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Abstract

Cardiovascular disease is currently one of the biggest threats to health. Specific
types of cardiovascular disease include, but are not limited to, coronary artery
disease, cardiac valve disorders, or peripheral arterial disease. The current
gold standard for managing these conditions incorporates the use of catheters
and guidewires for intravascular navigation. Following their insertion into the
vascular system, these instruments facilitate a variety of procedures, such as
stent placement, recanalization of vessel blockage, and radiofrequency ablation.
Compared to more invasive open heart surgery, catheterization represents a
minimally invasive approach. This offers several benefits, including smaller incisions,
faster postoperative recovery, and improved aesthetic outcomes.

However, current procedures still present considerable challenges. First, the
environment through which the instruments are to be navigated is highly complex.
The structure of blood vessels is not only intricate and delicate, but also prone to
deformation. Catheterization is further complicated by the dynamic nature of the
environment, influenced by physiological movements such as heartbeat, respiration,
and blood flow. Second, the existing procedure relies on fluoroscopy for visual
feedback, which offers only two-dimensional grayscale images, thus physicians find
it challenging to assess depth information from such an image. More importantly, it
is an ionizing radiative imaging modality that introduces hazards to both patients
and clinicians. The risks are especially high for clinicians, given their repeated
exposure across procedures. Furthermore, inherent nonlinearity and hysteresis
due to material properties or friction inside the actuators of catheter as well as
the continuum/soft structure of the catheter cannot be neglected. Hysteresis
complicates precise catheter control, especially during reversal of motion. Energy
may build up when the catheter is stuck. Upon release, this could potentially
result in excessive forces applied by the acute catheter tip to the vessel and
could potentially lead to vascular perforation. Lastly, the entire procedure is still
performed manually by clinicians, making it highly skill-intensive and characterized
by a long learning curve. Managing all complexities simultaneously is very mentally
demanding for a human operator. Robotic assistance techniques could potentially
assist in parts of the procedure and as such improve these interventional approaches.
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ii ABSTRACT

To address the aforementioned issues, the thesis develops dedicated types of
robotic assistance to enhance the safety and precision of catheterization procedures.
A key focus is on the modeling and control of robotic catheter. In addition,
recent technologies such as Deep Learning (DL) and Augmented Reality (AR)
are incorporated. DL, given its ability to model highly non-linear relations, is
applied in the modeling and control of robotic catheters. Augmented reality, as
a three-dimensional display technology, is used to enhance visual guidance for
physicians.

First, to provide some background, a comprehensive survey of machine learning
(ML) applications is conducted across all Flexible Surgical and Interventional
Robots (FSIR). In this survey, a 2D classification method is proposed, intended to
categorize the wide array of Machine Learning (ML) algorithms, which encompasses
both traditional ML methods and the latest DL approaches that have been utilized
so far in the realm of FSIR. Subsequently, the applications of ML algorithms are
discussed per specific subdomains: perception, modeling, control, and navigation.
The trends, popularity, strengths, and limitations of various ML algorithms are
compared and analyzed. Finally, discussions are held on the current limitations
and future prospects of ML techniques in robotically-assisted Minimally Invasive
Procedures (MIP).

In order to overcome the limitations of fluoroscopy, efforts are made to incorporate
teleoperation and enhanced visualization. To achieve this, a range of devices can
be utilized. In this work, gaming joysticks and AR Head-Mounted Displays (HMD)
have been used to realize teleoperation, while AR HMD and a 2D standard monitor
are employed to enhance visualization. Various interactive modes for intuitive
human-in-the-loop catheter steering have been proposed. The effectiveness of
different interactive modes is investigated through an in-vitro user study. User
performance is evaluated both subjectively and objectively.

Third, to ease the clinician’s awareness of the interventional scene, additional work
is done to capture the catheter’s shape in a non-radiative fashion. Hereto, a DL
method for shape sensing of continuum robots based on multicore FBG fiber is
introduced. The proposed method allows shape sensing based on a multicore fiber
that is placed off-center. By avoiding the need to place shape sensors at the center
of the catheter, it becomes possible to miniaturize the catheter and leave the central
channel available for other purposes. A 2-DOF bench-top fluidics-driven catheter
system is built to validate the proposed ANN. The proposed approach is compared
with a recent state-of-the-art model-based shape-sensing approach. Exhaustive
ablation studies have been conducted to enhance the understanding of ANN, thereby
increasing its interpretability. The proposed method is shown to be able to precisely
reconstruct the shape of a robotic catheter without needing to resort to radiation-
based techniques such as fluoroscopy. The precise shape reconstruction can offer
valuable information that could also be beneficial in controlling the catheter.

Fourth, in addition to improving the knowledge about where the catheter is,
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contributions have been made to improve the precision of catheter positioning.
A DL-based method is proposed to model the hysteresis of a robotic catheter.
To provide a more comprehensive assessment of the DL method, an analytical
model and a conventional ML method have been implemented for comparison.
Subsequently, the proposed method was also validated through reconstruction of
an anatomy using a forward-looking imaging modality. The proposed method was
found to accurately predict the response of the catheter tip solely based on the
proximal input pressure, despite the presence of large amounts of hysteresis. This
knowledge could help avoid the need to install sensors at the tip of the catheter
for localization, which is challenging due to spatial limitations and sterilization
requirements.

Fifth, a DL-based position controller for the robotic catheter is introduced. The
controller compensates for hysteresis and captures the inverse kinematics of the
catheters, thereby paving the way for precise position control. Building on this
position controller, a novel compliant motion control algorithm was introduced.
The compliant controller automatically minimizes the interaction force between
the catheter tip and its surroundings, thereby facilitating safer interventions. This
approach also underscores the potential of leveraging DL to avoid exhaustive
modeling traditionally needed for accurately navigating continuum robots in
intricate environments such as the patient’s vasculature.

The primary objective of this thesis is to enhance the precision and intuitive
control of robotic catheters for safe navigation in complex environments. This work
predominantly utilizes Deep Learning (DL) and Augmented Reality (AR), applying
these technologies across various research objectives. The following contributions
have been achieved: 1. conducting a comprehensive survey to provide a solid
research background for this thesis. 2. employing AR technology to improve
visualization and control during human-in-the-loop teleoperated catheterization.
Different interactive modes are implemented by integrating an AR Head-Mounted
Display (HMD), a gamepad, or a standard monitor, and these modes are compared.
3. enhancing clinicians’ awareness of the catheter 3D shape through a non-radiative
method and improving the accuracy of shape reconstruction using DL techniques. 4.
utilizing DL to model and compensate for the hysteresis present in robotic catheters.
5. elevating the level of autonomy in catheter control, with a demonstration in an
in-vitro environment.





Beknopte samenvatting

Cardiovasculaire ziekten vormen momenteel een van de grootste bedreigingen
voor de volksgezondheid. Specifieke typen omvatten onder andere coronaire
hartziekten, hartklepaandoeningen en perifere arteriële ziekten. De huidige
gouden standaard voor het behandelen van deze aandoeningen omvat het
gebruik van katheters en geleidedraden voor intravasculaire navigatie. Deze
instrumenten vergemakkelijken na inbrenging in het vaatstelsel diverse procedures,
zoals stentplaatsing, hercanalisatie van vaatblokkades en radiofrequente ablatie.
Katheterisatie is een minimaal invasieve benadering en biedt diverse voordelen,
zoals kleinere incisies, sneller postoperatief herstel en betere esthetische resultaten.

Er zijn echter nog aanzienlijke uitdagingen. Ten eerste is de omgeving waarin
de instrumenten moeten worden genavigeerd uiterst complex. De structuur
van bloedvaten is niet alleen ingewikkeld en delicaat, maar ook onderhevig aan
vervorming. Daarnaast wordt katheterisatie bemoeilijkt door de dynamische
aard van de omgeving, beïnvloed door fysiologische bewegingen zoals hartslag,
ademhaling en bloedstroom. Ten tweede is voor visuele feedback fluoroscopie
nodig, wat alleen tweedimensionale grijsschaalbeelden biedt, waardoor het moeilijk
is voor artsen om diepte-informatie te beoordelen. Belangrijker nog, het is een
ioniserende beeldvormingsmodaliteit die gevaren oplevert voor zowel patiënten als
clinici. Vooral voor clinici zijn de risico’s hoog, gezien hun herhaalde blootstelling
aan procedures.

Om de genoemde problemen aan te pakken, ontwikkelt het proefschrift specifieke
soorten robotische assistentie om de veiligheid en precisie van katheterisatie-
procedures te vergroten. Er is een belangrijke focus op de modellering en
besturing van de robotische katheter. Daarnaast worden recente technologieën
zoals Deep Learning (DL) en Augmented Reality (AR) geïntegreerd. DL, vanwege
het vermogen om zeer niet-lineaire relaties te modelleren, wordt toegepast bij
de modellering en besturing van robotische katheters. Augmented reality, als
driedimensionale weergavetechnologie, wordt gebruikt om visuele begeleiding voor
artsen te verbeteren.

Eerst wordt er, om wat achtergrond te bieden, een uitgebreid overzicht uitgevoerd
van machine learning (ML) toepassingen over alle Flexibele Chirurgische en

v
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Interventierobots (FSIR). In dit overzicht wordt een 2D-classificatiemethode
voorgesteld om het brede scala aan machine learning (ML) algoritmen te
categoriseren, waaronder zowel traditionele ML-methoden als de nieuwste DL-
benaderingen die tot nu toe in het domein van FSIR zijn gebruikt. Vervolgens
worden de toepassingen van ML-algoritmen per specifieke subdomeinen besproken:
perceptie, modellering, besturing en navigatie. De trends, populariteit, sterke en
zwakke punten van verschillende ML-algoritmen worden vergeleken en geanalyseerd.
Ten slotte worden discussies gevoerd over de huidige beperkingen en toekomstige
vooruitzichten van ML-technieken bij robotgestuurde minimaal invasieve procedures
(MIP).

Ten tweede worden, om de beperkingen van fluoroscopie te overwinnen, inspan-
ningen geleverd om teleoperatie en verbeterde visualisatie te integreren. Hiertoe
kunnen verschillende apparaten worden gebruikt. In dit werk zijn game-joysticks
en AR Head-Mounted Displays (HMD) gebruikt om teleoperatie te realiseren,
terwijl AR HMD en een 2D-standaardmonitor worden gebruikt om de visualisatie
te verbeteren. Verschillende interactieve modi voor intuïtieve besturing van de
katheter door de mens zijn voorgesteld. De effectiviteit van de verschillende
interactieve modi wordt onderzocht door middel van een in-vitro gebruikersstudie.
Gebruikersprestaties worden zowel subjectief als objectief geëvalueerd.

Ten derde wordt extra werk verricht om het bewustzijn van de clinicus over de
interventieomgeving te vergroten. Hiertoe wordt een DL-methode voor vormsensing
van continuümrobots geïntroduceerd op basis van multicore FBG-vezel. De
voorgestelde methode maakt vormdetectie mogelijk op basis van een enkele
multicore-vezel die excentrisch is geplaatst. Door de noodzaak te vermijden om
vormsensoren in het midden van de katheter te plaatsen, wordt het mogelijk om de
katheter te verkleinen en het centrale kanaal vrij te laten voor andere doeleinden.
Een 2-DOF benchtop vloeistofaangedreven kathetersysteem is gebouwd om de
voorgestelde ANN te valideren. De voorgestelde aanpak wordt vergeleken met een
recente state-of-the-art modelgebaseerde vormdetectiemethode. Er zijn uitgebreide
ablatiestudies uitgevoerd om het begrip van ANN te vergroten, waardoor de
interpreteerbaarheid ervan toeneemt. De voorgestelde methode blijkt in staat om
de vorm van een robotische katheter nauwkeurig te reconstrueren zonder gebruik te
hoeven maken van beeldvormingstechnieken gebaseerd op straling zoals fluoroscopie.
De precieze vormreconstructie kan waardevolle informatie bieden die ook gunstig
kan zijn om de katheter te besturen.

Ten vierde zijn, naast verbeterde kennis over de locatie van de katheter, bijdragen
geleverd om de precisie van de katheterpositionering te verbeteren. Er wordt een
DL-gebaseerde methode voorgesteld om de hysterese van een robotische katheter
te modelleren. Om een meer uitgebreide beoordeling van de DL-methode te bieden,
zijn een analytisch model en een conventionele ML-methode geïmplementeerd
voor vergelijking. Vervolgens wordt de voorgestelde methode ook gevalideerd
door de reconstructie van een anatomie met behulp van een voorwaarts kijkende
beeldvormingsmodaliteit. Er wordt vastgesteld dat de voorgestelde methode



BEKNOPTE SAMENVATTING vii

nauwkeurig de reactie van de kathetertip kan voorspellen op basis van enkel
proximale invoerdruk, ondanks de aanwezigheid van grote hoeveelheden hysterese.
Deze kennis kan helpen om de noodzaak te vermijden om sensoren op de punt van
de katheter te installeren voor lokalisatie, wat uitdagend is vanwege de ruimtelijke
beperkingen en sterilisatie-eisen.

Ten vijfde wordt een op deep learning gebaseerde positiecontroller van de robotische
katheter geïntroduceerd. De controller compenseert voor hysterese en legt de
inverse kinematica van de katheters vast, waardoor de weg wordt vrijgemaakt
voor precieze positiebesturing. Voortbouwend op deze positiecontroller wordt
een nieuwe conforme bewegingsregelingsalgoritme geïntroduceerd. De conforme
controller minimaliseert automatisch de interactiekracht tussen de punt van de
katheter en de omgeving, waardoor veiligere interventies mogelijk zijn. Deze
aanpak benadrukt ook het potentieel van het gebruik van DL om uitputtende
modellering te vermijden die traditioneel nodig is voor het nauwkeurig navigeren
van continuümrobots in complexe omgevingen zoals het vaatstelsel van de patiënt.

Het primaire doel van deze scriptie is het verbeteren van de precisie en intuïtieve
controle van robotische katheters voor veilige navigatie in complexe omgevingen.
Dit werk maakt voornamelijk gebruik van Deep Learning (DL) en Augmented
Reality (AR), waarbij deze technologieën worden toegepast op verschillende
onderzoeksdoelstellingen. De volgende bijdragen zijn bereikt: 1. het uitvoeren van
een uitgebreide enquête om een solide onderzoeksachtergrond voor deze scriptie
te bieden. 2. het toepassen van AR-technologie om de visualisatie en controle
tijdens door mensen bediende telegeleide katheterisatie te verbeteren. Verschillende
interactieve modi worden geïmplementeerd door het integreren van een AR Head-
Mounted Display (HMD), een gamepad of een standaardmonitor, en deze modi
worden vergeleken. 3. het verhogen van het bewustzijn van clinici over de 3D-vorm
van de katheter door middel van een niet-radiatieve methode en het verbeteren
van de nauwkeurigheid van vormreconstructie met behulp van DL-technieken. 4.
het gebruik van DL om het hystereseverschijnsel dat aanwezig is in robotische
katheters te modelleren en te compenseren. 5. het verhogen van het niveau van
autonomie in kathetercontrole, met een demonstratie in een in-vitro-omgeving.
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1.1 Evolution of surgery

Surgical procedures have played a crucial role in saving people. It has revolutionized
the field of healthcare, improving the quality of life of many. Traditional
“open” surgical approaches have been increasingly replaced by minimally invasive
procedures since the mid-20th century. Examples include endoscopic surgery,
which originated in the 19th century [1], and laparoscopic surgery, which gained
prominence in the late 1980s [2]. Laparoscopic surgery, which is an example of the
so-called “keyhole surgery”, is a revolutionary minimally invasive procedure that
allows surgeons to reach the abdomen or pelvis without large incisions. Using a
series of small holes, typically not exceeding a centimeter in diameter, surgeons
introduce a laparoscope, a slender tube fitted with a high-resolution camera, and a
high-intensity illuminator, for visualization of the surgical area [3, 4]. Dedicated
instruments are subsequently manipulated through these keyholes to execute
the procedure. The minimally invasive nature of this method contributes to
faster patient recovery, reduces postoperative discomfort, and minimizes scarring,
explaining its popularity in a wide range of surgeries.

Although minimally invasive surgery marked a significant step forward, it came
with its own set of difficulties. Surgeons have a limited view and often operate in a
non-ergonomic posture, making it a physically demanding procedure, leading to
both mental and physical fatigue. Furthermore, natural hand tremors tend to be
amplified and, as such, could affect the accuracy of operations. These obstacles
led to the development of robotic-assisted surgery. The Da Vinci Surgical System
from Intuitive Surgical Inc., introduced in the early 2000s, represents a significant
milestone in this field. The Da Vinci robot offers several notable advantages,
including enhanced precision, superior visual feedback, and a reduction in the
physical workload of surgeons [5]. Furthermore, it popularized a novel paradigm,
teleoperation-based surgery, paving the way for other players in this field.

Note that robotic laparoscopic surgery still requires making 2-4 incisions on the
patient’s abdomen. Therefore, small or even non-invasive approaches are being
investigated to further reduce damage, such as endoluminal procedures or vascular
interventions. The challenge of these procedures lies in skillfully maneuvering a
flexible instrument by clinicians through natural orifices (e.g., mouth, urethra, anus,
vagina, nose) or a small incision to reach the target area. Robotic assistance is also
increasingly being applied in this field, exemplified by systems such as the Corindus
vascular robot (Siemens Healthineers, Germany). The control of the Corindus
system is achieved via teleoperation. The physician operates from a control room
while a catheter driver is stationed next to the patient to manipulate the catheters.
This approach reduces radiation exposure for the physician.

Despite the progress made in the field of surgical and interventional robots, overall
progress has been slow. Factors such as the complexity of the environment, the
challenge of accurately managing the force applied to delicate tissues, and the
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high associated risks contribute to this slower development. Therefore, in recent
years, people have started to apply Machine Learning (ML) techniques to surgery.
Thanks to advances in computing power and algorithm development, ML and its
subset, Deep Learning (DL), are widely used for surgical image recognition and
surgical data analysis. Augmented Reality (AR) technology is also being applied
to surgery, providing surgeons with enhanced visual feedback. It is imperative
to continue to innovate in this field, especially considering that advancement can
directly contribute to human health.

1.2 Clinical background

1.2.1 Cardiovascular disease

Cardiovascular disease (CVD) is a common health problem. CVD forms the leading
cause of death worldwide. According to the World Health Organization (WHO)
statistics, approximately 17.9 million people died from CVDs in 2019, making
up 32% of all deaths worldwide. These numbers are expected to increase to 23.6
million by 2030 [6]. CVD results from a combination of factors that include
unhealthy lifestyle habits such as poor diet, sedentary behavior, smoking, and
excessive alcohol consumption, along with health conditions such as high blood
pressure, diabetes, and high cholesterol [7, 8]. CVDs encompass a diverse range
of conditions affecting the heart and blood vessels. This broad category of CVDs
includes coronary artery disease, stroke, irregular heart rhythms, aortic aneurysms,
valve disease, and peripheral artery disease [8, 9]. Each of these conditions poses its
own unique challenges and impacts the overall health of the heart and circulatory
system.

When left untreated, CVDs can lead to severe complications. These include heart
failure, heart attacks, and strokes, resulting from impaired pumping capacity of
the heart or from blood clots obstructing circulation. Aneurysms pose a risk
of life-threatening internal hemorrhage [10], while peripheral artery disease can
manifest as pain in the limbs [11]. Cognitive problems such as vascular dementia,
caused by impaired blood flow to the brain, can also occur [12]. Furthermore, it
can significantly affect the daily lives of patients, leading to physical limitations,
mental health issues such as anxiety and depression, substantial financial burden
from medical costs, and overall decrease in quality of life [13]. Above alarming
statistics combined with profound effects on patient quality of life, underscore the
urgent need for effective treatments and innovative strategies in the management
of CVD.
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Figure 1.1: Different types of commercially available catheters: (a) BlazerTM

Open-Irrigation Ablation Catheter, Boston scientific Corporation; (b) OccluderTM

Occlusion Balloon Catheter, Boston Scientific Corporation; (c) Stent catheter,
Boston Scientific Corportation; (d) Pioneer PlusTM IVUS guided re-entry catheter,
Phillips Inc.

1.2.2 Catheterization

Catheterization, specifically endovascular catheterization, is a clinical procedure
used to diagnose and treat heart conditions. Over 3.5 million procedures
are conducted in Europe each year, with the number continuing to rise [14].
Catheterization involves the insertion of a flexible slender tube, known as a
catheter, through a blood vessel. Figure 1.1 displays various types of commercially
available catheters, each with different functionalities, used in different procedures.
The catheterization procedure allows physicians to perform diagnostic tests and
treatments without having to perform open chest surgery. The procedure is usually
performed in a hospital catheterization laboratory, abbreviated as “cath lab” as
shown in Fig. 1.2. The patient is given a local anesthetic. A small incision is made,
usually in the groin, arm, or neck, where a blood vessel is close to the surface of
the skin [15]. In most cases, a guidewire is first inserted into this incision and
then meticulously navigated until it reaches the target area. The guidewire acts
as a pathway to guide other instruments, e.g., catheters, safely through the blood
vessels. The position and motion of the guidewire/catheter can be tracked using
fluoroscopy, which is acquired through a C-arm system. This setup (see Fig. 1.2)
offers real-time feedback, crucial for ensuring precise and accurate navigation during
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procedures.

Once the catheter has been inserted and placed, it opens opportunities for a variety
of procedures. One such procedure is angioplasty that involves the injection of
a radiopaque dye through the catheter. This is a key imaging technique that
provides a detailed visualization of blood vessels, which can be instrumental in
diagnosing cardiovascular conditions such as coronary artery disease. The internal
channel of the catheter can be utilized to introduce instruments that are designed
for therapeutic purposes. For example, in angioplasty, a tiny balloon is introduced
and then expanded to widen the arteries that have become constricted or blocked,
thus improving blood circulation. In addition, stents, which are small mesh-like
tubes, can be inserted through the catheter to prevent the arteries from narrowing
again, thus ensuring stable and healthy blood flow.

Figure 1.2: The current practice for endovascular interventions in a catheterization
laboratory (“cath lab”) typically involves a cardiologist stand next to the patient. In
this setup, the cardiologist steers the catheter or guidewire, guided by fluoroscopic
imaging obtained through a C-arm [16].

In addition to these, the catheter can also be used to perform intricate procedures
such as cardiac ablation. This treatment specifically addresses abnormal heart
rhythms by directing energy through a manually-steerable catheter. The resulting
scars on the heart tissue function as barriers, effectively interrupting the irregular
electrical signals that cause abnormal rhythm. Cardiac ablation can restore the
heart rhythm to a normal state.

Furthermore, the catheter is a vital component in the execution of treatments
designed to repair malfunctioning heart valves, for example, the MitraClip approach
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[17, 18]. This procedure is commonly used in patients with mitral regurgitation,
a condition characterized by the inability of the mitral valve of the heart to seal
tightly. Due to this malfunction, blood flows back into the heart. Therefore,
the heart will need to work excessively hard to ensure that enough blood enters
the circulation system. During the MitraClip procedure, a catheter is used to
attach a clip to the compromised mitral valve, preventing the valve from opening
during ventricular systole. This intervention helps reduce atrial regurgitation, thus
improving the efficiency of heart pumping function.

1.3 Procedure challenges and limitations

Figure 1.3: Endoluminal robotic systems that are commercially available or have
received approval from relevant authorities for market release. These systems
are categorized into three specialties, i.e., gastroenterology, respiratory, and
cardiovascular.

Endovascular interventions face two major challenges: controllability and awareness
of the instrument. Controllability focuses on the physical manipulation of catheters
and guidewires, while awareness refers to the use and interpretation of imaging
guidance.

Challenges in controllability of instrument: The intricate and fragile nature of
the human vasculature makes the navigation of guidewires, catheters, or guidance
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sheaths complex and challenging. Inherent factors in the catheter itself, such as
hysteresis, buckling, slack, and plastic deformation, further complicate precise
control. Current procedures are mostly carried out manually [19], which requires
high levels of skill and experience. Manual control could result in a lack of
consistency and reliability, as it is heavily based on the expertise of the individual
physician.

Additionally, the clinicians performing the procedure are exposed to ionizing
radiation, which motivates the development of remote or teleoperated approaches.
However, teleoperation has its own challenges. For example, it can become
more difficult to maintain correct hand-eye coordination when the operator is
not physically present at the operational site. Furthermore, the absence of real-
time haptic (touch) feedback makes it challenging to gauge the interaction between
the catheter and the patient’s anatomy, increasing the risk of unintentional damage
or complications [20, 21]. Reliance then shifts heavily towards visual cues, which
do not provide an easy understanding of the governing interaction forces [22].

Challenges in awareness of instrument: Fluoroscopy, the imaging modality most
often employed during endovascular interventions, produces 2D grayscale images.
This imaging modality limits the quality of visual information, as it is difficult to
perceive depth and spatial relationships between structures. Physicians need an
in-depth understanding of the anatomy of the cardiovascular patient to accurately
correlate catheter position and movements with its surrounding environment. The
radiative nature of fluoroscopy also raises concerns about repeated or prolonged
exposure to ionizing radiation, both for the patient and the healthcare professionals
involved [23, 24]. Although physicians can wear lead aprons to mitigate radiation
exposure, the weight of these aprons, coupled with the need for physicians to stand
throughout the entire procedure, elevates the risk of orthopedic injuries. Finally, it
is worth mentioning that fluoroscopic views are not constantly available, as the use
of fluoroscopy is limited to crucial moments to minimize radiation exposure. Given
this intermittent use, there is growing interest in exploring continuous imaging
modalities that do not rely on radiation to provide visual feedback for catheter
steering.

1.4 Emergence of robotic assistance

Robotically assisted endoluminal interventions involve combining robotic technology
with non-motorized surgical and interventional tools. Figure 1.3 provides an
overview of commercially available robotic systems for endoluminal procedures. A
distinction is made between three specialties: gastroenterology, respiratory, and
cardiovascular. In robot-assisted catheterization, the use of sophisticated actuation
technologies allows robotic systems to be more precise, thus decreasing the likelihood
of unintentional harm to the vasculature. Furthermore, by teleoperation, robotic
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10 INTRODUCTION

systems mitigate the radiation exposure of clinicians. They also offer a more
ergonomic operating environment, which reduces the fatigue of the physician.

Table 1.1 provides an overview of the main robotic catheter systems that have
received clearance from the FDA or equivalent authorities. All these systems adopt
teleoperation, where clinicians manipulate control input devices, such as a joystick,
in a separate control room. In doing so, the robot, positioned next to the patient,
performs the necessary actions.

In most systems, the catheter driver is attached to a robotic arm, allowing for
adjustments of the insertion angle to the patient’s body. The robotic device
itself manages the insertion/retraction, rotation, and bending of the catheter.
Some systems, including the Amigo® and R-One®, are compatible with various
commercially available catheters. On the contrary, others, such as the Sensei X®

Robotic Catheter System1, are designed for specific types of catheters. In terms of
application, systems such as Sensei X®, Amigo®, and Niobe® are used predominantly
for electrophysiology and ablation procedures. Systems such as Magellan®,
Corindus®, CorPath®, and R-One® demonstrate versatility, accommodating a wide
range of devices and procedures. Lastly, when it comes to actuation technologies,
most robotic catheter systems, with the exception of the Niobe®, rely on a cable-
driven approach to bend the tip of the catheter. The Niobe catheter system, on the
other hand, operates through magnetic actuation. Most of the catheter systems
mentioned above share a similar design philosophy. However, the LIBERTY® system
from Microbot Medical Inc. stands out as the world’s first disposable catheter
system. This reduces preparation efforts and the expense involved in establishing a
sterilized environment. In terms of design, the external structure of the LIBERTY®

robotic system is compact, with the entire device being approximately the size of
an adult’s palm. This simplistic design approach largely reduces manufacturing
costs. In terms of configuration, the LIBERTY® system comprises a control system
and an operating handle. The control system can be attached to the patient’s
thigh, thus a cumbersome robotic arm to support the catheter driver is not needed,
while the physician uses a gaming joystick to manipulate guidewires and catheters
during the procedure. This makes the catheterization straightforward.

Nevertheless, these systems are not without limitations. One primary limitation is
that these systems are mainly used for simpler interventions, but rarely for more
complex ones (such as coronary chronic total occlusions), where the highest mental
load is expected from the clinician. Another limitation is the lack of autonomy.
Currently, robotic catheter systems operate entirely under the control of a human
operator, which means that the movements of the robotic catheter merely mimic
those executed by the physician. As per the classification system for levels of
autonomy in surgical robotics outlined in [25], this scenario qualifies as Level 0
autonomy. However, advancements to level 1 with surgical assistance or level 2
task automation are anticipated and remain areas of ongoing research. Also, as
introduced in Section 1.3, the incorporation of robotic assistance and teleoperation

1The Sensei X robotic system is no longer available on the market.
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presents additional challenges, such as the lack of real-time haptic feedback and
poorer hand-eye coordination, compared to the current practice where the physician
can directly manipulate the catheter. In addition, in terms of visual feedback,
these systems still largely rely on traditional fluoroscopy. Although physicians
are shielded from radiation, patients and other clinicians involved in swapping
various interventional instruments remain exposed to radiation. Using fluoroscopy
also limits the visual feedback of physicians to 2D grayscale images. Furthermore,
clinicians unfamiliar with robotic systems will need to overcome a characteristic
learning curve [26].

1.5 Application of ML techniques

ML, a subfield of artificial intelligence, has a long history dating back to the
middle of the 20th century. The term “machine learning” was built on the idea
that machines can learn from data. During the 1960s and 1970s, the area of
study broadened, with scientists investigating a variety of learning algorithms and
theoretical foundations. The rise in computing power substantially boosted the
growth of ML. This led to the development of more sophisticated models and
algorithms. The exponential growth of the Internet in the 21st century significantly
enhanced the field of ML by providing an abundance of data, which is essential for
training algorithms.

ML has been adopted in various fields today. A notable area is surgery, where ML
has been used for tasks such as image analysis [27], diagnosis support [28], and
treatment planning [29]. Recently, this trend has started to extend into the field
of Flexible Surgical and Interventional Robots (FSIR), encompassing instruments
such as catheters and guidewires. Incorporating ML techniques alongside robotic
assistance can open up many opportunities to address various challenges in current
clinical practice.

1.6 Motivation of this thesis

Despite advancements in introducing robotic assistance into the current catheter-
ization procedure, a significant gap remains. The commercially available
robotic catheter systems mentioned above are designed or only approved by
relevant authorities for relatively simple interventions (such as peripheral vascular
interventions). Their ability to reliably perform complex procedures, such as
addressing coronary chronic total occlusions, has not been demonstrated. This
explain why existing catheterization procedures remain predominantly manual.
Current commercial robotic catheter systems are not intelligent and foresee no
automation, instead they are solely “teleoperated”. The catheter driver that steers
the catheters merely replicates the motions input by the operator. Consequently,
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the control precision and safety of these procedures are a.o. highly dependent on
the level of expertise of the operating physician. Furthermore, the change from
direct catheter manipulation to teleoperation, the need to manage various joysticks
and buttons for catheter control simultaneously, coupled with the absence of force
feedback in teleoperation, make a considerable learning curve for physicians [26, 30].

Moreover, hysteresis continues to be a challenge even with the introduction of
robotic assistance, and may even become worse due to the additional non-linearities
introduced by the employed actuation technologies in the robotic solutions.
Regarding visual feedback, most commercially available endovascular robotic
systems continue to depend on fluoroscopy. This reliance raises significant concerns
about radiation exposure for both patients and clinicians, particularly those who
handle instrument swaps during interventions. Furthermore, the fluoroscopy image,
being a 2D grayscale representation, significantly limits clinicians’ ability to perceive
depth information.

1.7 Overarching goal of the thesis and sub-objectives

Guided by the above motivations, the overarching goal of this thesis is

to enhance the precision and intuitive control of robotic catheters for safe
navigation in complex environments.

The overarching goal of this thesis is comprised of several distinct but interconnected
sub-objectives.

• Sub-objective 1: identification of the latest trends of ML techniques in
FSIR.
Understanding the latest applications of ML techniques in the FSIR field is
crucial for leveraging ML methods to tackle key challenges of catheter control
in complex environments. ML offers an alternative approach to model and
control robotic catheters compard to traditional analytical models. Through
accurate catheter modeling, precise catheter control could be achieved, which
is essential for navigating through complex vascular structures. Additionally,
ML could also lead to an elevation of the level of autonomy in catheter steering.
By learning from a vast array of procedural data, ML could automate certain
aspects of catheter control, reducing the reliance on manual manipulation
and potentially leading to more efficient and safer procedures.

• Sub-objective 2: investigation of the most effective interactive modality
for tele-operated endovascular intervention.
Teleoperation is anticipated to be crucial in the long term, particularly in
complex environments such as navigation in the coronary arteries. Exploring
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intuitive interaction modes for teleoperation is therefore of great significance.
Having an intuitive mode for catheter steering, coupled with reliable visual
feedback, could also contribute to safer interventions.

• Sub-objective 3: determination of the 3D catheter shape using a non-
radiative method.
Reconstructing the 3D shape of catheters using non-radiative methods
reduces radiation exposure for both clinicians and patients, thereby making
interventions safer. In addition, especially in complex environments such
as vasculatures, having real-time knowledge of the catheter’s 3D shape and
motion is crucial for effective catheter control.

• Sub-objective 4: identification and compensation of non-linearities in
catheters.
Understanding and compensating for the nonlinear phenomena in catheter
systems can significantly enhance the controllability of catheters. First, in
teleoperation cases, it improves the intuitiveness of catheter control. Without
such compensation, users would have to adapt and learn to offset these
nonlinear behaviors themselves. Second, in the context of automatic control,
compensating for non-linearities allows for the derivation of a precise kinematic
model of the catheter, thereby enhancing the control accuracy of the catheter.
Both these aspects could be crucial to achieve precise and safe interventions
in tortuous vessels.

• Sub-objective 5: elevation of the level of autonomy in robotic catheters,
along with its demonstration in an in-vitro environment.
Autonomous catheterization implies that the catheter can navigate au-
tonomously within the blood vessels and perform the corresponding tasks,
with physicians merely monitoring the entire process. Achieving fully
autonomous catheter navigation in in-vivo environment poses significant
challenges. Recognizing these difficulties, this thesis sets a more realistic and
achievable goal: demonstrating autonomous or semi-autonomous catheter
navigation in an in-vitro experiment. This approach not only stems from
an understanding of current technological challenges, but also aims to
incrementally advance the level of autonomy of catheter control, laying
a solid foundation for future applications in more complex environments.
(Semi-)autonomous control could potentially lead to catheter motion with
consistent precision, thus mitigating performance variations among physicians
with different levels of experience. Second, autonomy in catheter control could
reduce the physical burden on clinicians, allowing them to focus more on high-
level tasks such as decision-making and minimizing performance degradation
due to fatigue. In addition, conducting experiments in an in-vitro environment
can validate the robustness and safety of the control algorithms, laying the
foundation for further validations. All of these factors could potentially
contribute to precise catheter control and ensure safer interventions.
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Above five sub-objectives could together address these key limitations, as detailed
below: 1) limited intuitiveness and assistance in catheter control based on
teleoperation, further challenged by the 2D grayscale nature of fluoroscopy imaging;
2) the reliance on radiative fluoroscopy for the reconstruction of the catheter’s 3D
shape; 3) the presence of nonlinearities in catheter systems, which reduce precision
and intuitiveness in control; and 4) no level of autonomy in both current practices
and robotic solutions.

1.8 Thesis outline

Figure 1.4 offers a diagrammatic representation of this thesis, illustrating the
primary sub-objectives alongside their respective chapters. The contents of each
chapter are as follows:

Chapter 1 reviews the history of surgery, introduces knowledge/background
related to cardiovascular diseases, and their current treatment methods. This
chapter also analyzes the limitations and challenges of existing catheterization
methods. In response to these challenges, robotic assistance and DL techniques
are proposed. Finally, this chapter specifically outlines the overarching goal of this
thesis, the sub-objectives and the detailed content of each subsequent chapter.

Chapter 2 provides a comprehensive survey of ML techniques, including traditional
ML methods and modern DL approaches, in flexible surgical and interventional
robots. The chapter summarizes the different roles of ML/DL techniques in
the perception, modeling, navigation, and control of the FSIR. The trends,
popularity, and strengths of applying ML/DL algorithms in such robotic systems
are demonstrated and analyzed. A discussion on the potential pitfalls of ML/DL in
the context of FSIR is included. Chapter 2 provides insight into selecting the most
appropriate algorithm for specific tasks, which inspires the algorithm selection for
the work in the subsequent chapters.

Chapter 3 conducts a user study exploring various interactive modes derived from
multiple control input devices and visualization devices. An AR interface for a Head-
Mounted Display (HMD) is designed for enhanced visual feedback and teleoperation.
Joystick-based teleoperation to steer a robotic catheter system and demonstration
of visual feedback using a 2D monitor were implemented for comparison. A user
study is described that involves nine participants with diverse experience levels
in AR-HMDs, gaming, and steerable catheters. A detailed performance analysis
using both subjective and objective evaluation metrics is included.

Chapter 4 introduces a new DL method for improved shape sensing of continuum
robots based on the multi-core FBG sensor. The suggested method enables shape
sensing using a single Multi-Core Fiber (MCF) positioned off-center. This facilitates
miniaturization of the catheter while freeing up the central channel for additional
uses. A 2-DOF benchtop fluidic-driven catheter system is built to validate the
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Figure 1.4: Illustration of the research sub-objectives of this thesis. Sub-objective
1: identification of the latest trends of ML techniques in FSIR (Chapter 2).
Sub-objective 2: investigation of the most effective interactive modality for tele-
operated endovascular intervention (Chapter 3). Sub-objective 3: determination
of the 3D catheter shape using a non-radiative method (Chapter 4). Sub-objective
4: identification and compensation of non-linearities in catheters (Chapter 5 and
Chapter 6). Sub-objective 5: improvement of the level of autonomy in robotic
catheters, along with its demonstration in an in-vitro environment (Chapter 6).

proposed ANN. Ablation studies have been conducted to enhance the comprehension
of the ANN, thereby augmenting its interpretability. The proposed method offers
precise shape reconstruction of a robotic catheter without resorting to radiation-
based imaging techniques, such as fluoroscopy, while accurate representation of
catheter shape offers new valuable information for catheter control.



16 INTRODUCTION

Chapter 5 addresses the nonlinear phenomena in catheter systems. A Recurrent
Neural Network (RNN) is used to model the hysteresis of a robotic catheter. This
approach aligns with the inherent characteristics of hysteresis and RNN, where
the current system output is influenced not just by the present input but also
by historical inputs. For a comprehensive assessment, both an analytical model
and a traditional ML approach are compared. The proposed method was further
validated with a reconstruction task. A forward-looking fiber with optical coherence
tomography was used to scan an artificial environment. The method can predict
the response of the catheter tip solely based on the proximal input pressure while
being robust to hysteresis. This reduces the challenge of embedding sensors at the
tip of the catheter, which is challenging due to spatial constraints and sterilization
needs.

Chapter 6 introduces a DL approach to compensate for the hysteresis in catheters.
The trained ANN also works as an effective position controller, ensuring precise
steering of the catheter in the free space. Additionally, a compliant motion control
method is proposed to automatically reduce the contact force between the catheter
and the environment. Remarkably, the method does not require the installation of
a force sensor at the catheter tip.

Chapter 7 explores a plan to valorize the findings of this thesis. It begins by
summarizing key research results, followed by an in-depth analysis of the prevailing
medical market. Building on this groundwork, the chapter details the crucial
strategies for valorizing the DL algorithms and datasets derived from this doctoral
research. In addition, the chapter proposes preliminary methods for licensing these
algorithms and datasets.

Chapter 8 presents an evaluation of the research undertaken. Initially, it
offers a concise summary of the thesis’s primary objectives and key discoveries.
Subsequently, the chapter delves into a critical examination of the research’s
limitations, providing insights into areas where the study could be further refined.
The chapter concludes with recommendations for future research, identifying specific
domains that could benefit from and extend the findings of this thesis. Additionally,
it underscores the persistent imperative for ongoing exploration and advancement
within this field.

