

Delft University of Technology

Metadata Representations for Queryable Repositories of Machine Learning Models

Li, Ziyu; Kant, Henk; Hai, Rihan; Katsifodimos, Asterios; Brambilla, Marco; Bozzon, Alessandro

DOI
10.1109/ACCESS.2023.3330647
Publication date
2023
Document Version
Final published version
Published in
IEEE Access

Citation (APA)
Li, Z., Kant, H., Hai, R., Katsifodimos, A., Brambilla, M., & Bozzon, A. (2023). Metadata Representations for
Queryable Repositories of Machine Learning Models. IEEE Access, 11, 125616-125630.
https://doi.org/10.1109/ACCESS.2023.3330647

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ACCESS.2023.3330647
https://doi.org/10.1109/ACCESS.2023.3330647

Received 1 October 2023, accepted 27 October 2023, date of publication 6 November 2023, date of current version 13 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3330647

Metadata Representations for Queryable
Repositories of Machine Learning Models
ZIYU LI 1, (Member, IEEE), HENK KANT1, RIHAN HAI 1, (Member, IEEE),
ASTERIOS KATSIFODIMOS1, MARCO BRAMBILLA 2, (Member, IEEE),
AND ALESSANDRO BOZZON 1
1Department of Software Technology (ST), Faculty of Electrical Engineering Mathematics, and Computer Science (EEMCS), Delft University of
Technology, 2628 CD Delft, The Netherlands
2Dipartimento di Elettronica Informazione e Bioingegneria (DEIB), Politecnico di Milano, 20133 Milan, Italy

Corresponding author: Ziyu Li (z.li-14@tudelft.nl)

This work was supported in part by Cognizant.

ABSTRACT Machine learning (ML) practitioners and organizations are building model repositories of pre-
trainedmodels, referred to asmodel zoos. These model zoos contain metadata describing the properties of the
ML models and datasets. The metadata serves crucial roles for reporting, auditing, ensuring reproducibility,
and enhancing interpretability. Despite the growing adoption of descriptive formats like datasheets and
model cards, the metadata available in existing model zoos remains notably limited. Moreover, existing
formats have limited expressiveness, thus constraining the potential use ofmodel repositories, extending their
purpose beyond mere storage for pre-trained models. This paper proposes a unified metadata representation
format for model zoos. We illustrate that comprehensive metadata enables a diverse range of applications,
encompassing model search, reuse, comparison, and composition of ML models. We also detail the design
and highlight the implementation of an advanced model zoo system built on top of our proposed metadata
representation.

INDEX TERMS Machine learning, metadata representations, model zoo, model search.

I. INTRODUCTION
Machine learning (ML) is increasingly used across applica-
tion domains such as video analytics [1], [2], autonomous
driving [3], content moderation [4], traffic monitoring [5] and
crowd detection [6]. While ML models can be (and often
are) trained for specific purposes, there is a growing interest
in reusing and re-purposing of pre-trained ML models [7].
This shift, motivated mainly by computational, economic,
and environmental reasons, is evident from the proliferation
of public, pre-trained ML model zoos, such as HuggingFace,
Tensorflow Hub, and PyTorch Hub.1 These model zoos con-
tain thousands of pre-trainedmodels for diverseML inference
needs (e.g., recognition of classes/objects/concepts). Thanks
to model zoos, complex predictive and analytics tasks can
benefit from reusing existing ML models.

The associate editor coordinating the review of this manuscript and

approving it for publication was Adnan Kavak .
1https://huggingface.co/, https://www.tensorflow.org/, https://pytorch.

org/hub/

The potential of model zoos is currently hindered by the
lack of structured, comprehensive, and queryable metadata
representations. Current repositories include a wide range
of information, e.g., using model cards [8]. However,
such information is mostly for human consumption, and
the level of detail remains coarse-grained, thus preventing
advanced repository automation and management functional-
ities. TABLE 1 presents the information provided by different
public model zoos. The categories of the information cover
different aspects of ML artifacts (e.g., model, dataset, per-
formance). We observe that current model zoos only provide
limited information; for instance, PyTorch Hub provides only
the ReadMe files from the source (e.g., a GitHub repository).
Insufficient information forces practitioners to search for
additional metadata in external repositories and descriptive
documents or repeatedly go through the ML lifecycle. These
processes impede the reuse of models and hamper their
evaluation and assessment.

The software market provides several tools and plat-
forms designed to help manage the ML lifecycle and

125616

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-9403-572X
https://orcid.org/0000-0002-3720-6585
https://orcid.org/0000-0002-8753-2434
https://orcid.org/0000-0002-3300-2913
https://orcid.org/0000-0001-5694-8042

Z. Li et al.: Metadata Representations for Queryable Repositories of Machine Learning Models

TABLE 1. The existing public model zoos encompass various categories of metadata. The presence of metadata in each category can be denoted by
symbols: ✓ indicates that the metadata is available, ∼ indicates that the metadata is available only in certain cases or provides limited information.
Additionally, queryability is used to describe the type of queries that can be supported by the model zoo.

experiment tracking with the support of metadata (e.g.,
MLflow [15], Weights & Biases [16], ClearML [17],
comet [18]). However, the metadata is not standardized
and requires custom formats from its users through API
calls. While this approach may be convenient for users
who wish to manage their private repositories, it falls short
of facilitating broader knowledge sharing, integration, and
reuse. This limitation ultimately hampers the full potential
of leveraging metadata to enhance and optimize the ML
lifecycle. Unlike these works focusing on managing the ML
lifecycle, our work is specifically dedicated to addressing the
metadata needs required to support model repositories and
enable advanced functionalities, such as model retrieval and
composition.

While data profiling techniques can determine metadata
for datasets [19], the growing scope of ML applications
(including their undesired effects on individuals and soci-
ety [20]) requires metadata able to describe all the ML
artifacts included in model zoos. The metadata should
include information such as a model’s inference capabili-
ties (e.g., identified object classes), architecture, inference
time, datasets (for training/validation/test), configurations
(e.g., hyper-parameters values), and evaluation performance
(refer to TABLE 3 for a complete list of metadata).

Such metadata can be helpful in different phases across
the entire ML lifecycle [21], [22]. A few examples include:
i) Data cleaning and preprocessing: The metadata of the
training dataset can assist practitioners in identifying erro-
neous instances such that they can exclude the problematic
data points during training [23]. ii)Model selection: Metadata
accelerates the learning process by setting warm-starting of
hyper-parameter searches instead of random search [24].
iii) Model evaluation: Metadata can facilitate keeping track
of the performance of different objectives [7], as well
as the predictions of each instance for further analysis
(e.g., model explainability). iv) Model explainability and
reproducibility: Metadata management can be used in the
context of Trustworthy and Responsible AI.2 Metadata
can facilitate model explanation with model predictions

2https://partnershiponai.org/paper/responsible-publication-
recommendations/

and annotations [25]. v) Model serving: Metadata about
model inference can perform model comparison and help
practitioners decide which to use in production [26].
In addition, the availability of model metadata can also

facilitate machine learning operations, commonly referred
to as MLOps [27], and opens up new opportunities for
advanced use cases such as i) retrieving models from large
repositories with complex filtering conditions; ii) continuous
integration of models in production (e.g., using transfer
learning [28], [29]); iii) (semi-)automaticmodel composition;
and iv) advanced model management system. We will further
discuss the use cases in Section III-D.

In this work, we advocate for expressive metadata repre-
sentation for model zoos. Beyond the current state-of-the-
art (and practices) [30], [31], we propose a metadata format
that can capture information about relevant artifacts (e.g.,
models, datasets, data instances, training configurations,
evaluation) and their relationships. We also describe the
design and current implementation of an advanced ML
models management platform calledMacaroni [32]3 that can
be used to query and make use of such metadata. As seen
in TABLE 1, our proposed metadata representations cover
various categories of metadata and can support the querying
of it, as in the example in TABLE 2.

The contributions of this paper are the following:

• We introduce a structured and queryablemetadatamodel
designed to provide comprehensive representations
within model zoos, as detailed in Section IV.

• To validate our metadata model, we present Macaroni,
a reference tool offering retrieval and analytical func-
tionalities, operating across several model zoos. These
functionalities are explained in Section V.

• Our work demonstrates how the metadata model facil-
itates automatic model reuse and composition. This is
achieved through Boolean expressions over inference
predicates and performance constraints, as outlined in
Section VI.

3Prototype available at https://sites.google.com/view/macaroni-model-
zoo/home

VOLUME 11, 2023 125617

Z. Li et al.: Metadata Representations for Queryable Repositories of Machine Learning Models

II. RELATED WORK
Recent studies focus on different aspects of management
during the ML lifecycle, from model versioning, and model
reporting to model evaluation. Each is important for practi-
tioners to manage and understand the models. We observe
a gap among the profound works [22], a comprehensive
and queryable metadata representation. With the metadata
representation, we can thus better manage theMLmodels and
data, including the interactions between them.

