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Abstract. Due to the complexity of the human body and its neuromuscular sta-
bilization, it has been challenging to efficiently and accurately predict human
motion and capture posture while being driven. Existing simple models of the
seated human body are mostly two-dimensional and developed in the mid-sagittal
plane exposed to in-plane excitation. Such models capture fore-aft and vertical
motion but not the more complex 3D motions due to lateral loading. Advanced
3D full body active human models (AHMs), such as in MADYMO, can be used
for comfort analysis and to investigate how vibrations influence the human body
while being driven. However, such AHMs are very time-consuming due to their
complexity. To effectively analyze motion comfort, a computationally efficient
and accurate three dimensional (3D) human model, which runs faster than real
time, is presented. The model’s postural stabilization parameters are tuned using
available 3D vibration data for head, trunk and pelvis translation and rotation. A
comparison between AHM and EHM is conducted regarding human body kine-
matics. According to the results, the EHM model configuration with two neck
joints, two torso bending joints, and a spinal compression joint accurately predicts
body kinematics.

Keywords: MADYMO · multibody model · motion comfort · posture ·
vibrations

1 Introduction

Automated driving (AD) holds great promise to provide safe and sustainable transport.
Automation will allow users to take their eyes off the road, freeing up time for work or
leisure activities. However, such conditions will further complicate occupants’ overall
postural stability compared to conventional vehicles [1]. Being exposed to whole-body
vibration (WBV) produced by the vehicle, occupants may feel discomfort while such
vibrations could even cause low back pain and injuries in the lumbar spine [2]. Hence,
knowledge andmodels of humanmotion and perception are essentially needed for human
centred design of automated driving systems [3]. Therefore, it is important to investi-
gate how vibrations are transmitted through the human body and how the human body

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Scataglini et al. (Eds.): DHM 2023, LNNS 744, pp. 285–295, 2023.
https://doi.org/10.1007/978-3-031-37848-5_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37848-5_32&domain=pdf
https://doi.org/10.1007/978-3-031-37848-5_32


286 R. Desai et al.

responds to WBV. The most effective technique to comprehend human motion is to col-
lect data from experiments, however this method sees several drawbacks.While tests can
offer insightful information about human motion, they might not be able to record the
whole spectrum ofmotion [4] as models can do. Some of themost advanced human body
models are THUMS [5] and Simcenter Madymo AHM [6]. However, these require large
amounts of computational time. Thus, the need to develop a computationally efficient
and accurate 3D human body model has risen with a potential application in a variety
of domains.

The proposed computationally efficient model is based on MADYMO’s rigid body
modelling features. The inertial properties of the bodies are incorporated in the rigid
bodies of the model, while their geometry is described by means of ellipsoids, and
planes. Structural deformation of flexible components is lumped in kinematic joints in
combination with dynamic restraint models. Deformation of soft tissues (like flesh and
skin) is represented by force-based contact characteristics defined for the ellipsoids.
These characteristics are used to describe contact interactions within the models and
between the model and the seat. In MADYMO, the MADYMO detailed active human
model (AHM) represents the 50th percentile male population and has been validated
for impact conditions [7, 8] and for vibration and dynamic driving [9]. The model
geometry consists of standing height (1.76m), sitting height (0.92m) andweight 75.3 kg
derived from the ergonomic model in RAMSIS [3, 10]. The AHM includes controllers to
stabilise the spine, neck, shoulders, elbows, hips, knees, while it consists of 190 bodies
(182 rigid bodies and 8 flexible bodies) and finite element (FE) surfaces capture the
skin for contact interaction. Due to the above, the AHM requires significant amounts
of computational time. To reduce this for vehicle comfort simulation, we present a
computationally efficient human model (EHM) for comfort analysis.

The EHMmodel is designed to be computationally efficient and simple, while accu-
rately representing body joint biomechanics and providing a good fit with experimental
motion [4]. A functional set of body segments is used in themodel’s construction, includ-
ing only those which havemajor influence on body kinematics and dynamics. Themodel
shall represent seat interactions as a dependent function of posture. Hence, the model
has realistic contacts with floor, seat base and seat back. To benchmark the EHM, the
AHM is used for comparison of model performance. We validate both models for head,
trunk and pelvis motion in translation (x-y-z) and rotation (roll-pitch-yaw) in response
to 3D seat motion (x-y-z). To our knowledge there is no thoroughly (6 DoF with head,
pelvis and trunk, vertical/fore aft/lateral) validated body 3D multibody human body
model reported in literature. To address these challenges, this paper develops an effi-
cient multibody (MB) seated human body model that can be used for predicting human
body response in a dynamic driving scenario.