1.9 Collaborations

In this thesis, the primary emphasis is on leveraging DL and augmented reality
technologies to address various challenges in the sensing and control of robotic
catheters. The authors express deep gratitude for the collaborations with fellow
researchers, which have led to joint publications. The specific contributions of the
author and other researchers are clarified as follows:
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In Chapter 2, both the author and Renchi Zhang made equivalent contributions
to the manuscript’s composition. While the author focused primarily on surgical
robotics aspects, Renchi Zhang provided insights from the ML perspective. In
Chapter 3, the author contributed to the setup of the experimental system, designed
the user study, and conducted an analysis of the experimental results. Zhen Li
contributed jointly to the setup of the experimental system and the processing of
the experimental data. In Chapter 4, the author was responsible for the design,
manufacturing and assembly of the experimental setup. Furthermore, the author
implemented the neural network approach along with the training and validation of
the neural network’s performance. Xuan Thao Ha is primarily responsible for data
collection and validating the proposed auto-calibration method. In Chapter 5, the
author proposed the idea of using LSTM to model hysteresis, performed the neural
network training, and prepared and conducted the environmental reconstruction
experiment based on LSTM and OCT. Yao Zhang contributed to the preliminary
validation of the LSTM and jointly handled the data processing. In Chapter 6,
the author conceived the idea of employing LSTM for catheter control [31] and
implemented the training and validation of the LSTM. Moreover, the author
collaborated in implementing the iDRDPI model, set up and jointly conducted the
phantom study. Xuan Thao Ha validated the compliant motion controller, jointly
conducted in the phantom study, and analyzed the results.
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Minimally Invasive Procedures (MIPs) have emerged as an alternative to more
invasive surgical approaches, offering patient benefits such as smaller incisions, less
pain, and shorter hospital stay. In one class of MIPs, where natural body lumens
are used to access deeper anatomical locations, Flexible Surgical and Interventional
Robots (FSIRs) such as catheters and endoscopes are widely used. Due to their
flexible and compliant nature, FSIRs can be inserted via natural orifices or small
incisions, then moved towards hard-to-reach targets to perform interventional tasks.
However, existing FSIRs suffer from control and navigation limitations due to their
non-linear behavior and the complexity of path planning in intricate lumens where
modeling interaction disturbances is very complex. Rapid advances in Machine
Learning (ML) have supported the wide adoption of ML methods in FSIRs. This
chapter provides an overview of these efforts by first introducing a classification
of existing ML algorithms, including traditional ML methods and modern deep
learning approaches, commonly used in FSIRs in Section 2.2. Next, the use of ML
algorithms is surveyed per sub-domain, namely for perception, modeling, control,
and navigation, in Section 2.4. Trends, popularity, strengths, and/or limitations of
different ML algorithms are analyzed. The different roles that ML plays among
tasks are investigated and described. Finally, discussions are conducted on the
limitations and prospects of ML in MIPs in Section 2.5.
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2.1 Introduction

The first chapter introduced that ML techniques have been used in the field of
surgery, and our aspiration to apply ML to robotic catheter control. To address
sub-objective 1 introduced in Section 1.7, a comprehensive review of Machine
Learning (ML) techniques used in Flexible Surgical and Interventional Robots
(FSIRs) is conducted. This review could help determine the most suitable ML
approaches to address the challenges of robotic catheter control, particularly in
complex environments. ML techniques can be employed to enhance precision
and intuitiveness in catheter control and to reduce its interaction force with the
environment. This leads to safer interventions, aligning with the overarching goal
of the thesis. This chapter broadens the scope from DL to all ML techniques, from
cardiac catheterization to all Minimally Invasive Procedures (MIPs), and from
catheters to include all types of FSIRs. Given the similarities shared among various
types of FSIRs, the broadened scope of the review is designed to provide more
information and inspiration that may be transferred and useful between disciplines.

MIPs have revolutionized the field of surgery since their advent in the 1980s
[32]. Small wounds, shorter recovery time, and improved cosmesis [33], all of
these benefits favored the adoption of MIPs with respect to more invasive open
surgical procedures over the past decades. Currently, MIPs are adopted in different
medical specialties and have formed different subtypes, such as natural orifice
procedure (e.g., colonoscopy, ureteroscopy), endovascular catheterization, and
minimally invasive brain surgery [34]. In MIPs, one/multiple small incisions are
made, or natural openings are used to access the body and reach the target
areas of interest. Commonly, MIP access ports are narrow and the lumen can be
tortuous, so it is advantageous to use snake-like instruments, such as catheters and
flexible endoscopes, since they can reach deeper areas in the lumen. Currently, the
(steerable) instruments commonly used in clinical practice are controlled manually.
This makes MIPs highly skill-intensive.

FSIRs have emerged to overcome the limitations of current (steerable) clinical
instruments. They try to make these approaches less complex for clinicians. FSIRs
refer to those snake-like steerable instruments of which one or more degrees of
freedom (DOF) can be commanded in a computer-controller fashion. FSIRs take
advantage of progress in different robotic fields: actuation, sensing, manipulation,
and control. Different design and manufacturing approaches have been used to
implement FSIRs, thus making the structure or embodiment of FSIRs different.
In this chapter, FSIRs refer to all snake-like robots used for MIPs: single/multi-
backbone “continuum” robots [35], concentric tube robots (CTRs) [36], multi-
joint flexible robots [37], and flexible needles [38]. FSIRs has been shown to be
advantageous in accessing areas that are difficult to reach within the intricate and
delicate internal anatomy of the human body [39, 40, 41]. Moreover, they could
offer a higher level of autonomy, intuitiveness, and precision than passive flexible
instruments [42]. The use of FSIRs could potentially reduce mental burden during
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both challenging and routine tasks, so that clinicians can focus more on important
aspects or other critical tasks.

2.1.1 Workflow and tasks of FSIR systems

The workflow of robot-assisted surgery can be broken down into three distinct
stages: sensing, planning, and execution [43]. These phases correspond to three
tasks, i.e., perception, navigation, and control. These tasks, together with the
modeling, constitute the four primary FSIRs tasks discussed in this work and are
visualized in Fig. 2.1.

The perception of FSIRs is based on intraoperative sensors that can be integrated
directly into FSIRs or external to the patient. Based on the data collected by the
sensors, FSIRs can acquire information about their current state, the anatomical
environment, and the progression of the current task or the general procedure.
During the navigation phase, the various information perceived, combined with
both the task goal and the current status of the procedure, is used by the planner to
plan the robot’s motions. As for the control, the controller computes the commands
according to the previously planned motions from the navigation, and sends them
to the actuators. Accurate modeling of the robot system makes the input/output
relations clear, thus is crucial for control accuracy.
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Figure 2.1: An overview of the interactions between ML algorithms, clinicians,
and FSIRs in robotically assisted MIPs. Clinicians can control FSIRs directly
with sensory feedback or cooperatively with the assistance of ML. The ML can
be trained by the data collected from the FSIRs, or by the demonstration data of
expert clinicians. To improve safety, clinicians need to supervise the whole workflow
when ML is used.
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2.1.2 Motivation for machine learning in FSIR

An increasing number of researchers have started investigating methods based
on ML to overcome the existing challenges in FSIRs. The objective of ML is to
enable a system to gain knowledge by “learning” from examples or experience
(training data), and then to make predictions or represent regularities from the
acquired knowledge. The learned knowledge could be used in different tasks, such
as recognizing the hidden patterns in data, or generating a mapping between input
and output, depending on the applications.

Table 2.1: General pros and cons of ML approaches
Pros Cons
• No need to understand the underlying
physics. No simplifications and assump-
tions of the system required

• Involving more uncertainty due to
the lack of interpretability (cause of a
decision)

• Flexible transferability to different tasks
with few expert knowledge

• Significant computational resources
required

• Increasing the level of autonomy and
cognitive capabilities of a system

• Model performance depending crucially
on the quality and amount of data, or the
quality of manual feature engineering

In the context of FSIRs, the use of ML methods could avoid complicated modeling
and its associated cumbersome parameter identification procedures. ML can capture
the underlying patterns from the data generated by the system [44]. Additionally,
ML-based approaches are observed to have good generalization capability, which
allows them to be possibly transferred among different types of robot and different
anatomical environments [45, 46, 47]. ML could potentially increase the level of
autonomy and cognitive abilities of FSIRs [48]. Consequently, applying ML to
FSIRs could potentially free the surgeon or interventionist from routine tasks and
allow increased focus on higher-level tasks such as decision-making. ML-assisted
FSIRs could also potentially lead to faster execution of routine tasks or lead to
higher precision and smoother flow or trajectories compared to manual operation
by human experts [48]. In the context of the FSIRs, ML approaches are generally
considered to have pros and cons [48, 49, 50] as shown in Table 2.1. The roles of
ML algorithms, clinicians and FSIRs are summarized in Fig. 2.1. The figure shows
that data to train ML algorithms could be collected from clinicians (e.g. human
motions) or FSIRs (e.g., actuators’ status, shape and pose of the FSIRs). In recent
years, the data collected from FSIRs systems has experienced a progressive growth.
This has supported the adoption of data-driven approaches such as ML. The trained
ML algorithms are used in perception, navigation, control and modeling of FSIRs.
Clinicians may provide demonstrations for training data [51, 52], give direct control
to FSIRs, supervise FSIRs [53, 54], or collaborate with FSIRs in different phases of
MIPs [55]. FSIRs can reduce the burden of clinicians on both mental / cognitive
and physical aspects [48].
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2.1.3 Summarized contributions of this review

Over the past years, some review articles have introduced specific aspects of FSIRs
related to fabrication[42], actuation [34, 39, 42, 56], sensing [56], modeling[39, 41,
42, 56], imaging and navigation[40, 57], and control[39, 41, 42, 56]. Specific ML
techniques are partially discussed in some of these reviews, but do not constitute
their main contents. Some other reviews focus on the usage of ML techniques
across the entire surgical robotics field [43, 48], while their discussion of FSIRs is
sparse. ML used in soft robots has been reviewed in [58], but this work considers
generic contexts without a specific link to clinical applications. Moreover, some of
these reviews were published five or more years ago [39, 40, 43, 48, 57]. Given that
the ML techniques have gained popularity in recent years, it makes sense to revisit
the conducted works to capture the most recent trends.

To the best of the author’s knowledge, no previous review has been performed
for the ML techniques specifically used on FSIRs. This chapter tries to fill this
gap by providing an overview of ML, including traditional approaches and modern
deep learning approaches, and discussing general approaches to leverage ML in
various FSIRs tasks. It discusses the limitations and perspectives of ML algorithms
in FSIRs. The chapter is structured as follows: Section 2.2 introduces ML and
their classifications; Section 2.3 describes the bibliography search method and the
selection criteria; the ML methods used in different FSIRs tasks, i.e. perception,
modeling, control, and navigation, are summarized and compared in Section 2.4.
Section 2.5 discusses the current challenges in ML, while Section 2.6 concludes the
whole chapter.

2.2 Machine learning techniques

ML is described as “programming computers to optimize a performance criterion
using example data or past experience” [59]. Current ML algorithms can be
divided into three main categories: supervised learning, unsupervised learning, and
reinforcement learning (RL) [60]. Supervised learning learns the mapping from input
data to ground truth (labels) using annotated datasets, while unsupervised learning
learns to discover regularities solely from the input data. Rather than learning
from input data, RL trains an agent while interacting with the environment using
a system of reward and punishment, thus learning from the agent’s experience[61].
The presented conventional classification is clear and concise, but is not instructive
enough to differentiate and analyze the characteristics of traditional ML methods
and the increasingly popular DL method. Thus, we propose a two-dimensional
(2D) classification method (see Fig. 2.2) for ML, as this representation can
provide an additional perspective on algorithm choice for FSIRs applications.
The conventional classification above (supervised learning, unsupervised learning,
and RL) is preserved as the first dimension in our proposed 2D classification.
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However, supervised learning and unsupervised learning are merged into a single
category. Furthermore, in our 2D classification, ML algorithms are categorized
into two distinct groups: traditional ML and DL approaches.

Figure 2.2: A Venn diagram of AI techniques applied on FSIRs: ML is the dominant
subdiscipline of AI. ML can be divided into traditional ML and DL. Several specific
ML algorithms often used in the FSIRs are also indicated in the figure. The readers
could refer to Table 2.2 for the abbreviations of the different ML algorithms.

In this review, traditional ML refers to ML algorithms that do not rely on deep
Artificial Neural Network (ANN). Traditional ML includes many algorithms that
have been studied for a long time. In this decade, the use of deep ANN has
improved the state-of-the-art in many domains such as visual object detection,
natural language processing, speech recognition, among others. [62]. DL is also
embraced by the FSIRs community these days. However, at the same time,
traditional ML approaches maintain their significance in a range of FSIRs tasks.
Thus, demonstrating the applications of traditional ML and DL separately in
different tasks is helpful for algorithm selection. The remaining of this section
details the two dimensions of our classification method.

2.2.1 Supervised, unsupervised and reinforcement learning

In the classification illustrated in Fig. 2.2, supervised and unsupervised methods
are merged even though they are distinct categories of ML techniques. The decision
to unify these methods arises from the observation that various ML techniques
applied in FSIRs are capable of solving both supervised and unsupervised problems
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Table 2.2: Abbreviations List of Terminology (in alphabetical order within each
ML category)

Category Terminology Abbr.

Deep
Learning

(DL)

Artificial Neural Network ANN
Convolutional Neural Network CNN
Generative Adversarial Network GAN
Long Short-Term Memory LSTM
Multilayer Perceptron MLP
Recurrent Neural Network RNN

Reinforcement
Learning

(RL)

Deep Deterministic Policy Gradient DDPG
Deep Q-Networks DQN
Deep Reinforcement Learning DRL

Traditional
Machine
Learning

(ML)

Gaussian Mixture Model GMM
Gaussian Mixture Regression GMR
Gaussian Process Regression GPR
Hidden Markov Model HMM
k-Nearest Neighbors kNN
k-Nearest Neighbors Regression kNNR
Markov Decision Process MDP
Random Forest RF
Support Vector Machine SVM
Extreme Learning Machine ELM

when provided with a well-curated dataset. Supervised learning requires input
data with its corresponding annotations, which can be discrete (for classification)
or continuous (for regression). Supervised learning aims to identify the relationship
between inputs and labels, thereby enabling accurate predictions when faced with
unfamiliar input data. In FSIRs, supervised learning applications range from
understanding the kinematics of FSIRs[63], to predicting control commands [64],
or determining the status of FSIRs [65], among others. Unsupervised learning,
which identifies patterns or correlations within the data, does not require labeled
data. Consequently, unsupervised learning methods can be employed to discover
feasible FSIRs trajectories in Learning from Demonstration (LfD) tasks [66], or
to estimate depth and motion configurations from endoscopic image data [67].
The effectiveness of supervised and unsupervised approaches is closely tied to
the quality of the training dataset. However, curating a high-quality dataset can
be a complex, time-consuming, and human-dependent task, particularly when
generating annotations for supervised learning.

The third category of ML approaches, RL, is ideal for situations in which the
autonomous system can continuously learn from its interaction with the environment
by trial-and-error. RL learns the policy, i.e., a series of correct actions that achieve
the goal in defined situations [61]. At a given moment, the agent takes an action
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that leads to a new environmental state. The agent is given either a reward or
a punishment (namely a negative reward) from the environment after taking an
action. The training aims to maximize the numerical cumulative rewards received
by the agent. For a considerable period of time, RL has been employed in tasks
related to planning [68] and control [69] (if the control task is relatively easy to
execute), as the robot can be continuously trained to adapt to changes in the
environment. RL trains agents without the need for labeled datasets, which are
typically essential for supervised learning techniques.

2.2.2 Traditional ML versus DL

As introduced in the previous section, traditional ML is a group of ML algorithms
that are not based on deep ANN. Contrary to this, DL relies on deep ANN.
The performance optimization of traditional ML algorithms often requires the
effort of feature engineering (i.e. transforming raw data into informative and
representative values and selecting these values for learning tasks) or domain-specific
knowledge to preprocess training data [70] (see Fig. 2.3). When appropriately
tuned, traditional ML algorithms can often deliver relatively solid performance,
especially when working with limited or lower-dimensional data sets that require
minimal preprocessing and feature selection, or when computational resources
are limited [71]. Moreover, some traditional ML algorithms, including linear
models and decision trees, are recognized for their high interpretability. Their
clear mathematical and statistical foundations make them easily comprehensible
for humans. These models can also serve to clarify the working mechanism of other
traditional ML and deep ANN models [72].

The most common traditional ML algorithm employed in the FSIRs tasks is the
Gaussian mixture models (GMM) and the Gaussian mixture regression (GMR)
approach, according to the statistics shown in Fig. 2.4. GMM assumes that the data
distribution of the input follows a combination of multiple Gaussian distributions,
each with its own parameters [60]. Therefore, GMM could represent the joint
density of the data. For each Gaussian model, its conditional density and regression
function can be derived. GMR utilizes these GMM regression functions to make
predictions for new inputs [73]. The GMM-GMR approach is often used in LfD
tasks in FSIRs [64, 66, 74, 75, 76]. It can extract statistical characteristics from
noisy demonstration data (that is, typical when acquiring data from real FSIRs)
and predict continuous control commands over time [66]. Based on the statistics in
Fig. 2.4, another popular traditional ML algorithm, the Support Vector Machine
(SVM), is also used in FSIRs to tackle classification tasks [77, 78].

DL is implemented based on deep ANN. ANN originated from the idea of mimicking
the working principle of the human brain, yet it is still far from the ability of
human brains at the current stage. A neuron is a basic computational unit of an
ANN. It is connected to a number of inputs and provides an output. To generate
an output, a neuron multiplies the inputs by the corresponding weights and then
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Figure 2.3: The comparison between the workflow of traditional ML and DL in
supervised learning tasks.

applies a non-linear activation function. Multiple neurons at the same level of
connection form a layer. When the layers are connected to other layers, an ANN
is generated (see ANN in Fig. 2.3). The input layer of an ANN is responsible for
receiving the input data, and the output layer provides the prediction of ANN. The
layers located between the input layer and the output layer are hidden layers.

In the 1980s-1990s, some classical algorithms, which have had a lasting impact
on the field, such as Long Short-Term Memory (LSTM) [79] and Convolution
Neural Network (CNN) [80] were proposed. At the same time, backpropagation
was proposed and used to train deep ANN [81]. In recent years, rapid advances
in storage, computing power, and advanced software libraries have increased DL.
Advancements in hardware have also facilitated a considerable reduction in training
time of ANN [82]. At the same time, the explosion of big data offers the possibility
of training ANN from huge datasets. Moreover, emerging optimization methods
(e.g. Adam), activation functions (e.g. ReLU), and regularization methods (e.g.
Dropout) are also driving the development of DL. Furthermore, the emergence
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Figure 2.4: The prevalence of various ML algorithms in search results. (A) The
relative amounts of each algorithm in all outcomes. (B) The relative amounts
of each algorithm used in various tasks are shown. *Algorithms include UDQL,
SARSA, Q-learning, MDP, MA fuzzy Q-learning, LWPR, K-means, HMM, GAIL,
BNN, AutoEncoder, Gaussian Process Regression, Gradient Boosting, and ANFIS.

of open source DL libraries (e.g., Tensorflow, Pytorch, Caffe, and Keras) further
support the use and dissemination of DL-based approaches. All of these factors
make DL accessible to researchers from various backgrounds [83]. This is also the
reason why DL has become increasingly popular in engineering fields other than
computer science.

DL avoids the need to craft particular features that extract the essence of the
underlying data (see Fig. 2.3). Feature design is typically critical in traditional
ML models, especially when dealing with high-dimensional data. Instead, DL
tends to recognize such features automatically during training by adjusting a
large number of ANN parameters. However, there exists the potential to improve
the interpretability of DL models, thus addressing the increasing safety concerns
associated with their application in high-risk fields such as healthcare [84]. There
are different architectures of ANN among the DL algorithms, but only a limited
set has been applied in FSIRs.

As indicated by the statistics shown in Fig. 2.4(A), the Multilayer Perceptron
(MLP), which is also called the Feedforward Neural Network (FNN), is the most
commonly employed ANN within the FSIRs domain. The widespread use of MLP
can be attributed to its robust ability to model non-linear relationships prevalent in
FSIRs, such as kinematic and dynamic modeling [63, 85, 86]. Furthermore, MLP’s
simplistic architecture lends itself to straightforward implementation and training.

CNNs are also often used with FSIRs. CNN is a type of ANN that contains
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convolutional layers. Convolutional layers contain filters/kernels used to extract
features efficiently from the high-dimensional input data (e.g., images) by a
convolution operation. CNN and its variants have demonstrated their strong
capability to deal with high-dimensional data. Therefore, CNNs are frequently
employed to process visual information from FSIRs in order to provide imaging
guidance or forecast the current state (e.g., tip orientation, distal-end force) using
data from multiple sensors [87, 88, 89].

RNN is another category of ANN that is often applied in FSIRs. Unlike MLP
and CNN, which only consider current input during training, RNN can consider
historical input to update their “memory” (i.e., hidden states) to influence its current
outputs [90]. This structure allows the RNN to capture sequential information,
such as time series data from the input. Within the field of FSIRs, RNNs can
be used to tackle history-dependent phenomena such as hysteresis, or predict the
distal end status of FSIRs based on proximal information [89, 91, 92].

Beyond the diverse ANN categories, Deep Reinforcement Learning (DRL) has
emerged as an area that captures the interest of FSIRs researchers. Located at the
intersection of DL and RL, DRL is one of the most rapidly evolving subjects in ML
over the past decade, and frequently used to tackle real-world decision-making tasks.
Its efficacy in reaching human-like intelligence has been demonstrated in a variety of
games including Go, Chess, and Dota2 [93, 94, 95]. Within diverse DRL algorithms,
ANN assumes varying roles. For example, in Deep Q-Networks (DQN) [96], ANN
functions as a mapping tool, identifying the relationship between the input actions
coupled with states, and the corresponding reward values. Recent research in
FSIRs has exploited DRL algorithms such as DQN and Deep Deterministic Policy
Gradient (DDPG) [97] to optimize trajectories, plan motion, and control FSIRs
[54, 69, 98, 99, 100].

2.3 Literature search methodology

For this review, the Scopus database was used to perform a thorough literature
search. Scopus is favored due to its extensive coverage of peer-reviewed literature,
which covers a broad range of disciplines. Its rich bibliometric data and advanced
search capabilities allow for precise and comprehensive literature searches. In
addition, it indexes commonly cited sources in the field, including IEEE Xplore,
Elsevier, and Springer, ensuring access to high-quality research.

2.3.1 Automatic retrieval procedure

Utilizing Scopus’ Search Application Programming Interface (API), automated
queries were generated to efficiently retrieve works of high relevance to the specific
topic at hand. This was achieved using the Python library pybliometrics [101],
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which forms requests into a search matrix directed to the Scopus server, as explained
in Section 2.3.2. The search was limited to the title, abstract, and keywords of the
articles, ensuring not only avoidance of manual retrieval of pertinent works but
also elimination of duplicate results. Following the initial retrieval, the results were
manually filtered according to specific selection criteria outlined in Section 2.3.3.
To further enrich the collection of references, both “retrospective” and “prospective”
methods were employed. The “retrospective” method involved a manual inspection
of references contained within the shortlisted publications. The “prospective”
method, on the other hand, involved articles that cited the shortlisted publications
if they met the selection criteria. The resulting bibliography comprises the articles
that were retained following these comprehensive filtering stages.

2.3.2 Search matrix

The search matrix was built by combining keywords and enriching each keyword
with corresponding alternatives. Five keywords were considered to cover the
scope of interest for this literature study: ML algorithms, robot structure, system
description, interventional type, and device type. The first keyword ensures that
the related work uses ML algorithms. The second and third keywords limit the
retrieved literature to the field of FSIRs. The last two keywords narrow the search
to typical clinical applications and different types of FSIRs.

Table 2.3: Keywords for search. The asterisk wildcard symbol* represent any
number of additional characters, allowing for the inclusion of all variations stemming
from the base word.

Algorithm AND Characteristics AND System AND Intervention OR Device
machine learning OR flex* OR robot* OR *vascular* OR catheter* OR
deep learning OR continu* OR automat* OR percutaneous* OR *scop* OR
reinforcement learning OR compliant* OR assist* OR cardiac* OR needle OR
learning-based OR soft* OR autonomous OR colono* OR dissect* OR
Hidden Markov OR snake* guide* OR uretero* OR *wire OR
SVM OR gastro* OR grasp* OR
Bayesian OR broncho* OR
Long Short-Term Memory OR
Neural Network* OR
CNN OR
RNN OR
LSTM OR

The Scopus query was guided by the use of two logical operators, AND and OR.
The asterisk wildcard symbol, which represents any number of additional characters,
was used to include all variations of a base word. This efficient approach allowed for
a thorough exploration of the extensive search space. It is believed that the adopted
strategy encompasses most of the relevant literature on this topic. To effectively
examine the search space, it is vital to incorporate as many keyword alternatives
as possible. However, expanding alternatives may also yield more unrelated papers.
Hence, a trade-off was made to limit the list of alternative keywords to the ones
most relevant to the topic. The final search matrix, formed using refined keywords
and logical operators, is illustrated in Table 2.3.
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2.3.3 Selection criteria

In principle, the retrieved results should be closely aligned with the scope of the
review paper. However, even if a paper matches the search matrix well, and is
related to both ML and FSIRs, it could still be out of scope for this review. The
papers are considered eligible only if the authors adopted ML algorithms directly
or indirectly in perception, modeling, control, and navigation of the FSIRs, while
the papers about pure imaging processing are considered outside the scope of this
paper. Case 1 : Publications on ML-based image processing [102, 103, 104] on the
images fetched by a FSIRs are considered out of scope, because these are pure
imaging processing papers. Information from imaging processing is not applied to
perception, modeling, control, and navigation of FSIRs. Case 2 : Some works use
ML algorithms for visual servoing of FSIRs [78, 105, 106]. Although ML is also
used in image processing, the outputs of the ML algorithm were eventually used to
control FSIRs. Therefore, these papers are considered to be in scope.

2.4 Machine learning applications in FSIR

As introduced in Section 2.1.2, ML approaches are widely used in all four
tasks/phases considered in this work to solve the current challenges of FSIRs
(see Fig. 2.5a) from different perspectives. In the perception phase, ML algorithms
could calibrate or model sensors [44], detect collision and estimate the contact
force with the environment [107, 108, 109], reconstruct the shape of FSIRs [110], or
localize the tip [111]. During the navigation phase, ML algorithms generate feasible
paths e.g. based on RL [68], learn motion primitives [47], and optimize planned
trajectories based on human demonstrations [54, 112]. In the control phase, ML
algorithms can predict control commands based on the learned IK model [75, 113],
refine the parameters of the IK-based controller or the PID controllers [66, 114], and
derive control signals by trial-and-error [69, 115]. Refining the information from
Fig. 2.4(B) and Fig. 2.5a, among all tasks, the control task has showcased the highest
diversity of approaches, with a significant number of distinct algorithms observed.
In terms of modeling, ML algorithms are used to model nonlinearities within the
continuum FSIRs [85, 91, 116, 117], model kinematics/dynamics [64, 118, 119], or to
predict distal end status based on proximal information [89, 92]. In certain scenarios,
ML algorithms can be utilized across different stages to attain general control of
the robotic system [66]. Figure 2.4 provides a comprehensive demonstration of the
prevalence of various ML algorithms on different tasks.

Regardless of the task considered, since all ML methods can be seen as data-driven
approaches, their performance is strongly influenced by the training data. It is
therefore essential to pay attention to data collection, which can be carried out in
different ways depending on the complexity of the tasks. In lower-level tasks, such
as modeling and control, data are usually collected directly from proprioceptive
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Figure 2.5: The trend in ML algorithm usage for various FSIRs tasks from 2010 to
2022 is illustrated over the years: (a) the number of publications of each task; (b)
the count of publications in terms of the proposed 2D classification: Traditional
ML, DL, supervised/unsupervised learning, and reinforcement learning.

sensors that are embedded in FSIRs [64, 75, 88] or placed in the environment
[116, 120]. For more complex tasks, such as navigation, the fusion of proprioceptive
and exteroceptive information [78, 121] plays an essential role in estimating the state
of FSIRs while considering the interaction between FSIRs and the environment. In
addition, demonstration data from human experts, animals [122] or even a rigid
link robot [46, 123] can be used to teach FSIRs to complete high-level tasks.

If the configuration of FSIRs, such as the tip pose and position, shape, and contact
state, could be determined, these data could be used to help guide navigation and
control FSIRs in a more precise and delicate manner. Several methods have been
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proposed in the literature to improve the awareness of FSIRs during the procedure.
According to Table 2.4, DL methods (MLP, CNN, and Encoder-decoder) are quite
popular in the perception task. MLP is the most common ML approach, followed
by CNN due to its strength in extracting information from images. Nevertheless,
some traditional ML algorithms, e.g., gradient boosting and GPR, have also
been employed in recent years. In this section, different ML-based pose/contact
estimation methods are discussed.

Pose estimation

2.4.1 Perception

Cardiac catheterization is usually based on fluoroscopy guidance, but the generated
ionizing radiation is harmful to both the patient and interventionalists. Another
limitation of fluoroscopy is that it only provides 2D visualization, forcing
interventionalists to correlate the obtained 2D information of FSIRs with the
3D patient’s anatomy in their mind. Due to these disadvantages, different sensor
modalities have been investigated to replace the traditional fluoroscopic system.
Several ML-based approaches using the information provided by sensors have been
developed to track the pose of FSIRs in real time (including position tracking and
shape sensing) during MIPs.

Distributed sensors are commonly used to sense the shape of the FSIRs since they
bypass the problem of line-of-sight (i.e., inside the patient’s body). A framework
for 3D shape reconstruction of a three-segment soft robot using DL with feedback
from proprioceptive sensor skin is described in [124]. The sensor skin was made
of conductive silicone using kirigami and a novel kinematic description linking
the entire soft robot’s structure to low-dimensional configuration parameters was
also proposed. The study demonstrates the effectiveness of an LSTM network
in learning the relationship between the sensor’s resistance and the configuration
parameters.

Fiber Bragg Grating (FBG) is increasingly being used in shape sensing of FSIRs
due to its tiny size, biocompatibility, and safety (e.g., being free from the risk
of electrocution). The traditional FBG-based shape sensing method starts by
calculating the curvature from the measured wavelength shift of FBG sensors
distributed along the fiber length. The calculated curvature is then integrated to
reconstruct the 3D shape of the fiber. One of the major problems in traditional FBG-
based shape sensing methods comes from the inaccuracy in estimating the curvature
from the measured wavelength shifts of FBG sensors. Several characteristic
parameters of the fiber, e.g. strain sensitive coefficient, angles between cores
and distance between the central and outer cores, are required to calculate the
curvature. However, these parameters could change during the assembly procedure,
which requires a complex identification process. To overcome this problem, Manavi
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Table 2.4: Applications of ML algorithm in the perception task (yellow for
traditional ML, green for DL)
Subtask Reference Involved

ML Method
Actuation
Method

Type of
Robot

DoF Input Evaluation
task

Accuracy

[124] LSTM,
MLP

Fluidic
actua-
tor

CR 2 Resitances
of
Kirigami
Sensors

Estimate
posture
parameters
of the robot

RMSE of posture
parameters prediction:
1.27 mm (LSTM),
5.6 mm (MLP)

Pose esti-
mation

[125] MLP / Guide-
wire

/ Wavelength
shifts
from FBG
sensors

Predict tip po-
sition

Predict the shape of a fiber
sensor consisting of five FBG
triplets with less than 6 mm
tip error

[44] DL, LSTM Cable-
driven

CR 2 Wavelength
shifts
from FBG
sensors

Estimate 3D
shape of the
CR

Mean error of 3D shape
estimation: 0.66 mm (DNN),
0.69 mm (LSTM); Mean
error of distal end position
estimation: 0.45 mm (DNN),
0.48 mm (LSTM)

[126] DL Fluidic
actua-
tor

CR 2 Wavelength
shifts
from FBG
sensors

Estimate 3D
shape of the
CR

Mean error of 3D shape
estimation: 0.24 mm (3D
free-space experiment),
0.49 mm (2D constrained-
space experiments)

[127] GPR Fluidic
actua-
tor

CR 2 Robot’s
configura-
tion and
actuation

Detect contact
state and esti-
mate force di-
rection

Contact state estimation:
correctly detects the in-
teractions any time they
occur (100% success rate);
force direction estimation:
the average alignment of
estimated and ground truth
force direction is 0.95 (where
1 is perfectly aligned and 0
is orthogonal)

Contact
estima-
tion

[107] Gradient
Boosting

Cable-
driven

CR 2 Wavelength
shifts
from FBG
sensors

Detect contact
state

Contact state estimation:
successful detection of col-
lision with hard and soft
obstacles within less than
300 milliseconds.

[128] AutoEncoder Cable-
driven

CR 2 wavelength
shifts
from FBG
sensors

Estimate
contact stage
and contact
location

Estimate contact stage ac-
curacy: 100% (in at most
approximately 1.08 s); Mean
contact localization error:
2.3 mm for a 70 mm long
CR

[129] CNN Cable-
driven

Ablation
catheter

2 Optical
coherence
tomog-
raphy
images

Estimate tip
contact and
orientation
stage

Estimate tip contact stage
accuracy: 99.96%; Estimate
orientation state accuracy:
92.88%

[108] MLP, ELM Fluidic
actua-
tor

CTR 2 Actuation
input
signal and
current
shape

Estimate tip
contact force

RMSE of tip contact force
estimation: approximately
65 mN
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et al. proposed to train an ANN to extract shape information directly from the
Edge-FBG spectrum [125]. The trained ANN can reconstruct the shape of a fiber
sensor made up of five Edge-FBG triplets with an error of less than 6 mm at the tip.
To further avoid the consequence of integrating inaccurate curvatures estimated by
the traditional FBG-based shape sensing method, Sefati et al. [44] proposed an
ANN-based method to directly estimate the tip pose of a continuum manipulator
from the measured wavelength shifts of FBG sensors. The continuum manipulator
is modeled as a pseudo-rigid body. Then a constrained optimization problem is
formulated to solve the joint angles of the continuum manipulator to reconstruct the
shape. The proposed ANN-based shape sensing method has improved shape sensing
accuracy by approximately 58% compared to the traditional FBG-based shape
sensing method. However, the approach suggested in [44] uses an optimization
process that is computationally demanding, complicating its application to a
continuum robot with multiple DOFs. Ha et al. presented an ANN model that can
directly estimate curvatures at a discrete point along the length of the continuum
robot providing the wavelength shifts measured by the FBG sensors in [126]. The
experimental results show that the method presented in [126] outperforms the
traditional FBG-based shape sensing method, which relies on the assumption of
the geometry of the fiber core.

Magnetic field-based tip pose estimation methods have generated substantial interest
in clinical applications due to their cost-effectiveness and capability to operate
without requiring direct line-of-sight. A permanent magnet-based localization for
growing robots was presented in [111]. The growing robot is a type of continuum
robot that achieves locomotion by extending from its tip. The tracking system
includes a permanent magnet integrated into the robot tip, and an array of magneto-
inductive sensors that are placed underneath the robot to gauge the variation in
the magnetic field when the robot navigates its workspace. In this work, a hybrid
strategy was proposed that combines a dipole model-based localization with trained
ANN. This strategy compensates for the measured flux density of each sensor in
order to improve the accuracy of the tip pose estimation. The presented hybrid
approach achieves a position error of 4.3± 2.3 mm in a 5-degree-of-freedom (DOF)
setting. The hybrid model improves position tracking accuracy by approximately
37% (compared to the model-based localization method) when the magnet moves
at high speed (i.e. 255 mm/s).

Contact estimation

During MIPs, knowledge about the interaction force between FSIRs and the
surrounding environment is desirable, in addition to the posture of FSIRs.
Information on current contact forces helps improve the awareness of clinicians
or the autonomous system, which allows them to make better decisions during
navigation. Incorporation of force sensors on FSIRs to measure either tip force,
distributed force, or contact state is difficult considering the size limitations and
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constraints related to cleaning and sterilization. A model-based component was
presented as an alternative to direct sensing in [127]. The nonlinear disturbance
observer, with corrections learned from data via the ML method, namely Gaussian
Process Regressions, can estimate the contact state and force direction. The method
in [127] only requires knowledge of the robot’s posture and actuation signals. To
measure its efficiency, the normalized scalar product of the estimated force direction
with the ground truth was evaluated. The average alignment yielded the result
of approximately 0.92 (where 1 is perfectly aligned) with a standard deviation of
0.08. Another approach was proposed in [107] to estimate the contact state of a
continuum manipulator. This work proposed a trained ANN to directly detect
collision from the measured wavelength shifts of the integrated FBG sensors. The
experimental results demonstrated successful detection of collisions with hard and
soft obstacles in less than 300 milliseconds. A data-driven approach to estimate
not only the contact state, but also the contact location, is proposed in [128]. The
proposed method requires only measurement of curvatures along the length of
the robot. In this work, the curvatures are measured by a multicore optical fiber
embedded in the central channel. The experimental results show a mean average
localization error of 2.3 mm for a flexible robot of 70 mm long. Knowledge of the
interaction force is not only useful for safe navigation, but also important for other
tasks that require maintaining contact between FSIRs and tissue for a period of
time, such as catheter ablation treatment. Yu et al. proposed a method to estimate
contact and orientation based on direct endomyocardial imaging acquired by optical
coherence tomography [129]. A CNN-based two-stage classifier was developed to
provide an intra-procedure assessment of contact parameters, achieving precision
of 99.96% and 92.88% for the estimation of contact and orientation, respectively.
Unlike [107, 127, 129] which mainly concentrates on estimating the contact state, a
virtual sensor was developed to estimate the contact force at the tip of concentric
tube continuum robots through supervised learning [108]. This work also shows the
usefulness of the transfer learning approach based on deep direct cascade learning.
The deep direct cascade network was pre-trained with synthetic data generated by
a simulated model of the robot before training with real data. The accuracy in the
estimation of the contact force of the tip was 8.471± 1.389 mN [108].

2.4.2 Modeling

In the realm of controlling conventional rigid link robots, researchers have developed
a variety of analytical models. These models effectively describe the kinematics
and dynamics of the robot, providing a detailed understanding of their operation.
However, when we change focus to FSIRs, the scenario changes considerably. Unlike
rigid link robots, analytical models for FSIRs are inherently more complicated
and, to some extent, less precise. This is mainly due to the intrinsically non-linear
nature of FSIRs. Furthermore, FSIRs can potentially possess a higher number of
degrees of freedom (DOF), which subsequently increases the complexity of these
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analytical models. Thus, comprehensive modeling of FSIRs represents a challenging
facet in robotics research.

The topics discussed in this section are related to the modeling of the characteristics
of FSIRs. These characteristics could include kinematics, dynamics, or shape/pose,
as outlined in Table 2.5. Efficient models of characteristics can enhance our
comprehension of the FSIRs, thereby refining control accuracy/precision and
environmental adaptability.

According to Fig. 2.4(B), MLP is the most widely used algorithm that accounts for
approximately 29% of all the ML algorithms used in the modeling task due to its
strong capability of modeling nonlinearities and convenience for implementation.
Other DL algorithms such as LSTM and CNN are also frequently utilized.

Model kinematics/dynamics

ML methods are used to represent FSIRs’s kinematics, bypassing intricate analyses
of robot attributes and formulas. These techniques can be easily adapted across
various FSIRs types, offering a versatile modeling strategy. In addition, the
ML approach, as a data-driven method, collects training data from the real
robot. This procedure identifies patterns of the robotic system in which nonlinear
phenomena are also incorporated. This is more useful, compared to traditional
kinematics/dynamics models, for continuum robots, in which the nonlinearities are
noticeable. Note that in this subsection, the included articles discuss the modeling
of the robot kinematics or dynamics when nonlinearities are not a major challenge
in those FSIRs such as multi-joint surgical robots [119], or CTRs [63], or when
nonlinearities compensation was not claimed as a contribution by the authors.

Conventional ML methods, such as density models and even regression, have been
explored to address these issues. A comparison between GMR and k-NN regression
is presented in [76], to learn the inverse kinematics (IK) of a Tendon-Sheath-
Mechanism (TSM) robot. The training data consists of pairwise motor movements
and end-effector states generated by human demonstration. The average prediction
accuracy (considering both actuators used in the TSM robot) is 91.2% and 93.2%
for GMR and k-NN, respectively. A subsequent study conducted by [64] included
Extreme Learning Machine (ELM) for comparison. The RMS errors of GMR, k-NN
regression, and ELM on trajectory following experiments are 2.5556 mm, 2.1527
mm, and 2.3277 mm, respectively.