A. ML MODEL MANAGEMENT SYSTEMS AND TOOLS
Due to the complexity of the ML models and ML lifecycle,
managing the MLmodels in different phases are challenging.
And yet, multiple systems have been developed to tackle the
challenge of managing the ML models during training in
experiments.

Modeldb [33] is one of the first systems that allow
tracking, storing, and exploring ML models. Modeldb keeps
track of the ML pipelines defined by the users and allows
them to visualize and explore the models and pipelines.
Other systems, such as ModelHub [34], ModelKB [35],
and Runway [36] also allow managing ML experiments
and their associated models. These systems allow model
storage, versioning, and querying, with metadata being
extracted from scripts or manually logged. None of them,
unfortunately, made it explicit what metadata should be
included/tracked during the experiments or when serving
the models. Enterprises platforms, such as MLFlow [15],
Amazon SageMaker, Google TFX [37], comet [18], Airbnb
Bighead [38] and etc., provide rich APIs and tools to
support ML experiment management. Users can customize
what metadata to log by calling APIs. The metadata can
be visualized or used to specify new experiments. In this
work, we do not cover the aspect of managing ML model
training experiments. Related works, e.g., [15], [16], [37],
can be served as support and complement to our scope.
We report models with rich and comprehensive metadata
covering different artifacts and their relationships. We strive
to support practitioners with the necessary information to
know about a model and its necessary components.

B. ML INFERENCE/SERVING SYSTEMS
Instead of managing the end-to-end process of the ML
lifecycle, multiple ML systems aim at a particular phase in
the lifecycle, e.g., ML inference or ML serving.

1) ACCELERATING ML INFERENCE
Systems, such as Clipper [39], Willump [40], and GATI [41],
optimize and accelerate ML inference when serving. The
goal of these systems is to serve and infer ML models
for downstream tasks. Clipper is a general-purpose low-
latency prediction serving system that sits between end-user
applications and a wide range of machine learning frame-
works. It introduces a modular architecture to simplify
model deployment across frameworks and applications.
Clipper reduces prediction latency and improves prediction

throughput, accuracy, and robustness without modifying the
underlying ML frameworks.

2) ML BENCHMARK IN SPECIFIC DOMAINS
Researchers have been buildingML benchmarks for different
domains, for example, PMLB [42], PennAI [43](biomedical
and health), Moleculenet [44] (molecule), facies classifica-
tion [45], DLHub [46] (science), Kipoi [47] (genomics).

C. AI-CENTRIC DATA MANAGEMENT SYSTEMS
Systems have been developed and built tomanage data for AI.
DescribeML [48] and Amalur [49] propose dataset models to
describeML datasets in detail and preserve relevantmetadata.
The preservation of dataset information greatly facilitates, for
example, the search for suitable datasets for ML projects.
For ML dataset management and versioning, research work
such as Mldp [31], Chimera [50], and DataLab [51] are
complements to the above-mentioned model management
systems that served as support for managing data versions.

Another type of data platform is to move the DBMS engine
from a relational to a tensor abstraction, which unseemly
integrates databases with external ML tools. TDP [52]
provides access to multi-model data and leverages PyTorch
to run queries over data on a wide range of hardware devices.
TDP integrates the flexibility of PyTorch’s programming
model with the declarative power of SQL.

D. MODEL CARDS AND DATA SHEETS
Recent research also focuses on the reporting of models
and datasets, covering aspects not only limited to basic
informative components but also including ethical, inclusive,
and fair considerations. Model cards [8], for example,
proposed to include information regarding model intended
use cases, potential pitfalls, and other contexts that can
improve model understanding. A similar idea also lies in data
cards/sheets. Examples include [53], [54], and [55]. Though
model cards and data cards contain rich information, the
Q&A format is nonetheless unfriendly to machines to process
and thus cannot be easily managed and retrieved.

E. MODEL PERFORMANCE BENCHMARKING
A growing body of published work also focuses on the
benchmarking of ML model performance, such as MLperf
[56], [57], fathom [58], and DAWNBench [14]. These
platforms covered a set of metadata, including metrics,
and training and inference configurations with specified
hardware/software settings. Their focus is the report of the
model performance at different ML lifecycle stages (training
or inference). They paid little attention to the dataset the
model used, whose path is provided as an argument filled
by the user. The model process pipeline is also not covered
besides the model scripts.

III. ML MODEL ZOOS
The purpose of a model zoo is to store and provide access
to different artifacts – and their descriptions – created
throughout the lifecycle ofML. In this section, we first briefly

125618 VOLUME 11, 2023

Z. Li et al.: Metadata Representations for Queryable Repositories of Machine Learning Models

describe the ML lifecycle, highlighting relevant artifacts.
We then describe the organization and functionalities of
model zoos.

A. MACHINE LEARNING ARTIFACTS
In the proposed metadata model, we tackle relationships
among the artifacts in the entire ML lifecycle, including
data collection, model training, model inference, serving,
and reporting. We include the following artifacts that we
believe should form the pillars of a rich model zoo: i) model,
ii) dataset, iii) configuration, iv) prediction - semantic
capabilities, v) and performance.

1) ML MODEL
Throughout the years, we have witnessed the advances of
ML, and new models are developed with performance even
surpassing human-level capabilities in many real-world tasks.
Compared to the traditional ML models, such as regression
models and decision trees, deep neural networks are far
more complicated due to their complex architecture and their
large number of parameters (some model sizes going beyond
billions or trillions of parameters). To differentiate one
model from others, simply knowing its name is insufficient.
Additional information needs to be provided, not only for
model reporting and reproducibility purposes but also for
explainable AI.

2) DATASET
In recent years, there has been a notable emergence of the
Data-centric discourse within the ML community, as eluci-
dated in the study byMiranda et al. [59]. This emphasizes the
crucial role of datasets in the training and testing of MLmod-
els. Datasets are crucial inML for training models, evaluating
performance, addressing biases, guiding feature selection,
supporting transfer learning, assessing generalization and
robustness, and promoting reproducibility and transparency.
They serve as the foundation for developing effective and
trustworthy ML models. Especially, understanding the data
source and the collection methods becomes essential when
diagnosing or debugging a model; yet, unfortunately, it is a
frequently overlooked aspect in dataset reporting [55].

3) CONFIGURATION
A set of important configurations for model training are
hyperparameters. By carefully selecting and tuning the
hyperparameters, practitioners aim to optimize the model’s
ability to learn patterns from the data, reduce overfitting,
and achieve better generalization to unseen samples. Besides
hyperparameters, the configuration settings for ML model
training or inference also include hardware configurations,
such as CPUs, GPUs, or specialized accelerators. The
hardware configurations not only affect the performance on
latency measurement [60] but also on accuracy [61].

4) PREDICTION
Training a ML model is to fulfill a specific task for a real-
world problem, e.g., image classification or named-entity

FIGURE 1. ML lifecycle along with metadata of different artifacts.
We highlight the model zoo in Model Deployment phase with detailed
components.

recognition. Usually, the predictions are associated with the
labels of the tasks. Researchers nowadays are investigating
the semantic meaning of the predictions as concepts [62] to
debug or explain the capability of a model. We highlight that
the prediction outputs of a model with associated semantics
play a significant role in explainable AI [62].

5) EVALUATION
The most straightforward way to observe the capability
of a model is to evaluate it on a particular task. The
majority of current deep learning performance benchmarks
only measure the aggregated performance of the model, such
as overall accuracy or processing time for a single minibatch
of data. ML model performance is much more complicated
in practice. Recent works, such as DAWNBench [63],
propose measuring ML models’ performance from diverse
perspectives, including training time, inference latency,
accuracy, etc. Besides these measurements, our proposed
metadata system for model zoos also presents the per-class
performance and supports a broader range of models.

B. MACHINE LEARNING LIFECYCLE
The ML lifecycle has no fixed definition. It is customizable
and depends on the application and model. In the following,
we will describe a general ML lifecycle based on [22], [33],
[64], [65], and [66]. In general, the ML lifecycle includes
four stages (sometimes some stages will be divided and
regarded as separated stages): i) data preparation and data
management; ii) model learning; iii) model evaluation and
model verification; and iv) model deployment.

We now describe each of these phases to highlight which
artifacts (and their properties) require consideration in the
context of managing model repositories.