2 Biomechanical Modelling

In order to build an efficient seated human body model, models in literature [11, 12] and
the MADYMO AHM were investigated. As described above we adopted a body size
matching the AHM but reduced the model complexity [4]. Figure 1 shows the EHM and
the AHM in the configuration used for validation with experimental data [4]. This was
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performed with an experimental seat with two configurable back supports. From this
dataset we selected the condition with high support and erect posture. The lower support
pad was at the posterior superior iliac spine, and the higher support pad was aligned with
the apex of the scapula’s angulus inferior.

The EHM consists of 12 segments: pelvis, lower torso, middle torso, upper torso,
neck, head, left thigh, right thigh, left lower leg, right lower leg, left foot and right foot.
The inertia of the arms is incorporated in the upper torso segment. The different body
segments are connected by kinematic joints. The lumbar and thoracic spine includes three
joints, where the lowest joint is locked since the current data could well be captured with
two joints. The lowest joint (now locked) connects pelvis and lower torso. An additional
spherical joint is placed between L4-L5 to capture lumbar bending [13] as this forms
the rotational point between lower and middle torso. The middle and upper torso are
connected by a spherical-translational joint, which allows 3D rotational and vertical
motion. This vertical motion is essential in capturing spinal compression/extension in
vertical loading. The spherical joints are used to model 3D rotation capturing flexion-
extension, abduction-adduction and yaw rotation of the torso. The cervical spine includes
two joints. A spherical joint is placed at the upper neck located at (C1-C0) to capture the
head yaw-pitch-roll and at the lower neck (T1-C7) universal joint to capture the roll-pitch
motion [14]. The right and left hip joints are also modeled as spherical joints to connect
the thighs and pelvis, while the right and left knee joints are modeled as revolute joints,
allowing for relative rotational movement around one axis between the thighs and lower
legs. Ankles connections are modelled as revolute joints, and they connect lower legs
and feet. The center of gravity (CoG) for the head, trunk (the eighth thoracic vertebra
- T8), and pelvis in the EHM is located similarly to that of the AHM. More details
about the joints are shown in Table 1. The EHMmodel has 31 degrees of freedom (DoF)
considering the various rotational and translational movements allowed by the kinematic
joints and their constraints.

Fig. 1. Human body modelling. (Left: EHM, Right: AHM, Top corner: Isometric view)

To capture the human-seat interaction,MB-MBcontacts have been established. Thus,
human body contacts with seat cushion, seatback and floor are defined. Contact inter-
actions are specified using a master surface against a slave surface. Selected groups
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of multibody surfaces are used as master (planes and ellipsoids) and slave (ellipsoids)
surface, such as feet contact with floor, pelvis with seat pan and torso with backrest. In
this model, all possible contacts and the contacting surfaces can penetrate each other.
The corresponding elastic contact force depends on the penetration. The deformation of
muscle, fat and skin are captured using point restraints with linear stiffness and damping
and contact surfaces. These are currently defined as linear force-deflection characteris-
tics with stiffness in N/m and damping in Ns/m. To realistically predict how a seated
human body responds to vehicle vibration, feet, legs and their contact with the floor are
added, since our previous research has shown relevant contributions of the legs in trunk
stabilization in a dynamic slalom drive [9].

The deformation of bony segments and multiple body joints are lumped into joint
compliance models. In complex biomechanical models, the intervertebral joints, are
modelled as 6 DoF joints allowing compression, shear, and rotation, requiring the tuning
of many parameters. In the EHM, joints are efficiently modelled, by reducing their DoFs,
to achieve increased prediction capabilities and keep computational cost to theminimum.
In this direction, most bodies are interconnected by spherical or revolute joints rather
than linear (translational) springs and dampers. Complex human models include passive
joint resistance models complemented with models of active muscular joint stabilization
[15]. Such models include both reflexive (feedback) stabilization and joint “stiffening”
through co-contraction of antagonist muscle groups. To simplify the model and the
estimation of the parameters we defined linear stiffness and damping for each joint
degree of freedom. This linear stiffness and damping was initially defined using the
restraint cardan feature. The Cardan restraint consists of three torsional parallel springs
and dampers that connect two bodies. The torques depend on the Cardan angles that
describe the relative orientation of the corresponding restraint coordinate systems.

Tuning the model, low stiffness values were found in particular in the neck. This
led to substantial postural drift, with the actual posture deviating from the specified
posture. This was resolved replacing cardan restraints by PID controllers where integral
action eliminated drift but hardly affected the dynamic response. The proportional action
replaced the cardan stiffness, and the differential action replaced the cardan damping
[9].