In [113], another regression method is explored with the objective of predicting the
control signal. Here, the focus is on directly approximating the Inverse Kinematics
(IK) for a redundantly actuated, fluidics-driven soft robot. The research introduces
a comprehensive global IK model, constructed as a strategic weighted mixture of
numerous local inverse models. This methodology leverages the benefits of Locally
Weighted Projection Regression (LWPR), which operates in an online mode. With
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Table 2.5: Applications of ML algorithms in the modeling task (yellow for traditional
ML, green for DL and purple for RL)
Subtask Reference Involved ML

Method
Actuation
Method

Type of
Robot

DoF Modeled
Object

Evaluation task Performance

[86] MLP SimulationContinuum
Robot
(CR)

3 IK Trajector follow-
ing

RMSE: ca. 0.18 m and ca. 0.21 m
(with last 3 joints fixed)

[130] MLP SimulationConcentric
Tube

5 FK, IK Predicting the
tip position,
tube extension
and orientation

Mean tip error: 0.2 mm, 0.002
difference (FK); Error in tube
extension: 0.8 mm, errors in tube
rotation 0.1◦ (IK)

[63] MLP Cable-
driven

Concentric
Tube

6 FK, IK Predicting the
tip position,
tube translation
and orientation

RMSE: 2.3 mm in position, 1.1◦

in orientation (forward) 4.0 mm
in position, 8.3◦ in orientation
(inverse)

[131] MLP Cable-
driven

Multi-
joint

7 FK, IK Predicting the
trajectory

RMSE: 3.047e-07 (forward) mean
absolute error: 1.8e-03 (inverse)

[119] LSTM Cable-
driven

Multi-
joint

7 IK 2D trajectories
following

Mean tracking error norm: 3.47
mm (Square)

Model
Kinematic-
s/Dynam-
ics

[118] BNN Cable-
driven

Multi-
joint

7 Kinematics,
Dynam-
ics

Predict tip posi-
tion and motor
torques

Test RMSE: [0.109, 0.145,
0.108]mm (kinematics); [0.037,
0.050, 0.050, 0.024, 0.025]Nm
(dynamics)

[76] [64] GMM, KNNR Cable-
driven

Serpentine
manipu-
lator

2 IK 2D trajectories
following

RMSE: 2.5556 mm (GMR), 2.1527
mm (KNNR)

[113] LWPR Fluid-
driven

CR 2 IK 3D trajectory fol-
lowing

Mean accuracy:
±2.21◦ and maximum ±7.49◦;
±2.49◦ and maximum ±11.03◦)
with external disturbance

[75] GMM Cable-
driven

CR 3 FK, IK 3D trajectory fol-
lowing

RMSE and standard deviation:
1.379 ±0.637 mm (forward),
RMSE 1.909 ±1.067 mm (inverse)

[85] MLP Cable-
driven

CR 2 Hysteresis Hysteresis mod-
eling

Error distribution of 0.11 with
81.8% variability in hysteresis

[91] LSTM Fluid-
driven

CR 1 Hysteresis Predict the bend-
ing angle with
hysteresis

RMSE: 0.36◦; MAE: 1.23◦;
NRMSE: 1.17%

[117] LSTM, ELM Cable-
driven

CR 2 Backlash 3D trajector fol-
lowing

RMSE: [9.6, 9.1, 9.34]° (LSTM);
[12.9, 12.6, 12.0]° (ELM)

Model
Nonlinear-
ities and
Hysteresis

[132] CNN Cable-
driven

Multi-
joint

2 Hysteresis Pose estimation
with hysteresis

Average hysteresis reduction rate
of RMSE: 60.24±0.37% at θ1 and
65.15±0.65% at θ2

[133] MLP Cable-
driven

Multi-
joint

2 Hysteresis Estimate the
joint angle of the
robot

Maximum hysteresis sizes for
4 degrees: [4.39±1.0, 7.3±0.9,
8.19±0.9, 12.4±1.5]°

[116] ELM Cable-
driven

CR 3 IK Hys-
teresis

2D and 3D tra-
jectories follow-
ing

RMSE: 0.55 mm (2D), 2.03 mm
(3D)

[134] ANFIS Cable-
driven

Adapted
commer-
cialized
catheter

2 Backlash Path following Mean displacement: 1.997 mm
±0.849 mm; Mean instantaneous
velocity: 3.669 × 10−4 mm/sec
±10.767 mm/sec

[135] PoWER Cable-
driven

CR 3 IK, non-
linearity

2D trajectories
following

RMSE after RL refinement: 1.101
mm

[66] PoWER,
Liner
Regression

Cable-
driven

Serpentine
Manipu-
lator

3 IK, non-
linearity

Tube insertion
and circle
following

Returns of rollout: 0.986 (tube
insertion) and 0.981 (circle follow-
ing)

[120] CNN / Guidewire 2 Force
mode

Obstacle avoid-
ing

Maximum operating forces: 0.24
to 0.79 N

Model
Distal-
end force
Feedback

[92] LSTM, MLP Cable-
driven

CR 2 Force Predict force hys-
teresis

Average RMSE: 0.1364 N

[89] CNN, LSTM Cable-
driven

CR 2 Force Predict force hys-
teresis

Average RMSE: 0.1711 N
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this approach, the model is not only robust but also adaptable, capable of real-time
updates, offering a novel and efficient perspective on control strategies in soft
robotics. The proposed approach achieved a mean tracking error of ±1.79◦ based
only on the prepared simulation data. The performance eventually improves to
±0.90◦ with online learning. In [75], the Dynamic Gaussian Mixture Model [136],
a modified version of GMM, is employed to represent the forward kinematics (FK)
and IK of a robotic catheter using its present state, next state, and related control
commands.

ANN also demonstrates its capability to model the kinematics of FSIRs. Especially
when FSIRs has higher number of DOFs, DL is more widely used than traditional
ML. This trend can be seen in Table 2.5. In non-redundant continuum robots
for nonclinical applications, previous work [137] has demonstrated the capability
of ANN in modeling kinematics and showed superior performance compared to
conventional methods. MLP is most employed in the modeling task for FSIRs,
and it is also the most popular algorithm across the reviewed articles as shown
by Fig. 2.4(A). A related work appeared for CTR [130]. Its FK and IK were
learned using an MLP. However, this work was only validated in simulation. A
subsequent work [63] proposed MLP-based learning of the FK and IK for a 6-DOF
concentric tube continuum robot. Unlike [130], the data in [63] were obtained in a
real-world robotic platform. Thuruthe et al. addressed the challenge of IK learning
for continuum/soft robots by optimizing the training data representation [86]. They
employed MLP as a learning technique using data from a simulated kinematic
model. Additionally, they introduced a trigonometric joint description for enhanced
feature representation in the learning process. The learned model of FK gave a
tip error of less than 2.3 mm in position and 1.1◦ in orientation. As for IK, the
model achieved a translation actuator error of 4.0 mm and a rotation actuator
error of 8.3◦. The author claimed that the proposed feature description improved
the prediction accuracy of the learned model. Li et al. used three types of ANN
with different loss functions to model the kinematics of a multi-joint tendon-driven
flexible surgical robot called Micro-IGES [131]. This work was extended by using
an LSTM to model the kinematics of the Micro-IGES robot [119]. The LSTM
network is capable of learning the relationship between the actuation space and the
task space. The results showed that the robot could achieve better control accuracy
with the LSTM than with Denavit–Hartenberg models. In Micro-IGES, a Bayesian
Neural Network (BNN) was also used to learn the kinematics and dynamics of the
robot [118]. In addition to modeling, the BNN is also able to provide information
about the epistemic uncertainties of the learned system. Compared to MLP, BNN
is less prone to overfitting [118]. Real-world experiments revealed that the tip
positioning accuracy with BNN outperforms that with a pseudo-inverse kinematic
controller. However, the BNN needs to be compared to other state-of-the-art
models, e.g., MLP and LSTM in order to fully understand its modeling capabilities.
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Model nonlinearities and hysteresis

Nonlinearities, such as hysteresis, deadzone, and backlash, pose significant
challenges in the control of glsfsir. These complexities have caught the keen
interest of researchers within this field. It should be acknowledged that a multitude
of articles in this section essentially focus on modeling the Inverse Kinematics (IK).
However, the distinguishing factor of the articles in this section, in comparison
to the previous, lies in the degree of non-linearity of the FSIRs under discussion.
Here, the non-linearity of FSIRs is deemed more pronounced, and is thus treated
as a major challenge by the authors. Therefore, while maintaining the learning of
IK, this section underscores the significant role of nonlinearities within the broader
context of FSIRs research. Nonlinearities in FSIRs arise from elements such as their
flexibility, interactions between segments, and internal friction. Such nonlinearities
lead to differences between the anticipated motions at the distal end and the actual
actions at the distal segment. This hinders the effective modeling and control
of FSIRs during MIPs. To learn such non-linear relations, the training data is
often collected from the robot movements, which reflect non-linear behaviors of
the robot.

In [116], an ELM-based offline learning method was introduced for hysteresis
modeling. Separate ELMs were used to fit models, which collectively determined
the joint positions. This method was validated on trajectory following experiments,
and achieved an RMS error of 2.03 mm for 3D trajectories. Rather than modeling
the causes of nonlinearity separately, Omisore et al. proposed to model the nonlinear
relationship using a single MLP with relevant variables, e.g., displacement and
velocity of the proximal part [85]. The last output was used again as input. In
their ANN structure, a naive RNN concept is implemented, namely they take
the last output as input. In their approach, they consider only the most recent
state for time dependence. Wu et al. employed LSTM to model rate-dependent
hysteresis in a robotic catheter driven by pneumatic actuation [91]. Training
data consists of bending angle of the catheter tip (output) and pressure (input),
which are collected to train the LSTM. The performance of LSTM that has been
trained is compared to that of a state-of-the-art analytical model known as the
Deadband Rate-Dependent Prandtl-Ishlinskii (DRDPI) model and the traditional
ML method SVR in a trajectory following experiment. The results showed that
the LSTM outperformed the analytical model and the SVR model by 60.1% and
36.0%, respectively, in an arbitrarily varying trajectory. While the aforementioned
study provides insight into the modeling of hysteresis, it does not extend to its
compensation. This unresolved challenge is addressed in a subsequent work [138].
This work designs an open-loop controller based on an LSTM to control and
compensate for hysteresis in a catheter system. The proposed control-LSTM is
used as a feedforward free-space catheter controller robust to severe hysteresis. It is
precise and has a simple training procedure. Furthermore, the control-LSTM does
not require a separate inversion step when employed as a controller as would be
needed by most traditional analytical hysteresis models such as [139]. Similarly, the



42 MACHINE LEARNING IN FLEXIBLE AND INTERVENTIONAL ROBOTS

backlash of a two-DoF steerable endoscope was modeled using LSTM in [117]. The
LSTM takes bending angles in 2 DOFs as input and predicts the 4-way backlash of
the endoscope.

Omisore et al. initially examined the various factors impacting the backlash gap,
identifying the most influential ones [134]. They then developed a closed-loop
control system to compensate for backlash. This compensation was made possible
through an Adaptive Neuro Fuzzy Inference System (ANFIS) [140] model, which
predicts potential backlash, and a force modulation model that monitors contact
forces between the catheter tip and vasculature. In their in vitro experiment, the
mean absolute deviations of the input signal, and outputs of displacement and
instantaneous velocities, are 0.85 mm and 10.77 mm/sec, respectively.

Visual feedback could also be used to compensate for the hysteresis. A hysteresis
compensator with learning-based pose estimation is proposed in [132]. Tip pose
estimation was implemented based on a siamese CNN to reduce hysteresis by
adjusting the position command with a supplemental movement, similar to the
instinctive adjustments of clinicians with their visual feedback. Validation on
the testbed showed that the method can reduce hysteresis by up to 71.4%. The
visual method mentioned above was combined with a kinematic-based joint angle
estimation method to further compensate for the hysteresis in the same robot [133].
Hysteresis could be reduced to less than 5◦ when the sheath configuration is 0◦ or
90◦.

Another approach that combines an analytical model with RL to solve the problem
of nonlinearity is presented in [66] and [135], where an RL algorithm is employed to
compensate for a 2-DOF TSM’s nonlinearities. Chen et al. proposed a three-layered
approach that combines motion planning, solver of IK, and refinement of RL [66].
The initial layer involves the recording and modeling of a human demonstration
of controlling the TSM using GMMs. In the second layer, the TSM performs the
commands derived by the GMR. The GMR is derived from the GMMs, as explained
in Section 2.2.2. In addition, the positions of the end effector are recorded for
learning the IK model with linear regression. It is worth noting that the GMM-
GMR approach adopted here is the most popular among all the traditional ML
methods reviewed in this article according to Fig. 2.4(A). In the third layer, RL
(Policy Learning by Weighting Exploration with the Returns, PoWER) is employed
to refine the IK model by learning from the tracking trajectories generated by TSM.
However, the refined IK model was only validated in simulation by a circle drawing
experiment. This work is extended to [135] by conducting an evaluation in real
conditions. A serpentine manipulator is controlled to follow different trajectories
using the refined IK model. The RMS errors produced by the IK model before and
after the RL refinement are 9.639 mm and 1.101 mm, respectively.
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Model distal-end force feedback

Recognizing the forces applied on the distal end of the FSIRs is essential to obtain
a correct estimation of the current robot state. This information can be utilized
in robot control to ensure safety in MIPs [120]. However, obtaining precise force
feedback is difficult due to challenges in placing sensors at the distal tip and the
intrinsic nonlinearities of FSIRs. Consequently, there is growing interest among
researchers in sensorless methods for estimating distal-tip force, which can also aid
in creating haptic feedback.

Li et al. explored DL techniques to estimate the TSMs’ distal force using only
measurements from the proximal end [92]. They compared LSTM and MLP against
traditional model-based methods through a tissue manipulation task. Additionally,
they introduced a two-phase data-driven approach, rooted in ANN, to forecast
the dynamic force at the distal tip of a flexible robot [89]. In the initial phase,
both probing signal data and proximal-end force feedback are transformed into
2D visuals. A CNN classifies and estimates the sheath’s bending angle from
these images. Following this classification, the second phase employs the two
top-performing LSTM models from each class to dynamically gauge the robot’s
distal end force.

2.4.3 Control

Managing control is a primary challenge for any robotic systme. The flexible
nature of FSIRs introduces higher DOFs and reduced rigidity, which complicates
its comprehension and control. Developing a control schema that ensures FSIRs
applicability to dynamic environments with high control accuracy is essential for
surgical safety. This section summarizes three control manners: feedforward control
using models, feedback control and RL-based control, as shown in the Table 2.6.
The feedforward control with models eliminates sensors mounted on the tip of the
FSIRs, which is considered challenging due to the size limitation and sterilization
constraints. The feedforward control can work in some free-space scenarios, such
as inside the heart. However, the control commands adjustment is not error-based,
which makes it difficult to be used in a constrained environment. Feedback control
relies on feedback from sensors based on various physical principles, e.g., visual,
electromagnetic, or optical. RL is also used to train controllers, which translates
the high-level commands to motor skills from the interaction between the robot
and the environment.

According to Fig. 2.4(a), LSTM is the most popular algorithm in control. Although
LSTM enjoys popularity, it does not dominate the task. The combined occurrences
of the first four algorithms (LSTM, CNN, DDPG and GMM-GMR) in the control
task account for nearly half of the total. The control task has the largest variety of
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algorithms among tasks and there is not a mainstream algorithm in the control
task.

Feed-forward control using models in Section 2.4.2

As discussed in the “modeling” part, ML algorithms played a crucial role in learning
the IK model of a FSIRs. The learned IK model accepts a desired tip trajectory
as input, and predicts control commands for the actuators. With the learned IK
model, a feed-forward controller could be implemented with minor effort.

A few articles discussed in the previous subsection of modeling kinematics use this
feed-forward control to validate their model on FSIRs [31, 64, 76, 86, 138]. These
works integrated their learned IK models in the robot feed-forward control and
validated the performance by trajectory following experiments. Most validation
experiments are conducted in free-space [64, 76, 116, 118, 119, 131, 135] because
the learned IK model cannot consider perturbations from the environmental.
Nevertheless, compared with conventional feed-forward control based on analytical
models, this data-based approach is easier to implement. The ML approaches
only require data to be collected on the FSIRs without a deep understanding of
the system. The collected data often contains a lot of learnable patterns and
information. The ML can learn all these factors in one shot. On the contrary, the
analytic models require deep knowledge of the system. This increases the workload
if the structure/configuration of the FSIRs is changed. In addition, some factors
are difficult to be observed so that they are not considered by the analytic model.
However, direct elimination of these factors largely influences the control precision.

Feedback control

Analytical models or learning-based models for the feedforward control of a robotic
system could be accurate enough in open space. However, when applied to robots
in the world with external disturbance and interacting with the environment, the
error increases. Thus, it is not easy to achieve precise control on FSIRs solely
relying on feedforward control. Feedback information on the current status of the
robot is important to adjust the control commands for more accurate control.

Visual feedback Visual feedback from cameras contains instructive spatial
information for FSIRs control. Cameras could be embedded on the distal end
of robots, or placed in the environment to observe the procedure. However, as
mentioned in Section 2.4.1, external cameras suffer from the line-of-sight problem
and are therefore difficult to use in a clinical setting. From the visual feedback,
the controller has to estimate the gap between current status and expected status,
and decide how to adjust the actuators to reduce the gap.
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Table 2.6: Applications of ML algorithms in the control task (yellow for traditional
ML, green for DL and purple for RL)
Subtask Reference Involved

ML
Method

Actuation
Method

Type of
Robot

DoF ML Role Real-
world
Experi-
ment

Simulated
Experi-
ment

Validation task Results

[118] BNN Cable-
driven

multi-
joint

7 Learn the IK to pre-
dict control signals

✓ ✓ Predict tip posi-
tion and motor
torques

Test RMSE: [0.109, 0.145,
0.108]mm (kinematics);
[0.037, 0.046, 0.050, 0.023,
0.022]Nm(dynamics)

[131] MLP Cable-
driven

multi-
joint

7 Learn the IK to pre-
dict control signals

✓ x Predict the tra-
jectory

RMSE: 3.047e-07

Feed-
forward
Control
using
models

[119] LSTM Cable-
driven

multi-
joint

7 Learn the IK to pre-
dict control signals

✓ x 2D trajectories
following

Mean tracking error norm:
3.47 mm (square trajecto-
ries)

[76] [64] GMM,
KNNR,
ELM

Cable-
driven

CR 3 Learn the IK to pre-
dict control signals

✓ x 2D trajectories
following

RMSE: 2.56 mm (GMR),
2.15 mm (KNNR), 2.33 mm
(ELM)

[116] ELM Cable-
driven

CR 3 Learn the IK with
hysteresis to predict
control signals

✓ x 2D 3D trajecto-
ries following

RMSE: 0.55 mm for 2D, 2.03
mm for 3D

[135] PoWER Cable-
driven

CR 3 Learn the IK with
nonlinearity to pre-
dict control signals

✓ ✓ 2D trajectories
following

RMSE after RL refinement:
1.101 mm

[105],
[106]

RNN Cable-
driven

multi-
joint

4[105],
6[106]

Quadratic
programming
solver for the
kinematics-based
control

× [105],
✓[106]

✓ Visual servoing Error on 3 axes: < 0.2 mm;
average computing time <
0.01 s [105]; Demonstrated
the visual servo control [106]

[88] CNN Fluidics-
driven

CR 5 Predict the relative
orientation of the
placental surface for
tip position control

✓ x Distal tip align-
ment

RMSE: 5.93◦

[120] CNN / Guidewire 2 Recognize the oper-
ating force mode for
force control

✓ x Obstacle avoid-
ing

Maximum operating forces:
0.24 to 0.79 N

Feedback
Control

[141] CNN / / / Predict risk prob-
ability from force
state and torque
state

✓ x Guidewire can-
nulation

Average operating force and
average operating torque re-
duced by 20.80% and 14.20%

[113] LWPR Fluidics-
driven

CR 2 Learn the IK to pre-
dict control signals

✓ x 3D trajector fol-
lowing

Mean accuracy:
±2.21◦ and maximum ±7.49◦;
±2.49◦ and maximum ±11.03◦

with external disturbance
[75] GMM Cable-

driven
Commercial
catheter

3 Learn the IK to pre-
dict control signals

✓ ✓ 3D trajector fol-
lowing

RMSE and standard devia-
tion: 1.379 ±0.637 mm in
reality; 1.909 ±1.067 mm in
simulation

[77] SVM,
MLP*

Cable-
driven

Tendon-
sheath
Mecha-
nism

2 Learn the IK to pre-
dict control signals

✓ x 2D trajectories
following

Average RMS error: 0.49
±0.32 and 0.62 ±0.36 mm
for the slow and fast speeds

[142] SARSA DC mo-
tors

multi-
joint

1 Learn to generate a
policy to move the
robot in the colon

✓ × In-vivo colon en-
doscope

RL gave significantly better
results in more than 50%
colons compared to fixed
input

[115] MA
fuzzy Q-
learning

Cable-
driven

Concentric
tube

2, 3** Learn optimal pol-
icy of each con-
troller

× ✓ Trajectory track-
ing

Correlations between
achieved and desired
trajectories in X and
Y directions: 95% and
97% (2DOF); 94% and 97%
(3DOF)

Control
with Re-
inforce-
ment
Learn-
ing

[69] DQN Cable-
driven

Commercial
catheter

3 Learn to generate
policy to control the
catheter

✓ ✓ Reaching targets Average distance between
catheter tip and target:
4.70±1.59 mm

[98] DDPG Cable-
driven

Concentric
tube

4, 6,
8**

Learn the control
policy for concen-
tric tube robots

× ✓ Trajectory
following

Mean error ranging from
0.31 to 4.35 mm

[143] DDPG / Concentric
tube

6 Learn the control
policy for concen-
tric tube robots

× ✓ Trajectory
following

Mean Cartesian error: 1.29
mm mean Cartesian error
in the IK evaluation; mean
tracking error: 1.37 mm
(with noise)

[114] DQN Cable-
driven

Commercial
catheter

4 Learn the control
policy for concen-
tric tube robots

× ✓ Point tracking RMSE: 0.003 ±0.0058 mm

* Both SVM and MLP play essential roles in [77]. For the convenience of illustration, in this table, cells of [77] are filled with yellow (traditional ML).
** Experiments are conducted on robots with different DOFs.



46 MACHINE LEARNING IN FLEXIBLE AND INTERVENTIONAL ROBOTS

[105, 106] proposed to use RNN in their visual servoing control scheme. The
suggested method employs quadratic programming to navigate a flexible endoscope,
integrating both kinematic and physical limitations. The RNN is used as a solver
with finite convergence time to deliver a kinematic model suitable for closed-loop
control. The effectiveness of the visual servoing control system based on accelerated
RNN was tested in two simulations of distinct robotic platforms. The results
showed that errors are less than 0.2 mm, and the average computing time for each
time step is less than 0.01 seconds.

In addition to the promise of RNN-driven visual servoing, the profound ability of
CNNs to process image data holds potential for enhancing FSIRs control. Deep
learning techniques were introduced in [87, 144] to determine the position of
a camera at the end of interventional instruments. These methods showcased
potential uses in FSIRs control, a feat later realized in robotic fetoscopy research
by [88]. In this study, a specially trained CNN predicted the relative angle of the
placental surface based on fetoscopy images. This CNN was then incorporated into
a collaborative control system, balancing the automated movement of the flexible
tip with the broader motion directed by the operator. The proposed automatic
tip control achieved a root-mean-square error of 5.93◦. In [120], a CNN trained
with surgical images is employed to estimate the likelihood of actions for control.
For enhancing the safety of MIPs, a 1D CNN was developed using operational
forces to identify the force mode. An alternative method for recognizing the force
state in closed-loop control of a robotic catheter is presented in [141]. The authors
used identifiers based on CNN to estimate the probability of irregular states for
both force and torque, which were then used to control the catheter. The proposed
method reduced the average operating force and torque by 20.80% and 14.20%,
respectively. Due to the remarkable capability of CNN in effectively handling
different data types, including images and force/torque measurements, CNN is also
a popular algorithm and appeared in 12% of the reviewed articles as represented
in Fig. 2.4(a).

The traditional ML methods are also used for visual feedback control in [75].
Closed-loop positional control is introduced based on a novel IK model integrating
visual guidance. This IK model is learned by the dynamic Gaussian mixture model.
The validation was carried out by following two 3D square trajectories. The mean
RMSE and standard deviation of their trajectory following test is 1.379 ±0.637
mm.

Electromagnetic feedback Electromagnetic (EM) sensors are widely used
in FSIRs because their small sizes ease the integration in the FSIRs tip.
Electromagnetic feedback provides directly 3D spatial information, thus it is
often used to measure the position and orientation of the tip of the FSIRs [77, 138].

Various ML methods are integrated at different stages of the control framework for
FSIRs. In [77], Jolaei et al. developed a kinematic control scheme for soft tendon-
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driven catheters using a learning approach. They employed an SVM algorithm to
determine which is the activated tendon. The SVM classification results are used by
four deep ANNs to determine the desired length of each tendon. In their trajectories
following experiments, the average RMS error of the system is 0.49±0.32 mm and
0.62±0.36 mm for the slow and fast speeds, respectively.

Control with reinforcement learning

RL is frequently used to help robotic systems determine the best control strategies
when dealing with intricate environments. The realm of FSIRs control has seen
sustained interest in RL among researchers. As RL has evolved, the algorithms
applied to FSIRs have transitioned from basic ones like Q-learning and SARSA
(state–action–reward–state–action) to more advanced, ANN-augmented algorithms
like DQN and DDPG.

An initial study by [142] employed Q-learning and SARSA to adapt the motor’s
input voltage in order to decide the direction and speed of a colon endoscope robot.
The robot earns a positive reward for forward movement, and punishments are
introduced to prevent undesirable situations, such as when the torque surges to
risky levels, potentially twisting the colon. Both techniques were tested on six
in-vitro colon models. Both algorithms gave better results in over 50% of the colons
than a usually used constant velocity controller.

While robotic control via RL is typically approached as a singular agent interacting
with an environment, the control of tendon-driven manipulators is conceptualized
from a multi-agent reinforcement learning perspective in [115]. In their study, each
DOF is viewed as an individual RL agent. They employed a multi-agent fuzzy Q-
learning method capable of establishing the relationship between the manipulator’s
tip positions and the desired path. In their simulation-based trajectory following
experiments, correlations between achieved and desired trajectories are above 94%
considering both 2 DOFs and 3 DOFs manipulators.

As described in Section 2.4.1 and Section 2.4.2, ANN has proved to be one of
the most used approaches in several FSIRs tasks, for example in perception
and modeling. Similarly, the advances on DRL, benefited from the evolution of
ANN, broadened the applicable scenarios of RL in the FSIRs context, since these
algorithms are suitable for learning a complex MIP task using only the clinical data
commonly available during a procedure. Conversely, the computational resources
needed to train DRL agents have grown significantly, creating a hindrance to
further applications.

In a simulation study conducted by You et al. as detailed in [69], a dueling DQN
was employed to learn the control of a cardiac ablation catheter tip. The training
of the agent was based on both angiographic images and position data. To bridge
the disparity between the simulated and actual practice, random disturbances
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were introduced during the training process, enhancing control precision under
real-world conditions. The RL agent achieved an average error of 4.70±1.59 mm
between the catheter tip and the target. In [98], Iyengar et al. delved into the
influence of extra noise in RL-driven CTR control. They assessed three different
noise types. Using the DDPG algorithm, they evaluated its efficacy in formulating
the optimal control strategy across three CTR configurations: 2-tube, 3-tube, and
4-tube. This RL-based IK controller achieved an average extension error of 0.44
mm and a rotation error of 0.3◦. In their follow-up study, the authors of [143] also
used DDPG to build a model-free IK solver for concentric robot control. Compared
with [98], [143] worked with a longer concentric tube with a more complex model
in simulation. Also, a goal-based curriculum function is utilized to decrease the
training time. The proposed IK solver achieved a 1.29 mm mean Cartesian error in
the IK evaluation, and a 1.37 mm mean tracking error in a noise-induced simulation.

In [114], a DRL-based approach is applied to adapt the PID control gains when
the robotic catheter interacts with the environment. A DQN augmented by LSTM
is used to learn the tuning policies. The temporal learning approach is used in this
process to increase the sampling efficiency and update the target network of the
DQN between episodes. The suggested method was tested in a simulated experiment
to gauge axial movements. The result is an RMS error of 0.003 ±0.0058 mm, which
outperforms the other methods (i.e., Ziegler-Nichols system and adaptive fuzzy
tuning).

2.4.4 Navigation

Navigation is one of the commonly occurring medical phases where the
interventional tool advances through body lumens or vessels to reach deeper
sections of anatomy [40]. Manual navigation usually takes up much of the clinicians’
concentration during the procedure while deploying the device. Operating deployed
instruments is even more critical. FSIRs with a higher level of autonomy in
navigation can save clinicians’ energy from focusing on meticulous operations
during the navigation phase. This allows clinicians to focus more on crucial tasks
after reaching the intervention site. Nevertheless, autonomous navigation for FSIRs
is challenging because the environments are deformable and dynamic.

As a high-level task, navigation can benefit from efficient perception, reliable
modeling, and precise control. Therefore, some research work on navigation has
partially discussed these topics. In this subsection, we mainly focus on one of
the most common navigation tasks, namely motion planning. Research in various
robotic fields suggests that initiating motion planning strategies is a foundational
step towards autonomous navigation [156]. Motion planning refers to finding
feasible trajectories or actions traversing the area between a starting state and a
goal state while bypassing obstacles and avoiding unwanted zones. Regarding MIPs
involving FSIRs, the kinematic and geometric restrictions of FSIRs also impose
constraints on the planning.
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Table 2.7: Applications of ML techniques in the navigation task (yellow for
traditional ML, green for DL and purple for RL)

MethodReference Specific Algo-
rithm

Type of In-
terventions

Model Input Model
Output

Local Mo-
tion Plan-
ning

Trajectory
Optimiza-
tion

Learning
Motion
Primitives

Kinematics
Constraints

Real-
world
Experi-
ment

Simulated
Experi-
ment

[55] GMM(EM)-
GMR

Endovascular
catheriza-
tion

Proximal data
from expert mo-
tion

Motions × × ✓ × ✓ ×

[53] HMM(EM) Endovascular
catheriza-
tion

Proximal data
from expert mo-
tion

Motions × × ✓ ✓ ✓ ×

[112] DMPs Endovascular
catheriza-
tion

Proximal and
distal data from
expert motion

Trajectories x ✓ ✓ ✓ ✓ x

[47] GMM(EM)-
GMR

Endovascular
catheriza-
tion

Proximal and
distal data from
expert motion

Trajectories × ✓ ✓ × ✓ ×

[52] GAIL Endovascular
catheriza-
tion

Catheter states,
manipulator
motions

Motions ✓ × ✓ × ✓ ×

[145] GAIL Neurosurgery Needle states Trajectories ✓ ✓ ✓ ✓ × ✓
[51] GMM-GMR Laparoscopy Tip trajectories

from expert
Trajectories × ✓ ✓ ✓ × ✓

LfD [146] DP-Means Laparoscopy Tip trajectories
from expert

Trajectories × ✓ ✓ ✓ × ✓

[45] GMM-GMR MIS Demonstrated
trajectories

Executable
paths

× ✓ × ✓ ✓ ×

[147] GMM-GMR MIS Demonstrated
trajectories

Motor tra-
jectories

× × ✓ × ✓ ×

[74] GMM-GMR Keyhole
surgery

Demonstrated
trajectories

Executable
paths

× ✓ × ✓ ✓ ×

[123], [46] GMM-GMR Laparoscopy Contexts/phases
of the task

Motions × × ✓ ✓ × ✓

[148],
[123]

GMM-GMR Laparoscopy Octopus move-
ments

Motions × × ✓ ✓ × ✓

[149] Q-learning Endovascular
catheriza-
tion

2D mesh Motions ✓ × × × × ✓

[99] DQN, DDPG Endovascular
catheriza-
tion

Reward
function

Motions ✓ × × × ✓ ✓

[150] DDPG Endovascular
catheriza-
tion

Catheter states
(positions) of
current and
past, motions
of past

Motions ✓ × × × ✓ ✓

[151] DQN Transoral
endotra-
cheal

Simulated
images

Motions ✓ × × × × ✓

[69] DQN Endovascular
catheriza-
tion

Position data
and video

Motions ✓ × × × ✓ ✓

RL [68] GA3C Neurosurgery MRI images Trajectories × ✓ × ✓ × ✓
[152] DQN Endovascular

catheriza-
tion

Motion control
commands from
demonstrations

Motions ✓ × × × ✓ ×

[153] MDP Flexible
needle
insertion

CT images Trajectories × ✓ × × ✓ ✓

[54] UDQL Flexible
needle
insertion

CT images Trajectories × ✓ × × ✓ ✓

[154] DQN Flexible
needle
insertion

CT images Trajectories × ✓ × × × ✓

[155] A3C Endovascular
catheriza-
tion

Aortic arch
model

Trajectories × ✓ × × × ✓

[78] K-means and
SVM

Intracardiac
catheriza-
tion

Images from tip
camera

Type of
tissue

✓ × × ✓ ✓ ✓

Others[87, 121] CNN Bronchoscopy
in the lungs

Simulated
images

Airway
character-
istics

× × × × ✓ ✓

[120] CNN Endovascular
catheriza-
tion

Motions, oper-
ating force, sim-
ulated X-ray im-
ages

(Probability
of)
motions

✓ × × × ✓ ×
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Table 2.7 summarizes the publications using ML techniques in the navigation task.
As schematized in Table 2.7, ML applications for FSIRs’s motion planning are
categorized into three broad techniques: Learning from Demonstration (LfD), RL,
and computer-vision-based approaches for assisting motion planning. Among
different ML algorithms appearing in the navigation task, the GMM-GMR
approach is dominant, as indicated in Fig. 2.4(b). It is mainly used in the LfD
paradigm for motion planning because of its capability to encode the statistical
characteristics from noisy demonstration data, and make predictions of robotic
motions continuously over time. From Fig. 2.4(b), when it comes to RL approaches,
both value-based approaches (e.g., DQN) along with policy-based approaches
(e.g.,DDPG), are popular in practice. In the following, each of these methods is
described referring to their three categories.

LfD-based navigation

One of the ML approaches commonly adopted to learn human-like gestures is the
LfD paradigm. In LfD, expert demonstrations are used to generate a feasible task
space to automate medical navigation. Statistical models such as GMM and HMM
are often adopted to encode the demonstration data, which can be recorded from
distal and proximal sensors embedded in the FSIRs during manual navigation.
Fitted models can work as a motion planner for FSIRs navigation. The GMM-GMR
approach, which is explained in Section 2.2.2, is the most commonly used approach
according to Table 2.7. The expectation Maximization (EM) algorithm is often
used to optimize the parameters of GMMs.

Rafii-Tari et al. introduced a method using learning to create motion trajectories
based on various demonstrations of catheterization procedure [55]. The two-DoF
linear and rotational motions produced by experts at the proximal end of a catheter
are recorded during the catheterization procedure. The demonstration is then
modelled with GMM. Then GMR is derived from the GMM and is applied to
generate optimum motion trajectories for a robotic catheter driver. This method is
able to provide assistance to inexperienced operators. The suggested cooperative
scheme integrates the operator’s manual handling of the guidewire with the robot’s
automated catheter motions, working together step by step. Additionally, the
authors introduced a different collaborative approach for robotic endovascular
catheterization leveraging HMM [53]. They extended their LfD approach by
decomposing the procedure into a set of primitive motions and learned the model
of each primitive using HMMs. A higher abstraction level HMM is utilized to
grasp the overarching structure of the desired task. These refined models are used
to produce a motion sequence, identify operator actions, and forecast upcoming
movements. These anticipated actions during catheter navigation are showcased on
a supervision interface. Through this interface, the operator observes the robot’s
present and subsequent movements, determining if any adjustments are needed.
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Nevertheless, the anatomical structures can differ among patients in terms of size
and relative location. This aspect was not addressed in the earlier studies [53, 55],
but was explored in a later research [47]. This subsequent study utilized a non-rigid
registration technique to identify the warping function, aligning demonstration
paths to different anatomical frameworks. Robot paths are crafted based on the
motion model derived from these adjusted trajectories. Both in-silico and ex-vivo
tests validated the introduced path optimization and navigation strategy.

The authors of [112] exploited a model-free algorithm, i.e., policy improvement
with path integrals, for motion trajectory optimization. Human demonstrations of
endovascular catheterization with a 2-DOF catheter and a 1-DOF guidewire are
collected and modelled by Dynamical Movement Primitives (DMPs). DMPs are
then used to initialize the policy for training. Compared with manual operation,
the obtained agent improved path length, speed, max acceleration and distance
between catheter tip motion trajectories and vessel centerlines. This method shows
better contact force results than manual and robot-assisted operations without
LfD.

Building on the foundations of studies [47, 55, 112], Chi et al. introduced the
use of Generative Adversarial Imitation Learning (GAIL) for automating robot-
assisted endovascular catheterization, specifically targeting two primary aortic arch
branches: the left common carotid artery (LCCA) and the brachiocephalic artery
(BCA) [52]. GAIL, trained using expert demonstrations, formulates the policy for
BCA cannulation. This crafted policy is then repurposed and fine-tuned for LCCA
cannulation using Proximal Policy Optimization (PPO). The proposed agent’s
cannulation success rate is 94.4% on BCA and 88.9% on LCCA. Another work
[157] also chose GAIL to train a steerable catheter in a 3D neurosurgical simulator.
Its results demonstrate that the GAIL method is fast and can securely steer flexible
catheters with high accuracy and robustness. In their later paper [145], similar
to [52], PPO is combined with GAIL to provide intra-operative path planning for
motion control. Based on this approach, they proposed a path planning framework
for steerable needles used in neurosurgery. This framework can achieve an average
targeting error of 1.34 mm in position and 3.16 degrees in orientation in simulation.

In the research cited as [51], an algorithm was introduced that leverages the LfD
approach to learn viable paths for a flexible robot. This assimilated knowledge
is captured via GMM and can be deduced as potential paths using GMR. The
diversity in the acquired trajectories aids in maintaining the tip’s movement
along the best path while modifying the robot’s form during unforeseen organ
interactions. In a subsequent research [146], they expanded this method into an
online learning algorithm by incorporating the Dirichlet Process (DP)-Means for
real-time clustering. This refined approach creates a statistical representation of a
surgeon’s innate movements during a procedure and formulates a controller within
the null space.

Another two works [45], [147] also took a similar LfD approach with GMM-GMR as
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did in [51, 55] to learn the trajectories of the tendon-driven serpentine manipulator.
In [45], the GMM-GMR approach is used to learn the reaching and targeting skills
from the human demonstrations and plan motion trajectories for an IK-based
controller to reproduce behaviors automatically. However, Xu et al. proposed
to learn the motor commands directly without relying on an IK model [147].
Furthermore, outcomes from GMR serve as annotated training data, enabling the
use of Locally Weighted Regression model to extract models tailored for real-time
control. GMM-GMR approach is also applied on a multiple-segment flexible robots,
as shown in [74]. In a manner akin to [45], the study [74] posits that GMM-GMR is
designed solely to generate executable trajectories. However, the control is derived
from the robot’s analytical kinematics model.

For the STIFF-FLOP surgical robot, a control strategy was developed by discerning
context-reward relationships from demonstrations using GMM-GMR. This GMM-
GMR was then employed to enhance a context-action relationship through EM
[46, 123]. Alongside routine tip steering experiments, the robot underwent a test
resembling a surgical setting. Here, the surgeon steered the tip, and the robot
managed a midpoint on its structure. This test showcased the robot’s capacity to
utilize kinematic redundancy and sidestep designated areas. Subsequent research
[123, 148] adopted a comparable methodology. They aimed to transfer skills
observed in octopus movements to the STIFF-FLOP robot. Motion primitives,
which can be variously combined for novel motions, were deduced from octopus
motions via GMM and relayed to the STIFF-FLOP robot through GMR. They
also designed a self-refinement algorithm to optimize GMM parameters based on
iterative reward-weighted regression rather than the common EM-based approach.