1) DATA PREPARATION AND DATA MANAGEMENT
The first stage of the ML lifecycle relates to the acquisition
and transformation of data used by theMLmodels. This stage

VOLUME 11, 2023 125619

Z. Li et al.: Metadata Representations for Queryable Repositories of Machine Learning Models

can be split into the following steps. i) Gather data samples
through observations or measurements. ii) Analyse data:
need for additional data, augmentation, and preprocessing.
iii) Clean data: replace or remove incomplete data from the
dataset. iv) Preprocessing: convert raw data such that ML
models can use it. v) Feature engineering: extract relevant
features from raw data such that it can be used for model
building. vi) Separate data into training, validation, and
test sets. A model zoo should use metadata that is able to
capture information about data preparation and processing
(e.g., data source, data curation method, data statistics),
as such data-related operations influence the performance of
a ML model [67].

2) MODEL LEARNING
The model learning stage concerns the design and training
of the ML model. This stage can be divided into the
following steps: i) model selection depending on the type
of data (structured or unstructured); ii) selection of the loss
function to measure training error; iii) selecting and tuning
hyperparameters to control overfitting, underfitting, and other
characteristics; iv) model training or finetuning on datasets to
minimize error; v) repeat steps 3 and 4 until good precision
numbers and low training error. Capturing metadata about the
configurations, such as model architecture, hyperparameters,
etc., is important to understand and interpret the performance
of a model.

3) MODEL EVALUATION AND MODEL VERIFICATION
After the model training, the model needs to be verified on
unseen (validation or testing) data. The main goal of this
stage is to ensure that the model, after training, performs as
expected on new inputs. Usually, this is done by assessing the
performance of the trained model against a test dataset that
was generated in the data management stage. The relevant
metadata regarding the dataset and model shall be captured.
In addition, the relevant configurations, such as hardware
settings, should also be recorded.

4) MODEL DEPLOYMENT
The outcome of this stage is a properly functioning, fully-
fledged, and deployed ML system. At this stage, all the
information from previous stages shall be revealed, such
as dataset information, model training details, and, most
importantly, the performance under different environment
specifications. The environment specifications include hard-
ware specifications and any specific software configurations
or constraints. Fine-grained metadata helps ensure compat-
ibility and optimal performance of the deployed model.
Practitioners can thus choose the appropriate models for their
needs and requirements.

C. EXISTING MODEL ZOOS
Recently, communities have been focusing on democratizing
ML, for both using and sharing. Platforms, often referred

TABLE 2. Example queries.

to as model zoos, such as Tensorflow Hub, PyTorch Hub,
and HuggingFace, are now exposing metadata related to ML
artifacts. These platforms/hubs are building on the principles
of using open-source model parameters, scripts, and APIs.
HuggingFace also offers an abstractionwith the Transformers
library, which makes it easy to consume and infer these
models [9]. In the following, we describe the capabilities and
limitations of currently available model zoos.

1) METADATA
Existing model zoos offer users model cards [8] that
describe the models in different levels of detail. Model cards
contain metadata regarding different artifacts: For example,
in TensorFlow Hub, they include metadata such as model
publisher, architecture, data that train the model, inputs and
outputs. Pytorch Hub includes model description, usage, and
results. Besides the mentioned metadata, HuggingFace also
includes discussions on the bias and limitations of the model.
The metadata in these model zoos provides practitioners with
different aspects of the artifacts.

2) FUNCTIONALITIES
Given the metadata, model zoos provide access to retrieving
the models by means of filtering by name, task, or trained
data. Some of the model zoos also support data retrieval
given provided metadata of the related dataset. On top
of all functionalities, model inference and sharing is the
most important feature of these model zoos. They provide
corresponding APIs for model execution. Practitioners can
consume these public ML models for downstream tasks, e.g.,
building applications on top of the models, and finetuning
the models on the specified dataset. For example, the APIs of
HuggingFace are built on top of transformers [68], and users
can easily infer models in NLP domains.

3) LIMITATIONS
Model zoos differ in the type and level of detail for
the metadata associated with the different ML artifacts.

125620 VOLUME 11, 2023

Z. Li et al.: Metadata Representations for Queryable Repositories of Machine Learning Models

Therefore, practitioners will need to manually retrieve and
integrate information from various platforms if the same
artifact (e.g., a dataset) is hosted in multiple zoos. Metadata
quality and consistency are also an issue: often, models are
described with little or no metadata; for example, it is very
common for users of the HuggingFace platform to upload
only the trained models without additional descriptions.
Finally, metadata are often not offered in a computer-
readable format: most of the descriptions of the artifacts are
presented in plain texts, created only for human consumption.
Obviously, this greatly hinders the retrieval capabilities of
the model search engines and the ability of practitioners to
compare different models.

D. REQUIREMENTS FOR FUTURE MODEL ZOOS
With the existing public model zoos, we observe some
limitations that hinder the reuse/sharing/management of
ML models. We foresee that the future model zoo should
contain one of the following attributes: i) rich metadata
representations that enable querying the repository; ii) rich
analytic capabilities to facilitate advanced performance eval-
uation and comparison; iii) offering different functionalities,
including serving the models through APIs or endpoints, and
integrating the downstream systems that (e.g.,) accelerate
model inference.

1) RICH METADATA REPRESENTATIONS
The model zoo should contain information regarding dif-
ferent artifacts, e.g., data, ML model details, model per-
formance, etc. This information allows practitioners to be
aware of how the model is defined, on what dataset it is
trained, and the corresponding evaluation performance. With
rich metadata representation, practitioners may not only have
access to comprehensive information but also search/query
on top of it, which enables data/model search, data/model
discovery, and comparison. TABLE 2 lists some example
queries that could be valuable for ML developers and users.
These queries require more fine-grained model metadata that
current model repositories, such as HuggingFace, do not
support. This highlights the need for detailed metadata of
trainedMLmodels and datasets in a structured and queryable
representation.

2) OPERATIONS THAT FACILITATE ADVANCED
PERFORMANCE EVALUATION
Amodel zoo is not a mere information presentation platform,
but it shall also serves as a tool for practitioners to facilitate
advanced performance evaluation. When a new/updated
dataset is provided (provided by the practitioners or added
by the system), the model zoo shall allow automated evalu-
ation/finetuning or provides operations for the practitioners
to evaluate/finetune models on top of it. For example,
a practitioner would like to test the robustness of a model
by evaluating the model performance on a perturbed dataset.
To facilitate this, the model zoo shall first allow operations
on a dataset for perturbations (e.g., adding noise, adversarial

FIGURE 2. The Model Zoo Metamodel.

attacks) or users uploading their own data. In addition, the
model zoo shall also provide APIs to perform the evaluation
of the dedicated models on the perturbed dataset.

3) OTHER FUNCTIONALITIES
The purpose of having a model zoo includes sharing
and serving a model. The model zoo shall also provide
easily-access APIs or endpoints to serve/deploy a model.
With models of various characteristics (e.g., tasks to answer,
evaluation performance), the model zoo makes it feasible
to solve complex analytic tasks by constructing workflows
through the composition of models. Optimizations can focus
on how to define the workflow under requirement constraints
(e.g., accuracy or latency) [69], or how to assign workload on
heterogeneous hardware (e.g., edge or server) [70].

IV. PROPOSED METAMODEL
Based on the analysis of the current capabilities and
limitations of current model zoos, we now describe the
metadata format (i.e., the metamodel) that can be used to
represent different ML artifacts and their relations. With our
proposed structured representation along with comprehen-
sive metadata, users can retrieve metadata in fine-grained
details.

FIGURE 2 depicts the main sub-models that compose our
metamodel in a bird’s eye view. The metamodel comprises
five packages:
i) the ML Model package, which defines the MLmodels,

their architecture, input, and output formats;
ii) the Dataset package, which contains the information

on the datasets;
iii) the Configuration package, which summarizes the

configuration settings when training and using a model
for inference;

iv) the Prediction package, which describes the infer-
ence output of the model, possibly enriched with
description from a knowledge graph;

v) the Evaluation package, which presents the different
evaluation metrics, including the ones related to output
accuracy and to time performance.

TABLE 3 shows the summary of the metadata included in
our metamodel, and the associated artifacts.

VOLUME 11, 2023 125621

Z. Li et al.: Metadata Representations for Queryable Repositories of Machine Learning Models

FIGURE 3. Modeling the metadata throughout ML lifecycle.

TABLE 3. Metadata summary.

A. ML MODEL PACKAGE
The taxonomy for the ML Model package, depicted in
FIGURE 3, encompasses classes with a white background,
delineating various components such as ML Model basic
information and the algorithm. The metadata associated with
the ML Model encompasses essential details such as name,
version, tasks, input and output specifications (I/O), as well
as a URL linking to the script files. The algorithm specify
the ML algorithms in different categories: traditional ML
algorithms, such as SVM, decision tree, and Deep Neural
Network (DNN). DNN can be further divided into different

FIGURE 4. ML Model and Prediction model extract for a running example.

types of networks, e.g., CNN and RNN. One of the trends
of advancement in DNNs is characterized by continuous
innovation and the development of increasingly sophisticated
architectures, e.g., transformers [68], GPT [71], BERT [72].
Recording the framework and architecture of these advanced
models is thus fundamental. The availability of suchmetadata
is of importance in facilitating model management, model
understanding, and interoperability within the ML ecosys-
tem, and it promotes trust and confidence in the models.

