. The drone moves towards
the corners of the safety region in which the BCBF prevents the
belief from leaving the safe set. Over time, the uncertainty in the
position estimate grows due to the lack of a global positioning
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Fig. 6. Illustration of Exp. II. The drone should stay within the safety region
colored in gray while a wind disturbance (shown as red arrows) is acting on the
drone. The ground truth trajectory is shown in blue and the mean belief trajectory
is shown in black. The 95% confidence ellipses at selected points in time are
depicted in purple.

system and, thus, the drone gets increasingly cautious. The mean
belief moves further towards the center of the safety region as
this increases the likelihood of satisfying the safety specification.
At all times, the ground-truth state stays within the safety region.

VI. CONCLUSION AND FUTURE WORK

Our work enables risk-aware control synthesis for stochas-
tic dynamical systems with incomplete state information by
combining continuous-discrete EKFs with CBFs defined over
Gaussian belief states. Instead of defining safety specifications as
hard constraints on the state, we consider a risk-aware approach
in which we bound the probability of violation. BCBFs are
applicable to any robotic system in which the state estimate is
provided by an EKF. Our simulation and hardware experiments
show that BCBFs ensure that robots adhere to safety specifica-
tions in the presence of both, real-world motion and observation
uncertainties.

In future, we aim to explore the combination of motion
planners such as state-based MPC that only consider the mean
estimate with our proposed BCBFs. In that way, we can ensure
safety while enhancing control efficiency. We are also interested
in extending our results to arbitrary belief distributions that can
be represented using particles filters.
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