RL-based navigation

An agent in RL attempts to maximize a particular reward function by taking actions
and observing the consequences of those actions in the environment. Researchers
adopted RL algorithms to tackle endovascular navigation in model-free approaches.
Model-free approaches are commonly used RL methods that can be widely applied
to different environments since they learn the optimal policy without estimating
the dynamics of the environment [158]. In [149], a Q-learning-based RL strategy
was introduced to navigate a robotic catheter through two distinct simulated 2D
aorta meshes. The learned navigation policy on the first mesh is used as a policy
initialization for the second mesh. Navigation is also performed with DRL, which
benefits from the capability of ANN. An application of DQN [69] in cardiovascular
intervention is already introduced in Section 2.4.3, and the navigation experiment
is a showcase for their proposed control algorithm. A high success rate of 87%
for the translation from a simulator to a real robotic system was reported [69].
Another work for coronary intervention is presented in [152]. In [152], a guidewire
navigation framework for coronary interventions is proposed based on a DRL
algorithm Rainbow [159], which improves DQN by combining multiple techniques.
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The authors also made improvements by optimizing the replay memory of DQN,
setting a focus window, and utilizing segment-wise training and transfer learning.
The framework was experimented with a 2D coronary phantom and a 3D artery
phantom with fluid flow. The final success rate of the guidewire navigation to the
main target is 98% in both 2D and 3D phantoms. The authors of [155] tried to
apply a DRL algorithm, namely Asynchronous Advantage Actor Critic (A3C), to
learn the autonomous navigation into a virtual model of the aortic arch. Then
the A3C algorithm is implemented to navigate the catheter in this virtual model.
The training results show that the reward was able to achieve stability while the
loss function fluctuated. Further tuning of network parameters is still required to
provide a stable path.

In [99], the researchers analyzed robotic catheter navigation using two DRL methods:
DQN and DDPG. They further evaluated various DDPG versions’ convergence
rates in a simulated setting. However, the robustness of the system was uncertain
due to the simplicity of the testing environment. A subsequent study in [150]
advanced this research by steering a guidewire through a rigid two-dimensional
vascular model, offering a closer resemblance to human vessel structures than
their prior work. In this study, DDPG, enhanced with hindsight experience replay,
directed the guidewire. This was trained in a simulation where the agent, based on
present and previous catheter states and earlier motions, determined the subsequent
motion, comprising both translation and rotation commands.

Works emerging with RL methods in other clinical applications are studied as
well. [151] developed a navigation policy based on Deep Q Reinforcement Learning
Neural Networks (DQNN) that utilizes images from a monocular camera mounted
on the tip of a snake robot for tracheotomy. The system is said to serve as
an assistive device for medical personnel to perform endoscopic intubation with
minimal human input.

In addition to its use with catheters or concentric tubes operating within lumens, RL
has been employed for the insertion of flexible steerable needles. As demonstrated in
[54], a supervised approach is taken for both path and motion planning of steerable
needles using Universal Distributional Q-learning (UDQL). This agent, trained in
simulated 2D and 3D settings, can execute insertions targeting multiple points from
a singular entry point, augmented by hindsight experience replay. This method
produces a distribution indicating potential risks, allowing professionals to manually
adjust and refine the model based on their assessment, facilitating transfer learning.
The proposed approach performed better than the deep double Q-learning network,
which is a variant of DQN, in terms of steering accuracy and avoidance probability.
In their previous work [153], which is not based on RL but on MDP, they proposed
a robust path planning algorithm to provide secure and optimal motion planning.
The navigation challenge is framed using an MDP method, where uncertainties
are treated as variables with undetermined distributions. The proposed method
outperforms the traditional MDPs in success rate and avoidance probability. In
the study by [154], DQN was employed to master the insertion of a flexible needle
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with 2 DOFs. The reward system was based on the proximity between the needle
tip and the target, while penalties were imposed for contact with surrounding
tissues. The GPU-based A3C algorithm (GA3C) is also applied to plan paths for a
steerable catheter in [68]. It delivers the best paths considering obstacle avoidance
and kinematic limits. The outcomes demonstrated leading-edge results in terms of
navigating around obstacles, trajectory smoothness, and computational speed.

Other methods

In various medical settings, flexible robots are often equipped with a camera at
their tip, providing live visual data of the immediate surroundings. This visual
feedback can be used to guide the robot’s navigation. These methods are classified
as computer vision-based navigation.

Fagogenis et al. introduced an algorithm for navigation relying solely on visual
cues [78]. Using a limited image dataset, they fully trained K-means and SVM
image classifiers. These classifiers are adept at differentiating between ventricular
walls or blood and the bioprosthetic aortic valve. Based on the tissue the FSIRs
interacts with, the system can toggle between two navigation strategies to perform
intricate clinical procedures.

In addition to SVM classifiers, ANNs, particularly CNNs, have gained popularity
for visual-assisted FSIRs navigation. In studies by [87, 121], CNN designs
were formulated to instantly determine the location of the bronchoscope using
information from a camera at its distal end. The subsequent closed-loop control
was visually guided. These CNNs are trained to recognize features of the observed
airways. This data is then relayed to the robotic bronchoscope’s motion controller,
which then selects the optimal trajectory from a set of predetermined airways.
With the proposed navigation method, the robot successfully reached the target in
the lung in 19 out of 20 trials. A DL methodology that uses CNNs for steering
an endovascular robot draws insights from X-ray images of the present clinical
condition. In the study by [120], Zhao et al. introduced a framework that merges
simulated X-ray visuals from an exterior camera and internal operational forces to
guide navigation decisions. The training data, which comprises operational actions,
operational force, and medical state images, is used to train two CNNs, i.e., a
2D CNN that learns from medical images to estimate the probability of action
and a 1D CNN that utilizes operating forces to identify the force pattern. This
navigation framework achieved a success rate above 84% on a mixture of data from
two cases.
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2.5 Discussions on the survey of the ML used in FSIR

The ML approaches have been successfully applied in FSIRs tasks involving
perception [44, 124, 127], modeling [63, 64, 76, 91], control [75, 105, 115, 120], and
semi-autonomous/autonomous navigation [47, 52, 55, 78]. Figure 2.5(a) reflects
the frequency of FSIRs-related papers using ML techniques by year. The number
of papers is steadily increasing with a peak in 2019. Figure 2.5(b) summarizes the
exploitations for the four categories of ML approaches. The number of traditional
ML algorithms used can be seen to fluctuate from year to year and its appearance
remain stable from 2013 to 2020. This may be related to the fact that traditional ML
approaches remain the most suitable choices when working with small datasets, very
common in the FSIR context, where DL techniques cannot be trained effectively.
The application of DL has experienced rapid growth since 2017. This is consistent
with other scientific fields and explained by a true DL boom that started with
Alpha Go in 2016. In addition, the increased accessibility of open source DL
libraries (e.g., Tensorflow, first released in November 2015, and Pytorch, first
released in September 2016) has fed this booming trend. As is demonstrated in
Fig. 2.5(b), the application of RL have also increased from 2017 onward. Since
2017, 20 out of 27 RL-relevant articles have utilized DL techniques. The DRL
has benefited from the growth in ANN. Despite the above-mentioned growth in
popularity, applying different ML methods to FSIRs still suffers from some common
limitations/challenges. We want to discuss some common hindrances, which are
found from the reviewed literature, as well as some open issues that are not often
mentioned in recent researches.

Performance gaps among simulation, bench-top experiment and
in-vivo test

A well-accepted procedure to validate algorithms on autonomous robots is to firstly
test the robotic functionality in computer-based simulators and bench-top synthetic
phantoms before carrying out in-vivo animal/human trials [69, 86, 108]. Prior to a
clinical application, safety, ethical and legal guidelines need to be considered.

However, the discrepancies between a simulated and a bench-top environment,
called the “reality gap”, can lead to significant shortcomings when a ML model
trained on simulated data is deployed in a bench-top environment. These differences
are due to modeling errors since it is highly challenging to model contact forces,
friction, tool-tissue interaction, sensor noise, and lighting conditions, all leading to
performance decay of ML methods when the training and test environment vary.
Therefore creating surgical simulations is a widely studied topic in the literature
which requires realistic and real-time modeling of soft tissue response to tool-tissue
interactions, in addition to realistic rendering [160].
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Various studies have attempted to solve the reality gap by introducing perturbances
in the environment or focus on domain randomization [161]. Domain randomization
techniques try to generate large volumes of simulation data by considering the
sim-to-real differences in a virtual environment [162, 163]. In the reviewed works
of FSIRs, randomized noises are added to the simulation environment, so as to
make the simulated experiment more complicated and realistic [51, 69, 98, 112].
Another solution is generating synthetic data that are close to real data. Some
recent works have used Generative Adversarial Networks (GANs) to construct a
mapping between simulated and real domains, then to create synthetic data, such
as [133, 164, 165].

One can expect that another gap exists between bench-top and in-vivo experiments.
Here bench-top experiments refer to either synthetic phantom or ex-vivo tissues.
This gap has been less reported because there have been few works applying ML
techniques in in-vivo experiments [78, 142]. In-vivo environments are considered to
be more complicated because the robot has to interact with different body fluids
and soft tissues. Another challenge comes from physiological movements, such
as breathing and heartbeat, which make in-vivo environments dynamic. Thus,
maintaining precise control of robots is more challenging in in-vivo environments.

Limited interpretability of ML algorithms

In Section 2.2, the interpretability of ML and some interpretable ML models are
described. However, the limited interpretability of the ML algorithms are not
yet discussed. Interpretability is defined as “the degree to which a human can
understand the cause of a decision” [166]. A ML model with concise mathematical
or statistical expression, such as a linear regression model, makes it easier to
comprehend why such a model makes certain predictions or decisions. The limited
interpretability of some ML models raises safety concerns on the application of
these ML techniques on FSIRs. One typical example is ANN, which is often viewed
as a “black-box” because it is difficult for a human to follow the data stream from
the raw input to the network output. In addition, the knowledge that ANN learns
is stored in hidden layers. The parameters of an ANN such as weights and biases
that a human can directly observe do not contain any physical meaning. This
information is thus too complex for a human to follow. Therefore, the use of ANN
with FSIRs may raise doubts on reliability and acceptability issues to clinicians.

To increase the understanding of ANNs, ablation study has been used when
applying ML algorithms on the FSIRs [85, 138]. Through an ablation study, one
can determine the contributions of each part in an ML algorithm to the overall
performance, or justify the selection of the ANN hyperparameters.

The limited interpretability of ML algorithms also increases the uncertainties of
an FSIRs system. In safety-critical areas such as MIPs, it is crucial to adhere to
high safety standards as errors in robotic control can lead to hazardous situations
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[167]. However, it is difficult to guarantee safety in all circumstances when dealing
with complex computer-controlled systems such as FSIRs [168], especially when
ML techniques are incorporated (even experienced surgeons or interventionists are
not flawless).

Due to the uncertainties involved in ML models, providing guarantees of safe
behavior in a trained model is highly challenging [169]. To mitigate the risks caused
by uncertainties, recent regulatory measures in the high-risk category, such as
surgical robots, are directed towards involving human supervision [167]. Hence,
systems integrating ML techniques may consider including humans in the loop
in earlier designing phases [167], which could further enable shared control. The
human-involved shared control can be done by, e.g., visualization in real-time of the
system’s status or predictive display of future actions the system intends to pursue
before actually executing those actions [170]. It is also possible to evaluate the
risk of future actions by algorithms and manage the risk with human supervision,
as implemented in [54]. Another example of shared control is that manual and
autonomous control are switched in different phases of the MIPs, depending on
the complexity of the tasks[55]. Moreover, some studies have proposed safe-
reinforcement learning using formal verification methods for robot-assisted MIPs
[171]. Other techniques for safe-reinforcement learning that have not yet been
applied in the surgical domain are reviewed in [172].

Data issues

In terms of data collection, unlike image recognition or natural language processing,
where huge labeled data sets are open to the public, medical data for FSIRs
research, such as endoscopic images, is typically limited in size. It is often difficult
for researchers to collect more clinical data from external data centers because
sharing medical data still has privacy concerns. As an attractive solution to
overcome the shortage of medical data, federated learning has been embraced by
the medical image community. Federated learning utilizes data from individual
data sites to train a global model without sharing the data directly, so as to improve
the robustness and performance of the global model while protecting data privacy.

Another problem is the bias in data because surgical specialties and employed
instruments may be quite dependent on the center where data was gathered. Data
lacking the variability across centers may result in potentially ill-suited systems
and misdiagnoses [173]. For instance, in the clinical studies of [173], excluding data
of African-Americans led to the misclassification of some patients as pathogenic.
In practice, to enrich training data for ML, artificially manufacturing synthetic
data has been adopted in clinical studies [174]. In the context of FSIRs, synthetic
data is often used to enlarge datasets with real sensor data [88, 133, 165]. However,
creating assessment criteria for objectively evaluating synthetic data is still an open
question [175].



58 MACHINE LEARNING IN FLEXIBLE AND INTERVENTIONAL ROBOTS

Different vision between engineers and clinicians

Yet another problem is the difference between metrics of algorithms and clinical
needs. Researchers may be excited to see ML model performance metrics improve,
but this does not necessarily result in an improved clinical outcome, which matters
for clinicians (and patients). From the clinicians’ perspective, performance of
ML algorithms may not be the most convincing factor to use ML. Sometimes
the improvements in performance metrics are at the expense of changing the
clinicians’ customs. Clinicians may also have concerns about the applicability of
ML algorithms in complex clinical applications. ML algorithms’ ability to justify
its outputs and help clinicians understand the output has been generally believed
to be crucial to establish clinicians’ trust in ML [176]. To eliminate barriers in
vision, researchers have to collaborate more closely with clinicians and evaluate
the results from the clinician’s perspective from bench-top to in-vivo experiments.

Ethical and liability aspects

Employing ML algorithms in conjunction with FSIRs poses challenges not just
for researchers but also necessitates a wider debate concerning ethics and liability.
From the ethical side, informed consent is a principle in healthcare, but it could
be a challenge when ML is involved in clinical practice. As we discussed before,
due to the limited interpretability of some ML algorithms, clinicians may feel it
hard to understand the reason for ML’s outputs, let alone inform and educate the
patients about the complexity of ML used by the devices. In addition, liability for
ML-involved clinical devices such as FSIRs is another challenge. Who will be liable
if a FSIRs with deployed ML algorithms makes a mistake? The broader ethical
and legal issues related to AI in healthcare have been elaborated upon by [84].

2.6 Conclusions on the survey of the ML used in FSIR

This chapter reviews and discusses current applications and research activities of
ML algorithms in the context of FSIRs. ML has played an increasingly important
role in different tasks of FSIRs, such as perception, modeling, control and navigation.
From the perspective of interventional tasks, this chapter aims to sketch the big
picture showing how different ML algorithms are gaining popularity in various
scenarios, thereby providing a good indication of how advances in ML could boost
the use of FSIRs in clinical procedures. From the perspective of ML algorithms,
readers can gain insights into which functionalities ML could perform. This provides
guidance for researchers when weighing the use of ML versus traditional model-
based techniques for FSIRs in MIPs. This chapter also described an analysis of
a possible workflow or interaction between ML algorithm, clinicians and FSIRs.
ML algorithms may enhance the autonomy level of FSIRs by engaging in various
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phases of the MIPs. The clinicians could focus on high-level tasks when working
with ML-based FSIRs. Meanwhile, the expert demonstration may help the ML
algorithm learn skills from clinicians, so as to improve the autonomy level of FSIRs.
In this manner, FSIRs hold the potential to be more intelligent with the use of ML
over time.

Advances of autonomy in FSIRs still face challenges due to the limitations of ML
and clinical factors. Much work is needed before these techniques can be used
in real clinical practice. As a matter of fact, the validation of the vast majority
of the works presented in this chapter only took place in in-vitro experiments.
Data of high quality is always important to train ML models, yet it is not easily
accessed and tricky to process. Thus, the challenge of obtaining data amid growing
concerns about privacy is an issue that urgently needs addressing, for example,
with federated learning. Also, some popular ML algorithms often behave as a
black box. It remains an urgent objective in increasing the interpretability of
ML. Moreover, this is likely to be crucial if one wants to convince the developers
but, more importantly, the clinicians to put their trust in said ML algorithms.
Improving interpretability is crucial to building trust in ML, thereby enabling more
effective use of these algorithms in FSIRs systems in clinical practice.

This chapter addresses sub-objective 1 by surveying the latest applications of ML
in FSIR, thereby laying the groundwork for the use of ML techniques in addressing
control and sensing challenges in robotic catheters. This approach is in alignment
with the overarching goal of the thesis. Moreover, the survey provides valuable
insights into algorithmic choices, which benefits the application of ML techniques in
the following chapters. In Chapter 4, a MLP network is used to map the wavelength
shifts of FBG sensors to the curvature and the angle of the bending plane of the
continuum robot. MLP is chosen due to its capability to model nonlinear systems
and its ease of implementation. Furthermore, in Chapter 5 and Chapter 6, a type of
Recurrent Neural Network namely Long Short-Term Memory network was chosen
to address hysteresis in robotic catheters. Understanding the characteristics of
various ML algorithms and their most practical applications enables us to identify
the most suitable algorithm for a specific case, thereby reducing the time and effort
spent in experimenting with different algorithms.
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Endovascular intervention is a minimally invasive technique for treating cardio-
vascular diseases. Fluoroscopy, known for its ability to visualize catheters in
real-time, is commonly employed to ensure accurate catheter placement. However,
fluoroscopy exposes patients and physicians to ionizing radiation and offers no
depth perception due to its 2D nature. This chapter aims to overcome some of these
limitations by employing teleoperation and 3D visualization. This chapter presents
three interactive control modalities to steer robotic catheters and investigates
their effects in human-in-the-loop robot-assisted endovascular intervention. The
developed methods employ a gamepad, a standard 2D monitor, and an Augmented
Reality (AR) Head-Mounted Display (HMD). In this work, a Microsoft HoloLens
2® is utilized as an advanced HMD AR headset featuring 3D visualization. An
in-vitro user study was conducted to compare three interactive modalities: 1) Mode
GM - a gamepad with a standard 2D monitor, 2) Mode GH - a gamepad with a
HoloLens, offering a 3D visualization, and 3) Mode HH - a HoloLens serving both
as input device and as visualization device. A robotic endovascular catheterization
system was set up for experimental validation. User performance was subjectively
and objectively assessed. The use of a gamepad for steering and a HoloLens
for visual feedback (Mode GH) scored the best on all subjective metrics except
mental demand. Mode GH outperformed the other modalities also in regard to
objective metrics showing median tracking errors of 4.92 mm, median targeting
errors of 0.93 mm, and median durations of 82.3 s in the conducted in-vitro study.
Mode GH offered improvements of 8.7%, 15.5%, and 10.9% respectively over Mode
GM, and 4.8%, 37.2%, and 31.9%, respectively with respect to Mode HH. The
study conclusively demonstrates the superiority of using a gamepad to teleoperate
catheters. Such a teleoperation approach offers several advantages, including
its user-friendly nature, superior responsiveness (when compared to HoloLens’s
hand gesture recognition), and portability. Furthermore, the study showcases the
practicality of using HoloLens to receive 3D visual feedback, which enhanced the
visualization in catheterization.
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This chapter directly aligns with Sub-objective 2 of the thesis, focusing on
exploring intuitive interaction modes for teleoperated endovascular robotic systems.
Developing an intuitive mode for steering the catheter, and combined with reliable
visual feedback, can significantly enhance the safety of interventions.

3.1 Introduction

Throughout the catheterization procedure, physicians can employ real-time imaging
techniques, such as fluoroscopy, to visualize the heart and blood vessels [177,
178]. This facilitates the identification of lesions, navigation itself, and immediate
evaluation of treatment effectiveness. However, fluoroscopy exposes both patients
and physicians to ionizing radiation. In particular, physicians who are repeatedly
exposed to radiation face a higher risk of cancer and cataracts [179]. Furthermore,
the two-dimensional (2D) nature of fluoroscopic images prevents depth perception
[180, 181], complicating the precise maneuvering of catheters within intricate
vessels.

Compared to current practices, teleoperation has emerged as an advantageous
approach for catheterization procedures. Its primary benefit is to reduce radiation
exposure for physicians. Teleoperation also increases precision, reduces human
error, and facilitates remote surgeries. However, it is important to note that this
control method lacks autonomy and relies entirely on the input of the operators.
In addition, advances in visualization technology have introduced sophisticated
techniques such as Augmented Reality (AR), Virtual Reality (VR), and Holographic
Imaging, all of which provide enhanced visual assistance. Considering the multitude
of methods available for both teleoperation and visualization, this chapter conducts
an investigation into the effectiveness of these various interactive modes. This
investigation is guided by a comprehensive set of experiments and evaluation
metrics.

One approach to tackle the challenges mentioned above is 3D imaging and
visualization. A variety of methods have been used to produce a 3D model of the
vessel. Some groups employ 3D rotational angiography [182]. Others propose to
fuse the pre-acquired 3D images (e.g., from CT or MRI) with real-time fluoroscopy
[180, 183]. These methods can provide improved depth information, but radiation
exposure remains a concern. Non-radiative imaging modalities, e.g., OCT [184]
and IVUS [185], could also be employed to produce some sort of depth information
during catheter-based procedures. By utilizing the aforementioned techniques, 3D
reconstruction of 2D medical images could be made available. However, the optimal
use of this 3D content still requires further investigation. Displaying these 3D
volumetric data on a 2D screen is a cheap and common method. However, 2D screens
do not manage to convey the third dimension very well [186]. Moreover, 2D screens
hinder direct interaction with the image [187]. AR systems present an appealing
alternative interface by overlaying 3D rendered images onto the physician’s field
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of view during the procedure. This technology could improve depth perception
and spatial understanding, facilitating more accurate instrument placement and
navigation [188]. It should be noted that while many 3D reconstruction methods
have been introduced previously, the primary objective of this study is to investigate
the optimal presentation of the 3D content, with different display techniques, rather
than investigating intraoperative 3D reconstruction methods themselves.

Along these lines, an image guidance system using AR visualization is proposed
for transcatheter procedures in [189]. The 3D hologram displayed in AR was the
preoperative 3D model reconstructed from CT scans. The catheter tip position is
derived from 2D segmentation of intraoperative fluoroscopy images and registered
to the 3D model. Although this method improves visualization, radiation exposure
from fluoroscopy remains a concern. Palumbo et al. explored the use of AR for
radiation-free catheter navigation [190]. In their work, the guidewire tip pose is
determined by EM trackers. However, their work only introduced a registration
method that aligns the EM tracker’s position with a holographic marker. Guidewire
or vessel phantoms were not used to investigate in detail the influence of AR on
vessel navigation. A related approach is presented in [191] for EVAR, where the
catheter tip position is also obtained using an EM tracker. This work merely
represents the tip position as a sphere. This representation neglects the tip
orientation, which is crucial for assessing whether the catheter is in a hazardous
pose. Furthermore, the paper only describes the concept and implementation
without providing quantitative results on the effectiveness of the assistance offered
by visualization VR.

Linte et al. achieved catheter tip visualization in AR through ultrasound imaging
[192]. The work evaluated the effectiveness of AR visualization by having three
novices use a commercial cable-driven manual catheter to target four specific
locations within a heart phantom. The results indicate that AR visualization
could enhance target accuracy compared to 2D ultrasound images, while the
assistance provided by AR in vascular navigation has not yet been validated. Apart
from the limitations mentioned above, physicians will need training and time to
become comfortable with AR systems, and extra research is needed to achieve
optimal integration of AR into the clinical workflow. Upon a review of the previous
literature, it was found that no studies investigated in-vitro the potential of AR
for endovascular intervention with robotic catheters. A possible explanation for
the lack of such studies is the limited availability of robotic catheter platforms, the
recent availability of high-quality AR headsets, and the complexity to integrate all
these components.

Teleoperated catheter navigation can also significantly reduce radiation exposure
[193]. This technology could also potentially allow physicians to perform intricate
procedures with enhanced precision and reduced physical strain. Teleoperation
can be accomplished using a variety of control input devices. Researchers have
explored the use of joystick-like controllers [194, 195], an in-house developed haptic
joystick [30], and custom-made input devices [196] for teleoperating catheters.
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Additionally, the market offers a diverse range of control input devices for human-
machine interfaces. These include haptic devices such as the Touch and Touch
X haptic devices by 3D Systems, which can provide force feedback. Foot pedals
offer hands-free operation [197], while traditional joysticks [198], commonly used
in aviation, offer straightforward control. Trackballs are another option, providing
precise cursor control through a stationary, rotatable ball [199]. The user-friendly
nature and widespread familiarity with joystick-like controllers can facilitate a
smoother transition from gaming to interventions and a more rapid learning curve
for physicians using teleoperated catheter systems. This can subsequently result in
enhanced procedural efficiency, patient safety, and outcomes. The custom-made
input device designed in [196] consists of a tube and several sensors, resembling a
catheter. This enables physicians to manipulate the input device more intuitively
using familiar actions such as rotation and pushing, similar to how they would
handle a catheter in current practice.

In this study, two visualization methods for 3D content are investigated: 1) a
standard 2D monitor and 2) an advanced 3D visualization technique using AR.
One aim of this work is to determine which visualization approach is more effective
at this stage in a first in-vitro study. The other aim of this work is to primarily
compare the use of a gamepad and a Head-Mounted Display (HMD) as input
devices. To the best of the authors’ knowledge, this is the first time that an HMD
has been utilized as a control input device for catheter steering.

This chapter presents a user study investigating the effects of different interactive
modalities in human-in-the-loop robot-assisted endovascular intervention with
visual feedback. The main contributions of this chapter are:

• design of an AR interface in HMD for enhanced visual feedback and catheter
steering, implementing gamepad-based teleoperation to steer a robotic
catheter system, integrating stand-alone components e.g. robotic catheter,
catheter driver, HMD and gamepad into a robotically-assisted endovascular
interventional system;

• in-vitro user study with various combinations of control and visualization
devices, involving nine participants with diverse levels of experience in HMD,
gaming, and steerable catheters;

• a detailed performance analysis and discussion comparing the different
interactive modalities.

This chapter is organized as follows: Section 3.2 provides an overview of the
hardware components used in the system and their integration. Section 3.3 explains
the experimental design and the performance metrics used to evaluate the efficacy of
catheter navigation. Section 3.4 presents the results, accompanied by a discussion,
while Section 3.5 offers conclusions and describes future work.
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Figure 3.1: Experimental setup for in-vitro user study: 1. silicone aortic phantom; 2.
pneumatically-driven robotic catheter; 3. catheter driver; 4. standard 2D monitor;
5. Head-Mounted Display (HMD); 6. wireless gamepad; 7. electromagnetic field
generator.

3.2 Experimental setup and methodology

3.2.1 System components

To investigate various interactive modalities for catheter navigation, an experimental
setup for endovascular intervention was developed (as shown in Fig. 3.1). It consists
of the following components:

silicone aortic phantom an aortic phantom (T-S-N-002, Elastrat Sarl, Geneva,
Switzerland) made of silicone, replicating key features such as the descending aorta,
the aortic arch, the aortic root, and several coronary arteries.

robotic catheter an in-house developed robotic catheter with a 50 mm bendable
Nitinol segment, equipped with a pattern of equally spaced slots produced by
EDM [200]. These slots make the segment bendable. The remaining section,
approximately 1 m in length, is composed of a predominantly passive flexible
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Figure 3.2: Schematic of the advanced human-in-the-loop vessel navigation system
with multiple interactive modalities, including: (a) a gamepad or an HMD as
control devices; (b) a pneumatic valve with four output ports receives control
commands from ROS; (c) the catheter driver, operated through velocity control,
regulates the insertion and retraction of the catheter; (d) the PAM-driven catheter,
having 2-DoF and a 60 mm active bendable segment; (e) an EM tracking system
localizing the catheter tip, whose pose is then registered to the mesh frame of the
3D reconstructed model; (f) the virtual 3D aortic model reconstructed utilizing
high-resolution CT images, along with the guidance path and the catheter tip pose
registered and rendered in this virtual model frame; (g) visual feedback that users
receive either through a standard monitor (2D) or via a HoloLens (3D).

plastic tube. With a diameter of 7 mm, the catheter is well suited for navigation
within the aorta, as the typical diameter of the aorta ranges between 20 and 35 mm
[201]. The bendable Nitinol segment of the robotic catheter features four PAM,
organized into two antagonistic pairs [200]. Each PAM has one end connected
off-center to the catheter tip. When pressure is applied to the muscle, its length
decreases, generating a pulling force on the catheter tip, forcing it to bend. By
simultaneously controlling two antagonistic pairs of PAMs, the catheter achieves a
spatial 2-DoF bending motion. A 6-DoF EM sensor (Aurora®, Northern Digital Inc.,
Canada) is glued to the center of the catheter tip, enabling precise tip localization.

catheter driver the catheter driver [202] is designed for axial rotation about the
longitudinal axis of the catheter and for 1-DoF catheter insertion or retraction.
The device is based on two sleeve-based grippers. One end of the sleeve remains
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stationary, while the other end is attached to a pneumatic piston. As pressure
increases, the sleeve expands in length, subsequently reducing its diameter and
ensuring a firm grip on the catheter body. The two grippers operate alternately, with
one gripping as the other releases. This synchronized operation allows continuous
catheter translation over a long stroke.

Head-Mounted Display (HMD) Microsoft HoloLens 2®, simply referred to as
“HoloLens” in the following, is an advanced HMD AR headset featuring 3D
visualization. Its advanced display technology projects holograms, which are
3D virtual objects, into the user’s field of view. These holograms blend seamlessly
with the real world. The HoloLens also has sophisticated hand-tracking capabilities
for both hands. The HoloLens hand-tracking system enables smooth interactions
for users, allowing them to select and position holograms using direct touch, as if
interacting with tangible objects in the real-world space. Furthermore, virtual rays
projected from the center of the user’s palm function as extensions of their hands.
This design allows users to interact effortlessly with holograms located beyond their
immediate physical reach. The wireless design of the HoloLens promotes unlimited
movement without the burden of external cables. Voice control is another feature
of the HoloLens. Despite its advanced features, the headset weighs only 3.28 kg.

gamepad the controller (Yues, Dublin, Ireland) is a wireless input device for
gaming. The controller is equipped with four buttons on the left, two central
thumbsticks, and four additional buttons on the right.

electromagnetic field generator an EM field generator (Northern Digital Inc.,
Canada) is placed beneath the phantom. When the EM sensor enters the
electromagnetic field produced by the field generator, it induces a small current
within the sensor. This current is then converted to the corresponding positions and
orientations of the EM sensor. However, the presence of electromagnetic materials
within this field tends to distort the accuracy of these measurements. For this
reason, the catheter driver’s metal components are located outside the generated
magnetic field so as not to disturb it. The 6-DoF EM sensor (Aurora®, Northern
Digital Inc., Canada) embedded in the catheter tip allows tip pose measurement at
40 Hz.

software architecture communication between various devices is facilitated
through ROS 1 [203], with each device functioning as a distinct node within
the system.

Figure 3.2 presents the control scheme for human-in-the-loop catheter navigation
with visual feedback. Users can interact with either a gamepad or a HoloLens to
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Figure 3.3: User interfaces for input devices and visual feedback: (a) a gamepad as
a control input device; (b) a HoloLens serves as a control input device, featuring
hand gesture recognition capabilities; (c) a schematic illustration outlining the
three mapping relationships corresponding to the 3-DoF for the catheter system;
(d) 2D visualization using standard monitor; (e) 3D visualization using HoloLens:
Users can view the holograms from various angles by physically moving around in
real-world space.

generate control commands, while obtaining 3D visual feedback from an HoloLens
or 2D visual feedback from a standard 2D screen.

3.2.2 System integration and user interface design

This subsection explains how the different parts are integrated into a endovascular
robotic system and describes the design of the user interface.

The functionalities of the various thumbstick or buttons are illustrated in Fig. 3.3(a).
By using a ROS joystick driver library, the bending angle of the thumbstick can
be read as a floating value between 0 and 1, while the button toggles between
two distinct values: 0 and 1. Users can control the 2-DoF bending by directly
mapping the bending angle of the left thumbstick (ϕ, θ) to the pressure applied
to PAM (pϕ, pθ), so that pϕ is proportional to ϕ, and pθ is proportional to θ.
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The maximum pressure applied to PAMs is set at 6 bar. The right thumbstick is
employed to regulate the catheter driver’s insertion/retraction motion speed. The
bending angle of the thumbstick r is proportional to the translation speed of the
catheter driver v, where the catheter driver is operated using velocity control and
the velocity of the catheter driver v is proportional to the bending angle of the
thumbstick r. The maximum translation speed was set to 5 mm/s. The PS (∆) and
OPTIONS (X) buttons on the right (see Fig. 3.3(a)) are used to switch between the
insertion and retraction modes. The choice to select between forward and backward
motion commands rather than mapping the gamepad’s bidirectional motion to
forward and backward motion was found to help prevent the catheter driver from
switching continuously between forward and backward motion, making this a
more deliberate/controlled choice by the user. The thumbstick is equipped with
a spring-like automatic return mechanism, which may lead to input fluctuations
around 0 when released abruptly. As a result, the catheter driver may rapidly
alternate between forward and backward movements in a short period of time. The
method of consciously selecting between movement directions is adopted as an
alternative to the establishment of a deadzone where the catheter driver’s speed
defaults to zero. It may be worth comparing both methods in future user trials.

Figure 3.3(b) illustrates the user interface design of the HoloLens when used as
a control input device. Users can engage with virtual buttons or sliders shown
by the HoloLens in a manner akin to interacting with actual objects, to send
control commands for steering the catheter. The speed, v, of the catheter driver
is regulated by the translational distance of the slider, r. An emergency button
has been incorporated to allow users to quickly stop the catheter’s translational
movement in case of an emergency. The blue control panel is displayed on the right
side in the upper image of Figure 3.3(b). The green sphere can be moved in this 2D
plane. The coordinates of the sphere are measured and proportionally converted
into pressures. These pressures are then transmitted to the Pneumatic Artificial
Muscles (PAMs) in two orthogonal directions, denoted as pϕ and pθ. Users can
reposition various holographic components in the HoloLens view by grasping and
dragging them, allowing them to customize the layout to their optimal comfort
level. Moreover, users can engage a hand-ray, a common remote control feature
in HoloLens, that extends from their palm towards the holographic object. This
allows them to interact with the holographic object even when the object is situated
beyond their physical reach.

The control commands generated by the gamepad or HoloLens are sent to the
pressure valves, which adjust the bending of the catheter, and to the catheter driver,
which manages the translational movement of the catheter, as shown in Fig. 3.3(c).
This process allows for precise control over the robotic catheter’s 3-DoF.

An EM tracker, attached to the tip of the catheter, captures its pose within the
magnetic field created by an EM field generator. The tip pose is expressed through
the transformation matrix ETC that registers the tip frame {C} to the EM frame
{E}, with ETC determined by the EM measurement. A 3D aortic mesh model
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is reconstructed from CT images. To correctly represent the catheter pose in the
aortic model {M}, namely M TC , registration M TE must be performed.

M TC = M TE
ETC =

[
R t
0 1

]
ETC (3.1)

Ten markers are employed to calculate the transformation matrix M TE that
registers the EM frame {E} to the virtual mesh model frame {M}. These markers
are strategically placed in the outer casing of the silicone aortic phantom (see
Fig. 3.4). Two datasets are involved in this process: one comprises the positions of
the ten markers M p = {M pi, i = 1, 2, ..., m} within the virtual model frame {M},
and the other contains the positions Ep = {Epi, i = 1, 2, ..., m} of the ten markers
represented in the EM frame {E}, where m = 10.

The optimal transformation matrix M TE is determined by a SVD method, following
[204]: (i) identify the centroids of both datasets, M p and Ep; (ii) shift both datasets
to the origin, then compute the optimal rotation R ∈ IR3×3 using the SVD method;
(iii) calculate the translation vector t ∈ IR3. The objective function is defined as
follows:

min
M TE

f =
m∑

i=1
||M pi −M TE

Epi||
2 (3.2)

RMSE, as defined by (3.3), was calculated based on the ten registration markers.

RMSE =

√∑m
i=1 ||M pi −M TE

Epi||2

m
(3.3)

In our study, three registration procedures were implemented, each one after the
completion of three users. The errors recorded for these three registrations were
4.68 mm, 4.87 mm, and 4.53 mm. The registration error primarily stems from the
discrepancies between the phantom and the model, attributed to manufacturing
inaccuracies and the aging of the silicon phantom due to wear and tear. A secondary
source of error arises from the measurement inaccuracies inherent to EM sensors.
After the registration process, the virtual mesh model along with the representation
of the catheter tip pose is visualized either on a conventional 2D monitor or through
a HoloLens headset.

The visualizations for both standard 2D monitor and HoloLens can be seen in
Fig. 3.3(d) and Fig. 3.3(e), respectively, each showcasing similar user interface
designs. The user interface is divided into two sections: an external view on the
left and an internal view on the right. The external view presents a comprehensive
perspective of the aorta, with a thick green line illustrating the desired path for
users to follow and a yellow arrow indicating the current pose of the catheter
tip. The internal view offers an inside-the-vessel, forward-looking perspective
akin to angioscopy. Within this view, several discrete green spheres indicate
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Figure 3.4: Ten markers are strategically placed on various surfaces of the phantom’s
outer casing, which facilitates the registration M TE between the EM sensor frame
{E} and the phantom mesh frame {M}. By identifying the transformations M TE

through registration, and ETC via EM measurements, the pose of the tip can be
accurately represented in the mesh frame {M}.

the path setpoints. Specifically, there are 26 green spheres representing the
26 setpoints derived from the path-planning algorithm. Green spheres are not
uniformly distributed along the aorta. Their placement is determined by the path
planning algorithm that takes into account various constraints. The path planning
method is elaborated in the following paragraph. A yellow guidance arrow is added
to indicate the direction and degree to which the catheter tip should bend from
the current position. The white cross represents the center of the field of view. A
blue sphere represents the final target at the end of the path that users must aim
to reach as accurately as possible.

This path is generated through a RL method [145] to ensure the optimality of the
path and the fulfillment of the constraints of the robotic catheter. The reward
function of the RL algorithm takes into account several criteria: the number of
steps (negative reward “-”), the number of collisions (-), whether the target position
is reached (positive reward “+”), whether a path setpoint is close to the centerline
(+), and whether the bending angle of the catheters is sufficient to navigate the
bend of a trajectory while staying within its bending capacity (+).

It should be noted that the internal view is not present in current clinical practice.
In this work, the internal view serves as an innovative feature for improving
navigation capabilities within the vessels. The internal view images are captured
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Table 3.2: three interactive modalities investigated in this work
control devices visualization devices

Mode GM gamepad (G) 2D monitor (M)
Mode GH gamepad (G) HoloLens (H)
Mode HH HoloLens (H) HoloLens (H)

Figure 3.5: Three interactive modalities investigated in this work, with their control
devices and visualization devices outlined in Table 3.2.

through a virtual camera in Unity3D. The pose of the camera is continuously
synchronized with the catheter tip pose, offering the operator a first-person view.
In future clinical practice, the internal view could be reconstructed from IVUS or
OCT images.

3.3 Experimental protocol

3.3.1 Experimental procedure

In this study, two input devices (gamepad and HoloLens) and two visualization
techniques (HoloLens and 2D monitor) are investigated. The combinations of these
control devices and visualization techniques could yield four possible interactive
modalities. The HoloLens solely as a control device without offering visualization
makes little sense and underutilizes its potential, as it is primarily considered
an enhanced visualization tool, with control functionality as a secondary feature.
Consequently, the remaining three interactive modalities are focused, as outlined in
Table 3.2 with the corresponding experimental setup presented in Fig. 3.5. Mode
GM denotes the use of a gamepad (G) as the control input device and a 2D monitor
(M) for visualization. Mode GH denotes the use of a gamepad (G) as the control
input device and the HoloLens (H) for visualization. Mode HH denotes the use
of the HoloLens (H) both as the control input device and for visualization. The
experimental procedure is as follows:
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1. Participants are asked if they are interested in participating in this study and,
if so, are asked to complete an informed consent form based on the standard
format provided by KU Leuven. The following information is communicated to
the participants: the specific tasks, namely navigating catheters in the aortic
phantom, the assurance that the experiment will not involve the collection of
any personal information, and their right to discontinue the experiment at any
time without providing a reason.