B. DATASET PACKAGE
The behavior of a ML model heavily relies on the data that
has been used for training it. Thus the metamodel includes

125622 VOLUME 11, 2023

Z. Li et al.: Metadata Representations for Queryable Repositories of Machine Learning Models

a Dataset package, representing both Datasets and
their DataObjects. With the Dataset element, we present
the metadata of the datasets that is significant for data
management and reporting. Examples of the metadata are
i) ID, to uniquely refer to a dataset; ii) Name, name of the
dataset; iii) Version, version of the dataset, e.g., COCO has
multiple versions constructed in different years; iv) Source,
reference to other dataset(s) which (partially) construct the
current dataset; v) Attributes, the attributes contained in
the dataset, specifically for structured datasets, specifying
different columns.

A dataset consists of multiple data objects. With
DataObject, we denote the i) ID, to uniquely refer to a
piece of content; and ii) URI, a string that unambiguously
identifies the location of the content.

FIGURE 5 shows the datasets applied in the example.
COCO is a popular image dataset that is usually used to train
object detection and image segmentation models. In this case,
we split COCO into a training set and a testing set. Both
datasets have the same source, which is the complete COCO
dataset. The COCO training set and test set contain a different
subset from the complete dataset.

FIGURE 5. Dataset model extract for a running example.

C. CONFIGURATION PACKAGE
The Configuration package encompasses essential
concepts that establish connections to various pack-
ages. These packages define the associated model,
dataset, hardware specifications, predictions, etc. The
Configuration model is related to multiple entities,
ML Model, Hardware, Predication, and Dataset.
It associates the model with dataset and hardware, indicating
where the model is trained on with which dataset. A different
associated training dataset will result in a different model,
with different learned parameters/weights. Within the
Configuration package, Hyperparameter model,
Hardware model, and Configuration are three main
components. These components collectively define the
essential settings for both training and inference processes.
They play a crucial role in determining the behavior and
performance of the model throughout its lifecycle.

The Hardware model contains the concepts that denote
the hardware that a model is trained on or executed
on. The Hardware model comprises metadata that
describes the hardware setting, associated with different
HardwareAttributes. We list three types of hardware,

FIGURE 6. ML Model and Configuration model extract for a running
example.

i.e., Cloud resources, Edge devices, and Clusters. The Cloud
resources associated with the public cloud services, such as
AWS, Google Cloud, and Azure. An example of the hardware
attributes for the Cloud, is the cloud configuration, e.g.,
16 p3.16xlarge supported by AWS. For Edge, the hardware
attributes include the type of the device (e.g., mobile phone,
camera), storage capacity, memory, CPU, or GPU settings.
Similar toEdge, aCluster comprisesmetadata such as storage
capacity, types, and the number of GPUs and CPUs.

The Configuration model is categorized into
TrainingConfiguration and InferenceConfi-
guration. They have various sets of hyperparameters
associated with different HyperparameterValue. For
example, the former model specifies the hyperparameters
related to optimization, e.g., type of optimizer, and learning
rate, while these are not necessary for inference.

D. PREDICTION PACKAGE
The Prediction package contains the concepts that
denote the model prediction/output, associated with the
semantic concepts of the outputs (e.g., wheel to a car). The
model elements of Prediction are presented with blue
background.

ThePrediction class allows the description of different
types of tasks, i.e., regression and classification. Each
Prediction is defined by ID and Type of the prediction.
The prediction of a regression model is associated with
a value. While the prediction of classification model can
be further divided into multiple subclasses, e.g., binary

VOLUME 11, 2023 125623

Z. Li et al.: Metadata Representations for Queryable Repositories of Machine Learning Models

classification, multiclass classification, and object detection.
Classification model prediction is associated with a different
number of classes. Specifically, ObjectDetection is
associated with additional output, BoundingBox, which is
defined by an array indicating the coordinate of the detected
object in a picture. The classification prediction can be
expanded and implemented for different kinds of models,
e.g., image segmentation, with an additional attribute of an
array.

Optionally a Class can be linked with a Semantic
Concept from a knowledge base, thus allowing complex
reasoning. Consider the example that an ML practitioner
is building an ML model for image classification of cars,
and she tries to conduct a model diagnosis. She may have
several questions: what makes the model identify a car as
a car? What are the semantic concepts that the model is
capable of identifying? Are the wheels that make it believe
that it is a car? To support such use-cases, the metamodel
allows storing information about inference performance on
specific data instances, which can be used to describe the
behavior of a model, i.e., in what circumstances a model can
perform well and why. Such information and awareness of
the model prediction may significantly improve ML model
interpretability in various applications such as health care,
law enforcement, and finance.

FIGURE 4 presents an extract of the ML Model and
Prediction as an example. YOLOv3 and YOLOv4 are
two example models. Both models tackle object detection
tasks, and the algorithm is DNN. Their output follows
ObjectDetection types of prediction, with different classes
(e.g., car and person in this case) and associated bounding
boxes that locate the detected object. The object classes are
related to different semantic concepts, for example, the wheel
as part of the car, and the face as part of a person.

E. EVALUATION PACKAGE
The performance evaluation of anMLmodel is critical during
both the training and deployment phases. The practitioners
need to deploy a suitable ML model for the task given
a specified environment, e.g., Hardware parameters.
A mismatch of the deployment will lead to latency
issues or reliability concerns, which results in user
dissatisfaction. Hence, we present the Metric model
to denote the model performance associated with the
Configuration model. Thus the model performance
is related to the model, hyper-parameter settings, hard-
ware, and applied dataset. Specifically, we associate
Metric model with TrainingConfiguration and
InferenceConfiguration, since a model may train
on a dataset while inference on another dataset. A
Configuration is related to zero or more Metric, each
associated with a unique MetricValue.

The Metric is categorized into multiple types of metrics,
e.g., ExecutionMetric such as MemoryFootprint
and Executiontime; and Prediction Metric denoting the
correctness of the performance.

FIGURE 7. Evaluation model extract for a running example.

Evaluation Metric contains metric-related meta-
data. Different models will need different evaluation metrics,
for instance, a regression model would have a Mean Square
Error - MSE, while a multi-class classification model would
have an accuracy value for each class.
FIGURE 7 presents the example of Evaluation pack-

age. The model inference configuration with ID IC0001 is
illustrated in FIGURE 6, associated with execution hardware,
ML model, and dataset. To present the performance of a
model under specified configuration settings, we include
various types of metrics. In general, two kinds of metrics
are introduced, i) correctness performance, verifying the
prediction performance of the model, ii) and execution
performance, including the runtime and memory footprint of
the model. In the example, the latency and memory of the
model are recorded, with a latency of 25ms and 90MB for
themodel size. In terms of correctness performance, we apply
the common metrics to evaluate the object detection model.
The metrics included in the example are average precision
(AP) and mean average precision (mAP). In particular,
we provide the AP metric for each class, allowing practi-
tioners to assess the model’s performance at a granular class
level. Compared to the existing benchmarks or platforms that
only report aggregate results, the performance metric that we
include is more fine-grained.

V. MACARONI: A REFERENCE IMPLEMENTATION OF AN
ADVANCED MODEL ZOO
This section describes the architecture and functionality of
Macaroni [32], a tool designed and implemented to demon-
strate how our metamodel can be used inMLmodel zoos. The
implementation4 is based on the metadata model described in
the previous section. The architecture of Macaroni is shown

4https://sites.google.com/view/macaroni-model-zoo/home

125624 VOLUME 11, 2023

Z. Li et al.: Metadata Representations for Queryable Repositories of Machine Learning Models

FIGURE 8. The structure of our metadata management tool.

in FIGURE 8. The tool is currently designed to retrieve
metadata from different sources, integrate and enrich them,
and allow for complex retrieval queries. The available APIs
also allow for model execution and model composition.

A. ARCHITECTURE OVERVIEW
The system includes a web-based interface as a front-end to
present the metadata and a back-end with storage and compu-
tation. The system comprises three main components: i) user
interface; ii) acquiring and storing metadata; iii) storing and
serving models and datasets. The second component is the
core of the system. The system is built not only to present
and query metadata but also to support ML model serving.