Moments of inertia are calculated according to the models shape of each segment
(Table 2). In the EHMmodel, the positioning of the joints and the location of the CG for
each segment are critical considerations for the realistic prediction of the dynamics and
kinematics in the model. Proper joint positioning ensures that the model can replicate
the expected range of motion and joint behavior, while accurate CG location for each
segment helps to capture the segmental mass distribution and its effect on overall motion
dynamics. These factors are carefully considered in the development of the EHMmodel.
The efficient model is overlaid with the AHM to encapsulate the symmetric nature and
true anthropometric characteristics of the human body.

2.1 Parameter Identification

A simple seat experiment conducted by our research group is used to validate the model
[4] and improve its fitting by optimizing selected parameters. In the experiment, partic-
ipants sat in a car mock-up and were excited with random vibrations (0.3 m/s2 rms) in
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Table 1. Model joints configuration. (T: Torso, Trans: Translation in vertical direction)

Joint Connected body
segments

Joint type Co-ordinates (cm)

x y z

Upper Neck(J1) Head Neck Spherical −8.85 0 63.04

Lower Neck (J2) Neck Upper T Universal −10.85 0 51.39

T12 joint (J3) Upper T Middle T Spherical + Trans −16.01 0 22.90

L4-L5 joint (J4) Middle T Lower T Spherical −12.50 0 8.14

Waist joint (J5) Lower T Pelvis Spherical (Lock) −7.95 0 −0.21

Hip joint right (J6) Pelvis Thigh right Spherical 2.54 8.86 1.78

Hip joint left(J7) Pelvis Thigh left Spherical 2.54 −8.86 1.78

Knee right (J8) Thigh right Leg right Revolute 43.08 14.01 8.65

Knee left (J9) Thigh left Leg left Revolute 43.08 −14.01 8.65

Ankle Right (J10) Leg right Foot right Revolute 69.40 15.75 −30.67

Ankle left (J11) Lower leg Foot left Revolute 69.40 −15.75 −30.67

Table 2. Model body segment data.

Body Ellipsoid Degree Mass Moment of Inertia
(kg·m2)

Co-ordinates (cm)

Ixx Iyy Izz x y z

Head 2 6.23 0.031 0.031 0.020 −5.461 0 69.104

Neck 2 1.6 0.003 0.004 0.005 −9.420 0 57.393

Upper torso 3 8.93 0.238 0.146 0.181 −8.231 0 34.692

Middle torso 3 7.7 0.238 0.146 0.181 −3.827 0 15.927

Lower torso 3 10.70 0.137 0.078 0.117 0.2164 0 5.172

Pelvis 2 10.93 0.115 0.050 0.151 0 0 0

Thighs right 3 7.7 0.007 0.129 0.129 21.859 11.24 3.450

Thighs left 3 7.7 0.007 0.129 0.129 21.859 −11.24 3.450

Legs right 3 3.58 0.031 0.031 0.020 55.405 14.8 −9.823

Legs left 3 3.58 0.031 0.031 0.020 55.405 −14.8 −9.823

Feet right 3 1.116 0.001 0.005 0.004 75.409 16.59 −31.332

Feet left 3 1.116 0.001 0.005 0.004 75.409 −16.59 −31.332

vertical, fore-aft and vertical directions. Similarly with the car mock-up, the MADYMO
model environment consists of three segments: seat pan, backrest and the floor. The floor
is a plane and other segments are ellipsoids. A 50th percentile male body size is adopted
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and its mass is close to the average human model to facilitate comparison. These data
were obtained from anthropometry measurements in literature [16]. Thus, some of the
human body parameters (i.e., mass and inertia values) are predefined, while others (i.e.,
translational-rotational spring and damping) are to be determined. More specifically,
each spherical joint has 3 DoF, each revolute or translational joint has 1 DoF. Each DoF
is modelled by one linear spring and one linear damper. Therefore, every one DoF cor-
responds to two design parameters. The stiffness and damping represent passive tissue
resistance, as well as postural stabilization using muscle feedback and co-contraction.
The AHM is enabled with posture controllers to stabilize the body, while a simpler app-
roach is adopted in EHM to reduce computation time and the number of parameters.
This study will illustrate how such a simplification affects accuracy.

To validate the models, the predicted responses are compared to experimental data.
There can be significant individual variation in muscle activation patterns and joint stiff-
ness, which make challenging the development of models that accurately predict the
individual body kinematics. Currently, the model is configured to represent the aver-
age response over the group of participants. The model should be able to capture the
experimental response accurately for head, pelvis, trunk in vertical, fore-aft and lat-
eral directions. As response functions, specific gains of different body segments will be
evaluated using transfer functions in the frequency domain, as defined below:

Gain = F(so)