2. The hardware, techniques, and experimental procedures are clearly explained to
the participants.

3. Each participant is allocated a total of 10 minutes to familiarize himself/herself
with the system and its three interactive modes.

4. Participants complete three trials for each mode, advancing to the next mode
only after finishing the current one. The order of the modes varies among
users: three participants adopt the sequence Mode GM-GH-HH, another three
engage in Mode GH-HH-GM, while the remaining three progress through Mode
HH-GM-GH. Due to practical considerations, three types of order are employed
instead of six. By changing the order of the modes, the potential impact of
the learning curve is distributed across all modes, making it less likely that the
learning effect biases the results. In total, each user performs nine trials. The
specific details of a trial are described in Section 3.3.2.

5. Upon completion of the three trials per mode, participants are asked to fill
out a NASA Task Load Index (NASA-TLX) form [205]. Once the participants
have completed all nine trials, they are also asked to complete a tailor-made
questionnaire.

The NASA-TLX form employs a 20-point scale to subjectively evaluate the workload
that users experience while performing a specific task. The evaluation comprises
the following six metrics: 1) mental demand; 2) physical demand; 3) temporal
demand; 4) performance; 5) effort; and 6) frustration. Participants were asked
to evaluate each mode by considering the following aspects related to the six
dimensions mentioned above: 1) How mentally demanding was the task? 2) How
physically demanding was the task? 3) To what extent did you feel a sense of
urgency or haste in the task’s pacing? 4) How successful were you in completing
the task? 5) How much effort did you put into achieving your performance level? 6)
To what extent did one feel insecure, discouraged, irritated, stressed, or annoyed?
These scores provide subjective insight into the perceived workload of users. The
tailor-made questionnaire gathers the following information: the profession of a
participant, whether they wear glasses, the dominant hand (left or right), prior
experience with gaming and AR headsets, as well as their good/bad experiences
during the experiment.



76 COMPARATIVE ANALYSIS OF INTERACTIVE MODALITIES FOR INTUITIVE ENDOVASCULAR
INTERVENTIONS

3.3.2 Detailed description of tasks per single trial

The objective of each experiment is to steer a robotic catheter within an aortic
phantom from the descending aorta to the aortic root, each time with one of the
three interactive modalities.

During the experiment, participants are prohibited from viewing the transparent
phantom directly. Instead, they are asked to act based on visual feedback from
either a standard 2D monitor or a HoloLens headset. Participants receive both
external and internal visual feedback. The external view offers a comprehensive
view of the aorta. A yellow arrow is used to indicate the pose of the catheter tip.
The internal view provides a first-person perspective on the vessel. A predefined
trajectory, depicted by a thick green line within the virtual phantom, is provided
for guidance. When wearing the HoloLens, participants have the flexibility to alter
their positions during the experiment to view visual feedback from various angles.
The procedure of a single trial can be outlined as follows:

1. Both clamps of the catheter driver are released, and the catheter is positioned
inside the catheter driver.

2. The catheter is advanced manually until its tip reaches the starting point of the
planned path. To reduce friction, the catheter body is lubricated with baby oil.

3. The control system is initialized.

4. The user teleoperates the catheter. The task entails aligning the catheter tip
with the predetermined trajectory until the end, following the sequence of green
spheres one at a time. The user is suggested to follow the guidance provided by
the yellow arrow, which indicates both the direction and the degree of catheter
bending required (by the length of the yellow arrow).

5. The duration of the procedure is recorded. Users are expected to complete
the experiment in three minutes. If users feel that they have not achieved the
target accurately and time remains, they may decide to retract the catheter and
attempt to target again.

6. The catheter is then retracted to the starting point. This retraction is executed
rapidly, without meticulous control.

During insertion, improper tip movement could potentially exert an excessive force
on the vessel walls. This may result in vessel rupture or dislodgement of the
calcification, which is more likely to occur, particularly due to the acute tip.

3.3.3 Performance metrics

The performance metrics can be categorized into subjective and objective measures.
Subjective evaluations are derived from questionnaires and the NASA-TLX form
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(introduced in Section 3.3.1). The objective metrics that are used to quantify the
performance are:

Duration (T )

The duration of a single experiment refers to the time span from its initiation to
its completion. Data recording is started and t0 is marked when the user starts to
teleoperate the robotic catheter. An experiment comes to an end when the catheter
is navigated to the aortic root, and when the user confirms his/her satisfaction
with the targeting accuracy through verbal confirmation. At this time, the data
recording is stopped and tg is marked. The duration is then:

T = tg − t0 (3.4)

where t0 and tg are the first and last timestamp, respectively. The maximum
allotted time is 3 minutes. In cases where the maximum allocated time is exceeded,
the user is asked to repeat the trial.

Tracking error (Tr)

The tracking error refers to the average deviation between the actual sj (j = 1, ...k
with t = t0 when j = 1, and t = tg when j = k) and desired trajectory sd

i

(i = 1, ...n). In our experiments, the number of setpoints of the desired trajectory
n is set to 500. These setpoints are interpolated from the output of the RL path-
planning algorithm, originally consisting of 26 setpoints. The actual trajectory is
recorded by an EM sensor at a sampling frequency f of 40 Hz. For each point sj

on the actual trajectory, the shortest distance to the desired trajectory is identified
and treated as the deviation for that individual point. Tracking error is computed
as the mean error of all these individual points, as illustrated in Algorithm 1.

Targeting error (Ta)

The targeting error is calculated by searching the entire trajectory and determining
the shortest distance between the trajectory sj and the target sd

n. This metric
serves as a criterion to evaluate the accuracy of reaching the target.

Ta = min
j
||sd

n − sj || (3.5)

The significance of differences between interactive modalities is assessed through
statistical tests. Because the selection of the significance test method differs based
on the data distribution, the distribution of each data set was first examined to
determine whether it follows a normal distribution, using the Shapiro–Wilk test



78 COMPARATIVE ANALYSIS OF INTERACTIVE MODALITIES FOR INTUITIVE ENDOVASCULAR
INTERVENTIONS

Algorithm 1: Calculate Tracking Error
Input: ActualTrajectory sj , j = 1, ..., k, DesiredTrajectory sd

i , i = 1, ..., n
Output: Tracking Error Tr

Initialize TotalError ← 0
for each Point sj in ActualTrajectory, j = 1 to k do

MinDistance ← ∞
for each Point sd

i in DesiredTrajectory, i = 1 to n do
if Distance(sd

i , sj) < MinDistance then
MinDistance ← Distance(sd

i , sj)
end

end
TotalError ← TotalError + MinDistance

end
Result: Tr ← TotalError / k

[206] with a significance level of 0.05. Subsequently, depending on their respective
characteristics, we applied the Kruskal-Wallis test [207] for populations that did
not follow a normal distribution, and used the t-test [208] for those that were
normally distributed. A significance level of 0.05 is used for both tests.

3.4 Results and discussion of the user study

3.4.1 User profiles and subjective evaluation

Nine participants, aged 20 to 30 years and with an educational background in
engineering, participated in the user study. User profiles are summarized in Fig. 3.6.
Eight out of nine wear glasses, with only one participant not requiring them.
Eight participants are right-handed, while only one individual is left-handed. Seven
participants identified themselves as novices with no prior experience with HoloLens.
One participant indicated to have an intermediate experience level, having used
the HoloLens several times. One participant is highly experienced, working with
HoloLens on a daily basis. As for the gaming experience, three participants
are novices, four have an intermediate level of experience, and two are highly
experienced. From the aforementioned statistics, it can be concluded that users
have more experience with gamepads compared to HoloLens. This difference in
experience may contribute to the varying levels of confidence when using these two
control devices. Lastly, with regard to their experience with steerable catheters, five
participants have never steered a catheter before. Two out of the nine participants
possess some steerable catheter experience, and the remaining two participants
interact with catheters regularly.
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Figure 3.6: A summary of the nine user profiles includes information about their
previous experience with gaming, with the HoloLens, and with handling catheters,
in addition to their handedness and whether they wear glasses or not.

The perceived workload measured in NASA-TLX form is shown in Fig. 3.7. The
central line illustrates the average score (20-scale) from nine users in the six different
aspects of the NASA-TLX form. The colored area represents the interquartile
range, with its boundaries indicating the lower and upper quartiles (i.e., 25% and
75%). It is important to note that a lower score signifies less workload perceived
by users, namely better performance.

1) Evaluation from NASA-TLX: In terms of mental demand, all three modes exhibit
similar performance, with Mode GM achieving the best score of 8.6 compared
to Mode HH’s score of 10.3. However, when considering the physical demand,
Mode GM and Mode GH outperform Mode HH, suggesting that using HoloLens
as an input device requires more physical effort, especially for novices. This may
be due to the novices of the HoloLens continuously holding their arms up to
maintain catheter control, concerning that dropping their arms might result in
unrecognized hand gestures, a loss of control, and potential damage to the catheter
or phantom. This observation is further supported by the ratings for physical
demand associated with Mode HH. Intermediate and expert users reported a score
of 5.0 ± 2.0, which differs from the novice users’ score of 8.7 ± 4.0. On the contrary,
gamepad users can rest their elbows at their waist and lower their hands to a
more relaxed position, reducing physical strain. This trend is also evident in the
grading of temporal demands. When using the HoloLens, some novice users tend
to maintain a consistent catheter speed by placing speed control blocks in the
same position and focus on controlling the catheter’s bending, while expert and
intermediate users typically possess a better knowledge of adjusting the catheter
speed in response to the varying locations of the catheter tip. In contrast, all users,
when using the gamepad, are more actively adjusting the insertion speed to their
liking. In easier-to-navigate areas, such as the descending aorta, users tend to
select a higher speed. As a result, gamepad-based catheter control is generally
faster than HoloLens control. In terms of performance, user feedback provides
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Figure 3.7: NASA-TLX scores (20-scale) represent the workload associated with
three interactive modalities. The central lines signify the average scores for all
nine participants in each respective mode. The colored area represents the data
between the lower and upper quartile, which is known as the interquartile range.
Note that lower scores indicate less workload perceived by the users.

an objective evaluation of their success in completing tasks. In this regard, the
best performance is perceived as Mode GH (7.0), followed by Mode HH (8.3),
and lastly Mode GM (9.6). This suggests that the 3D visual feedback from the
HoloLens improves user confidence. As for effort and frustration, Mode GH remains
the most favorable, with Mode GM slightly better than Mode HH. This could
be attributed to the fact that most users have more experience with gamepad
than with HoloLens, making catheter control via gamepad easier for them. In the
scenario of HoloLens, users with limited experience may face challenges in achieving
accurate hand recognition, especially when employing hand rays, a method used for
interacting with holograms remotely. These issues primarily contribute to increased
effort and potential frustration for users.

In general, Mode GH demonstrates the best performance in subjective evaluations
among the three interactive modes with an average score of 6.5 across six aspects,
with Mode GM (7.9) and Mode HH (8.8) showing comparable results. This suggests
that using a gamepad for control and a HoloLens for visual feedback creates the
most comfortable user experience. The standard deviations of Mode GM, GH, and
HH are 3.4, 3.8, and 3.8, respectively, indicating that the difference in opinions
among users is not large.
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2) Results from questionnaire: In the questionnaire, users were asked to share their
likes and dislikes about the experiment, providing complementary insights into
their NASA-TLX scores. For control, the gamepad is generally preferred due to
users’ familiarity and its ergonomic design. However, the limited bending angle of
the thumbstick, combined with the control strategy that maps the thumbstick’s
bending angle to the pressure of the artificial muscles, causes users to perceive
the gamepad as overly sensitive, making fine motion control challenging. However,
this may potentially be a limitation of the current implementation and is not
necessarily a fundamental limitation of the interface. On the other hand, the
HoloLens offers a larger panel to regulate catheter bending, resulting in higher
control resolution and facilitating easier fine motion control compared to the
gamepad. The users reported that, when using the HoloLens, the primary concern
is the potential inaccuracy of hand gesture recognition. This may stem from users’
limited experience with the device. This can cause anxiety about the possibility
that the catheter may not stop and cause damage to the catheter tip or phantom
due to the excessive interaction force. Despite the availability of an emergency
button, users remain apprehensive as it also relies on hand gesture recognition. In
terms of visual feedback, users prefer the HoloLens over a standard screen as it
displays 3D trajectories and allows users to move around the holographic phantom
in real-world space for more effective catheter tip alignment. In contrast, 2D screens
do not offer depth perception. Although users have the option to manipulate the
virtual model to observe it from different angles, this action requires an input
device. In addition, this method is not as intuitive or effective as simply moving
around the hologram with the HoloLens. Only one user reported dizziness from
using the HoloLens. In addition, users appreciate the HoloLens feature, which
allows easy relocation of holograms according to individual preferences. In our
experiment, users differed in body height, as well as in their preferred placement
for the holographic components. They reported that they used the relocation
feature to adjust the position of the control panel and the visualization panel at
their ideal location both before and during the experiment. However, there were
instances where occasional modifications were made during the experiment. This
customization accommodates diverse user needs and improves overall satisfaction.
Conversely, for the gamepad, two users, who identified themselves as intermediate
or experienced gamers, indicated a preference for an arrangement where bending
control is assigned to the right thumbstick, and forward/backward movement to
the left thumbstick, consistent with the design found in most computer games.
Regarding the investigation of the effectiveness of the internal view, eight out of
nine users agreed that the internal view was beneficial during the procedure. Only
one user mostly relied on the global view instead of the internal view.

3.4.2 Objective evaluation

Figure 3.8 illustrates the experimental procedure through three distinct stages. In
Fig. 3.8(a), the catheter is positioned in the descending aorta, and the internal



82 COMPARATIVE ANALYSIS OF INTERACTIVE MODALITIES FOR INTUITIVE ENDOVASCULAR
INTERVENTIONS

Figure 3.8: The experimental procedure with the robotic catheter at three different
locations when steering using Mode GH: a) descending aorta; b) aortic arch; c)
aortic root.

view features an arrow pointing to the upper left. This informs the user that
the catheter must bend in that direction to follow the optimal path and navigate
through the aortic arch. Figure 3.8b shows that the catheter is almost past the
aortic arch, with the guidance arrow pointing towards the bottom left, indicating
the need for increased bending. In Fig. 3.8(c), the catheter successfully reaches the
aortic root, as demonstrated by the corresponding HoloLens view where the blue
target is nearly achieved. An arrow pointing towards the bottom-right direction
suggests that by gently bending the catheter in this direction, the target can be
reached.

Data collected during the experiment were analyzed to obtain performance metrics,
as detailed in Section 3.3.3. Figure 3.9 illustrates the tracking error, the target error,
and the duration for three interactive modes, achieved by the nine participants.
Regarding the tracking error, Mode GH displayed superior performance among all
three interactive modes, with a median of 4.92 mm, followed by Mode HH (5.17
mm) and Mode GM (5.39 mm). However, Mode GH also demonstrated the highest
variance among the three modes, indicating considerable tracking performance
disparities between users or trials, while Mode HH exhibited the lowest variance.
These observations are in line with the results depicted in Fig. 3.10. The full
trajectory captured by the EM sensor for a single trial is shown in Fig. 3.10,
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Figure 3.9: The tracking error, targeting error, and duration of the three interactive
modalities are presented in a box plot, which displays the median, interquartile
range, and minimum-maximum range of the data. If two groups are connected
with a line and an asterisk, this indicates a significant difference between them.
(i.e. p < 0.05 using Kruskal-Wallis test or t-test)

with subfigures (a) to (c) representing Mode GM, GH, and HH, respectively.
Figure 3.10(c) (Mode HH) reveals a smoother trajectory compared to Fig. 3.10(a), (f)
(Mode GM). This can be explained as follows: both control strategies (gamepad vs.
HoloLens) establish a proportional relationship between the commands generated
by the control input device and the pressure applied to the artificial muscle. In
the HoloLens control, the green sphere for catheter control remains stationary
upon release, resulting in a generally smoother trajectory. On the contrary, the
gamepad exhibits a spring effect, automatically returning to its neutral position
when released. Consequently, improper control may produce a zigzag-shaped
trajectory, as demonstrated in Fig. 3.10(f). However, as depicted in Fig. 3.10(a),
after multiple trials, the gamepad control can also achieve a smooth trajectory
and performance comparable to that of the HoloLens-based control. From another
point of view, the gamepad control surpasses HoloLens in terms of responsiveness
and reliability. Maintaining consistent hand gesture recognition using HoloLens
was found to be difficult for novices. This could be explained by the user feedback
and the observations made during the user study: 1) users may not be familiar with
the interacting principles of HoloLens, namely may not interact with holograms
as if they were tangible objects. Consequently, when the hologram is not within
the user’s physically reachable range (i.e., limited by the length of arms), users
sometimes still attempt to interact directly with the hologram; 2) users may
not be fully accustomed to the HoloLens hand gesture command known as “air
tap”, which allows the user to pinch an object using the thumb and forefinger.
However, during the study, some users were unable to perform such a motion,
thus impeding their interaction with the hologram. On the other hand, the
thumbsticks and buttons of the gamepad control consistently provide a responsive
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Figure 3.10: The recorded trajectories of a single trial are presented, with subfigures
(a), (b), and (c) corresponding to Modes GM, GH, and HH, respectively; (d) side
view of a; (e) side view of b; (f) another example in Mode GM with a zigzag-shaped
trajectory due to improper control with gamepad.

interaction. Furthermore, it can be observed that the HoloLens significantly aids
in reducing the tracking error, particularly in the depth direction (Fig. 3.10(d-e)).
This can be substantiated by the tracking error in the depth direction, which was
additionally calculated across the three interactive modes. Mode GH and Mode HH
exhibited comparable performance, with median errors of 2.55 mm and 2.41 mm,
respectively. In contrast, Mode GM performed worse, registering an error of 2.81
mm. Figure 3.10(d) and Fig. 3.10(e) display the side view of Fig. 3.10(a) (Mode
GM) and Fig. 3.10(b) (Mode GH), respectively, with visual feedback provided by a
standard 2D monitor and HoloLens. One can observe that their performance in
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Figure 3.11: The HoloLens provides users with the ability to view visual feedback
from various angles: (a)-(b) Users can view the holographic phantom from a frontal
perspective. Although it maintains the same perspective as seen on a 2D monitor,
the HoloLens offers a three-dimensional viewpoint. (c)-(d) By moving in real space
and viewing the holographic phantom from various perspectives, users gain the
ability to align the catheter tip along the trajectory from all angles, rather than
merely aligning it from a frontal view.

the side view varies considerably. With HoloLens, the user effectively aligns the
tip with the predefined trajectory in the side view. Conversely, on a 2D screen,
the user may deviate from the trajectory in the side view, even if they believe
that they have achieved satisfactory performance by solely confirming the frontal
view. The results substantiate the benefits of HoloLens feedback, primarily when
users move around the holographic phantom in real space, thereby viewing it from
various angles. This user behavior is illustrated in Fig. 3.11. When paired with
a gamepad, which offers high responsiveness and can be easily carried, optimal
performance was achieved. On the other hand, this also suggests that there is
room for improvement in the quality of 3D visualization; otherwise, users would
not need to adjust their perspective by moving. In our future research, we plan to
implement an effective method for rotating the view displayed on the 2D screen
and subsequently draw a comparison with the 3D visualization.

Regarding the targeting error, Mode GH exhibited the lowest error at 0.93 mm.
Mode GM, with an error of 1.10 mm, outperformed Mode HH (1.48 mm). The
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Figure 3.12: The catheter insertion speeds (0 - 5 mm/s) in Mode HH, as performed
by users with varying levels of experience with HoloLens, are depicted as follows:
(a) novice user, (b) intermediate user, and (c) expert user.

Figure 3.13: The user performance, as a function of the number of trials, depicted
using violin and line plots for comprehensive visualization.

significance test demonstrated a statistically significant difference between Mode
GH and Mode HH. The findings indicate that the gamepad demonstrates superior
targeting ability compared to the HoloLens. When approaching the target, users
can easily stop the catheter driver’s insertion, allowing ample time to modify the
catheter tip’s pose. Once prepared, they can advance the catheter driver, achieving
the target rapidly. On the contrary, the majority of users find that stopping the
driver and adjusting the orientation of the tip require synchronized movements of
both the left and right hands. This involves handling hand gesture recognition
simultaneously, which could be challenging given their limited familiarity with the
HoloLens. As a result, they often attempt to target while the motion of catheter
insertion is still ongoing, leading to increased targeting errors in Mode HH.

Concerning the duration, Mode GH (82.34 s) and Mode GM (92.45 s) demonstrated
similar performance levels, with both being statistically distinct from Mode HH
(120.87 s). This can be attributed to the ease of controlling the driver’s speed using a
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thumbstick, as users can simply bend the thumbstick to adjust the speed. Stopping
the driver is also straightforward, as users only need to release the thumbstick. On
the other hand, when operating the system using the HoloLens, users frequently
encounter challenges in dragging the slider back to the neutral region, where the
speed is set to zero. Figure 3.12 illustrates the varying catheter insertion speeds of
users with different levels of experience in HoloLens, arranged from left to right as
novice, intermediate, and expert users. The color heat map represents speed, with
red indicating high speed, yellow indicating medium speed, and blue symbolizing
low speed. One can observe from the figure that a user’s level of experience impacts
their steering style. Part of the novice users adhere to a consistent and moderate
speed of about 2.5 mm/s, directing their primary attention towards the control
of bending maneuvers. Intermediate and expert users demonstrate the ability to
adjust their speeds flexibly according to different regions.

Figure 3.13 illustrates the performance of the users as a function of the number
of trials to determine the presence of any learning curves. Figure 3.13 features
a combination of a violin plot [209] and a line plot. The line plot represents the
average value, while the area of the violin plot illustrates the data distribution.
In terms of targeting error, Mode HH exhibits the most pronounced learning
curve. In addition, the data distribution area narrows as the number of trials
increases, indicating fewer outliers. In the third trial of Mode HH, all the trials
have an error of approximately 1 mm. The experimental duration demonstrates the
most significant learning curve. For both Mode GM and Mode HH, the duration
decreases considerably as the number of trials increases, as evidenced by both
the line plot and the data distribution. In the case of Mode GH, although the
average duration in the third trial increases, the data distribution reveals that
this is due to outliers substantially raising the average value. Most users complete
their experiment in around 100 s. The maximum duration of 164 s in trial 3 is
because the user was dissatisfied with his/her initial target performance and was
prompted to retract the catheter and attempted another trial. In general, it is
quite challenging to analyze the learning effects through three trials. In future
work, we will attempt to conduct more experiments to better analyze learning
effects.

In summary, the findings of this chapter can be outlined in the following bullet
points. Note that these findings hold within the limitation of this study, which was
conducted with a limited number of participants.

• the combination of a gamepad and a HoloLens demonstrated the highest
popularity and performance;

• the gamepad surpasses the HoloLens, owing to its familiarity from gaming,
exceptional responsiveness (compared to hand gesture recognition of the
HoloLens), and ergonomic design that enables users to maintain comfortable
gestures;
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• the HoloLens shows superior performance in control by offering high-resolution
control for fine motions and the freedom to reposition different holographic
control components on the spot;

• the HoloLens significantly surpasses the 2D monitor by providing: a)
overlaid 3D images of the patient’s anatomy and catheter position within the
physician’s field of view, creating a 360-degree interactive environment with
depth perception, enabling multi-angle examination of holographic objects,
and b) hands-free interaction with holographic models, which removes the
reliance on a mouse, a keyboard or a gamepad, as is necessary with a 2D
monitor.

3.5 Conclusion on comparative analysis of interactive
modalities for intuitive endovascular interventions

Fluoroscopy has been crucial for catheterization procedures, yet it exhibits certain
limitations. First, it is unable to provide depth perception. Second, fluoroscopy
is associated with ionizing radiation. To address these challenges, employing
teleoperation for catheter steering and using 3D visualization devices could provide
substantial benefits, while there are some issues such as the limited control resolution
of the employed gamepad. The influence of different types of visual cues was also
not investigated.

In this chapter, three implementations that use different control and visualization
devices are compared through a user study. An endovascular catheterization
system, comprising a robotic catheter, HoloLens, and a gamepad, is constructed
for experimental validation. The user study revealed that the greatest appreciation
and performance are achieved for the combination of a gamepad as the control
device and HoloLens as the visualization device. By moving within the physical
space, users can explore various perspectives of holographic imaging through the
HoloLens. The gamepad, on the other hand, is recognized as an easy-to-use and
intuitive control device that is highly responsive and portable.

The findings of this user study have the potential to improve current endovascular
intervention procedures by introducing an innovative clinical workflow. In this
approach, physicians remotely maneuver the catheter using a gamepad while
wearing a HoloLens. Within HoloLens, a holographic representation of the anatomy
is superimposed onto the patient’s body. The catheter’s configuration, such as
tip position and shape, can be acquired through nonradiative methods like EM
tracking or FBG sensing and subsequently represented in the holographic anatomy.
Guided by AR, physicians could potentially navigate catheters and guidewires
using an intuitive teleoperation approach.
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Validation of the impact of AR and teleoperation in an in-vitro vessel navigation
study remains difficult owing to the limited availability of robust steerable catheter
systems, the recent availability of high quality AR-HMD as well as the complexity
of integrating these components. Despite these challenges, we have integrated
these components and devised an AR interface, which results in a catheterization
system capable of operating in various interactive modes. In this study, the
guidance cues are uniformly implemented across both 2D and 3D visualization
methods. Therefore, the comparison purely lies in the distinctive characteristics
of 2D and 3D visualization. For a more comprehensive understanding, additional
studies are required on different types of guidance cues. Another limitation of
the work presented in this chapter is the limited number of studies conducted
so far. Given the delicate and complex structure of vessels, intuitive catheter
steering becomes crucial in these applications. Therefore, it would be valuable
to conduct an increased number of trials per user and engage a broader range
of participants, including clinicians, in future research. Moreover, the limited
range of motion of the thumbstick may have led to the zig-zag catheter trajectory
observed in our user study, which needs further investigation. Initially, using control
input devices with a larger range of motion should be explored. Subsequently, the
second investigation should focus on using a single component for catheter control,
such as the Virtuose 6D robot (Haption Inc., France) or the Touch haptic device
(3D Systems, USA) instead of controlling catheter bending and insertion via two
thumbsticks. Additionally, it would be advantageous to extend this investigation
to in-vivo animal experiments.

Although this chapter contributed to sub-objective 2, the visual feedback to users
is still limited by displaying only the tip pose of the catheter, represented by an
arrow. While this provides some useful information, it could make physicians lack
the comprehensive awareness that could be achieved by displaying the catheter’s
entire shape. Offering a full visualization of the catheter’s shape could significantly
enhance the procedure by improving accuracy, reducing the risk of tissue damage,
and facilitating complex maneuvers. Additionally, it could speed up the procedure
by assisting in quick decision-making, and increase clinician confidence. Therefore,
the next chapter should aim to provide visual feedback that encompasses the
catheter’s entire shape, ideally utilizing a non-radiative method. This advancement
would not only enhance the procedure, but would also align with the growing
emphasis on minimizing radiation exposure for both clinicians and patients.
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In this chapter, a deep learning method for shape sensing of continuum robots
based on multi-core Fiber Bragg Grating (FBG) fiber is introduced. The proposed
method, based on an Artificial Neural Network (ANN), differs from traditional
approaches, where accurate shape reconstruction requires a tedious characterization
of many characteristic parameters. A further limitation of traditional approaches
is that they either require multiple fibers, whose location relative to the centerline
must be precisely known (calibrated) or a single multi-core fiber whose position
typically coincides with the neutral line. The proposed method addresses this
limitation and thus allows shape sensing based on a single multi-core fiber placed
off-center. This helps in miniaturizing the robot and leaves the central channel
of the robot available for other purposes. The proposed approach was compared
with a recent state-of-the-art model-based shape sensing approach. A 2-DOF
bench-top fluidics-driven catheter system was built to validate the proposed ANN.
The proposed ANN-based shape sensing approach was evaluated on a 40 mm long
steerable continuum robot in both 3D free-space and 2D constrained environments,
yielding an average shape sensing error of 0.24 mm and 0.49 mm, respectively.
With these results, the superiority of the proposed approach compared to the recent
model-based shape sensing method was demonstrated.
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This chapter is in alignment with Sub-objective 3 of the thesis, which focuses on
reconstructing the 3D shape of catheters using non-radiative methods. This
approach could reduces radiation exposure for both clinicians and patients,
thus enhancing the safety of interventions. Moreover, particularly in complex
environments such as vasculatures, possessing real-time knowledge of the catheter’s
3D shape and motion provides essential feedback for physicians, crucial for effective
catheter control.

4.1 Introduction

In applications where flexible endoscopes or catheters are used, surgeons or
interventionalists require a good understanding of the input-output behavior of
these robots. Furthermore, interventionalists wish to know in detail which space
is occupied by the robot e.g. to judge the vicinity to critical structures or to
plan adequate motion commands. Real-time knowledge of the robot’s shape would
greatly facilitate this task. Different methods have been proposed in the literature to
model the kinematic and dynamic behavior of soft and continuum robots. However,
accurate models are complex and computationally intense [210], which limits their
intraoperative use. Moreover, models are designed for a specific instrument and
may require dedicated modeling efforts to characterize the input-output behavior
and the distributed shape for each individual instrument.

Different sensing modalities based on imaging (e.g., fluoroscopy) [211], electro-
magnetic (EM) tracking system [212], electrical impedance tomography (EIT)
[213] or bending resistance [214] have been proposed to acquire the shape of
interventional devices. Unfortunately, each sensor modality suffers from its own
drawbacks. Fluoroscopic systems have the downside of emitting harmful radiation
and providing only a 2D view of the patient/instrument. A Computed Tomography
(CT) scan is even more harmful. EM systems do not offer uniform accuracy and are
sensitive to the presence of metallic material. These problems complicate adoption
in clinical practice. The use of EM and EIT for shape sensing requires different
coils or electrodes to be integrated into the structure. This can be cumbersome
and may increase the size, while also complicating the design of the robotic system.
Gerboni et al. [214] integrated commercial flex bending sensors in their soft robot.
While these sensors are appealing, they exhibit drift and hysteresis, which requires
additional modeling and identification efforts to precisely compute the bending.

In recent years, optical fibers with Fiber Bragg Gratings (FBGs) have become
popular for shape sensing. Properties that make FBG optical fibers particularly
attractive for integration in continuum robots are their bio-compatibility, compact
size, light weight, flexible nature, and safety, e.g. being free from the risk of
electrocution. In addition to real-time knowledge of the shape, FBG fibers can
also be used advantageously to characterize and control the behavior of soft and
continuum robots. However, FBGs suffer from spectral distortion when bending
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[215]. Another major challenge of FBG-based shape sensing is that strain sensing
through traditional FBGs cannot distinguish strain caused by twist from strain
caused by bending. Mode et al.[216] proposed a method to sense the 3D shape
of a continuum robot that incorporates bending, twisting, and elongation. The
method proposed by Mode et al. is, however, only verified by simulation. Further
limitations to the overall estimation accuracy are due to uncertainty in sensor
location during assembly.

A traditional FBG-based shape sensing method starts with measuring the
wavelength shift and follows by calculating the strains at discrete locations where
FBGs are inscribed. Finally, a set of curvatures and angles of the bending plane
at these locations is estimated. The final shape of the robot is reconstructed by
integrating curvatures and bending plane variation over the fiber length. In these
traditional methods, several characteristic parameters need to be identified carefully,
such as: strain sensitive coefficients, the different distances of the outer cores to
the central core, the angle of each core with respect to a reference axis (referred to
as x-axis in this work) and the location of the grating. Typically, some values are
provided by the optical fiber’s manufacturer. However, there are three elements
to consider: (1) these parameters may vary due to the assembly process and thus
require a manual calibration. Also, as demonstrated in [217], for good performance,
one may have to tackle the problem of “intrinsic twist”. The twist may be induced
during assembly when the fiber is integrated in a flexible instrument. Also this calls
for a manual calibration as deviations from the true value will have an immediate
and significant impact on the shape sensing performance. (2) Further, to sense the
shape of the continuum robot, the optical fiber is normally inserted into the center
channel of the continuum robot to ensure that the shape of the optical fiber follows
the shape of the robot. As a result, the center channel is occupied and hence
unavailable for other purposes. For some catheter designs, such as non-assembly 3D
printed surgical devices [218], in which a thin central beam serves as the continuous
backbone of the steering segment, it is infeasible to place a shape-sensing fiber
centrally. In such a case, adding a central channel would excessively increase the
bending stiffness of the design. Due to the aforementioned reasons, methods where
the constraint to place the shape sensing fiber centrally is not needed and where the
precise location of the fiber, with respect to the centerline, could be characterized
in a more automatic fashion would be highly advantageous. (3) Liu et al. [219] and
Farvardin et al. [220] used a traditional FBG-based shape reconstruction method
to estimate the shape of a 35 mm long continuum robot. In both works, when the
continuum robot moves in a constrained environment, an increase in the distal tip
tracking error is observed. However, the shape reconstruction capability should
keep its quality independent of whether the continuum establishes contact with
the environment.

Recently, deep learning, which is usually implemented using Artificial Neural
Networks (ANNs), has become increasingly popular. Thanks to the ability of
ANNs to model complex nonlinear behavior, good prediction accuracy has been
reported in [221]. Another advantage of deep learning compared to traditional
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learning techniques is that it does not require feature extraction processes. Due to
its advantages, Sefati et al. proposed a data-driven shape sensing method based on
FBGs to solve some of the problems listed above [44]. Sefati et al. modeled a 1-DOF
continuum robot introduced in [222, 223] as a pseudo-rigid body. The trained
model was capable of estimating the distal end position of the robot. Afterwards,
the robot shape is reconstructed from the distal end estimation by solving the
constraint optimization for the joint angles. A major obstacle to extending Sefati’s
technique to multi-DOF robots is the computationally intensive optimization stage
it requires.

To address the previously mentioned challenges, a novel data-driven method is
introduced to predict the 3D shape of a 2-DOF continuum robot using measured
wavelength shifts from the FBGs. What differentiates this approach is its ability to
gather data and undergo training while the robot operates in free space. Not only is
this method efficient and straightforward, but as demonstrated in this study, it also
effectively adapts to more complex contact situations. The primary contributions
of this chapter are:

• a new data-driven ANN-based FBG auto-calibration method is introduced
that estimates the curvature and the angle of the bending plane directly
from measured FBG wavelength shifts, regardless of the fiber’s characteristic
parameters. The proposed approach also makes it possible to get accurate
shape sensing capability with a single off-centered multi-core fiber, supporting
miniaturization and allowing freeing up central channels for other uses.

• experiments that compare and validate both methods are conducted, the
transferability of the ANN-based shape sensing method to contact situations
is demonstrated. The ANN is trained in a free-space scenario, hence requiring
limited training time/data, the model shows equally good shape sensing
capability when the robot contacts an unknown environment.

• ablation studies were carried out to enhance the interpretability of the
deployed ANN.

This chapter is organized as follows: Section 4.2 details the design of a 2-DOF
continuum robot and the experimental setup that was built to evaluate the proposed
method. Section 4.3 describes the method for collecting training and validation
data. Next, the proposed auto-calibration method based on a neural network
is explained in Section 4.4. Experimental results are shown in Section 4.5 that
compares the shape sensing accuracy of the two described approaches. Section 4.6
concludes the chapter and presents some directions for future work.
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4.2 Experimental setup

4.2.1 Purpose-built steerable 2-DOF catheter segment

1

2
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4

7

6

8

9

Figure 4.1: A 2-DOF pneuamtically-driven catheter system for data collection
and validation: 1. Nitinol distal catheter segment; 2. catheter segment clamp; 3.
FBG fiber; 4. Pneumatic Artificial Muscles (PAMs); 5. PAM clamp; 6. adjustable
backplate for fine-tuning the pre-tension of the cable connected to the catheter
tip; 7. EM sensor connector; 8. protective nitinol tube to accommodate the FBG
sensors; 9. heat shrink to fix the protective Nitinol tube.

To collect data for training and testing auto-calibration techniques, a dedicated
2-DOF bench-top experimental setup was built (see Fig. 4.1). Without loss of
generality, the setup features only the distal steerable segment of the envisioned
active catheter. The 2-DOF of the catheter’s distal segment are actuated with four
embedded Pneumatic Artificial Muscles (PAMs). The catheter is fabricated out
of Nitinol using metal laser cutting technology. Notches are made on the Nitinol
segment so that the distal portion becomes bendable while minimally affecting the
compression stiffness. Since this chapter aims at efficiently solving the problem of
shape sensing, the design of the bendable Nitinol segment is not described here.
However, details on the design can be found in [200]. The length of the flexible
part (where the notches were cut) and the diameter of the catheter are 40 mm and
6 mm, respectively. With a steerable length of 40 mm, applications in minimally
invasive orthopedic [44] or ENT [224] could be envisioned. Four custom-made
PAMs, which are made up of a bladder, an uninflatable tube, braids, and ferrules,
are used to actuate the catheter. The produced PAMs have an initial diameter
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Figure 4.2: Control and actuation system for the 2-DOF catheter system: A 2-DOF
PAM-driven catheter segment is controlled by a set of 4 proportional pneumatic
valves, which receive command signals from a PC through a NI® CompactRIO
system. The PAMs are attached off-center via four steel cables to the catheter tip.
When contracting, they apply a bending moment to the tip. The resulting catheter
tip pose is captured by an EM sensor. The FBG data and images of catheter are
gathered by an FBG interrogator and a camera, respectively. A PC running ROS
is used to gather sensor data.

of 2.1 mm and a length of 129 mm in the non-pressurized condition. The PAMs
are connected off-center to the tip of the catheter by steel wires. When pressure
increases, the PAM contracts and thus applies a bending moment on the catheter
tip. The other end of the PAM is fixed to a movable plate, so that the pre-tension
on the PAMs can be adjusted. The four PAMs are configured at an angle of
90 degrees in two antagonistic pairs, so that a 2-DOF spatial bending can be
implemented. To accurately control the input pressure, the pressure is fed by an
air supply, through a pneumatic triplet (Festo Corporation, Germany) as shown
in Fig. 4.2. The proportional valve receives control signals from an analog output
module NI-9263 (NI, Texas, USA). An EM tracking sensor (6-DOF, 0.8 mm×
9 mm, Northern Digital Inc., Ontario, Canada) is fixed to the center channel of
the catheter distal tip to measure the catheter tip pose.
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4.2.2 Experimental platform

To generate ground truth data for training a neural network that encodes the shape
of the steerable 2-DOF catheter, an experimental platform was built as shown in
Fig. 4.2. The setup consists of 3 modules: an interrogator (FBG-Scan 804, FBGS,
Geel, Belgium) to measure the wavelength of the distributed FBG sensors, an EM
tracking system and a 2-DOF distal catheter system. To showcase that there is
no need to position a shape sensing sensor centrally, a 250 micrometer four-core
fiber consisting of 20 FBGs from FBGS Inc. (Geel, Belgium) is placed outside
the catheter. The fiber is fixed to the catheter by means of heat shrink tubes
(Fig. 4.2). When the catheter was at rest, the fiber was parallel to the neutral
axis. During the data collection process, the FBG data was measured by the
interrogator at a frequency of 200 Hz while the EM sensor poses were recorded
at 40 Hz. The images from the camera were streamed at 30 Hz. The recorded
data was time-stamped and pre-processed to synchronize the FBG data with the
corresponding EM sample using MATLAB (The MathWorks, Inc., Massachusetts,
United States). All experiments are carried out on a computer with an Intel
2.1 GHz core i7 processor and 32 GB of RAM, running Ubuntu 16.04. Each core
contains five gratings distributed 10 mm apart from each other. Note that each
of the 20 FBG gratings has a different center wavelength. A planar NDI Aurora
EM system (Northern Digital Inc., Ontario, Canada) was positioned below the
steerable catheter and a monocular Prosilica camera (Allied Vision Technology,
Germany) was placed approximately 30 cm above the setup. The camera faces
downwards to capture the 2D shape of the catheter in the camera’s image plane.