1) USER INTERFACE
Users can explore and query the metadata of the model
zoo. We provide interfaces for users to filter and retrieve
information. Some examples of the interfaces can be seen
in FIGURE 9. The ingestion API allows users to ingest
information regarding different artifacts. The metadata being
retrieved is presented in an interactive visualization.

2) METADATA OBTAIN AND STORAGE
Recent works developed tools/systems to record metadata for
the purpose of monitoring the experiments, especially during
model training. Works such as Cerebro [73], MLflow [15],
and ModelDB [33] provide APIs/logging libraries for users
to track and log interested metadata in different levels of
details. While others, such as ModelKB [35], automate the
extraction process by identifying metadata from the source
code of different deep learning frameworks.

In this work, we obtain the metadata in multiple ways and
process and store it in the back-end. We collect metadata in
the following three ways. i) A user can add the metadata of
a model or a dataset by filling in specified fields, e.g., the
content presented in a model card. Then such information is
processed by the Ingestion API and converted into structured
representation according to the above-mentioned metadata
model, and stored in the Metadata Storage. ii) The tool can

also automatically extract information from external model
zoos, e.g., HuggingFace and PyTorch Hub. We can extract
metadata from their API or information from the web pages
and record the source of the external metadata in our metadata
field. iii) To gather the information regarding the model
performance, we apply a third way to obtain the metadata.
We obtain the performance by evaluating the model on a
dataset offline with specified hardware settings. This process
utilizes cloud resources and is performed offline.

The metadata is stored in the structure described by the
data model (Section IV).We implemented the data model and
stored the metadata in MongoDB.

3) MODEL/DATA STORAGE AND SERVING
To support performance evaluation, we store related models
and data scripts/files. The models and data are further applied
with an automated evaluation pipeline (in the following
subsection V-B). The models are perceived in docker images,
and they also support model serving. Users can apply the
model to their data and obtain prediction results.

B. PERFORMANCE EVALUATION AND AUTOMATED
PIPELINE
The tool supports the integration of models described and
hosted in external model zoos. By the time we were writing
the paper, we had imported more than 171k models hosted
on the HuggingFace and FiftyOne model zoos, among
which 986 of them were evaluated on 14 different datasets
in texts or images. We develop an automated pipeline to
execute/evaluate models from various platforms adapted
from external APIs.

The performance metadata is gathered in three steps. i) The
model is evaluated using the API from the model zoo the
model was extracted from. ii) The output from the inference
is then processed and transformed to a standardized format.
iii) Finally, the performance of the model is evaluated based
on the predictions, and the values will be stored in the
proposed structure.

It is important to note that external APIs may have
their own methods for performance calculation that deviate
from the norm, or may not have some capability at all
(performance of a class). To ensure the comparability
of model performance, we implement unified evaluation
methods.

C. RETRIEVAL AND EXPLORATION OF MODEL
REPOSITORY
Throughout the ML lifecycle, ML practitioners will require
different metadata for tracking the ML model status, editing,
comparing, or reporting. An ML practitioner often needs to
query models in large repositories with complex filtering
conditions, e.g., data instance, performance, and inherit
mechanism. In TABLE 2, we list a few example queries
revealing different properties of the metadata. For example,
Queries 1 and 2 require the metadata regarding the dataset,
i.e., its attribute and source. This type of metadata helps
practitioners understand the dataset, which allows them to

VOLUME 11, 2023 125625

Z. Li et al.: Metadata Representations for Queryable Repositories of Machine Learning Models

FIGURE 9. The interfaces of Macaroni, including the dataset page, model page, and model comparison.

gain insights into the characteristics and properties of the
data and thus determine the relevant features in the feature
selection and engineering stage. Queries such as Queries
3 to 6 require other metadata properties, such as the model
performance and its interpretability. These properties are
crucial for model discovery and comparison, and in addition,
assist in decision-making processes and solving complex
analytic problems. Query 7, on the other hand, requires more
complex information regarding the inference performance
with specified hardware settings. For example, an edge device
may have constraints such as limited computation power and
storage. To answer this query, practitioners will need to obtain
the model performance of different objectives, e.g., inference
speed and memory footprint.

The interface of the tool aims to let users find a model
that is relevant to them. To do this, users can filter all
available models by relevant properties, e.g., the name,
task, or training dataset of the model. Once a model
is selected, the user is presented with an overview of
all available metadata, alongside the average evaluation
results of the model (such as inference time and accuracy,
if available) and a brief description of the associated dataset
(if available).

If evaluation results are available, the user can opt to
view more detailed information. We present the model
performance with the following visualization types.

• Table. The tables present the (aggregated/disaggregated)
performance results of a model with numbers, such that

125626 VOLUME 11, 2023

Z. Li et al.: Metadata Representations for Queryable Repositories of Machine Learning Models

FIGURE 10. ML inference query optimization.

users can identify the best score of model performance
on each task or on average.

• Bar chart. Bar charts and tables are interchangeable
when presenting the performance of a model. For a
clearer presentation, we only apply bar charts when
comparing models. Users can also select the interested
evaluation metrics and tasks for presentation.

• Confusion matrix. A confusion matrix is useful for
model explanation, as users can observe when the model
performs poorly. We also record the predictions of the
model on data instances. Users can further explore the
performance of the model by investigating the wrong
predictions given the data examples.

• Scatter plot. As earlier stated, accuracy shall not be
the only evaluation criterion of model performance,
especially given complex requirements in the production
environment. Specially, we also support comparing
models on multiple objectives, e.g., accuracy against
inference speed. For instance, one may observe that no
single model can dominate in all objectives, e.g., having
the highest accuracy score while being the most efficient
to run.

D. USAGE AND FUNCTIONALITY
The querying of the metadata is performed in an online
manner, while obtaining and updating the metadata can be
processed offline. For instance, the metadata can be extended
by evaluating the model and crawling the external model zoos
regularly, e.g., once a week. Users can also trigger to evaluate
the model and push the results to the metadata storage.

The tool supports different evaluation metrics, accuracy,
inference speed, memory footprint, etc. Specifically, the
accuracy of a model is not only presented in aggregated
results of a task but also at a class level. Besides ingesting,
extracting, and storing the metadata, our proposed tool allows
a user to i) retrieve themodels that help them identify amodel,
ii) compare multiple models, iii) or explore the properties of
models/data by composing queries on the metadata.

VI. APPLICATION: MODEL COMPOSITION UNDER
CONSTRAINTS
Now we introduce a more advanced yet common use
case. With metadata being captured and well-represented,
ML practitioners can make good use of the models trained
offline and apply them to answer complex, ad-hoc inference
queries.

Recent research has focused on ML applications for
different modalities. For example, systems have been built
to serve ML models for specific tasks [74]. Others aim
to accelerate ML inference on domain tasks, such as
NoScope [74], and PP [75]. These applications have shown a
trend of applying model composition (usually with multiple
models in cascades or in sequence) for complex tasks. The
key idea of these works is to filter out insignificant data as
early as possible, which is extremely useful when processing
large-scale data, e.g., video, or streaming data, e.g., tweets.

The trend of applying and optimizing the usage of ML
models in complex tasks has provided insights on how to
manage ML models to better serve the tasks. A solution is
to identify the capability of the models as fine-grained as
possible. One of our previous works [69] has proposed to
optimize for ML inference query by utilizing the metadata of
MLmodels, especially the performance of models in multiple
objectives.

As shown in FIGURE 10, the ad-hoc query can consist
of multiple ML inference tasks with different dependencies
and relations. Moreover, the query can be composed of
specified constraints/requirements (e.g., latency and accuracy
restrictions). Practitioners can select a composition of
models from the model zoo to answer the ad-hoc queries.
Optimization can be applied to further increase the efficiency
of answering the query by carefully scheduling the tasks in
a different order and applying early filtering, as the Bypass
Plan in FIGURE 10. With the same example in FIGURE 10,
an ML practitioner would like to design an application for
video analysis that can capture a pedestrian crossing the road
or the rear light of the car in front getting red. Since the data
volume is significant and latency is also an essential factor to

VOLUME 11, 2023 125627

Z. Li et al.: Metadata Representations for Queryable Repositories of Machine Learning Models

consider, the practitioner should select image classification
or object detection models with fast inference speed. And
the inference speed is greatly affected by the hardware
being applied. If the application is deployed on a mobile
phone, then the memory footprint is also a fundamental
objective to be concerned with. To identify which set of
models could best address the query and constraints, theymay
require information regarding the model performance with
different objectives (e.g., accuracy, inference speed, memory
footprint). The metadata of the dataset can also provide
information to detect concept drift, for instance.

VII. CONCLUSION AND OUTLOOK
In this paper, we advocate for the need for a structured,
queryable, and comprehensive metadata representation for
model zoos. We propose a metadata model for such metadata
representation to tackle different use cases. We also develop
a tool that helps practitioners to manage and query the
metadata.