F(si)
(1)

wherein so is human response of specific body segment in time domain, such as pelvis’s
vertical displacement or head’s pitch; si stands for input vibration in time domain; F
stands for Fourier transform, which means the gain is a function in frequency domain
The relevant gains should have minimum errors with respect to experimental data in
different seat motions, for the EHM to accurately predict the human response. Therefore,
these errors of specific gains are the criterion, i.e., the cost function, for parameter
identification. The Butterworth band pass filter of 0–12 Hz frequency range is applied
in both experimental as well as model responses to isolate signals within this range. In
each seat motion, the gain of experiment as function of frequency is denoted as Gainexp
and the gain of model as function of frequency is denoted as Gainmodel . In order to
bring the gain value on the same scale for all different gains, relative gain expression is
formulated. The relative gain is denoted as RelGain and is formulated as:

RelGain = Gainexp + 0.05Gainexp (2)

Due to the application of this model (i.e., comfort analysis), the priority is the accu-
rate prediction of human response in low frequencies (0.1–3 Hz). Thus, we prioritize
this by using weighting factors. This is captured by dividing with corresponding square
of frequencies. The error criterion for each individual objective function is formulated
as:

Crit1 = RMS

{
Gainexp − Gainmodel

RelGainf 2

}
(3)

The required body segments for model fitting are head, upper torso and pelvis.
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3 Numerical Simulations

To replicate the experimental conditions the same input signal was used as experienced
by the participants. The seat received vibrational input in the x, y, and z directions.
The vibrational excitations to the seat are given thereafter. The co-simulation and opti-
mization flow chart betweenMATLAB-SIMULINK-MADYMO is shown in Fig. 2. The
same process was applied to the AHM. The EHM used ellipsoid-ellipsoid contacts for
the seat back whereas the AHM used a solid FE model for the seat back foam. At the
point of contact, shear forces are facilitated by the FE backrest. The integration time step
size was set to 1E-3 s for EHM whereas due to presence of FE and detailed multibody
components a smaller time step of 5E-5 s was adopted in the AHM.

Fig. 2. Co-Simulation flow chart

4 Results

The experimental and model results are presented in Figs. 3, 4, and 5. During the opti-
mization of the model parameters, the accuracy in capturing the head and trunk motion
was prioritized over pelvic movements due to complexity of the pelvis and its interac-
tions with other parts of the body. With the optimization, the AHM and EHM accurately
capture the experimental response, while both models demonstrate a higher accuracy in
capturing the gain of the head and trunk movements compared to the pelvis movements
in the experimental data. The EHMoutperforms the AHM in certain sets of experimental
data.

In this paper, the EHM is also simulated locking selected joints in order to investigate
the requirements of two neck and spinal bending joints. By specifically locking the T12
location spherical and compression joint spine locked (SL), there is a substantial impact
on pelvis, trunk and head in vertical loading, where the oscillation frequency increases to
an unrealistic peak at 8 Hz with locked spine. This shows the importance of the vertical
compression joint in the lumbar spine. Locking the lower neck (NL) slightly reduced
head pitch in fore-aft and vertical loading. However locking the lower neck joint had a
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Fig. 3. Model simulation results fore-aft loading case

muchmore profound effect in lateral loading, where themodel with one neck joint highly
underestimated head roll and yaw. This shows that a two-joint neck model is particularly
relevant for lateral loading. This emphasizes the importance of considering at least two
neck and spine joints, in biomechanical simulations and movement control studies. This
model also offers a comprehensive approach for capturing intricate interactions between
the human body and a seat, with potential applications in ergonomic seating design and
musculoskeletal disorder prevention. Future work includes implementing active muscle
controllers to capture reflexes, postural adjustments, and advanced feedbackmodels such
as proprioceptive, vestibular, and visual motion perception. This will enable the design
of innovative control algorithms for automated vehicles, ultimately improving comfort
during automated driving.
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Fig. 4. Model simulation results lateral loading case

Fig. 5. Model simulation results vertical loading case

5 Conclusion

A validated multibody human body model with realistic joint configurations, capturing
compression/shear contact interactions using MB-MB contact with friction, is devel-
oped. The model is highly efficient and accurate, demonstrated through comparison
with the complex MADYMO active model using rich experimental data. The paper also
describes a reliable procedure to estimate the human model and contact parameters to
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fit experimental human response data. The fitting methodology and computational effi-
ciency of the model pave the way to develop individual postural stabilization models.
These individual models can be adapted to the individual anthropometry [17] and pos-
tural control strategies. Compared to AHM, the EHM gets similar or even better human
responses in some cases with regards to the experimental data. The EHM is much faster
(30 s) than the AHM (3 h) for completion of 35 s long of simulations. The arrangement
of two neck joints, two torso bending joints, and a spinal compression joint was found
to be sufficient in accurately capturing 3D body kinematics.

Acknowledgement. We acknowledge the support of Toyota Motor Corporation.
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