4.3 Model-based off-center fiber shape reconstruction

A new approach is proposed in Section 4.4 that takes the wavelength shifts of four
gratings at one given arc-length or cross-section as input for an ANN and directly
estimates the catheter’s curvature and angle of the bending plane, at this arc length.
The new approach is compared with an extension of a more traditional model-based
approach, which is introduced in this section. In this work, to speed up the training
process, we exploit the property that during free-space motion the catheter tends
to follow a constant-curvature shape [225]. An experiment, described in Section
4.3.1, validates this constant-curvature assumption for free-space motion. From the
constant curvature property, a method to estimate the shape and the angle of the
bending plane from the pose of the EM sensor attached at the tip is then presented
in Section 4.3.2. In fact, due to the constant curvature assumption, the measured
curvature and the angle of the bending plane should in principle be the same at
each time step for all gratings, at least during the generation of training data. This
knowledge is then used to speed up training. The same constant-curvature model
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Figure 4.3: Result of constant curvature verification experiment. The threshold
images and the fitted circles can be seen in the inserts. The estimated curvature
and errors of circle approximations are shown respectively in blue and red.

will also be exploited as ground truth when validating shape-sensing in free-space
movement. Data collection for training and validation is described in Section 4.3.3.

Note that, because the multi-core fiber is not attached to the catheter’s center
channel, the computed set of curvatures will not reflect the real catheter curvature
and hence cannot be straightforwardly used in traditional model-based shape
reconstruction approaches. An additional calibration approach is presented in
Section 4.3.4 that estimates the pose of each grating relative to the catheter’s
central line. Based upon this information the curvature information can then
be mapped to the center line. From this, the 3D shape reconstruction method,
described in Section 4.3.5, can be derived. Also note that while the proposed
implementation can be considered a logic extension for anyone crafted in the art, of
conventional shape reconstruction, the authors are not aware of earlier attempts to
implement such a model-based approach with an off-center multi-core fiber. Details
on the developed ANN are given in Section 4.4.

4.3.1 Constant curvature model verification

To verify that the catheter follows the constant curvature model when operating in
free space, the catheter was bent in a plane that is parallel to the image plane of the
monocular camera. The camera was calibrated before the experiments to obtain
the intrinsic and extrinsic parameters of the camera using MATLAB’s camera
calibration toolbox [226]. The captured images are first undistorted and processed
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Zero-angle bending plane

Current bending plane

a) b)

Figure 4.4: The calculation of the curvature and the angle of the bending plane,
which are explained in Section 4.3.2: (a) curvature calculation; (b) θ is the angle
between the zero-angle bending plane and the current bending plane.

to extract the catheter shape in 2D by color segmentation. Each image contour
is evaluated to find the contour that encloses the largest image area. The largest
contour is then considered the true contour of the catheter. The contour is then
skeletonized by the algorithm proposed by Lee et al. [227] to obtain the backbone
of the catheter. Since in this experiment the catheter moves in a plane that is
parallel to the image plane, the 3D shape is reconstructed with a constant and
known camera depth distance. The obtained set of points are then fitted with a
constant curvature arc. During the experiment, different pressure values from 0
to 3.5 Bar were applied to the PAMs and the circle fitting errors were recorded.
The experimental results are visualized in Fig. 4.3. The average circle fitting error
was calculated by averaging the distance between the set of points belonging to
the skeleton and the approximated circle. Average circle fitting errors of 0.061 mm
with a standard deviation of 0.025 mm were recorded during the constant curvature
model verification experiment. This low circle fitting error supports the argument
to consider the free space shape as a constant curvature arc.

4.3.2 Shape and bending plane angle estimation from EM

During the ground truth generation process, the catheter is bent in free space, so
the constant curvature model is valid. From the constant curvature assumption one
expects that the measured curvature and angle of the bending plane of the ground
truth data are the same for all gratings. From the EM sensor, attached at the tip,
the catheter tip pose can be measured. Knowing the length of the catheter and
measuring the tip pose when the catheter is positioned in a straight configuration,
one can calculate also the pose of the base of the steerable catheter segment. Note
that the base was conveniently kept fixed during the experiment. Since pressure
values only affect the steerable portion, while other parts of the catheter were
fixed, the base pose did not change during the ground truth generation process.
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Figure 4.5: The training, validation, and testing procedure of the MLP. The MLP
was trained and validated using data collected in free space, while it was tested both
in free space (introduced in Section 4.5.1) and in a constrained space (introduced
in Section 4.5.2)

.

At each configuration, the tip position PT ip, the tangent vector of the tip EM
sensor −−→tT ip, the base position PBase and the base tangent vector −−−→tBase can then be
used to compute the ground truth curvature and the angle of the bending plane of
all points where the gratings are presented along the catheter’s length. Since the
constant curvature model is valid, using the tip and the base pose together with
the length l of the bendable segment, as shown next, it is possible to calculate the
radius r and the center O of the circle that fits the catheter’s shape. The distance
between the tip and the base position is equal to the chord length c. The angle
between −−→OP T ip and −−→OP Base is defined as α. The relations of these parameters are
depicted in Fig. 4.4(a) and given by:

α = π − γ, (4.1)

r = c/2
sin( α

2 ) , (4.2)

where γ is the angle between −−→tT ip and −−−→tBase. Finally, the curvature can be obtained
by

κ = 1
r

. (4.3)

Different pressure values were first applied to two antagonistic PAMs to make the
catheter bend in two opposite directions. The method by Torr et al. [228] was used
to fit a plane to all tip points. This plane is defined here as the so-called zero-angle
bending plane. The normal vector of a plane that fits the catheter shape (which is
named the current bending plane) is defined by taking the cross product of −−−→tBase

and −−→tT ip. At each configuration, the angle of the bending plane θ is determined as
the angle between the normal vectors of the zero-angle and the current bending
plane. An example of the bending plane angle calculation can be seen in Fig. 4.4(b).
The blue lines show the catheter shape during the process of deriving the zero-angle
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Table 4.1: Mathematical functions of spiral (Sp) used during training and validation
phase. Mathematical functions of Lissajous (Li) or circular (Ci) trajectories (Traj.)
in the testing phase. All units are in millimeter.

Phase Traj. Mathematical functions Traj. Mathematical functions
Training&
Validation

Sp x = 0.002πtcos(0.04πt)
y = 0.002πtsin(0.04πt)

Testing

Li1 x = 0.6cos(0.04πt) Li2 x = 0.8cos(0.04πt)
y = 0.5sin(0.08πt) y = 0.7sin(0.08πt)

Ci1 x = 0.4cos(0.04πt) Ci2 x = 0.6cos(0.04πt)
y = 0.4sin(0.04πt) y = 0.6sin(0.04πt)

bending plane, while the black line shows an arbitrary current configuration of the
catheter.

4.3.3 Data collection

To create the training data, two antagonistic PAMs were first sequentially
pressurized to generate the zero-angle bending plane as described in Section 4.3.2.
The catheter was then controlled to follow a 3D spiral trajectory (described in
Table 4.1) that broadly cover the work space of the steerable catheter and that
starts from the straight configuration. The training and validation data comprises
5880 samples from zero-angle bending plane and 22858 samples from the spiral
trajectory, leading to a total of 28738 data points. The maximum curvature that
was recorded during training was 19.3 m-1. The 70% of collected data sets were
used to train the ANN, while the rest 30% were used to validate the ANN. This
was a random split. It was conducted using the “train_test_split” function in the
“scikit-learn”, an open source machine learning library. The information on the
training data is summarized in Fig. 4.5.

The proposed approach was tested with EM ground truth and image ground truth.
Free space test sets with EM ground truth were created to verify the proposed
approach by controlling the catheter’s distal tip to follow two circular and two
lissajous trajectories. Note that the test trajectories are independent data sets that
have completely different patterns with respect to the training set. By doing so,
leakage from the training to the test set is avoided, ensuring proper validation of
the approach. The mathematical functions of the trajectories are summarized in
Table 4.1. Since the catheter was controlled in free space, the constant curvature
assumption together with tip and base pose was used to generate the ground truth
shape. However, as mentioned above, the constant curvature assumption is not
valid in a constrained environment. To test the performance of the ANN in a
constrained space, the ground truth shape of the catheter was generated from by
camera images rather than using the catheter tip and base poses. The catheter was
bent in a plane parallel to the camera in both a free and a constrained environment.
During constrained environment tests, obstacles were placed in different places
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Figure 4.6: Cross sectional view of the catheter tip and the multi-core FBG fiber
where θ is the angle of the bending plane with respect to the xc-axis, df is the
distance between the center of the catheter and the fiber’s central axis, and θf is
the angle between x-axis and the center of the fiber Of .

along the catheter length. These obstacles caused the catheter to deform into
non-constant curvature shapes.

4.3.4 Model-based off-center fiber calibration

Using a conventional model-based approach, a set of curvature κf and angle of the
bending plane θ at discrete points along the fiber where the FBGs are inscribed
can be calculated based on the geometry of the fiber core [229]. However, since
the multi-core fiber is not placed on the central axis of the catheter, the calculated
curvature does not indicate the catheter’s curvature. The relation of the calculated
curvature κf and the catheter’s curvature κ is given by:

κ = g(κf ) =

κf
−1 −

−−−→
OO ′

f ·
−−→
OK

||
−−→
OK||

−1

, (4.4)

where O
′

f is the projection of Of (center of the fiber) on the bending direction
vector −−→OK. The relative position of the multi-core fiber Of and the center-line of
the catheter O is characterized by the distance to the center-line df and the angle
θf between −−→OOf and the x-axis. A cross sectional view of the multicore-fiber and
the catheter tip is shown in Fig. 4.6.

An optimization problem is formulated to find df and θf by minimizing the following
objective cost function.
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arg min
df ,θf

1
n×m

n∑
i=1

m∑
j=1
∥g(κfi,j

)− κgti
∥, (4.5)

where m is the number of points where FBGs are inscribed along the length of the
optical fiber, n is the number of samples in the training data, and κgti is the ground
truth curvature that is generated from the EM poses. Two algorithms supported
by MATLAB, namely trust-region reflective [230] and Levenberg-Marquardt [231]
were used to solve the optimization problem. The result of trust-region reflective
was chosen since it yields a lower value for the objective function (approximately
15%).

4.3.5 Shape reconstruction

As explained in the following, the discrete estimated curvature of the catheter
central axis and the angle of the bending plane are interpolated. This ensures
the continuity of the estimated curvature and improves the accuracy of shape
reconstruction. The catheter shape is represented as a space curve, which can be
described as a set of curvatures κ(s) and torsion τ(s), where s is the variable arc
length. Torsion τ(s) is the rate of change of angle of the bending plane with respect
to the arc length. The curvature and torsion profiles determine the evolution of
the tangent −→t , the normal −→n , and the binormal −→b unit vectors along the length
of the catheter. By solving the differential Frenet-Serret formulae, the evolution
of the TNB frame is obtained [232]. The Cartesian position of each point that
belongs to the catheter length C(s) follows then by integrating

C(s) =
∫ s

0

−→
t ds. (4.6)

In this work, (4.6) is solved using the Helical Extension Method (HEM) [233] as
suggested in [217].

4.4 ANN-based off-center fiber shape reconstruction

4.4.1 Design of the ANN

In this work, a multilayer perceptron (MLP) is used to auto-calibrate the shape
sensing functionality of the robot. A multilayer perceptron is a class of feed forward
artificial neural network that consists of an input layer, several hidden layers and an
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Figure 4.7: A multilayer perceptron (MLP) for FBG calibration. The four
wavelength shifts ∆λ from the four-core FBG fibers are entered into the input layer
of the proposed MLP. The output layer has three neurons. One neuron predicts
the curvature, while the other two predict the sine and the cosine of the angle of
the bending plane. Five of these MLPs are established for the five gratings that
are distributed over the entire length of the catheter segment.

output layer [234]. Except for the neurons in the input layer, each neuron adopts a
nonlinear activation function. These nonlinear activation functions turn the MLP
into a nonlinear perception, thus distinguishing itself from linear approaches, such
as linear regression. Thanks to a large number of neurons and the possibility to
make use of multiple types of nonlinear activation functions, MLPs can model
complex nonlinear behavior [235]. MLP training is based on a supervised learning
algorithm called back-propagation [236]. The training procedure requires sufficient
data containing various patterns. The MLPs developed here relate the measured
wavelength shifts from FBGs directly to the curvature and angle of the catheter’s
bending plane without explicit knowledge of the correspondence between the fiber’s
position and the catheter center-line or explicit knowledge of the characteristic
parameters of the fiber. Note that the reason for using wavelength shifts ∆λ,
instead of raw wavelengths values, is that the absolute value of the wavelength itself
could be influenced by environmental factors such as temperature and humidity,
which is less for the case of wavelength shifts.

The length of the flexible part of the catheter segment is 40 mm. Since the distance
between neighbouring gratings is 10 mm, only five sets of curvature and angle of the
bending plane is needed to reconstruct the shape. Therefore, five MLPs, as shown
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Figure 4.8: Instead of directly estimating the angle of the bending plane, the
proposed MLP divides it into two outputs, i.e. the sine and cosine of the angle of the
bending plane. This approach transforms the discontinuous rotation representation
(left) into a continuous representation (right), thus facilitating the fitting of the
neural network.

in Fig. 4.7, were employed. Here, rather than a large MLP that takes five gratings
together, five separate MLPs were trained. This allows efficient training and helps
transferability of the results to more general scenarios. Training can be done in
free space only (which is faster than training every possible contact situation), but
- as demonstrated in this work - still allows learning the behavior/parameters of
each separate grating. This is found helpful to generalize to more general cases
where the shape deviates from a single constant curvature for all the five gratings
(as would be expected in free space).

Each MLP automatically interprets the strains from the four gratings of an
individual location. Each MLP (see Fig. 4.7) consists of five layers i.e. one
input layer, three hidden layers and an output layer. The input layer has four
neurons, which receive the wavelength shifts ∆λ that are collected from a four-core
FBG fiber. The catheter was first placed in a straight configuration to measure
the unstrained Bragg wavelength λ0 of each grating. The wavelength shifts were
then calculated as:

∆λ = λ− λ0, (4.7)
where λ is the strained Bragg wavelength.

The first, second and third hidden layer have 180, 360, and 90 neurons, respectively.
A Rectified Linear Unit (ReLU) is used as the activation function and added after
each hidden layer. The output layer has three neurons. One of the outputs is the
curvature. The two other neurons predict the sine and the cosine of the angle of
the bending plane. This allows circumventing the discontinuity of the angle at
0 and 2π (Fig. 4.8(a)) that is otherwise difficult to cope with for an ANN [237].
The prediction results of the MLP are shown in Fig. 4.9(a) for the case where
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Figure 4.9: Prediction of the angle of the bending plane of grating 3 using different
representation methods: (a) non-continuous representation: as can be seen in the
dashed green boxes, the MLP with the non-continuous representation generates
large errors in the transition region [0,2π]; (b) continuous representation: MLP
performs well in the transition region, thus produces small errors.
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Table 4.2: Feature Ablation Study
Avg. validation loss (std) Percentage increase

remove the 1st core 0.0065 (0.0004) 14.0%
remove the 2nd core 0.0081 (0.0003) 42.1%
remove the 3rd core 0.0079 (0.0006) 38.6%
remove the 4th core 0.0069 (0.0001) 21.1%

Table 4.3: Hyperparameters for the MLP network

MLP

Number of
hidden layers

Number of neurons
per cell

Activation
functions Optimizer Loss function

3 180, 360, 90 ReLu Adam L2 Loss
Training-subset/Validation ratio Batch size Learning Rate Epoches

70%/30% 16 10−5 350

the non-continuous representation has been used. As visible in the green dashed
boxes, there are many haphazard points distributed over the transition region [0,
2π]. The error plot (in green) in this region generates a peak, where the error
is significantly larger than the other regions. In this case, the Mean of Absolute
Error (MoAE) of the 3rd set of gratings is 0.21 rad. If we reconfigure and train
the ANN with its output to the sine and cosine of the angle of the bending plane,
the rotation is represented in a continuous fashion (Fig. 4.8(b)). This will improve
the learning efficiency of the MLP (see Fig. 4.9(b)). The MoAE obtained in this
case (results shown in Fig. 4.8(b)) is 0.13 rad, which is 38.1% better than the
non-continuous representation. The angle of the bending plane can be finally
calculated by wrapping the angle back to the interval of 0 to 2π via the operation:

θ = atan2
(

sinθ

cosθ

)
. (4.8)

To increase the learning efficacy, all the input and output training data were
normalized between [-1,1] following (4.9).

xnorm = (b− a) x− xmin

xmax − xmin
+ a, a = −1, b = 1. (4.9)

The output normalization regulates the three outputs to the same range, thus the
ANN learns the three outputs with equal efforts. Here, a normalization is carried
out instead of a standardization because normalization is suitable for use when the
distribution of data does not follow a Gaussian distribution. In addition, ANN
is an algorithm that does not assume/prerequire any type of data distribution.
Note that in (4.9), the variable x represents respectively the wavelength shift ∆λ,
curvature κ, and the sine and the cosine of the angle of the bending plane: sin(θ)
and cos(θ), respectively.
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Figure 4.10: The results of the feature ablation study. The feature-ablation-ANN
(with three inputs) and the original ANN (with four inputs) trained for grating set
3 were evaluated on testing trajectories Li1 in Table 4.1. The feature-ablation-ANN
could achieve a comparable performance as the original ANN even if the information
from the central core is not provided.

4.4.2 Feature ablation study of the ANN

A feature ablation study was conducted to determine the contribution of each
input feature to the overall performance of the ANN. Ablations were carried out
by removing one of the four inputs. This means that the ANN used for the
feature ablation study (hereinafter referred to as “feature-ablation-ANN”) only
has three inputs. Next, the feature-ablation-ANN was re-trained. To investigate
the effect of the ablation, the performance of the feature-ablation-ANN was first
evaluated on the validation set. The validation losses are reported in Table 4.2.
It shows that removing the first core (central core) leads to the lowest increase
(14.0%) in validation loss. Because, the central core practically coincides with the
fiber’s neutral axis, it is not sensitive to bending strain. Therefore, it provides less
information to the ANN compared to other cores and removing it has not that
large impact.

The feature-ablation-ANN (with central core removed) was further validated on
the test set. An ANN was trained for each grating. Five feature-ablation-ANNs
are applied to the four testing trajectories. The errors of curvature and the angle
of the bending plane generated by the feature-ablation-ANN were compared to
that of the original ANN. One group of results tested on the trajectory Lissajous
(1) is shown in Fig. 4.10. The results show that the average curvature error of
the feature-ablation-ANN (0.56 m-1) is slightly smaller than the original ANN
(0.62 m-1). Their average errors in terms of the angle of the bending angle are
comparable, namely 0.20 rads for feature-ablation-ANN and 0.21 rads for original
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ANN. This can be explained by the fact that the central core provides redundant
information. The ANN could achieve better performance when the redundant input
information is removed. However, it is expected that the information from the
central core could be beneficial in more complex loading cases such as a longitudinal
load, and/or a variable temperature. These disturbances have not been tested at
this point and remain the subject of further work. Based on this consideration, this
work continues with the original ANN. Note that the aim of the feature ablation
study described here is to find efficient combinations of hyperparameters and ANN
structures. The aim is not to find the optimal configuration for a certain data-set,
as this would not necessarily guarantee optimal performance on other datasets.

4.4.3 Summary of hyperparameter study

The hyperparameters of each MLP are listed in Table 4.3. Hyperparameters,
e.g. Adam optimizer [44], training/validation ratio 30%/70% [238, 239], or ReLU
activation function [44], were selected based on previous research or empirically.
The network was implemented using Python, and in particular PyTorch, an open
source machine learning library. Ubuntu 20.04 was the operating system that was
used. Each MLP has been trained for 350 epochs until the training and validation
loss reached a plateau. The whole training time was less than 15 minutes. The
loss trend of one training session was shown in Fig. 4.11. The training results
indicate that the MLP converged at the end of the training process. The average
inference time of the MLP for a single output is around 0.18 ms. Also considering
the MLP has a practical structure among the ANNs, it is feasible for the users to
train an MLP in a short time. The users can employ the trained MLP to achieve
the calibration of the FBG as well as the reconstruction of the robot shape in
real-time.

4.5 Results and discussion of the DL-based improved
catheter shape sensing

Figure 4.5 summarizes the verification procedure of the trained MLP. The MLP
was first verified in free space by reconstructing the shape of the robot, while it
was controlled to follow two Lissajous and two circular trajectories. Subsequently,
verification took place in a constrained space. Here, the catheter was brought into
contact with an obstacle at different locations along its length.

4.5.1 Free space experiments with ground truth generated EM

In the free space experiment, with ground truth generated by EM, the catheter
was commanded (in open loop) to roughly follow the predefined trajectories as
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Figure 4.11: Loss trend (grating 3) presented as training loss (red) and validation
loss (blue) vs. the number of epochs.

shown in Table 4.1. The catheter bends with curvatures up to 15 m-1. Note that
no effort was made to follow the said trajectories closely (i.e., open loop control
was implemented) as this work focuses on reliably predicting catheter shape, not on
closely following a trajectory. The ground truth of these experiments was generated
using the tip and base poses together with the constant curvature assumption of
the catheter. The error as a function of the arc length is defined as the Euclidean
distance between the reconstructed and the ground truth data:

Edist = dmin(Sgt, Sest), (4.10)

where Sest is the reconstructed shape expressed as a set of k points Sest = [s1s2...sk]
and si∈{1,...,k} is the 3D coordinate of each point. The distance error Edist is the
distance between the ith point of the estimated shape Sest to the closest point on
the ground truth shape Sgt.

The blue lines, which are shown in the graphs in the first row of Fig. 4.12(a-d),
depict the estimated catheter shapes using the ANN approach. Distance errors are
shown in color-coded map graphs in the second row of Fig. 4.12 in panels (e-h).
The histograms showing the mean and maximum error are shown in Fig. 4.12(i-f).
The mean error for one shape is calculated by averaging Edist, while the maximum
error shows the highest value in Edist at each time step. The experimental results
for the free space with ground truth EM are shown in the first part of Table 4.4.
In this table, the mean and maximum error for each shape at a single time step
using our proposed ANN approach and the traditional model-based approach are
reported with their standard deviation. The overall maximum error that shows
the largest error in each experiment is also mentioned in Table 4.4. One can
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Figure 4.12: The results of free space shape sensing experiments with EM ground
truth using ANN approach: (a)(e)(i) Lissajous (1); (b)(f)(j) Lissajous (2); (c)(g)(k)
circular (1); (d)(h)(i) circular (2). The catheter reconstructed shapes are presented
by blue lines in the graphs displayed on the first row while the images on the
second row show the color-coded Euclidean distance errors of each point along the
catheter length. The images on the third row show the histogram of the mean and
maximum error for each trajectory.

observe that the proposed approach can estimate the catheter shape with good
accuracy with an overall mean and maximum reconstruction error of 0.244 mm and
0.639 mm, respectively. The color-coded map graphs (Fig. 4.12(e-h)) show that
the maximum error typically appears at the tip of the catheter. This is logical, as
errors are integrated along the catheter length, and therefore the maximum error
can be considered as the estimated tip error. The catheter experienced different
bendings in the four different trajectories. The largest mean error of 0.309 mm
appears at the circular trajectory (2) where also the largest curvature takes place.
The overall maximum errors of the two Lissajous trajectories were 1.080 mm and
1.009 mm, while the maximum errors of the two circular trajectories were 1.773 mm
and 1.795 mm.

Figure 4.13 shows the mean error over the time of Lissajous (1) experiment together
with the estimated angles of the bending plane for each grating and the ground
truth angles of the bending plane. The mean error increases at the transition
points of the angle bending plane while the catheter crosses the zero-angle of the
bending plane (marked with dashed squares in Fig. 4.13). Note that here the
zero-angle of the bending plane is calibrated to be aligned with the switching point
of the two antagonistic muscles (Fig. 4.6) of the catheter. The large error at the
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Figure 4.13: The estimated angles of the bending plane of each grating (blue),
ground truth angle of the bending plane (black) and mean error (orange) of
lissajous (1) experiment are plotted over the time. Transition regions where there
are increases in mean error are marked with dashed square.
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Figure 4.14: The results of constrained environment shape sensing experiments
using the ANN approach: (a) free space; (b)-(g) constrained space. The catheter
reconstructed shapes are presented by a green line while the tracked markers are
shown in red. The quantitative shape reconstruction results of the experiments with
EM ground truth and with camera ground truth using ANN and model-dependent
approach are presented in (h).

transition point is due to the fact that the low frequency of the EM sensing is not
able to capture fast dynamic movement of the catheter tip when it crosses the
switching points of the two antagonistic muscles. The unavoidable non-linearities
(e.g. hysteresis, dead zone) make the catheter tip movement more unpredictable.
This can be clearly seen in Fig. 4.9. Consequently, the quality of the training data
collected at the transition point is worse. In turn, this leads to lower accuracy, here
seen as a larger error of the bending plane angle around the zero-angle bending
plane.
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For comparison, the catheter shape was also reconstructed with a conventional
model-based shape sensing method introduced in [229] with the calibration step
described in Section 4.3.4. The mean and maximum reconstruction errors achieved
by this conventional method are 0.311 mm and 0.906 mm, respectively, which
are 21.5% and 29.5% larger than the results achieved by the ANN-based method
(Fig. 4.14(h)).

4.5.2 Free space and constrained space experiments with ground
truth generated by the camera

In the experiments with ground truth generated by the camera, two antagonistic
PAMs were successively actuated to make the catheter bend in a plane parallel to
the camera’s plane. This allows us to use the camera as a source for ground truth
generation. To generate the constrained environment test sets, rigid obstacles were
fixed at various locations along the catheter length as shown in Fig. 4.14. During
these experiments, the PAMs were pressurized with a maximum value of 3.5 bar
which results in the maximum recorded curvature of 20 m-1. Given the short
length of the bendable segment (approximately 40 mm) and the large size of vessels
where we are targeting at, the segment would only assume to get into S-shape
configuration when an intense contact appears at the tip. Such contact would need
to be maximally avoided. For these reasons, we did not include S-shaped bending
in evaluating our proposed approach.

By controlling the catheter to move in the image plane, the camera was able to
capture the entire shape of the catheter. The images recorded by the camera
were used to generate ground truth for the unconstrained and the constrained
environment experiments since the presence of extrinsic disturbances (obstacles)
makes the catheter deform into shapes for which the constant curvature assumption
is no longer valid. The interaction with an obstruction complicates the catheter
shape segmentation process. To address this issue, the heat shrink’s positions
along the catheter length were tracked rather than the centerline of the entire
catheter. Color segmentation was first applied to the input image to identify the
contours of the heat shrink. The heat shrinks’ locations in the image frame P Img

m×2
(where m is the number of heat shrink) were then determined by the center of the
recognized contours. Since the center points of the heat shrinks were moving in a
plane during the experiments, the 2D positions of these points can be converted to
3D positions by adding a fixed z-value (i.e. z = 0). The 3D positions of the heat
shrinks in the ground truth frame were defined as P GT

m×3 = scale × [P Img
m×2 0m×1]

where scale is a camera scale factor calibrated by observing a known-size chess
board. To register the FBG shape reconstruction frame and the ground truth
frame, a spatial calibration step as detailed in [229], was performed to find the
correspondence between the measured shape and the measured positions of the four
heat shrinks. The catheter was fixed at the base and bent in two configurations
symmetric with respect to the straight configuration. The distance between the first
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Figure 4.15: The spatial calibration step to find the correspondence between the
heat shrinks position and the 3D reconstructed shape. Catheter was first bent in
two configurations as shown in (a). The heat shrink’s positions were then extracted
by image processing and transform to the ground truth coordinate frame as can be
seen in (b). The 3D shapes of the catheter in two configurations were reconstructed
in the FBG coordinate frame (c). The travel distance between two configurations
of each point along the catheter length was calculated and compared to the travel
distance of each heat shrink to find the correspondence (d).
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and second configurations of each corresponding point at a given arc length along
the reconstructed shape was measured. The travel distance of each point along the
length of the reconstructed shape was then compared to the travel distance of each
heat shrink to find the corresponding arc length of each heat shrink. An example
of this spatial calibration process is shown in Fig. 4.15.

To localize the 3D reconstructed shape in the ground truth frame, m shape points
in the FBG shape reconstruction frame together with their corresponding points
in the ground truth frame (P GT

m×3) are used to find a rigid transformation matrix
at each time step. In this work, a point-to-point registration method proposed
by Horn [240] was used. To compare the efficiency of the ANN-based and the
model-based approach, the mean and the maximum distance between the four heat
shrink points and their corresponding points in the estimated shape in the ground
truth coordinate frame were calculated.

Figure 4.14(a) shows the estimated shape in the unconstrained experiments while
Fig. 4.14(b-g) visualizes the catheter shape in the constrained environments.
The experimental results of the free space and of the different contact location
experiments, with camera ground truth, are summarized in the second and third
parts of Table 4.4. The quantitative shape reconstruction results using the ANN
and the model-based approach are shown in Fig. 4.14(h). The mean, maximum
value and the standard deviation of the shape reconstruction error are plotted in the
constrained environment with EM ground truth, free environment and constrained
environment with camera ground truth. It can be observed that the proposed ANN
approach yields a mean shape deviation of 0.491 mm and 0.497 mm in the free
and constrained environment experiments with camera ground truth, respectively
(Fig. 4.14(h)). The traditional model-based approach shows a similar consistent
accuracy of approximately (0.568 mm) in both free space and constrained space
experiments. In terms of the maximum reconstruction error, the ANN improved
the performance over the traditional approach by 13.9% and 11.8% in free space
and constrained space, respectively.

4.5.3 Discussion on the results of free space and constraint space
experiments

Referring to Fig. 4.14(h), one can note that the maximum error in the free space
experiment with EM ground truth is larger than the maximum error of the
experiments with camera ground truth. This is due to the fact that the evaluation
metrics in the EM ground truth experiments (pointwise shape reconstruction error
over the entire length) are different from those used in the camera ground truth
experiment (shape reconstruction error using four heat shrinks as reference points).
Therefore, the errors between these two experiments represent two different metrics
and are not comparable. These experimental results reflect the superiority of the
proposed ANN approach compared to the traditional model-based approach in all
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three experiments. It is worth mentioning that due to the fast response and the
high frequency streaming rate of the FBGs, the shape reconstruction algorithm
runs at 200 Hz using MATLAB on a computer with specifications mentioned in
Section 4.3.3.

Considering the average error and the maximum shape sensing error, the authors
believe that this method outperforms the results reported in [229]. In addition,
our method only requires data acquisition in free space to train the ANN, and
the trained ANN can be generalized to the constrained space as well. The ANN
efficiently learns the mapping from the wavelength shift ∆λ to the curvature and
the angle of the bending plane. This mapping is in fact an intrinsic property of the
robot. Indeed, it is shown through these experiments that this mapping does not
depend on whether the robot is in contact with obstacles or not. Therefore, it can
be said that the ANN model trained in free space is well transferable to contact
situations. Aside from the elegance and knowledge that free space training suffices,
the training itself is, with 30 minutes training in total, also very fast. One would
expect this training time to rise proportionally for longer sections, but training
would only be required once, e.g. right after construction of the catheter.

In addition, considering the concerns arising from the black-box nature of DL
methods, two precautions are proposed in case the ANN fails: 1) the maximum
curvature that can be achieved by the flexible robot is identified before interventions.
If the prediction of the ANN is greater than this threshold, or less than zero, then
the system should indicate to clinicians that the reconstructed shape is unreliable;
2) the traditional model-based approach that is used as a comparison to the ANN
will be used in parallel with the ANN. If the situation described in 1) occurs, or
the difference between the model-based approach and the ANN is too large, or
if the ANN has no outputs at all, then the system switches to the traditional
model-based approach for shape reconstruction. This mechanism takes advantage
of the superior accuracy of the ANN, but at the same time offers redundancy to
mitigate the risks when the ANN approach would fail during interventions.

4.6 Conclusion on DL-based improved catheter shape
sensing

In this chapter, a new data-driven approach to auto-calibrate the shape sensing
functionality of a multi-DOF catheter is presented. The newly presented solution
allows the optical fiber to be inserted in an off-center channel while still ensuring a
high shape sensing precision. To prove the superiority of the proposed data-driven
approach compared to the traditional model-based approach, both methods were
implemented in this work. A method to map the curvature measured by the fiber
inserted to an off-center channel to the catheter’s curvature is also presented. This
allows a fair comparison between the two approaches. The performance of the
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proposed method was evaluated with different ground truths in both free and
constrained environments and yielded promising shape sensing accuracy. Using
the proposed method, average shape sensing errors of 0.24 mm and 0.49 mm were
recorded in free space and constrained space experiments, respectively.

Currently, the training data sets were generated by the catheter tip and base
poses with constant curvature assumption. In the future, other sensing modalities
such as multi-view 3D computer vision method named shape reconstruction from
silhouette [241] will be considered for use in training data generation. The use of
shape reconstruction methods from silhouette will enable our method to be also
applied to different types of flexible instruments that do not necessarily need to
follow the constant curvature assumption in free-space during training as was done
in this chapter.

This chapter addressed the issue of limited visual feedback in Chapter 2, advancing
to showing the 3D shape of the catheter instead of presenting solely the catheter
tip’s pose. DL methods were employed to enhance shape sensing in continuum
robots using a non-radiative approach. During data collection and validation, the
hysteresis effect is evident. As observed in Fig. 4.10, there is a lack of response in
the curvature and the angle of the bending plane when pressure is varied. Such
phenomena could influence the precision of catheter tip positioning, which could
potentially lead to risks of tissue damage or even perforation. No matter using
teleoperation as shown in Chapter 3 or (semi-)autonomous control as showcased in
Chapter 6, the hysteresis needs to be understood and compensated. The following
chapter introduces a DL method to model hysteresis in robotic catheters. Its
ability to enhance reconstruction of anatomical environments is also showcased
when combined with forward-looking imaging modalities.
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Hysteresis modeling of robotic
catheters based on a Long
Short-Term Memory network
for improved environment
reconstruction
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The positioning precision of the catheter tip is negatively affected by hysteresis.
To ensure that tissue damage is avoided due to imprecise positioning, hysteresis
must be understood and compensated for. This work investigates the feasibility to
model hysteresis with a Long Short-Term Memory (LSTM) network. A bench-top
experimental setup containing a catheter distal segment was developed for model
evaluation. The LSTM was first tested using four groups of test datasets containing
diverse patterns. To compare with the LSTM, a Deadband Rate-Dependent
Prandtl-Ishlinskii (DRDPI) model and a Support Vector Regression (SVR) model
were established. The results demonstrated that the LSTM is capable of predicting
the tip bending angle with sub-degree precision. The LSTM outperformed the
DRDPI model and the SVR model by 60.1% and 36.0%, respectively, in arbitrarily
varying signals. Next, the LSTM was further validated in a 3D reconstruction
experiment using Forward-Looking Optical Coherence Tomography (FL-OCT). The
results revealed that the LSTM was able to accurately reconstruct the environment
with a reconstruction error below 0.25 mm. In addition to this, we have also
verified the capability of the LSTM to handle hysteresis patterns in another system
that features different hysteresis patterns and expanded range of motion. Overall,
the proposed LSTM enabled precise free-space control of a robotic catheter in
the presence of severe hysteresis. The LSTM predicted the catheter tip response
precisely based on proximal input commands, minimizing the need to install sensors
at the catheter tip for localization.
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In Chapter 3, the teleoperation of the robotic catheter is realized using an AR-HMD
and a gamepad. Chapter 4 presents the use of a custom-made, pneumatically-
actuated catheter for collecting the requisite training and test data, which is
then used to train an ANN aimed at improving the accuracy of FBG-based shape
reconstruction. Despite these advances, the hysteresis effect remains uncompensated
in above scenarios. The hysteresis effect impedes intuitive catheter control and
consequently reduces the control precision of the catheter. This chapter addresses
Sub-objective 4 introduced in Section 1.7 and delves into the critical issue of
hysteresis in catheters. Addressing hysteresis is crucial to enhance the intuitiveness
of physicians during teleoperations. It also plays a crucial role in increasing the
positioning accuracy of the catheter tip, which is needed in the long term if one
wants to automate the procedures.

5.1 Introduction

Robotic catheters can be operated based on various working principles [242]. Cable-
driven technology is one of the most popular driving principles for robotic catheters.
The cables, which are routed over the entire length of the catheter, undergo quite
some friction with their guiding tubes. Consequently, reaching a high bandwidth
is generally difficult. This hinders the deployment of cable-driven technology
in scenarios in which good responsiveness is desirable. From the 1950s onward,
Pneumatic Artificial Muscle (PAM) became popular for many applications due
to its high operation bandwidth, easy fabrication, and low-cost [243]. PAMs also
show good promise for being used in interventional instruments, in which precise
maneuvers are required [244].

5.1.1 Prior works

Whether actuated by cables or by PAMs, precise control of catheters or, in a
broad sense, flexible surgical robots is challenging. With hysteresis being a primary
source of imprecision, hysteresis establishes a complex non-linear multi-valued
relation between input commands and the response of the catheter tip. This
multi-valued relation complicates navigation and results in inaccurate positioning
of the catheter tip. To solve this problem, several methods have been explored
in the past (Table 5.1). The use of external sensors as feedback to implement a
closed-loop control was presented in [245], [246]. However, mounting sensors at the
distal end is challenging due to spatial restrictions and sterilization requirements
[247]. Some previous research also demonstrated the feasibility of using imaging
techniques as feedback to minimize hysteresis [248], [249]. Baek et al. further
integrated these imaging-based methods with kinematic models [133]. Amongst
others, analytic models for identifying hysteresis is one of the most popular research
fields ([250, 251, 252]). An open-loop controller could be designed based on the
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inversion of the identified models. Nevertheless, analytic models require a large
number of parameters, which would lead to a cumbersome identification process.
It is worth noting that, except for [252], all the above-mentioned research tackled
hysteresis in cable-driven systems, while the study of hysteresis in fluidics-driven
systems was scarce.

Deep learning techniques gained interest as they allow to avoid intricate
identification processes by training an artificial neural network. Up to now, few
works have attempted to use machine learning or deep learning for hysteresis
modeling. Xu et al. [253] employed regression methods to learn the inverse
kinematics model of a serpentine surgical manipulator. Porto et al. [247] used
machine learning to produce position control of a flexible surgical robot. Both works
dealt with cable-driven robots, and adopted traditional machine learning methods
but did not take advantage of recent advances in deep learning. Several researchers
used various deep learning approaches to model force hysteresis targeting generic
[254], [255] and medical applications [221], [89]. In this work, we tackle hysteresis
in positioning tasks, whereas force tasks - as described in [89, 221, 254, 255] form
the topic of furher investigations and are out of the scope of this work.

5.1.2 Chapter contributions & structure

The chapter proposes the use of a Long Short-Term Memory (LSTM) network
to model hysteresis in a catheter system. It is shown that the proposed method:
1) is able to predict the catheter distal response merely based on proximal input
commands without including sensory feedback; 2) has a high modeling accuracy
compared to other existing analytic models and machine learning models; 3) does
not require a large amount of data and has a fast training procedure. The LSTM
allows catheters to be steered precisely during endovascular interventions. A further
contribution is that we use the developed model together with OCT-based distance
sensing to reconstruct a 3D artificial environment. This chapter is structured
as follows: Section 5.2.1 describes the structure of the LSTM as well as the
experimental setup. Section 5.3 introduces the designed experiments to validate
the LSTM. Section 5.5 concludes the work and proposes future work on catheter
control.

5.2 Methods

5.2.1 Long Short-Term Memory network

A system is said to exhibit hysteresis if it has a sort of memory. This means that
the output at a certain moment is determined not only by the corresponding input,
but also by past inputs [256].
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LSTM was proposed as a tool to process sequential information and take historical
information into account [79]. Therefore, it is not so illogical to consider the use of
LSTM to model hysteretic behavior.

f (t) = σ(Wf p(t) + Uf h(t−1) + bf )

i(t) = σ(Wip
(t) + Uih

(t−1) + bi)

c̃(t) = tanh(Wgp(t) + Ugh(t−1) + bg)

c(t) = f (t) ∗ c(t−1) + i(t) ∗ c̃(t)

o(t) = σ(Wop(t) + Uoh(t−1) + bo)

h(t) = tanh(c(t)) ∗ o(t)

(5.1)

LSTM can be viewed as a stack of LSTM cells that contain a number of units in an
LSTM cell (see Fig. 5.1). Each LSTM cell is equipped with an input gate, an output
gate, and a forget gate. The information in a unit is processed following (5.1) [79].
In (5.1), p(t) is the input pressure to a Pneumatic Artificial Muscle (PAM) at time
t. The variable σ is the sigmoid function with an output range of [0,1]. It regulates
the percentage of information flows through each gate. Another activation function
is the tanh, whose outputs range from [-1,1]. The forget gate f determines which
memory in the previous cell state c(t−1) is retained. The input gate i and the input
modulation gate c̃ are combined to update the cell state. Subsequently, a new cell
state c(t) is created. The cell state c stores selective information that the LSTM
processes all along, thus a long-term memory in the LSTM can be established. The
output gate o works as a filter. It regulates which part of the information from the
new cell state c(t) is output and transferred to the hidden state h(t). The matrices
W , U and b, with different subscripts, represent the weights and biases. These
gates keep track of the dependencies in the input sequence.