We urge practitioners to prioritize the collection and
organization of metadata, utilizing it for future applications.
In order to enhance the applications of metadata, we present
several aspects that can be explored in future research
endeavors.

A. INTEGRATION OF ML MODEL METADATA TO CURRENT
PLATFORMS
Existing work has developed tools to record (log/extract
automatically) metadata during the ML lifecycle. Recent
works only identify the public pre-trainedmodel. Future work
can integrate the systems seamlessly such that practitioners
can have access to self-trained models as well as public pre-
trained models.

B. NLP-BASED EXTRACTION OF METADATA FROM TEXT
With the support of large language models, future research
can develop tools to extract useful information from the
textual descriptions in the model and data cards by applying
natural language processing techniques and mapping it to the
predefined metadata representation.

C. PERSONALIZED AI AND FINETUNING
Many applications, such as behavior detection and virtual
assistants, are user-specific and take into account user behav-
iors and preferences. Companies adapt the models to their
own datasets and context by re-training and finetuning the
models. Instead of randomly searching the hyper-parameter
values to train a model from scratch, practitioners can utilize
the metadata to accelerate the learning process by setting
a warm-start for hyper-parameter search [21]. These AI
applications can utilize the capabilities of the pre-trained
models that already have a good performance on a certain
task. We support these use cases by providing rich and
comprehensive metadata, either the configuration settings or
performance evaluation.

D. PROVENANCE, LINEAGE, AND VERSIONING
Researchers also propose to utilize metadata for other
purposes, such as workflow data provenance [76], [77]
and ML pipeline lineage [30], [78], [79]. ModelHub [34]
and Modeldb [33], on the other hand, track metadata
about models throughout the lifecycle and provide version
management. However, they focus on the abstractions of the
model, while they lack information on themodel performance
under different hardware settings (e.g., inference speed,
accuracy, memory footprint).

REFERENCES
[1] Z. Yang, Z. Wang, Y. Huang, Y. Lu, C. Li, and X. S. Wang, ‘‘Optimizing

machine learning inference queries with correlative proxy models,’’ Proc.
VLDB Endowment, vol. 15, no. 10, pp. 2032–2044, Jun. 2022.

[2] F. Romero, J. Hauswald, A. Partap, D. Kang,M. Zaharia, and C. Kozyrakis,
‘‘Optimizing video analytics with declarative model relationships,’’ Proc.
VLDB Endowment, vol. 16, no. 3, pp. 447–460, Nov. 2022.

[3] C. Hogan and G. Sistu, ‘‘Automatic vehicle ego body extraction for
reducing false detections in automated driving applications,’’ in Proc.
Irish Conf. Artif. Intell. Cogn. Sci. Cham, Switzerland: Springer, 2022,
pp. 264–275.

[4] T. Gillespie, ‘‘Content moderation, AI, and the question of scale,’’BigData
Soc., vol. 7, no. 2, Jul. 2020, Art. no. 205395172094323.

[5] D. Nallaperuma, R. Nawaratne, T. Bandaragoda, A. Adikari, S. Nguyen,
T. Kempitiya, D. De Silva, D. Alahakoon, and D. Pothuhera, ‘‘Online
incremental machine learning platform for big data-driven smart traffic
management,’’ IEEE Trans. Intell. Transp. Syst., vol. 20, no. 12,
pp. 4679–4690, Dec. 2019.

[6] F. L. Sánchez, I. Hupont, S. Tabik, and F. Herrera, ‘‘Revisiting crowd
behaviour analysis through deep learning: Taxonomy, anomaly detection,
crowd emotions, datasets, opportunities and prospects,’’ Inf. Fusion,
vol. 64, pp. 318–335, Dec. 2020.

[7] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer,
Z. Wojna, Y. Song, S. Guadarrama, and K. Murphy, ‘‘Speed/accuracy
trade-offs for modern convolutional object detectors,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 3296–3297.

[8] M. Mitchell, S. Wu, A. Zaldivar, P. Barnes, L. Vasserman, B. Hutchinson,
E. Spitzer, I. D. Raji, and T. Gebru, ‘‘Model cards for model report-
ing,’’ in Proc. Conf. Fairness, Accountability, Transparency, Jan. 2019,
pp. 220–229.

[9] S. M. Jain, ‘‘Hugging face,’’ in Introduction to Transformers for NLP.
Cham, Switzerland: Springer, 2022, pp. 51–67.

[10] Pytorch Hub. Accessed: Sep. 10, 2023. [Online]. Available:
https://pytorch.org/hub/

[11] Tensorflow Hub. Accessed: Sep. 10, 2023. [Online]. Available: https://
www.tensorflow.org/hub

[12] Papers With Code. Accessed: Sep. 10, 2023. [Online]. Available:
https://paperswithcode.com/sota

[13] Openvino Open Model Zoo. Accessed: Sep. 10, 2023. [Online]. Available:
https://github.com/openvinotoolkit/open_model_zoo/tree/master

[14] C. Coleman, D. Narayanan, D. Kang, T. Zhao, J. Zhang, L. Nardi, P. Bailis,
K. Olukotun, C. Ré, and M. Zaharia, ‘‘Dawnbench: An end-to-end deep
learning benchmark and competition,’’ Training, vol. 100, no. 101, p. 102,
2017.

[15] A. Chen, A. Chow, A. Davidson, A. DCunha, A. Ghodsi, S. A. Hong,
A. Konwinski, C. Mewald, S. Murching, T. Nykodym, P. Ogilvie,
M. Parkhe, A. Singh, F. Xie, M. Zaharia, R. Zang, J. Zheng, and C. Zumar,
‘‘Developments in MLflow: A system to accelerate the machine learning
lifecycle,’’ in Proc. 4th Int. Workshop Data Manage. End End Mach.
Learn., Jun. 2020, pp. 1–4.

[16] Weights & Biases, the AI Developer Platform. Accessed: Sep. 10, 2023.
[Online]. Available: https://wandb.ai/site

[17] Clearml Auto-Magical Suite of Tools to Streamline Your ML Workflow.
Accessed: Sep. 10, 2023. [Online]. Available: https://clear.ml/docs/latest

[18] Comat Less Friction, Mode ML. Accessed: Aug. Sep. 10, 2023. [Online].
Available: https://www.comet.com/site/

[19] Z. Abedjan, L. Golab, and F. Naumann, ‘‘Profiling relational data: A
survey,’’ VLDB J., vol. 24, no. 4, pp. 557–581, Aug. 2015.

125628 VOLUME 11, 2023

Z. Li et al.: Metadata Representations for Queryable Repositories of Machine Learning Models

[20] M. Yurrita, T. Draws, A. Balayn, D. Murray-Rust, N. Tintarev, and
A. Bozzon, ‘‘Disentangling fairness perceptions in algorithmic decision-
making: The effects of explanations, human oversight, and contestability,’’
in Proc. CHI Conf. Hum. Factors Comput. Syst., New York, NY, USA,
Apr. 2023, pp. 1–21.

[21] S. Schelter, F. Biessmann, T. Januschowski, D. Salinas, S. Seufert, and
G. Szarvas, ‘‘On challenges in machine learning model management,’’
Amazon, Tech. Rep., 2018.

[22] M. Schlegel and K.-U. Sattler, ‘‘Management of machine learning lifecycle
artifacts: A survey,’’ ACM SIGMOD Rec., vol. 51, no. 4, pp. 18–35, 2023.

[23] I. F. Ilyas and X. Chu, Data Cleaning. San Rafael, CA, USA: Morgan &
Claypool, 2019.

[24] C. Yang, Y. Akimoto, D. W. Kim, and M. Udell, ‘‘OBOE: Collaborative
filtering for AutoML model selection,’’ 2018, arXiv:1808.03233.

[25] J. Klaise, A. Van Looveren, G. Vacanti, and A. Coca, ‘‘Alibi explain:
Algorithms for explaining machine learning models,’’ J. Mach. Learn.
Res., vol. 22, no. 1, pp. 8194–8200, 2021.

[26] P. Guo, B. Hu, and W. Hu, ‘‘Sommelier: Curating DNN models for the
masses,’’ in Proc. Int. Conf. Manage. Data, Jun. 2022, pp. 1876–1890.

[27] D. Kreuzberger, N. Kühl, and S. Hirschl, ‘‘Machine learning operations
(MLOps): Overview, definition, and architecture,’’ IEEE Access, vol. 11,
pp. 31866–31879, 2023.

[28] J. Talukdar, S. Gupta, P. S. Rajpura, and R. S. Hegde, ‘‘Transfer learning
for object detection using state-of-the-art deep neural networks,’’ in Proc.
5th Int. Conf. Signal Process. Integr. Netw. (SPIN), Feb. 2018, pp. 78–83.

[29] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He,
‘‘A comprehensive survey on transfer learning,’’ Proc. IEEE, vol. 109,
no. 1, pp. 43–76, Jan. 2021.

[30] S. Schelter, J.-H. Boese, J. Kirschnick, T. Klein, and S. Seufert,
‘‘Automatically tracking metadata and provenance of machine learning
experiments,’’ in Proc. Mach. Learn. Syst. Workshop (NIPS), 2017,
pp. 27–29.

[31] P. Agrawal, R. Arya, A. Bindal, S. Bhatia, A. Gagneja, J. Godlewski,
Y. Low, T. Muss, M. M. Paliwal, and S. Raman, ‘‘Form for machine
learning,’’ in Proc. Int. Conf. Manage. Data, 2019, pp. 1803–1816.

[32] Z. Li, H. Kant, R. Hai, A. Katsifodimos, and A. Bozzon, ‘‘Macaroni:
Crawling and enriching metadata from public model zoos,’’ in Proc. Int.
Conf. Web Eng. Cham, Switzerland: Springer, 2023, pp. 376–380.

[33] M. Vartak, H. Subramanyam, W.-E. Lee, S. Viswanathan, S. Husnoo,
S. Madden, and M. Zaharia, ‘‘MODELDB: A system for machine learning
model management,’’ in Proc. Workshop Hum. Loop Data Anal., 2016,
pp. 1–3.

[34] H. Miao, A. Li, L. S. Davis, and A. Deshpande, ‘‘Towards unified data and
lifecycle management for deep learning,’’ in Proc. IEEE 33rd Int. Conf.
Data Eng. (ICDE), Apr. 2017, pp. 571–582.

[35] G. Gharibi, V. Walunj, R. Nekadi, R. Marri, and Y. Lee, ‘‘Automated end-
to-end management of the modeling lifecycle in deep learning,’’ Empirical
Softw. Eng., vol. 26, no. 2, pp. 1–33, Mar. 2021.

[36] J. Tsay, T. Mummert, N. Bobroff, A. Braz, P. Westerink, and M. Hirzel,
‘‘Runway: Machine learning model experiment management tool,’’ in
Proc. Conf. Syst. Mach. Learn. (SysML), 2018, pp. 1–3.

[37] Ml Metadata TFX Tensorflow. Accessed: Sep. 10, 2023. [Online].
Available: https://www.tensorflow.org/tfx/guide/mlmd

[38] E. Brumbaugh, ‘‘Bighead: A framework-agnostic, end-to-end machine
learning platform,’’ in Proc. IEEE Int. Conf. Data Sci. Adv. Anal. (DSAA),
Oct. 2019, pp. 551–560.

[39] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and
I. Stoica, ‘‘Clipper: A $Low−Latency$ online prediction serving system,’’
in Proc. 14th USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2017,
pp. 613–627.

[40] P. Kraft, D. Kang, D. Narayanan, S. Palkar, P. Bailis, and M. Zaharia,
‘‘Willump: A statistically-aware end-to-end optimizer for machine learn-
ing inference,’’ Proc. Mach. Learn. Syst., vol. 2, pp. 147–159, Mar. 2020.

[41] A. Balasubramanian, A. Kumar, Y. Liu, H. Cao, S. Venkataraman, and
A. Akella, ‘‘Accelerating deep learning inference via learned caches,’’
2021, arXiv:2101.07344.

[42] R. S. Olson, W. La Cava, P. Orzechowski, R. J. Urbanowicz, and
J. H. Moore, ‘‘PMLB: A large benchmark suite for machine learning
evaluation and comparison,’’ BioData Mining, vol. 10, no. 1, pp. 1–13,
Dec. 2017.

[43] R. S. Olson, ‘‘A system for accessible artificial intelligence,’’ in Genetic
Programming Theory and Practice XV. Cham, Switzerland: Springer,
2018, pp. 121–134.

[44] Z. Wu, B. Ramsundar, E. N. Feinberg, J. Gomes, C. Geniesse, A. S. Pappu,
K. Leswing, and V. Pande, ‘‘MoleculeNet: A benchmark for molecular
machine learning,’’ Chem. Sci., vol. 9, no. 2, pp. 513–530, 2018.

[45] Y. Alaudah, P. Michałowicz, M. Alfarraj, and G. AlRegib, ‘‘A machine-
learning benchmark for facies classification,’’ Interpretation, vol. 7, no. 3,
pp. SE175–SE187, Aug. 2019.

[46] R. Chard, Z. Li, K. Chard, L. Ward, Y. Babuji, A. Woodard, S. Tuecke,
B. Blaiszik, M. J. Franklin, and I. Foster, ‘‘DLHub:Model and data serving
for science,’’ in Proc. IEEE Int. Parallel Distrib. Process. Symp. (IPDPS),
May 2019, pp. 283–292.

[47] Ž. Avsec, R. Kreuzhuber, J. Israeli, N. Xu, J. Cheng, A. Shrikumar,
A. Banerjee, D. S. Kim, L. Urban, and A. Kundaje, ‘‘Kipoi: Accelerating
the community exchange and reuse of predictive models for genomics,’’
BioRxiv, 2018.

[48] J. Giner-Miguelez, A. Gómez, and J. Cabot, ‘‘DescribeML: A tool for
describing machine learning datasets,’’ in Proc. 25th Int. Conf. Model
Driven Eng. Lang. Syst., Companion, Oct. 2022, pp. 22–26.

[49] R. Hai, C. Koutras, A. Ionescu, Z. Li,W. Sun, J. van Schijndel, Y. Kang, and
A. Katsifodimos, ‘‘Amalur: Data integration meets machine learning,’’ in
Proc. IEEE 39th Int. Conf. Data Eng. (ICDE), Apr. 2023, pp. 3729–3739.

[50] I. Foster, J. Vockler, M. Wilde, and Y. Zhao, ‘‘Chimera: A virtual data
system for representing, querying, and automating data derivation,’’ in
Proc. 14th Int. Conf. Sci. Stat. Database Manage., Jul. 2002, pp. 37–46.

[51] Y. Zhang, F. Xu, E. Frise, S. Wu, B. Yu, and W. Xu, ‘‘DataLab: A version
data management and analytics system,’’ in Proc. IEEE/ACM 2nd Int.
Workshop Big Data Softw. Eng. (BIGDSE), May 2016, pp. 12–18.

[52] A. Gandhi, Y. Asada, V. Fu, A. Gemawat, L. Zhang, R. Sen, C. Curino,
J. Camacho-Rodríguez, and M. Interlandi, ‘‘The tensor data platform:
Towards an ai-centric database system,’’ 2022, arXiv:2211.02753.

[53] T. Gebru, J. Morgenstern, B. Vecchione, J. W. Vaughan, H. Wallach,
H. D. Iii, and K. Crawford, ‘‘Datasheets for datasets,’’ Commun. ACM,
vol. 64, no. 12, pp. 86–92, Dec. 2021.

[54] M. Miceli, T. Yang, L. Naudts, M. Schuessler, D. Serbanescu, and
A. Hanna, ‘‘Documenting computer vision datasets: An invitation to
reflexive data practices,’’ in Proc. ACM Conf. Fairness, Accountability,
Transparency, Mar. 2021, pp. 161–172.

[55] K. L. Boyd, ‘‘Datasheets for datasets help ML engineers notice and
understand ethical issues in training data,’’ Proc. ACM Hum.-Comput.
Interact., vol. 5, pp. 1–27, Oct. 2021.

[56] P. Mattson, C. Cheng, G. Diamos, C. Coleman, P. Micikevicius,
D. Patterson, H. Tang, G.-Y. Wei, P. Bailis, and V. Bittorf, ‘‘MLPerf
training benchmark,’’ Proc. Mach. Learn. Syst., vol. 2, pp. 336–349,
Mar. 2020.

[57] V. J. Reddi, ‘‘MLPerf inference benchmark,’’ in Proc. ACM/IEEE 47th
Annu. Int. Symp. Comput. Archit. (ISCA), May 2020, pp. 446–459.

[58] R. Adolf, S. Rama, B. Reagen, G.-Y. Wei, and D. Brooks, ‘‘Fathom:
Reference workloads for modern deep learning methods,’’ in Proc. IEEE
Int. Symp. Workload Characterization (IISWC), Sep. 2016, pp. 1–10.

[59] L. J. Miranda. (2021). Towards Data-Centric Machine Learning: A Short
Review. [Online]. Available: ljvmiranda921.github.io

[60] A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and J. Kepner,
‘‘Survey and benchmarking of machine learning accelerators,’’ in Proc.
IEEE High Perform. Extreme Comput. Conf. (HPEC), Sep. 2019, pp. 1–9.