5.2.2 Experimental setup

In order to collect data for training and testing the LSTM, a bench-top experimental
setup was built. A schematic diagram of this setup is illustrated in Fig. 5.2. This
setup contains a one degree-of-freedom (DOF) unidirectional catheter distal segment
with an embedded PAM (Fig. 5.2). The catheter is fabricated out of Nitinol using
metal laser cutting technology and has a diameter of 4.4 mm. The custom-made
artificial muscle is used to actuate the catheter. By increasing the pressure, the
muscle contracts and applies, through a steer cable that is attached off-centered
at the catheter tip, a bending moment on the catheter tip. In order to accurately
control the input pressure, the pressure is fed by an air supply, via a proportional
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Figure 5.1: Left: a stacked 2-layer LSTM that consists of multiple LSTM cells,
is unrolled into multiple time steps. In this work, the LSTM is comprised of 64
neurons per layer. A fully connected layer is added after the LSTM at time t.
Right: each LSTM unit has three gates, i.e., input gate i, output gate o, and forget
gate f that regulate the information flow according to (5.1). A window size of 50
is used to incorporate the input pressure p that was applied in the last 50 time
steps. All this information is used to predict the future bending angle θ.

pressure valve (Festo, Germany) to the artificial muscle in cascade (Fig. 5.2). The
proportional valve receives control signals from an analog output module NI-9263
(NI, Texas, USA). A pressure sensor (21Yseries, Keller, Switzerland) is installed
in series with the above-mentioned circuit in order to measure the pressure value.
A laser photoelectric sensor (OADM 12I6460/S35A, Baumer Group, Switzerland)
is used to measure the distance s (unit: mm) from the sensor to the catheter tip
with a sampling frequency of 250 Hz. A reflective sheet is attached on the catheter
tip to increase the area of the reflective surface. The measured voltage output U
(unit: V) from the laser sensor can be converted to the catheter tip bending angle
θ (unit: deg) using following relation:

si = mUi + n (5.2)

d
′

i = max(s1, s2, · · · , sN )− si (5.3)

θi = 2 · d′

i · L
H2 + d

′
i
2 ·

180
π

(5.4)

In (5.2) - (5.4), subscript i indicates the i-th sample in a group and the N represents
the number of samples in a data group. The voltage U measured by the laser
photoelectric sensor is proportional to the distance s to the measured object, thus
m = 4.05 (mm/V) and n = 29.36 (mm) in (5.2) was identified only once prior
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Figure 5.2: A PAM-driven catheter segment is controlled by a proportional
pneumatic valve, which receives a command signal from a PC through a NI®

CompactRIO system. The resulting catheter tip bending angle is captured by a
laser sensor. A ROS-based GUI is created for pressure control and data collection.

to data collection. Referencing the straight configuration as zero displacement,
then the displacement of the catheter tip d

′ can be calculated by subtracting the
measured distance s from the maximum distance max(s1, s2, · · · , sN ) between the
catheter tip and the laser sensor as expressed in (5.3). Subsequently, as shown
in Fig. 5.3, the catheter bending angle θ can be obtained based on a constant
curvature model [225] assumption, in which the gravitational and inertial forces
of the catheter segment could be assumed to be negligible. The data from the
distance sensor are collected by an Arduino® microcontroller, and then sent back
to the PC via a Robot Operating System (ROS) topic. A Graphical User Interface
(GUI) is created in ROS to facilitate the users to switch among different excitation
signals, which are detailed in Section 5.2.3.

5.2.3 Training data acquisition

In order to provide the LSTM with data containing diverse excitation patterns,
descending sinusoidal pressures with zero baseline described in (5.5) and with
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Figure 5.3: The catheter tip displacement d
′ captured by the laser distance sensor

is converted to the bending angle θ using (5.2) - (5.4) based on a constant curvature
model [225] assumption.

non-zero baseline described in (5.6) were sent to the setup to generate multi-loop
hysteresis (Fig. 5.4).

p1(t) = Ae−τt(sin(2πft− π

2 ) + 1) [bar] (5.5)

p2(t) = Ae−τt(sin(2πft− π

2 )) + A [bar] (5.6)

The amplitude A of both signals is set at 1.5 bars to achieve a maximum amplitude
of 3 bars. In (5.5) and (5.6), the variable f is the excitation frequency in Hz.
Input frequencies up to 1 Hz are investigated in this work. The hysteresis behavior
depends both on the input frequency and the amplitude of the excitation signal
[257]. Different excitation frequencies are included in the training data, namely
the frequencies of the excitation signal are set to 0.2, 0.4, 0.6 and 0.8 Hz in the
training data set. The time constant τ was chosen with only one value τ = 0.15 to
generate multi-loop hysteresis.

Two types of training data (bending angle - pressure) featuring major and minor
loops were obtained as shown in Fig. 5.4. In total, 26798 samples were acquired
in the training data set. The training data reveals widening hysteresis loops with
increasing excitation frequencies. One can also observe deadbands at the bottom
of the loops (Fig. 5.4). It is noteworthy that the hysteresis does not only come
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Figure 5.4: The training data are collected from the experimental setup: bending
angle (deg) is visualized as a function of the input pressure (bar): (Output1): 4
groups of data with zero baseline are collected based on combinations of f = 0.2,
0.4, 0.6, 0.8 and time constant τ = 0.15 following (5.5); (Output2): 4 groups of data
with non-zero baseline are collected following (5.6) based on the same parameters
as in output 1. Thick lines represent the major hysteresis loop with maximum
excitation, while thinner ones indicate the minor loops.

from the PAM, but also due to friction from e.g. relative movements of the steer
cable and NiTi tube during bending, the compressibility of air, the compliance of
the pneumatic tubes, the nonlinear behavior of the employed material (Nitinol)
and of the valves that were used. All these phenomena contribute to the resulting
asymmetric, saturated, rate-dependent hysteresis behavior.

5.2.4 Hyperparameters of the LSTM and network training

A 2-layer stacked LSTM (see Fig. 5.1) was adopted. According to a previous
pilot study [258], a window size equal to 50 was shown to have good performance
while maintaining a low computational cost. Therefore, the input pressures were
segmented into a window size of 50. In other words, sequential pressure data
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Table 5.2: hyperparameters for the LSTM network

LSTM

Number of
hidden layers

Number of neurons
per cell

Activation
functions

Optimizer Loss function

2 64, 64 Tanh/Sigmoid Adam L2 Loss
Training-subset/
Validation ratio

Batch size Learning Rate Epoches

70%/30% 16 0.001 50

p(t−49),p(t−48),...p(t) were entered into the LSTM to predict one bending angle θ(t).
The zeros were padded on the left of the input sequence to predict the first 49
bending angles. A fully connected layer (input dimensions = 64, output dimension
=1) was added after the last LSTM cell. To increase the learning efficacy, all
training data were normalized between [-1,1] to match the range of the activation
function in (5.1). The hyperparameters of the LSTM are listed in Table 5.2. The
LSTM is simple and fast with only two hidden layers and 64 neurons per layer.
These two hyperparameters were chosen and tested empirically, as adding more
layers or neurons not only led to worse fitting, but also increased the computational
cost and the needed training time. The total number of trainable parameters is
50497. The network was implemented in Pytorch, an open-source machine learning
framework. The training was performed using a 4 GB NVIDIA CUDA-capable
GPU. The LSTM was trained for 50 epochs and the whole training time was around
10 minutes.

5.2.5 Modeling evaluation methods

Three metrics i.e. the Maximum Absolute Error (MAE), the Root Mean Square
Error (RMSE) and the Normalized Root Mean Square Error (NRMSE) are used
to quantitatively evaluate the model performance in this paper. The MAE that is
computed following (5.7) measures the maximum absolute difference between the
predicted bending angles and ground truth among all the samples:

MAE = max
{∣∣∣θ̂i − θi

∣∣∣} , i = 1, 2, ..., N (5.7)

N is the number of sample points in each group of test data. The RMSE following
(5.8) calculates the square root of the square difference between the predicted
bending angles and the ground truth.

RMSE =

√∑N
i=1(θ̂i − θi)2

N
, i = 1, 2, ..., N (5.8)
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The NRMSE relates the RMSE to the observed range of the variables, and it is
defined as:

NRMSE = RMSE

θmax − θmin
(5.9)

5.3 Experiments and results

5.3.1 Preliminary evaluation of the LSTM

In the preliminary evaluation, a well-trained LSTM was tested on four types of
signals (see Fig. 5.5, 5.6, 5.7, 5.8). The LSTM, similar to other neural networks,
consists of a huge amount of weights and biases that are distributed in each layer.
The output of the LSTM is derived by multiplying the inputs with the embedded
weights and biases. Therefore, the experiments in this section were merely carried
out once, since an LSTM would predict the same results if the input remains the
same.

A state-of-the-art analytic model called Deadband Rate-Dependent Prandtl-
Ishlinskii (DRDPI) model proposed in [257] was established for comparison to the
LSTM. The DRDPI model is a sophisticated and practical model that takes into
account the impact of frequency on the hysteresis pattern. In addition, deadband
operators in this model allow it to model asymmetric hysteresis as well as saturation-
exhibiting behavior that appears at the bottom of the hysteresis loops (see Fig. 5.4).
Therefore, the DRDPI model is fully adapted to model the hysteresis originating
from the entire PAM-driven catheter system. The parameters of the DRDPI model
were identified using a genetic optimization algorithm in MATLAB® Toolbox. The
training data remained the same as for the LSTM (see Fig. 5.4). The identification
process was performed on CPU (Intel Core i7 CPU @ 2.80GHz with a RAM of
8GB) as there was no wide-spread library for GPU-based training. The entire
identification procedure of the DRDPI model took around 3.5 hours. A machine
learning model, i.e. Support Vector Regression (SVR) was also implemented to
enrich the comparison. SVR is an expansion of a classical Support Vector Machine
(SVM) from pure classification to regression tasks. Similar to SVM, it is designed
for estimation of high dimensional, nonlinear problems when only a limited number
of samples are available [259]. The SVR model implemented in this paper was
based on [259]. The hyperparameters of the SVR are chosen as follows: penalty
C = 10, kernel = Radial Basis Function (RBF) kernel, kernel coefficient γ =
0.1, margin of tolerance ϵ = 0.1. Parameter C and γ were optimized using a
grid search (C∈{0.001,0.01,0.1,1,10}, γ∈{0.001,0.01,0.1,1}) and a cross-validation
method (k=10). The optimization results of the three models are shown in Table
5.3. The rightmost column represents the mean of the relative change in MSE loss
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Table 5.3: optimization results of three models
Modeling Methods Iterations Training Loss (deg2) Mean of Relative Change

DRDPI 1000 0.344 0.013%
SVR 100 0.002782 0.708%

LSTM 50 0.00056 0.190%

in the last 10% of the iterations. The small mean of relative change indicates that
the three models were adequately converged, and thus the comparison is fair.

The pattern of the test signals as well as the modeling results of the LSTM, the
DRDPI model, and the SVR are shown in Fig. 5.5, 5.6, 5.7, 5.8 and described in
detail as follows:

0.0

8.57.5

8.0

0.0

9.57.5

8.0

Figure 5.5: Descending sine wave differing from training data (f=0.7 Hz, τ=0.12
s−1)

a) A descending sine wave following (5.5) with f = 0.7 Hz and τ = 0.12 s−1

differing from the training data was generated, while the amplitude A = 1.5 bar
remains the same.

The RMSE and the NRMSE of the LSTM are 0.36◦ and 1.17%, respectively. Both
metrics outperform those achieved by the DRDPI model (1.40◦ and 4.54%) and
the SVR model. In the first four loops, the error of the DRDPI tends to grow
larger during the loading and unloading phase (see Fig. 5.5), whereas the MAE of
6.23◦ occurs in the first loop. Even though achieving a comparatively acceptable
performance in few loops in the middle, the performance of the DRDPI model
degrades again in the last loop. In contrast, the error of the LSTM consistently
remains below 1.23◦ (MAE) throughout the range, which is even smaller than the
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RMSE of the DRDPI model.

b) To test the performance of the LSTM on data with time-varying frequency, a
pressure signal following (5.10) with A = 0.9 bar, B = 1.2 bar, f = 0. 7 Hz, τ
= 0.1 s−1 and c = -0.1 Hz/s was utilized to generate attenuated down-chirp sine
wave with non-zero baseline. The variable c is the chirpiness that regulates the
rate of frequency change over time.

p(t) = Ae−τt(sin(2π(f + ct)t− π

2 ) + 1) + B [bar] (5.10)

0.0
7.56.5

2.0

0.0
7.56.5

2.0

Figure 5.6: Attenuated down-chirp sine wave with shifted baseline (τ=0.1 s−1,
c=-0.1 Hz/s)

Unlike the DRDPI model that can merely model the saturating area by using a
plateau, the LSTM and the SVR is able to predict a smooth sine-shaped curve
when approaching extrema (see Fig. 5.6). This phenomenon can also be observed
from other test signals. Consequently, it leads to lower RMSEs of the LSTM and
the SVR with 0.82◦ and 0.80◦, respectively, compared to DRDPI with 1.22◦.

c) The third set of test data has an ascending pattern that is not contained in the
training data. Following (5.11), with A = 0.6 bar, f = 0.3 Hz , τ = 0.05 s−1 and c
= 0.15 Hz/s, an ascending up-chirp sine wave was generated.

p(t) = Ae−τt(sin(2π(f + ct)t− π

2 ) + 1) [bar] (5.11)

The performance of the LSTM advances with increasing frequency, whereas the
DRDPI model achieves a similar level of performance in the first two loops, before
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Figure 5.7: Ascending up-chirp sine wave with zero baseline (f=0.3 Hz, τ=0.05
s−1, c=0.15 Hz/s)

it starts to deteriorate until reaching an MAE of 4.28◦ in the loading phase of
the last loop (Fig. 5.7). Note that the SVR consistently predicts wavy lines in
deadzones, causing its performance to be 34.2% worse than the LSTM in terms of
the RMSE.

d) Arbitrarily varying signals represent the most general commands that can take
place in practice. It is used to further explore the potential of the LSTM.

The LSTM consistently shows low errors, regardless of signal patterns, with RMSE
and NRMSE of 0.59◦ and 2.42%, respectively. While the DRDPI also predicts
a quasi-plateau, it can be seen that each plateau occurs at a considerable offset
(Fig. 5.8), where its MAE of 2.98◦ emerges on the second plateau. Both the RMSE
(0.59◦) and the NRMSE (2.42%) of the LSTM are 60.1% and 36.0% smaller than
the DRDPI model and the SVR, respectively.

The average inference time of the LSTM for a single point is approximately 25 ms
based on the test data. Table 5.4 summarizes and compares the performance of
the three models quantitatively based on the three metrics. In terms of NRMSE,
apart from group (b) in which the LSTM is 33.1% better than the DRDPI model,
the LSTM outperforms the DRDPI model by at least 50% in the other three
groups. Moveover, except for achieving comparable performance in the ascending
up-chirp sine wave, the LSTM is at least 34.2% better than the SVR. With the
provided experiments, we showcased that the LSTM is capable of capturing dynamic
responses of our system which are – given that our catheter is lightweight and
the speeds are moderate – dominated by the valve dynamics. We believe that
faster motion could also be captured if trained properly. Overall, the LSTM is
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Figure 5.8: Arbitrarily varying signal with plateaus

Table 5.4: quantitative performance of the LSTM, the SVR and the DRDPI model
on four groups of test sets.

Modeling
Methods

Descending sine wave
differing from training data

Attenuated down-chirp
sine wave with shifted baseline

RMSE (deg) MAE (deg) NRMSE RMSE (deg) MAE (deg) NRMSE
DRDPI 1.40 6.23 4.54% 1.22 2.83 6.28%

SVR 0.76 1.83 2.45% 0.80 3.54 4.10%
LSTM 0.36 1.23 1.17% 0.82 2.27 4.20%

Modeling
Methods

Ascending up-chirp sinewave with zero baseline Arbitrarily varyingsignal with plateaus
RMSE (deg) MAE (deg) NRMSE RMSE (deg) MAE (deg) NRMSE

DRDPI 1.07 4.28 4.99% 1.48 2.98 6.07%
SVR 0.76 1.69 3.56% 0.92 2.01 3.78%

LSTM 0.50 1.92 2.34% 0.59 1.93 2.42%

able to accurately model asymmetric, saturated, and rate-dependent hysteresis
originating from the entire catheter system with a sub-degree precision as well as a
lead in performance compared to the DRDPI model and the SVR. In cardiovascular
applications, the required precision that clinicians indicate as being acceptable
is typically in the order of 1–3 mm [260], which corresponds to 2.09-6.26 degrees
according to (5.4). Although confirmed in a simplified setting, the obtained
performance of the LSTM (see Table 5.4) shows a good potential to satisfy the
requirements in terms of precision also in a more realistic clinical setting.
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Figure 5.9: (a) overview of reconstruction module: 1. distal catheter segment; 2.
laser distance sensor; 3. OCT fiber; 4. reconstruction object; 5. DC motor; (b)
(up) three patterns distributed in a circular sector of 270◦ (bottom) cross-section
view.

5.3.2 3D Reconstruction experiment

In a bifurcation lesion, angiography may not be able to accurately image the carina
area because the main vessel and the side branch overlap each other. As a solution,
a catheter-based forward-looking intravascular ultrasound (FL-IVUS) could help
reconstruct the anatomy of the lesion [261]. In this case, the positioning accuracy
of the catheter tip is very critical, otherwise a precise 3D reconstruction cannot
be guaranteed. A 3D reconstruction experiment is depicted in this subsection
(Fig. 5.9). A forward-looking optical coherence tomography (FL-OCT) fiber is
used to simulate the A-mode FL-IVUS. The experiment is set up to test whether
the modeling accuracy of the LSTM allows high-quality reconstruction of the
environment. Considering that LSTM and SVR both rely on machine learning,
while DRDPI is analytic, and given the superiority of LSTM over SVR, it was found
to be more interesting to compare the performance of LSTM with the analytic
DRDPI in the following experiment.

The experimental setup is shown in Fig. 5.2. Apart from the modules introduced
in Section 5.2.2, a reconstruction module is added for this experiment. A hollow
spherical cap with embedded grooves (Fig. 5.9) is fabricated to serve as a dummy
environment. This cap is placed in front of the catheter tip. There are three
patterns on this object, and each of them covers a circular sector of 90◦. The
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Figure 5.10: Results of 3D reconstruction experiment: (a) reconstruction of a
hollow spherical-cap object with an OCT scan at every 15◦ using lateral distance
sensor (ground truth, red), LSTM (blue dots) and DRDPI model (green dots); (b)
- (c) reconstruction errors of LSTM and DRDPI model respectively represented in
color-coded maps; (d) - (f) middle cross-section (at 45◦) of each pattern showing
the planar reconstruction performance of the two models.

dimensions of the object as well as the patterns can be seen in Fig. 5.9. Patterns I
and III have three milled grooves at various distances with respect to the center
axis, while pattern II is a smooth surface without any grooves. The object is
rotated by a DC motor (Maxon Group, Switzerland) so as to simulate the rotation
motion of the catheter. An OCT fiber (iOCT, OptoMedical Technologies GmbH,
Germany) is attached onto the catheter tip to measure the front distance to the
object by using an A-mode scan. Raw A-mode images acquired are published on a
ROS topic and processed in Matlab (Fig. 5.2) using a method introduced in [262].
A harmonic sinusoidal pressure (A = 2.95 [bar], f = 0.1 Hz) is used to bend the
catheter in order to cover the entire range of the semispherical cap. The scan object
remains still during one back and forth motion of the catheter, and then rotates for
15◦ for the next scan until all the three patterns are scanned. The lateral distance
sensor measures the actual tip bending angle. By combining the bending angle
measured by the laser with the OCT measurement, followed by a conversion from
Polar to Cartesian Coordinate, an approximation of the ground truth profile of the
environment is obtained. This profile is then compared with the environment that
is computed from the modeled bending angle (LSTM and DRDPI respectively)
and the OCT distance measurement. If the hysteresis was perfectly compensated,
both reconstructions should be matched. The reconstruction error is defined as the
mean of the Euclidean distance between the ground truth and the reconstructed
points derived by the two models.

The overall reconstruction performance is shown in Fig. 5.10(a). A quantitative
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evaluation can be found in Table 5.5. Figure 5.10(d) shows the 45 degree planar
reconstruction of pattern I. One can observe that the LSTM can reconstruct the
cross-section profile with high accuracy (reconstruction error = 0.22 mm, Table 5.5).
Both the shape and the location of the grooves are well reconstructed except that
the reconstructed curve is slightly stretched at the end with respect to the ground
truth. On the contrary, the DRDPI model achieves an acceptable performance
on curve, whereas the locations of the first and second grooves are reconstructed
with a large variation, leading to a large reconstruction error of 0.58 mm (Table
5.5). In Fig. 5.10(e) and Fig. 5.10(f), the reconstruction performance of the two
models follows a similar trend in Pattern I. The color-coded maps in Fig. 5.10(b)
and Fig. 5.10(c) describe the reconstruction error across all the patterns. The
reconstruction error of the LSTM gradually rises up until reaching around 1mm
when approaching the edge of the object. Unlike the LSTM, the DRDPI model has
a large reconstruction error around the center axis, as it utilizes deadband operators
to model the dead zone of the hysteresis. After achieving its best performance in the
halfway, its performance degrades again and the reconstruction error approaches
ca. 2 mm. The reason for this is explained below. Unlike the LSTM, which can
track the area near upper turning points with a smooth sine-shaped curve, the
DRDPI model uses deadband operators i.e. plateaus to model the upper turning
point which lead to a large modeling error. As shown in Table 5.5, the average
reconstruction errors of the LSTM are 0.16 mm, 0.16 mm and 0.25 mm in pattern I
to III. These errors are 70.4%, 70.4%, 63.8% lower than those of the DRDPI model.
To ensure that the difference in results between the two models is not caused by
sampling errors, a Mann-Whitney U Test is used to compare the LSTM and the
DRDPI model. The null hypothesis H0 that the mean reconstruction errors of the
two models were not statistically different, could be rejected as a p-value smaller
than 0.01 was found in all three patterns. The results prove that performance of
the LSTM and the DRDPI model are statistically significantly different.

The reconstruction experiment confirms the feasibility that, with the assistance of
the LSTM, a PAM-driven catheter can overcome the complex inherent hysteresis
and accurately reconstruct the anatomical structure with forward-looking imaging
modalities in intravascular interventions.

5.4 Extended exploration of hysteresis modeling

5.4.1 Introduction

In the previous sections, the hysteresis phenomenon in a pneumatically driven
catheter was modeled using DL methods. However, this hysteresis was only 1-DOF
unidirectional. The tip bending angle of the robotic catheter was determined
using a laser distance sensor, which cannot be used in clinical scenarios. In this
section, the DL method was further explored to understand whether it can: 1)
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be applied to another experimental setup with a different type of hysteresis; and
2) be used to model 1-DOF bidirectional hysteresis. In addition, another sensing
modality, namely FBG sensor, was adopted to determine the catheter bending
angle. Compared to the laser distance sensor, this measurement method is better
suited for clinical scenarios as it can be readily integrated into the instrument
and does not suffer from line-of-sight problems. It is worth noting that modeling
1-DOF bidirectional hysteresis is not as straightforward as replicating what has
been accomplished in one direction. The deadzone surrounding the neutral position
poses the hardest challenge to tackle. Therefore, new data collection and training
techniques are anticipated. The work is conducted in the framework of the ARTERY
project of which the background is explained below.

5.4.2 Clinical background

Mitral regurgitation is a cardiac condition characterized by a malfunctioning mitral
valve in the heart, which is not able to close tightly and thereby allows blood to flow
backward. A MitraClip system is commonly utilized to manage this condition [263].
During this procedure, the installed clip helps the mitral valve close more efficiently.
However, physicians often face challenges operating the current MitraClip system
manually. The system consists of a Steerable Guide Catheter (SGC) and a clip
delivery catheter. The SGC in particular can be bent in one plane by operating
a knob. The SGC is cable-driven and as such is prone to friction at the knobs
and gears. Other problems include deadband (implying that the catheter tip does
not respond to increases in air pressure and remains in its original configuration),
backlash, and spring-back during use. These factors contribute to the highly non-
linear nature of the system. Additionally, the setup is quite cumbersome, which
could complicate the procedure.

In order to tackle these problems, the ARTERY project, funded by the EU (GA No
101017140), seeks to develop a robotic SGC. The robotic SGC is improved from the
existing MitraClip system, enhanced by the integration of advanced actuators such
as PAMs or motors. This design could mitigate the physical burden of physicians.
However, whether manual or automated, hysteresis still persists. This problem
negatively impacts the precise steering of the SGC. Therefore, the hysteresis must
be understood and compensated for. This study proposes to use the LSTM to
model all of the non-linear effects in the catheter system in one shot.

5.4.3 Data collection and ANN training

The training and testing datasets for the LSTM were collected with the
pneumatically-operated Steerable Guide Catheter (SGC). The SGC system is
actuated by means of PAMs that provide a contraction force when supplied with
compressed air. The operating range of these PAMs is typically from 0 bar to 8
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Figure 5.11: Datasets of three training groups with a pattern shown in each
subfigure: (a) convergence to zero; (b) maximum positive amplitude; (c) minimum
negative amplitude. The catheter presents an initial bending angle of approximately
27 degrees when it remains unactuated.

bar. The PAMs incorporated in this setup provide an axial contraction force of up
to 100 N for a contraction length of 10 mm at 8 bar input pressure. The workspace
of the SGC tip is ±30◦ from the initial angle which is approximately 27◦.

V = Ae−τt sin(2πft) [V] (5.12)

V = Ae−τt(sin(2πft) + 1)−A [V] (5.13)

V = Ae−τt(sin(2πft)− 1) + A [V] (5.14)

Attenuated sinusoidal waves in voltage were employed to excite the system. The
attenuated sinusoidal commands have three different patterns (see Fig. 5.11) that
converge to 0, amplitude A, and amplitude −A, as described in (5.12), (5.13), and
(5.14) respectively. Amplitude A was set to a value of 5.5 volts. Our purpose in
utilizing this data collection strategy is to systematically record and encompass
the broadest possible spectrum of catheter movements. Data were also collected at
four different frequencies f = 0.025, 0.05, 0.1, and 0.2 Hz, along with two τ values:
0.0025 and 0.01 s−1. The value of τ is used to regulate the descending speed. The
combination of three trajectory patterns, four frequencies, and two τ values form
24 groups of datasets. These data were collected at a rate of 40 Hz. The total
number of training data is 171163. The bending angle of the catheter is measured
by the Fiber Bragg Grating (FBG) sensor. From the shape of the FBG sensor
that follows the bending of the catheter, two vectors are obtained that represent
the tip of the bendable section and the base of the bendable section. Each vector
is selected by choosing two consecutive points from the curvature point cloud.
The spacing between the two vectors from this point-cloud is based on the known
spacing between the the gratings of the FBG ssensor, as well as the known length
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of the bendable section of the catheter [217]. Once the two vectors are obtained,
the bending angle in one plane can be calculated from the vectors p⃗b representing
the base position vector and p⃗t representing the tip position vector as follows:

θm = cos−1(p⃗b · p⃗t) (5.15)

The training set was divided into a training subset and a validation set, maintaining
a ratio of 70% to 30%. An LSTM, designed with four layers, each containing 128
neurons, was used. A fully connected layer was appended after the last LSTM
layer. All input and output data were normalized in the range of [-1,1]. For weights
initialization, the Xavier uniform initialization method [264] was employed for the
input layers, while Orthogonal initialization was utilized for the hidden layers. A
learning rate of 0.005 was adopted, with a decay factor of 0.2 implemented after
every 20 epochs. Adam was the optimizer of choice, and the Mean Squared Error
(MSE) was utilized as the loss function. The LSTM was trained for 80 epochs. The
code was implemented using PyTorch. GPU was used to accelerate the training
procedure. RMSE, MAE and NRMSE [239] were used to evaluate the performance
of the LSTM.

5.4.4 Results and discussions

The performance of the LSTM was verified using an ascending sinusoidal trajectory.
The results displayed an RMSE of 0.54 degrees and an NRMSE of 1.17%. In
addition, an MAE of 1.94 degrees occurred within the deadzone region. There is
an evident reduction in the performance of the LSTM throughout the initial five
minor loops, correlating with the deadzone roughly spanning from 25 to 30 degrees.
This observation is further highlighted in the pressure-bending angle diagram.
Figure 5.13 illustrates the performance of the LSTM in response to an arbitrarily
varying voltage. Areas experiencing an error greater than 2 degrees are colored
orange. The RMSE and MAE are 1.22 degrees and 3.51 degrees, respectively,
both of which surpass the numbers associated with actuation using ascending
commands. It is noteworthy that all orange areas fall within the dead zone region
(approximately 25 to 30 degrees), suggesting that the prediction of sheath steering
is most challenging in this working range. Additionally, the color-coded subfigure
(b) in Fig. 5.13 highlights that large errors predominantly occur when the direction
of catheter movement was changed.

5.4.5 Conclusion on the extended exploration of hysteresis
modeling

Section 5.4 introduces a data-driven approach to model the bidirectional rate-
dependent hysteresis of a steerable guide catheter. The trained model was validated
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Figure 5.12: Test results when the system is actuated using an ascending control
commands: (a) the red line signifies the ground truth, while the blue line represents
the LSTM’s predictions. The prediction error is indicated by the green line; (b) the
bending angle is represented as a function of voltage. A color-coded map displays
the magnitude of error.

on two trajectories that feature patterns distinct from those in the training data
(see Fig. 5.11). The experiment demonstrates that the RMSE is 1.22 degrees,
which corresponds to 2.64% of the operational range, when assessed on a randomly
varying trajectory. This demonstrates a comparable performance to the results
shown in Section 5.3. Precise modeling allows the catheter tip to be accurately
located without installing a sensor, which is a challenging endeavor due to space
constraints. In addition, installing sensors at the tip could potentially impede
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Figure 5.13: Test results when the system is actuated using arbitrarily varying
commands. The legend remains consistent with that presented in Fig. 5.12.
Additionally, the color orange in the (a) denotes areas where the error exceeds 2
degrees.

catheter functionality. For future work, it is envisioned that a deep-learning-based
controller, capable of compensating for hysteresis and accurately steering the
catheter in free space, will be developed.
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5.5 Conclusion and future work regarding the DL-
based hysteresis modeling

To address the hysteresis problem in robotic catheters (sub-objective 4), an LSTM
network is proposed. An experimental setup containing a one-DOF PAM-driven
catheter segment was developed for model validation. Descending sinusoidal
pressure signals under four frequencies were used to generate multi-loop hysteresis,
which was used as training data for the LSTM. The acquired data reveal a complex
pattern, namely asymmetric, saturated, rate-dependent hysteresis, which originates
from the entire catheter system rather than from the PAM itself. A DRDPI model
and a SVR model were established for comparison with the LSTM.

The LSTM was first validated on four test signals containing diverse patterns, e.g.
chirp signals, arbitrarily varying signals. The RMSE and MAE of the LSTM remain
below 0.82◦, 2.27◦, respectively, across different test signals. The results reveal that
the LSTM performs better than the DRDPI model and the SVR. Next, the LSTM
was further validated through an OCT reconstruction experiment. The results
indicate that the LSTM, with its good modeling accuracy, is able to reconstruct
the object with errors below 0.25 mm in all three patterns, while the smallest
reconstruction error achieved by the DRDPI model is 0.54 mm. Additionally, the
effectiveness of the LSTM was validated on another device with 1 DOF bidirectional
bending capability. In this validation, the bending angle was measured using an
FBG sensor, while the LSTM continued to demonstrate comparable performance.

In general, LSTM demonstrates its robustness when the catheter system exhibits
complex hysteresis. LSTM requires a similar amount of training data compared to
analytical models and machine learning methods, and is very fast to characterize.
The LSTM reduces the need to mount a sensor at the distal tip for localization,
which is challenging due to spatial limitations and sterilization requirements. The
proposed LSTM makes it possible to steer robotic catheters with good precision.
This ability was demonstrated in a free space scenario (representing motion in
the heart), which could enable interesting clinical applications such as detailed
intra-operative reconstruction of anatomic lumens or cavities. The limitation of
this chapter lies in the fact that validation has only been conducted on devices with
1-DOF bending ability, without verifying its performance in the 2-DOF scenario.
Second, the trained LSTM is only applicable in free space, while the question of
how to generalize the model to constrained space remains an area worth exploring.

In this chapter, only modeling of the hysteresis has been focused on. However,
to improve the accuracy of catheter tip positioning, compensation for hysteresis
is required. Additionally, the emphasis in this chapter has been limited to the
position control of the catheter, without consideration given to the interaction
forces between the catheter and its surrounding environment. In the next chapter,
compensation for hysteresis is introduced. The effectiveness of the DL-based
controller is validated through trajectory-following experiments. Furthermore, it is
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demonstrated that, based on the DL-based position controller, the contact forces
between the catheter and its environment can be effectively minimized, avoiding
the need for end-of-vessel sensors.





Chapter 6

Deep-learning-based hysteresis
compensation and compliant
motion control of robotic
catheters

This chapter is based on the following publication:

D. Wu*, X. T. Ha*, Y. Zhang, M. Ourak, G. Borghesan, K. Niu, F. Trauzettel, J.
Dankelman, A. Menciassi and E. Vander Poorten,“Deep-learning-based Compliant Motion
Control of a Pneumatically-driven Robotic Catheter”, IEEE Robotics and Automation
Letters, vol. 7, no. 4, pp. 8853-8860, 2022
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In cardiovascular interventions, when steering catheters and especially robotic
catheters, great care should be paid to prevent applying too large forces on the vessel
walls, as this could dislodge calcifications, induce scars or even cause perforation.
To address this challenge, this paper presents a novel compliant motion control
algorithm that relies solely on position sensing of the catheter tip and knowledge
of the catheter’s behavior. The proposed algorithm features a data-driven tip
position controller. The controller is trained based on a so-called control Long
Short-Term Memory Network (control-LSTM). Trajectory following experiments
on four different trajectories are conducted to validate the quality of the proposed
control-LSTM. The performance was compared with the performance of a controller
that makes use of an analytical hysteresis model, i.e. the inverse Deadband Rate-
Dependent Prandtl-Ishlinskii (IDRDPI) model. The results demonstrated superior
positioning capability with sub-degree precision of the new approach in the presence
of severe rate-dependent hysteresis. Experiments in a simplified setup as well as in
an aortic phantom further show that the proposed approach allows reducing the
interaction forces with the environment by around 70%. This work shows how deep
learning can be exploited advantageously to avoid tedious modeling that would be
needed to precisely steer continuum robots in constrained environments such as
the patient’s vasculature.
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This chapter aligns with Sub-objective 5, focusing on elevating the level of autonomy
in robotic catheters through a compliant motion control method and demonstrating
this advancement in an in-vitro environment. This could potentially reduce the
physical burden on clinicians and increase catheter control precision, which is often
affected by the varying levels of experience among physicians. Ultimately, the
method developed in this chapter could lead to safer and faster interventions.

6.1 Introduction

The modeling and actively steering of robotic catheters remains a challenge. This
complexity comes from the fact that the catheter configuration depends both on
steering maneuvers and on a complex distributed interaction with the environment.
Managing the interaction force between the catheter and surrounding anatomy to
an acceptable level is crucial to avoid tissue damage. Especially the interaction at
the tip is important, as this is the most acute part of the catheter that can easily
pierce the tissue or dislodge calcification.

If the configuration, i.e. the pose and/or shape, of the catheter’s steerable segments
could be measured, such information could be used advantageously to control the
catheter so that it could be steered in a more gentle fashion through a vessel.
Several methods have been proposed in the literature to achieve this goal. Kesner
et al. presented a method in which a force sensor was integrated at the tip of
a robotic catheter to keep the tip interaction force below potentially damaging
forces [265]. This method requires a dedicated force sensor, which limits the
functionalization of the catheter as there will be limited room left for integrating
other functions. In addition, the structural properties of the catheter may be
negatively affected by such a force sensor. Other approaches make use of complicated
nonlinear mechanical models to achieve compliant motion control [266], [267]. Said
models are typically very specific to the robotic structure at hand. Furthermore,
significant modeling efforts are needed to obtain a very precise characterization of
the input-output behavior of a specific continuum robot. To circumvent complex
and time-consuming modeling, model-less control methods have been investigated
in the past. A Multiagent Deep Q Network (MADQN), based on reinforcement
learning, was employed by Ji et al. to control a cable-driven continuum surgical
robot [268]. Yip et al. proposed a model-less controller based on a real-time
estimated Jacobian of the continuum manipulator [269]. Follow-up work by Yip et
al. further developed a hybrid position/force controller enabling safe interactions
with the unknown constrained environment [270]. However, this model-less method
relies on a dedicated distal force sensor and requires excellent accuracy from that
sensor. No matter the approach, whether model-based or model-less, additional
complexity stems from the non-ideal behavior of the actuator and the transmission
system, where phenomena such as friction, hysteresis, or backlash present additional
challenges to controlling the continuum robots [271, 272]. Reliable compliant
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motion control, therefore, requires accounting for both robot kinematics and the
said inherent non-linear behavior. Compared to previous work, the proposed
method aims to learn all these aspects in one shot.

Hysteresis can be compensated by closed-loop control using electromagnetic (EM)
sensing [273], optical trackers [274] or medical imaging [275]. Alternatively,
hysteresis can also be compensated in open-loop using feed-forward analytical
models [134, 276, 277, 278]. Open-loop approaches are appealing, as they eliminate
the need to install sensors at the distal end. However, creating reliable analytic
models often requires tedious identification procedures. Next, if possible, the
identified analytical model somehow needs to be inverted.

Deep learning (DL), albeit a black-box method, has gained growing attention
due to its ability to accurately represent complex nonlinear behavior. Traditional
Machine Learning (ML) or DL methods have been investigated in the past to
model continuum robots. In [271], a neural network was developed to estimate the
cable tension of a tendon-driven continuum robot in unloaded motion. Porto et
al. proposed to use an Extreme Learning Machine, a supervised learning method,
to model the inverse kinematics of a flexible endoscope and realise 3D position
control [247]. Three data-driven approaches were proposed by Xu et al. to learn
the inverse kinematics of a flexible surgical manipulator [253]. These approaches
were validated by a trajectory tracking experiment. Among three approaches,
the K-nearest neighbors regression achieved the lowest Root Mean Square Error
(RMSE) of 2.1275 mm. Both studies [247, 253] focused on cable-driven robots, and
adopted traditional ML methods e.g. regression, but did not investigate the benefit
of the latest advances in DL. Our previous research [239] used an LSTM to model
the hysteresis of a catheter system with sub-degree precision of the tip bending
angle. On the other hand, this chapter proposes an open-loop controller based on a
dedicated LSTM, which is different from the modeling LSTM of [239]. The LSTM
is used to control and compensate for the hysteresis in a catheter system. In order
to distinguish it from the LSTM of [239], the LSTM in this chapter is referred
to as control-LSTM. The control-LSTM, which basically is a free-space position
controller, forms the basis for the proposed compliant motion control algorithm.
In practice, the LSTM-based controller will react to external forces by moving the
catheter tip position to a pose that reduces the force acting at the tip. In summary,
the main contributions of this work are:

• an open-loop controller based on an LSTM to control and compensate for
the hysteresis in a catheter system. The proposed control-LSTM is used as a
feedforward free-space catheter controller robust to severe hysteresis. It is
precise and has a simple training procedure. Moreover, the control-LSTM is
a direct inverse mode. In other words, the control-LSTM does not require
a separate inversion step to be used in a controller, as would be needed by
most traditional analytical hysteresis models, such as [139].