[61] A. Svyatkovskiy, J. Kates-Harbeck, and W. Tang, ‘‘Training distributed
deep recurrent neural networks with mixed precision on GPU clusters,’’ in
Proc. Mach. Learn. HPC Environ., Nov. 2017, pp. 1–8.

[62] A. Balayn, P. Soilis, C. Lofi, J. Yang, and A. Bozzon, ‘‘What do you mean?
Interpreting image classification with crowdsourced concept extraction
and analysis,’’ in Proc. Web Conf., Apr. 2021, pp. 1937–1948.

[63] C. Coleman, D. Kang, D. Narayanan, L. Nardi, T. Zhao, J. Zhang, P. Bailis,
K. Olukotun, C. Ré, and M. Zaharia, ‘‘Analysis of DAWNBench, a time-
to-accuracy machine learning performance benchmark,’’ ACM SIGOPS
Operating Syst. Rev., vol. 53, no. 1, pp. 14–25, Jul. 2019.

[64] R. Ashmore, R. Calinescu, and C. Paterson, ‘‘Assuring the machine
learning lifecycle: Desiderata, methods, and challenges,’’ ACM Comput.
Surv., vol. 54, no. 5, pp. 1–39, Jun. 2022.

[65] N. Polyzotis, S. Roy, S. E. Whang, and M. Zinkevich, ‘‘Data lifecycle
challenges in production machine learning: A survey,’’ ACM SIGMOD
Rec., vol. 47, no. 2, pp. 17–28, Dec. 2018.

[66] C. Chai, J. Wang, Y. Luo, Z. Niu, and G. Li, ‘‘Data management for
machine learning: A survey,’’ IEEE Trans. Knowl. Data Eng., vol. 35, no. 5,
pp. 4646–4667, May 2023.

VOLUME 11, 2023 125629

Z. Li et al.: Metadata Representations for Queryable Repositories of Machine Learning Models

[67] A. Balayn, C. Lofi, and G.-J. Houben, ‘‘Managing bias and unfairness
in data for decision support: A survey of machine learning and data
engineering approaches to identify and mitigate bias and unfairness within
data management and analytics systems,’’ VLDB J., vol. 30, no. 5,
pp. 739–768, Sep. 2021.

[68] T. Wolf, ‘‘Transformers: State-of-the-art natural language processing,’’ in
Proc. Conf. Empirical Methods Natural Lang. Process., Syst. Demonstra-
tions, 2020, pp. 38–45.

[69] Z. Li, M. Schönfeld, W. Sun, M. Fragkoulis, R. Hai, A. Bozzon, and
A. Katsifodimos, ‘‘OptimizingML inference queries under constraints,’’ in
Proc. Int. Conf. Web Eng. Cham, Switzerland: Springer, 2023, pp. 51–66.

[70] Y. Wu, M. Lentz, D. Zhuo, and Y. Lu, ‘‘Serving and optimizing
machine learning workflows on heterogeneous infrastructures,’’ 2022,
arXiv:2205.04713.

[71] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, ‘‘Improving
language understanding by generative pre-training,’’ OpenAI, Tech. Rep.,
2018.

[72] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ 2018,
arXiv:1810.04805.

[73] A. Kumar, S. Nakandala, Y. Zhang, S. Li, A. Gemawat, and K. Nagrecha,
‘‘CEREBRO: A layered data platform for scalable deep learning,’’ in Proc.
CIDR, 2021, pp. 1–10.

[74] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia, ‘‘NoScope:
Optimizing neural network queries over video at scale,’’ 2017,
arXiv:1703.02529.

[75] Y. Lu, A. Chowdhery, S. Kandula, and S. Chaudhuri, ‘‘Accelerating
machine learning inference with probabilistic predicates,’’ in Proc. Int.
Conf. Manage. Data, May 2018, pp. 1493–1508.

[76] H. Miao, A. Chavan, and A. Deshpande, ‘‘ProvDB: Lifecycle management
of collaborative analysis workflows,’’ in Proc. 2nd Workshop Hum. Loop
Data Anal., May 2017, pp. 1–6.

[77] Z. Zhang, E. R. Sparks, and M. J. Franklin, ‘‘Diagnosing machine learning
pipelines with fine-grained lineage,’’ in Proc. 26th Int. Symp. High-
Perform. Parallel Distrib. Comput., Jun. 2017, pp. 143–153.

[78] S. Grafberger, S. Guha, J. Stoyanovich, and S. Schelter, ‘‘MLINSPECT:
A data distribution debugger for machine learning pipelines,’’ in Proc. Int.
Conf. Manage. Data, Jun. 2021, pp. 2736–2739.

[79] T. van der Weide, D. Papadopoulos, O. Smirnov, M. Zielinski, and
T. van Kasteren, ‘‘Versioning for end-to-end machine learning pipelines,’’
in Proc. 1st Workshop Data Manage. End End Mach. Learn., May 2017,
pp. 1–9.

ZIYU LI (Member, IEEE) received the B.S. degree
from the South China University of Technology,
China, in 2017, and the M.S. degree in computer
science from the Delft University of Technology,
The Netherlands, in 2019, where she is currently
pursuing the Ph.D. degree with the Department
of Software Technology. Her research interests
include data management, machine learning, and
metadata management.

HENK KANT obtained the M.S. and B.S. degrees
from the Delft University of Technology, the
Netherlands, in 2013 and 2023. The M.S. degree
was with a specialization in Information Architec-
ture.

RIHAN HAI (Member, IEEE) received the Ph.D.
degree from RWTH Aachen University, Germany.
She is currently an Assistant Professor with the
Web Information Systems Group, Delft University
of Technology, The Netherlands. Her research
interests include data lakes, data integration, and
data management for machine learning. She has
served as a Program Committee Member of
database conferences, such as VLDB, ICDE, and
EDBT, and a Reviewer for journals, such as IEEE

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, IEEE TRANSACTIONS ON

PARALLEL AND DISTRIBUTED SYSTEMS, The VLDBJ Journal, and JMLR.

ASTERIOS KATSIFODIMOS received the Ph.D.
degree from INRIA Saclay & University Paris 11.
He is currently an Associate Professor with the
Delft University of Technology, and a Visiting
Academic with Amazon Web Services (AWS)—
AI. Before that, he was with the SAP Innovation
Center, Berlin, and Technical University (TU),
Berlin. His research spans the areas of parallel data
processing and Cloud computing, and data integra-
tion. His research on fault tolerance, aggregation

methods and benchmarking has influenced the design of opensource stream
processing engines, while his research group develops and maintains the
dataset discovery system Valentine. He has received the ACM SIGMOD
Research Highlights Award, in 2016, the EDBT Best Paper, in 2019, the Best
Demo Award, in 2023, and the ACM SIGMOD Systems Award 2023. He is
the instructor of the online MOOC ‘‘Taming Massive Data Streams’’ and is
invited regularly to give talks at industry and research venues. He serves as an
Associate Editor or a Program Committee Member for the data management
conferences, such as VLDB, ICDE, SIGMOD, and EDBT.

MARCO BRAMBILLA (Member, IEEE) received
the Ph.D. degree from Politecnico di Milano,
in 2005. He is currently a Full Professor with
Politecnico di Milano. His research interests
include data science, software modeling lan-
guages, crowdsourcing, social media analysis,
data-driven innovation, and big data architectures.
He has been a Visiting Researcher with CISCO
and UCSD, USA, and a Visiting Professor with
Dauphine University, Paris. He is the main author

of the OMG Standard Interaction Flow Modeling Language (IFML).
He founded three startups and authored over 250 papers and two patents.
He has coauthored five books on model-driven software engineering. He is
an Associate Editor of the journals, such as Web Engineering, Digital, and
Advances in Human-Computer Interactions. He is a member of the Steering
Committee of the International Conference of Web Engineering.

ALESSANDRO BOZZON received the Ph.D.
degree from Politecnico di Milano, in 2009. His
Ph.D. thesis focused on model driven approaches
for the design, development and automatic code
generation of search based applications. He is
currently a Professor in human-centered artificial
intelligence and the Head of the Department of
Sustainable Design Engineering, Delft University
of Technology. He is a Principal Investigator of
Urban Data and Intelligence with the Amsterdam

Institute for Advanced Metropolitan Solutions (AMS), a member of the
Steering Committee of the International Conference of Web Engineering
(ICWE), and a member of the Steering Committee of the Human Com-
putation and Crowdsourcing (HCOMP) Conference. His research interests
include the intersection of human–computer interaction and machine
learning. He has coauthored more than 200 papers in leading peer-reviewed
international journals and conferences, where he also regularly serves as a
senior program committee member.

125630 VOLUME 11, 2023