• a compliant motion controller based on the developed control-LSTM position
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Figure 6.1: The block diagram of the proposed LSTM-based compliant motion
controller.

controller that uses pose sensing as input without needing force- or contact-
sensing and without sensing actuator torques.

• validation of the proposed controller both in a simplified setup as well as in
an aortic phantom.

The rest of the chapter is organized as follows: Section 6.2 introduces the concept
of DL-based compliant motion control. Section 6.3 details the experimental setup,
the collection of training data, and the structure of the control-LSTM. Section
6.4 describes the trajectory following experiments. Next, the validation of the
compliant motion control is displayed in Section 6.5 and Section 6.6. Section 6.7
concludes the chapter.

6.2 DL-based compliant motion catheter control

A new DL method that enables compliant motion control, and at the same time
capturing the non-ideal behavior of the employed actuation, is introduced in this
section.

The objective of our proposed compliant motion controller is to advance the robot’s
tip to the position provided by the sensing block, and thus minimize the force applied
to the tip. To overcome the problem of hysteresis in catheters driven by cable or
fluidics, instead of using the traditional kinematic model-based method [279] to
control the catheter tip position, a control-LSTM position controller (hereinafter
referred as “LSTM controller”) was implemented to control the catheter tip position.
The control-LSTM can predict the actuator commands that can advance the
catheter tip to a conformed position, where the interaction force is minimized.
This approach helps reduce the effort to model complex non-linear behavior and
simplifies the identification procedure of catheters. Moreover, the proposed LSTM
compliant motion controller requires only one position tracking sensor to measure
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the tip position. The block diagram of the proposed LSTM-based compliant motion
controller is shown in Fig. 6.1.

To prove the concept, the proposed control-LSTMcompliant motion algorithm was
implemented on a 2-DOF catheter segment (see Fig. 6.3) actuated by PAMs in
one direction. The details of control-LSTM training and validation are described
in Section 6.3 and Section 6.4. The overall block diagram of the LSTM compliant
motion controller is shown in Fig. 6.2. Note that the proposed methods can be
generalized to other sensors that are able to provide real-time estimates of the
catheter’s tip pose such as fluoroscopy [211], electrical impedance tomography [213],
bending resistance [214] or Fiber Bragg Grating-based shape sensing method [229].
However, in this work, the EM tracker serves as a practical sensor to track tip
position in order to enable compliant motion control.

6.3 Experimental setup and LSTM training

6.3.1 Experimental setup for validating the control-LSTM

This work uses a catheter system actuated by PAMs. However, PAM-driven
catheter systems suffer from rate-dependent hysteresis, as shown in Chapter 5.

A bench-top setup (see Fig. 6.3) has been built for experimental validation. The
setup contains a 85 mm long distal catheter segment with a diameter of 4.4 mm.
The segment consists of a Nitinol notched-tube backbone. These notches make
the catheter bendable in 2 DOFs [200]. In this work, the algorithm was validated
in 1 DOF, while expanding this algorithm to 2-DOF will be part of our future
work. A PAM is connected off-center by a steel cable to the catheter tip. By
inflating the PAM, the PAM contracts. The resulting cable tension exerts a torque
on the catheter tip, making it bend sideways. A proportional pressure valve (Festo
Corporation, Germany) is employed to regulate the pressure in the PAM. A laser
distance sensor (OADM 12I6460/S35A, Baumer Group, Switzerland) or an EM
tracker (Northern Digital Inc., Canada) is used to measure catheter tip motion. For
more details on the catheter system, please refer to [239]. Figure 6.2(b) (bottom,
right) shows the rate-dependent, saturated, and asymmetric hysteresis of the PAM-
driven catheter. The deadband pressure is about 0.7 bar. The rate-dependent
hysteresis offsets range from ca. 0.3 bar to 1.2 bar, as the frequency increases from
0.2 Hz to 0.8 Hz.

6.3.2 Training data acquisition

The training data were collected when the catheter bends in 1 DOF. To generate
abundant training data, descending sinusoidal pressure patterns with zero baseline
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Figure 6.2: Overview of the compliant motion control algorithm: (a) Only tip pose
information was acquired and then was input into the control-LSTM. The pressure
predicted by the control-LSTM advances the catheter to a proper position where
the interaction force is minimized. (b) Training data for the control-LSTM were
collected during catheter motion in free space.

following (6.1) and with non-zero baseline, along (6.2), were sent to the catheter.

p1(t) = Ae−τt(sin(2πft− π

2 ) + 1) [bar] (6.1)

p2(t) = Ae−τt(sin(2πft− π

2 )) + A [bar] (6.2)

These signals generated the multi-loop hysteresis (Fig. 6.2(b)). To achieve a
maximum pressure of 3 bars, the amplitude A is set to 1.5 bar. The variable f
represents the excitation frequency (Hz). The time constant τ controls the rate at
which the pressure increases or falls. This work only investigates the case where
the frequency is less than 1 Hz. Figure 6.2(b) demonstrates that the formation of
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Figure 6.3: A bench-top setup for experimental validation: 1. catheter distal
segment made of Notinol, 2. Pneumatic Artificial Muscle, 3. laser distance
sensor, 4.proportional pressure valve, 5. Graphical User Interface (GUI) based on
LabVIEW®, 6. control box, 7. embeded chassis, 8. NI® module. A close-up left
up and left down show respectively the bending and straight configuration of the
catheter segment.

hysteresis is affected not only by the frequency but also by the pressure amplitude.
Therefore, different frequencies and pressure amplitudes are combined to excite
the catheter system. The frequency f was switched between 0.2, 0.4, 0.6, 0.8,
while τ was chosen as 0.02, 0.05, 0.1, 0.15, 0.2. Combining these two variables,
as well as the signals from (6.1) and (6.2) resulted in 40 groups of training data.
Measurements were sampled at 250 Hz (laser sensor), producing a training data
set of 260269 samples in total.

In training, the bending angle is an input of the control-LSTM. Pressure, the
parameter to be learned, was the output. Note that the control-LSTM’s learning
process is not straightforward. This is because the training data that is collected
are somewhat idealized. During training, the input data (the bending angle) are
noisy (due to measurement sensor noise) and exhibit hysteretic behavior, while the
outputs are “clean” perfect sinusoidal pressure setpoints. Conversely, in practice,
the control-LSTM will typically be provided with “clean” bending angle motion
commands and is asked to predict the associated hysteretic pressure setpoints that
would produce such smooth variations in the bending angle. For this to work, the
control-LSTM thus needs to be able to generalize and learn itself the patterns that
do not exist in the training data.



EXPERIMENTAL SETUP AND LSTM TRAINING 157

Long 
Memory

50 time steps

0 (1)

4 stacked layers p(t)

+x

x x
tan
h

tan
hh(t‐1)

c(t‐1) c(t)

h(t)

h(t)

Short 
Memory

Cell

Fully 
connected layer

p(t)

Cell Cell

zoom
 in a LSTM

 cell

Cell Cell Cell

0 (1) (2)

(t-48) (t-2) (t-1)

(t-49) (t-1) (t)[

[
[

[ ]

]
]

]
1st

2nd

(t-1)th

tth

(1)

(t-1)

(t)

Padding

Desired 
trajectory

0

(2)

Input vectors

a)b)c)

d)

e)

Vectorization of a)

Figure 6.4: Inputs and structure of the control-LSTM (a)-(c): the trajectory is
transformed into 50 × 1 long vectors that serve as input for the control-LSTM;
(d)-(e) a stacked 4-layer control-LSTM that consists of LSTM cells, is unrolled into
multiple time steps.

Table 6.1: Hyperparameters for the control-LSTM network

control-LSTM

Number of
hidden layers

Number of neurons
per cell

Activation
functions

Optimizer Loss function

4 128 Tanh/Sigmoid Adam L2 Loss
Training-subset/Validation ratio Batch size Learning Rate Epoches

70%/30% 16 0.001 100

6.3.3 Structure and hyperparameters of the control-LSTM

When a system exhibits hysteresis, the output of the system is not only determined
by the current input, but also by historical inputs [280]. The ability of LSTM to
learn historical information and use prior knowledge to predict system behavior
at future time steps [281] formed a key motivation to use this network for this
application. An LSTM can be viewed as a stack of LSTM cells (Fig. 6.4(d)), where
each cell contains a number of units (Fig. 6.4(e)). Each LSTM cell is equipped with
three gates i.e. an input gate i, an output gate o, and a forget gate f (Fig. 6.4(e))
that regulate the information flow [281].

Within this work, a 4-layer stacked control-LSTM (Fig. 6.4(d)) was used. The
number of neurons per layer was set to 128. The pre-processing flow for the inputs
into the control-LSTM is described as follows: a pre-defined trajectory is presented
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as a vector (Fig. 6.4(b)). The vector is split into multiple vectors with a length of
50 by means of a sliding window approach (Fig. 6.4(c)) as the inputs to the control-
LSTM. The window size of 50 was found to balance well between model precision
and computational cost [239]. As shown in the yellow highlighted area in Fig. 6.4(c),
zeros were padded to the left for the first 49 input vectors, when there are not
enough historical values present yet. A fully connected layer (input dimensions =
128, output dimension =1) was added after the last LSTM cell. All training data
was normalized between [-1,1] to avoid large weights and to speed up the training
procedure. The remaining hyperparameters of the control-LSTM are listed in Table
6.1. The network was implemented using PyTorch. The training procedure was
carried out on a 4 GB NVIDIA® CUDA-capable GPU. The control-LSTM was
trained for 100 epochs until the control-LSTM was adequately optimized. The
whole training duration took approximately 2.25 hours.

6.3.4 Implementation of the IDRDPI model

To assess the performance of the control-LSTM, an inverse Deadband Rate-
Dependent Prandtl-Ishlinskii (IDRDPI) model, introduced in [139], was imple-
mented for comparison1. The IDRDPI model can compensate for hysteresis at
different frequencies and also takes into account both major and minor loops. In
addition, deadband operators in this model allow it to deal with the deadzone that
appears at the bottom of the hysteresis loops (see Fig. 6.2(b)). Therefore, the
IDRDPI model is well suited to tackle rate-dependent, saturated, and asymmetric
hysteresis exhibited in the aforementioned catheter system. To identify the IDRDPI
model, an inverse model of the Generalized Prandtl-Ishlinskii (GPI) was used,
which provided a fairly accurate output for hysteresis compensation at a single
frequency. The identification of the IDRDPI model in our work was divided into
two steps: In the first step, four GPI models were identified by the hysteresis data
at four frequencies i.e. 0.2, 0.4, 0.6, 0.8 Hz (19635 data points in total), then
four corresponding inverse GPI models could be obtained by directly inverting the
previously obtained GPI model. The inverse GPI models were able to generate
training data for the IDRDPI model. In the second step, the identified inverse GPI
model generated 150000 virtual training data, which was used to train the IDRDPI
model. The parameters of the IDRDPI model were identified based on a genetic
algorithm in MATLAB® Toolbox. The identification process was performed on a
CPU (Intel Corei7-7700 CPU @ 2.80GHz with a RAM of 8.00GB) as there was no
widespread library for GPU-based training. The whole identification procedure of
the IDRDPI model took around 3.5 hours. The IDRDPI model was trained for
300 iterations. The mean of the relative change in the last 20% of iterations was
just 0.07% when the stop condition was triggered, which revealed that the model
was fully converged. As shown in Fig. 6.5, the IDRDPI model was also validated
using the same procedure as the control-LSTM.

1The author would like to thank Saeid Shakiba for his helpful advice on the DRDPI model.
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Figure 6.5: Experimental procedure to verify the performance of the LSTM and
the IDRDPI model. 1) a desired trajectory is designed by the user; 2) the desired
trajectory is pre-processed and fed into the LSTM and the IDRDPI model; 3)
two models predict the corresponding pressures; 4) predicted pressures are read
by Labview and applied to the catheter as feedforward control; 5) the catheter
tip’s motion is measured by a laser sensor; 6) measured voltages are converted to
catheter tip bending angle; 7) both measured and desired trajectories are visualized
and compared.

6.4 Validation of the LSTM-based controller

To evaluate the trained control-LSTM, an experimental procedure shown in Fig. 6.5
was conducted. Four types of trajectories that contain diverse patterns are tested.
Three evaluation metrics i.e. the Maximum Absolute Error (MAE), the Root Mean
Square Error (RMSE) and the Normalized Root Mean Square Error (NRMSE)
were used to evaluate the performance of the LSTM controllers [239]. For each test
trajectory, the validation procedure shown in Fig. 6.5 was repeated five times. The
MAE, RMSE, and NRMSE represent the average value of the three metrics
across the five attempts. The standard deviations of the three metrics were
also calculated to assess the repeatability of this experiment. The designed test
trajectories as well as the control results of both the control-LSTM and the IDRDPI
model have been summarized in Fig. 6.6 to 6.10 and will be described next.
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6.4.1 Response on descending sinusoidal trajectory

Figure 6.6: Descending sinusoidal trajectory (f=0.3, τ=0.05)

A descending sinusoidal trajectory (6.3) with f =0.3 and τ =0.05 is generated as:

θ(t) = Ae−τt(sin(2πft− π

2 ) + 1) [deg] (6.3)

with amplitude A set to 10. In terms of RMSE and NRMSE, the control-LSTM
(0.36◦ and 1.95%) achieves a better performance than the IDRDPI model (1.69◦

and 9.17%). The MAE of the control-LSTM (1.60◦) occurs in the unloading phase
immediately after the peak. Here, the control-LSTM drops too fast after the peaks.
This can be explained by the fact that the control-LSTM over-compensates for the
dead zone at the top of the hysteresis curve. The IDRDPI model produces large
offsets with respect to the set trajectory in the unloading phase. Figure 6.7 plots
the actual bending angle versus the desired bending angle. A perfect compensation
would lead to a straight line under 45 degrees. The figure shows how the LSTM
controller produces a quasi-linear relation, whereas the IDRDPI model compensates
for the hysteresis to a lesser extent.

6.4.2 Response on time-varying frequency trajectory

The performance of the control-LSTM on a trajectory with time-varying frequency
is worth investigating. A pressure signal following (6.4) with A = 10, B = 8,
f =0.5, τ =0.05, and c=−0.015 was utilized to generate an attenuated down-chirp
sinusoidal trajectory with shifted baseline:

θ(t) = Ae−τt(sin(2π(f + ct)t− π

2 ) + 1) + B [deg] (6.4)
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Figure 6.7: Relation between the desired trajectory (the same as in Fig. 6.6) and
the measured trajectory: c-LSTM-based feedforward controller provides an identity
mapping between desired trajectory and measured trajectory after compensation.
However, the DRDPI model-based controller does not fully compensate for the
hysteresis.

Figure 6.8: Attenuated down-chirp sinusoidal trajectory with shifted baseline
(f=0.5, τ=0.05, c=-0.015)



162 DEEP-LEARNING-BASED HYSTERESIS COMPENSATION AND COMPLIANT MOTION CONTROL OF
ROBOTIC CATHETERS

The error of the IDRDPI fluctuates periodically (Fig. 6.8). Compared to the control-
LSTM, the IDRDPI fails to accurately predict the peak and under-compensates
in the unloading phase. This leads to the large RMSE (2.46◦) and MAE (4.89◦)
of the IDRDPI. The error of control-LSTM remains low, achieving an RMSE of
0.58◦. However, the error grows as the frequency decreases. Following this trend,
the error of the control-LSTM reaches an MAE of 1.81◦ at the end.

6.4.3 Response on period-ascending trajectory

The third test trajectory is a period-ascending trajectory. This pattern was also
not contained in the training data. Following (6.5), with A=6, f =0.3, τ =−0.02
and c=0.005, an ascending up-chirp sinusoidal trajectory is generated through:

θ(t) = Ae−τt(sin(2π(f + ct)t− π

2 ) + 1) [deg] (6.5)

Figure 6.9: Ascending up-chirp sinusoidal trajectory with zero baseline (f=0.3,
τ=-0.02, c=0.005)

As with the previous two tests, the IDRDPI model performs poorly in the unloading
phase (Fig. 6.9). In contrast, the NRMSE and MAE of the control-LSTM are
1.82% and 1.32◦, respectively, 82.8% and 70.5% better than the IDRDPI in terms
of these two metrics.

6.4.4 Response on arbitrary trajectories

In practice, trajectories are likely to vary in a random fashion. Thus, arbitrarily
varying trajectories, which are composed of multiple sinusoidal trajectories with
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distinct frequencies and amplitudes, have been tested to explore the versatility of
the control-LSTM. In addition, some high-frequency small-amplitude variations
are added. Such variations could, for example, arise if one wants to compensate
for vessel deformations induced by heartbeat or blood flow. In such a case, to
avoid contact with vessel walls, the catheter may need to perform low-amplitude
high-frequency movements.

1)
1)

2)

2)

Figure 6.10: Arbitrarily varying trajectory with small variations, which are
composed of multiple sinusoidal trajectories with distinct frequencies and
amplitudes.

In general, the error of the control-LSTM is consistently very small, also in regions
with small fluctuations (1st close-up in Fig. 6.10). It is worth noting that the
control-LSTM is able to follow the set trajectory with high precision in the left
plateau region as well (2nd close-up in Fig. 6.10). These confirm the small RMSE
of 0.46◦ and MAE of 2.41◦ achieved by the control-LSTM. Contrary to this, the
IDRDPI shows its worst performance among the four tested trajectories. The
IDRDPI model consistently generates an offset from the set trajectory. Moreover,
in the region of small variations, the IDRDPI model does not respond to small
fluctuations like the control-LSTM, but rather produces a plateau.

6.4.5 Discussion of results of control-LSTM validation

The average inference time of the control-LSTM for a single output point is
approximately 25 ms, thus it could be used in a real-time controller. Figure 6.11
summarizes and compares the performance of both controllers quantitatively
according to the three metrics. Also, the standard deviation is given. In terms of
RMSE, among the four test trajectories, both the control-LSTM and the IDRDPI
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Figure 6.11: The MAE (◦), RMSE (◦) and NRMSE (%) of the c-LSTM (blue)
and the IDRDPI model (green) on four trajectories.

perform worst on the arbitrarily varying trajectory. While the best performing
trajectory for the control-LSTM is the ascending up-chirp sinusoidal trajectory.
For the IDRDPI, the best results are obtained for the descending sinusoidal
trajectory. In terms of NRMSE, the control-LSTM outperforms the IDRDPI model
by 80.9%, 77.2%, 84.5%, and 88.3% in the four trajectories. The small standard
deviations represented by the error bars in Fig. 6.11 reveal high repeatability across
experiments. In cardiovascular interventions, the acceptable precision range is
generally 1 − 3mm [282], albeit sometimes specific scenarios may require better
precision. This 1 − 3 mm (in displacement) can be converted to 2.09◦ − 6.26◦

(in bending angle) using the formula introduced in [239], so in this regard, the
controller based on the control-LSTM can meet the clinical requirements in terms
of precision. This precise LSTM controller opens up new opportunities for lowering
interaction forces as is shown in the next section.
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6.5 Bench-top validation of the compliant motion
controller

6.5.1 Experimental setup for validating the compliant controller

A steerable catheter (Fig. 6.12(a)) was used to demonstrate the compliant motion
control capability. Compared to the catheter introduced in Section 6.3.1, a 6 mm
diameter catheter was used to facilitate contact with a force sensor. In addition to
diameter, structure and working principle remained the same as the catheter in
Section 6.3.1. As shown in Fig. 6.12(a), an F/T sensor (Nano17, ATI Industrial
Automation, USA) attached to an XYZ linear translation stage was used to push
the catheter tip in one direction, simulating unknown interaction forces with a
vessel or heart wall. During the experiments, the contact force of the F/T sensor
and the displacement of the catheter tip measured by the EM sensor in the tip
were recorded.

6.5.2 Design of the experiments

Two experiments were carried out. In the first experiment, contact was established
at the catheter tip. In the second experiment, contact took place at half the
length of the steerable segment. Each experiment began with the catheter in a
straight configuration. The catheter was pushed by the F/T sensor until the muscle
reached maximal pressure (5 Bar) to avoid contact force. The displacement was
then reversed. These experiments were conducted first without and then with the
compliant motion controller.

In the conducted experiments, the LSTM-based position controller, presented in
Section 6.3.3, was used. The position controller ran at 40 Hz. Unlike in Section 6.4,
where the bending angle was used as input for the LSTM controller, here the tip
displacement dt was used, as this metric is easier to calculate if an EM sensor
was used. The tip displacement represents the Euclidean distance between the
catheter’s tip when unloaded, PNeutral, to the current tip position, PCurrent (see
Fig. 6.12(a)). Note that displacement is related to the bending angle, but it is a
value that is more convenient to derive from the EM sensor data.

The displacement was used as input to the LSTM-based position controller to
estimate the appropriate pressure needed to pressurize the catheter to the current
position (Fig. 6.2) so that the interaction force between the catheter and the
environment can be reduced. Forces were measured at 1 kHz, but then sub-sampled
to allow for synchronization with the EM displacement data. Synchronization was
done offline.
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Figure 6.12: (a) Experimental setup to validate the compliant motion controller:
1. fluidics-driven catheter; 2. F/T sensor; 3. XYZ linear translation stage. The
magenta circle shown the contact position in two experiments. (b) Measured force
versus displacement of the catheter tip in case external force is applied at the tip
(dashed line) and at the middle (solid line) of the catheter.

6.5.3 Results of the bench-top validation of complaint motion
control

Figure 6.12(b) show the measured force versus the tip displacement when an external
force is applied at the tip and half along the catheter length. The blue lines show
the measured forces when the compliant motion controller was not active. The red
lines depict forces when the controller was operational. To evaluate the efficiency
of the proposed compliant motion controller, the perceived tip stiffness without
(KOff ) and with (KOn) compliant motion controller were compared. Tip stiffness
is measured as the ratio of the applied force versus the tip displacement. When
the compliant controller is active, the tip stiffness was reduced by approximately
66% from 0.015 N/mm to 0.005 N/mm. Similarly, tip stiffness decreased from
0.073 N/mm to 0.022 N/mm (around 70%) when the external force acted on the
catheter body.

6.5.4 Discussion of compliant motion control results

The complex relation revealed in Fig. 6.12(b) can be attributed to the fact that the
force sensor slipped somewhat along the catheter length during the experiments.
Although zero-force was targeted, the interaction force in Fig. 6.12(b) did not go
down all the way to zero. The following reasons are expected to cause this: 1) in
fact, as the catheter bends, the force applied by the F/T sensor will get both a
tangential and a radial component. Only the radial force component is actually
minimized by the here described compliant motion controller; 2) the control-LSTM
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based controller is not flawless, errors on that controller will cause some deviation
as well; 3) the employed valve has limited bandwidth as well, so it can not react
and instantaneously compensate an external force.

Nevertheless, the conducted experiments show that the proposed LSTM-based
compliant motion controller can help reduce the force acting on the catheter at
different places along the catheter length. Reductions of approximately 70% can
be observed. This proves that deriving highly complex models that describe the
mechanical behavior of the catheter is in fact not necessary for these kinds of tasks.
Moreover, the proposed approach requires only one sensor to measure the catheter
tip pose compared to other more complex methods [266, 267, 271, 283]. Even
though the algorithm was only validated in a single bending plane, considering
that the catheter can rotate around its axis and has identical mechanical properties
in each bending plane, the algorithm works for single contacts in other directions
as well. The case of multiple contacts is different, and assessment of the capability
to restrict contact forces in such a scenario is left as future work.

6.6 Phantom study

6.6.1 Experimental setup and experimental procedure

The proposed compliant motion controller is further validated in an aortic phantom
(Fig. 6.13). The phantom study was executed using a real-time LSTM controller,
implemented in Python with the PyTorch library and GPU acceleration. Inter-
component communication was facilitated by the Robot Operating System (ROS)
and Orocos [284]. Specifically, the LSTM was integrated as a ROS node, which
received the real-time position of the catheter tip from the EM sensor node. The
output of the LSTM node was subsequently directed to control the pressure valve.
The entire system operates at a frequency of 40 Hz.

The phantom features the ascending aorta, the aortic arch, and the descending
aorta. The phantom is made of wood and is manufactured with laser cutting after
projecting a real aortic model onto a two-dimensional plane. The phantom was
connected on top of the F/T sensor (see inset of Fig. 6.13) so as to measure the
force applied by the catheter on the vessel wall. A catheter, with one steerable
segment and several passive segments, called 3Flex [285] is employed in this study.
A camera (Allied Vision Technologies GmbH, Germany) is installed directly above
the phantom to record the catheter motion. Two EM sensors are embedded at the
tip and at the base of the first catheter segment. The 3Flex catheter is inserted into
the descending aorta, advances through the aortic arch, and is carefully maneuvered
until it reaches the aortic root. Afterwards, the catheter is retracted. The above
procedure is carried out both with and without employing the compliant motion
controller.
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Figure 6.13: The experimental setup for the phantom study features a 3Flex
robotic catheter equipped with an EM sensor at its tip, a laser-cut aortic phantom,
and a F/T sensor mounted beneath the phantom to capture interaction forces.
Additionally, an overhead camera records the experimental procedure, and an EM
tracking system that includes the Aurora field generator is also integrated.

6.6.2 Results and discussion of the phantom study

During insertion, the average force and maximum force achieved by the compliant
motion control are 0.14 N and 0.43 N, respectively, which are 65.8% and 70.7%
lower than without the compliant motion control (Fig. 6.14). The catheter can bend
to reduce the interaction force and move smoothly until it reaches the aortic root.
On the contrary, when the proposed controller is off, the catheter is stuck in the
aortic arch with its tip directly puncturing the vessel wall. During retraction, the
catheter can even not be retracted without the compliant motion control, causing
a maximum force of 0.73 N. When the compliant motion control is running, the
catheter can be retracted without too much effort, while maintaining the interaction
force below 0.44 N. This is 40.0% lower than without the controller running. The
results also show that the method could reduce the user’s mental load as the user
does not need to focus on the force control, which allows the user to pay more
attention to high-level tasks such as decision making. In addition, a reduction in
the procedure duration is also observed with the method.
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Figure 6.14: Box plot illustrating the interaction forces experienced during the
insertion and retraction phases in the phantom study.

6.7 Conclusion on the DL-based compliant motion
controller

This chapter introduced a deep-learning-based compliant motion controller for a
robotic catheter that is aligned with sub-objective 5. Such a controller can actively
bend the catheter tip away from the environment so that excessive interaction forces
can be automatically avoided. This feature could contribute to safer interventions.
The proposed method only requires one sensor that measures the tip position. The
approach is simple and does not require complex sensors that measure distributed
contacts or that measure the input torque applied by the actuators. The proposed
compliant motion controller features a tip position controller based on a control-
LSTM. This work shows how the control-LSTM was able to compensate for rate-
dependent, saturated, and asymmetric hysteresis present in the catheter actuation.
Trajectory following experiments revealed that the control-LSTM achieved sub-
degree precision. The controller surpassed the analytic IDRDPI model by a
minimum of 75% across all four test paths. Based on this tip position controller, a
compliant motion controller was proposed. Experiments both in a simplified setup
as well in an aortic phantom showed how catheter contact forces could be reduced
by approximately 70%. Although showcased on a pneumatically-driven catheter,
this method is believed to be transferable to other actuation methods such as
cable-driven with moderate extra efforts. This work shows that it is not always
necessary to elaborate complex mechanical models to steer robotic catheters.
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7.1 Summary of the research results

7.1.1 Introduction

The current research environment is increasingly focused not only on uncovering
new technologies but also on transforming this knowledge into real advantages
for society. This process, commonly known as “valorization”, ensures that the
results of research are not limited to academic publications, but are used to create
products, services, or policies, thus maximizing the effect of research. Recognizing
its importance, this chapter is dedicated to outlining the valorization plan for the
research results obtained in this thesis.

7.1.2 Summary of the research results

Enhanced visual feedback and teleoperation: In current practice of endovascular
interventions, catheters are inserted manually by clinicians under fluoroscopy
guidance. Unfortunately, this approach introduces radiation to clinicians. Tissue
damage may also occur, especially in the depth direction, since fluoroscopy is a 2D
imaging modality thus lacks depth perception. This work investigates and compares
different interactive modalities, namely teleoperation via a gamepad versus gesture-
based steering via a Microsoft Hololens. The differences in visualization methods,
namely via Hololens or via a 2D monitor, were also explored. A user study was
conducted in which users teleoperated the catheters with different interactive
modalities to follow a predefined path in an aortic phantom. Experimental results
show that the combination of gamepad and Hololens achieved the most popularity
among the users and the smallest trajectory tracking error. The superiority of
the gamepad is the passive haptic feedback offered by the device. Whereas in the
Hololens the user needs to visually confirm the input motion that was commanded.
When using a gamepad, the user can rely on his/her proprioception to understand
the pose and relative displacement of the input device. The HoloLens, however,
provide 3D visualization and interactions with the holographic images compared
to a 2D monitor.

Valorization potential: This chapter discusses methods that can enhance existing
visual feedback in robotic catheter systems. Two primary improvements are revealed:
first, a radiative imaging technique is replaced with a non-radiative method, and
second, utilizing 3D visualization to better represent the catheter shape and the
vessel environment, thereby improving depth perception of physicians. Currently,
most robotic catheter systems on the market use teleoperation control methods.
While this has changed the traditional model, where physicians had to steer the
catheters directly beside the patient, these systems still rely on fluoroscopy for visual
feedback. This still presents issues such as exposure to radiation and the limitations
of 2D grayscale imaging. Therefore, the 3D visualization technology developed in
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Chapter 3, utilizing AR-HMD, can be readily integrated with existing endovascular
robotic systems on the market, such as Corindus (Siemens Healthineers, Germany).
This integration would enable clinicians to use AR-HMD during interventions for a
3D view, as opposed to relying on traditional 2D monitors

Furthermore, Chapter 3 explores different control input devices. In current
endovascular robotic systems, physicians typically control the catheter using
joysticks and buttons fixed on a panel. However, display methods such as Hololens
offer the possibility for users to interact 360 degrees with holographic images.
Therefore, employing a portable gamepad as the control input device could further
enhance the advantages of 3D visualization of HoloLens. Utilizing gamepad-based
control can also be integrated with existing robotic systems on the market.

FBG-based shape sensing: A DL method for shape sensing of continuum robots
based on multi-core FBG fiber is introduced. The proposed method, based on an
ANN, differs from traditional approaches, where accurate shape reconstruction
requires tedious characterization of many characteristic parameters. A further
limitation of traditional approaches is that they require either multiple fibers
whose location relative to the centerline must be precisely known (calibrated) or a
single multicore fiber whose position typically coincides with the neutral line. The
proposed method addresses this limitation and thus allows shape sensing based on
a single multicore fiber placed off center. This helps in miniaturizing and leaves the
central channel available for other purposes. The proposed approach was compared
with a recent state-of-the-art model-based shape sensing approach. The superiority
of the proposed approach was demonstrated. To address concerns regarding the
“black box” nature of ANN, ablation study was conducted. This study offered
deeper insights into both the structure and behavior of the ANN.

Valorization potential: The advantages of fiber-optic sensing technologies are
many, offering benefits such as immunity to electromagnetic interference, high data
sampling rates, and seamless system integration [65]. In recent years, interest in
Fiber-Optic Sensing has surged in both the academic and commercial sectors. A
case in point is the Fiber Optic RealShape (FORS) system of Phillips (Amsterdam,
the Netherlands), developed to enhance instrument visualization while reducing
the reliance on fluoroscopic imaging.

Similarly, the FBG technology adopted in this chapter can achieve comparable
functionalities. FBG can be used for 3D shape reconstruction of catheters. One
innovation presented in Chapter 4 is to overcome the conventional limitation that
requires FBG sensors to be placed within the central channel of a catheter for
accurate shape reconstruction. The findings indicate that even when FBGs are
positioned on the outer surface of a catheter, precise shape reconstruction can still
be achieved while maintaining high accuracy in both free and constrained spaces.

Currently, most cardiovascular robotic catheter systems still lack integrated shape-
sensing capabilities and rely extensively on fluoroscopy, presenting an opportunity
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for collaborative advancement. Beyond vascular intervention robots, this technology
holds promise for other types of robotic systems, such as bronchoscopy robots. To
the best of the author’s knowledge, there are few endoluminal robotic systems with
integrated shape-sensing technology. One example is Ion system (Intuitve Surgical
Inc., CA, USA). The Ion system offers a comprehensive view of the catheter in the
airway through real-time 3D visualization, enabled by shape-sensing technology,
while also providing 2D direct visualization via a vision probe at the catheter’s
tip. Therefore, collaboration with other bronchoscopy robot products and the
integration of shape-sensing technology is also a potential valorization. Note that
the FBG-based shape sensing technology is also compatible with passive or non-
motorized instruments, and this integration is easier compared to the integration
with a robotic system, especially in passive instruments that has an available
channel for FBG. This integration facilitates the real-time visualization of the pose
and motion of the instrument during endoluminal interventions.

Deep-learning-based hysteresis modeling and compensation: This method
employs DL techniques to model and copensate for the hysteresis that appears in
the catheters. For DL-based hysteresis modeling, a significant advantage of this
method is its ability to predict the catheter’s bending angle purely based on the input
control commands, on condition that the catheter moves in free space. This method
eliminates the need to install sensors at the tip of the catheter to determine the
tip position. To implement this method, data must be collected from the catheter
system, followed by training an ANN using these data on a GPU. This approach
demonstrates the ability to forecast the tip bending angle with precision below
one degree, outperforming traditional analytical hysteresis models. Additionally,
this method was integrated with a Forward-Looking OCT fiber, illustrating the
potential to reconstruct the environment ahead of the catheter using this combined
approach. It is noteworthy that this method has been demonstrated to be capable
of modeling hysteresis in catheter bending, but it can also be adapted to model the
hysteresis in catheter rotation and translation. If the ANN is trained by swapping
the input and output, it can also be adapted to compensate for hysteresis, thereby
functioning effectively as an open-loop controller.

Valorization potential: In robot-assisted endovascular interventions, physicians
primarily depend on visual feedback to compensate for hysteresis, which affects the
intuitiveness of catheter steering and increases the cognitive burden of physicians.
The hysteresis modeling and compensation methods presented in Chapters 5 and
Chapter 6 offer solutions to these challenges. Moreover, these approaches are
also adaptable to other endoluminal robotic systems, significantly enhancing their
control precision. The method is ready to be implemented in current endoluminal
robotic systems, such as Corindus, to compensate for any residual hysteresis.
Although hysteresis is minimized in the initial design and manufacturing phases
of catheters, it could still present in these systems. When an endoluminal robot
is used for the first time, its input-output behavior is recorded and utilized to
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train two Artificial Neural Networks (ANNs). One ANN models the forward
kinematics, mapping from control commands to catheter tip responses, while
the other models the inverse kinematics, mapping from the desired catheter tip
responses to corresponding control commands. This method effectively compensates
for hysteresis in endoluminal robotic systems, thereby making teleoperation more
intuitive and responsive.

Moreover, hysteresis is a pervasive issue that goes beyond continuum robots and is
widely encountered in mechanical systems, sensors, actuators, magnetic materials,
and shape-memory alloys [286]. Therefore, the methods and know-how presented
in this chapter have broader applicability and can be used to address hysteresis in
various domains.

Deep-learning-based safe and autonomous catheter control: In cardiovascular
interventions, when using steerable catheters, it is necessary to take great care
not to apply excessively large forces on the vessel walls, as this could dislodge
calcifications, induce scars, or even cause perforation. To address this challenge,
a novel compliant motion control algorithm was developed that relies solely on
position sensing of the catheter tip and knowledge of catheter behavior, while a
force sensor at the catheter tip is not needed. The proposed algorithm features a
data-driven tip position controller. Experiments in both a simplified setup and an
aortic phantom showed that the proposed approach allows the interaction forces
with the environment to be reduced by around 70%. This research demonstrated the
potential of DL to effectively manage the intricate nonlinear behavior of catheters,
allowing for the smooth navigation of continuum robots in confined spaces such as
the patient’s blood vessels.

Valorization potential: Chapter 6 introduces a semi-autonomous control
approach for catheters. Current commercial robotic catheter systems operate
at Level 0 autonomy [25]. However, the trend is shifting towards incorporating
higher levels of autonomy, which can significantly reduce the burden on physicians.
Lower autonomy levels (1-2) assist in controlling and automating partial tasks,
while levels above 3 enable complete automation of interventions, with physicians
primarily in a supervisory role.

The method proposed in Chapter 6, subject to further optimization and thorough
validation, has the potential to be licensed and integrated with existing endovascular
robotic systems in the market, such as Corindus and R-one. Given that this control
strategy is based on DL, a careful review of relevant policies and regulations is
crucial prior to its commercial use. The envisioned clinical workflow is as follows:
1)For each robotic catheter used for the first time, data reflecting its input and
output are collected using the strategy outlined in Chapter 6; 2)This data is
employed to train an ANN; 3) The ANN will then serve as a controller for catheter
steering, effectively functioning in both free and constrained spaces; 4)Physicians
have the full freedom to switch between autonomous control and teleoperation with
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assistance as needed.

7.1.3 Data generated from the conducted research

The Ph.D. project aims to investigate catheter control based on DL. The data
include raw experimental data, processed data, code, LaTeX files, and videos.

1. Software source codes are in Python, MATLAB, and C++.

2. The most important software/libraries that are used and/or adapted are
MATLAB, ROS, Pytorch. All of them have either a permissive license or are open
source.

3. All generated datasets were used mainly for scientific publications.

4. These datasets consist of: 1) data from simulations (for hysteresis), stored in
CSV; (2) sensor measurements (pressure, catheter position, catheter shape, OCT
data stored in CSV); (3) recorded videos of catheter motions or explanatory videos
submitted as attachments to conferences or journals (stored in mp4).

5. Datasets and code are stored internally on local PC, Box/Onedrive or
Gitlab/Github servers. The data are organized according to a directory structure
that is based on the type of experiment. Access to data is granted on a need-to-know
basis, and all access is logged and monitored.

6. There are no legal or ethical issues in the generated dataset. Data collected in
user studies are anonymized to protect participant confidentiality.

7.2 Market survey

The market estimate and trends for catheters are summarized in the following
Table 7.1 from [287]. It should be noted that the term “catheter” here is not limited
to just vascular catheters, but also includes others such as urological catheters.

Table 7.1: Market estimate and trends for catheters.
Study Value (year)/billion $ Estimate (year)/billion $ CAGR
Allied Market Research [288] 10.7 (2017) 20.0 (2025) 8.13%
Grand View Research [289] 37.3 (2018) 77.7 (2026) 9.61%
Market Study Report [290] - 56.5 (2025) -
Markets and Markets [291] 15.9 (2020) 24.2 (2025) 8.76%
Global Market Insights [292] 37.8 (2018) 79.0 (2025) 11.1%
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Cardiovascular catheters are dominant in the catheter market, and are more
prevalent than other types such as neurovascular and urological catheters. In
2019, the global market value for cardiovascular catheters was 10.9 billion USD.
This value is projected to more than double, reaching 22.5 billion USD by 2026,
highlighting a substantial market opportunity.

On a regional basis, North America is at the forefront in terms of revenue.
Specifically, the US catheter market was valued at 10.8 billion USD in 2019,
with forecasts suggesting a rise to 20 billion USD by 2026, as indicated by [289].
When considering these numbers, cardiovascular catheters represented a substantial
portion, accounting for 3.17 billion USD in 2019, and this is expected to increase
to 5.8 billion USD by 2026. Europe, while trailing the US, is making significant
strides too. According to [291], the size of the European catheter market is on
track to hit 6.6 billion USD by 2025. While there is notable variation in the market
size estimates presented in Table 7.1, there is a unanimous consensus regarding the
Compound Annual Growth Rate (CAGR). All sources project a CAGR of around
10%, which indicates a promising outlook for potential investors.

7.3 A valorization plan for sharing a public dataset

Introduction: The dataset, originating from the PhD research, describes the
input-output behavior (pressure - tip bending angle or pressure - tip displacement)
of a pneumatically actuated catheter system, which includes hysteresis. Hysteresis,
observed across various disciplines, continues to be a focal point in contemporary
research. Unraveling its complexities is essential to deepen insights in various fields.

Target users:

• Primary users: researchers within the medical or surgical robotics community.

• Extended users: researchers from other disciplines in which hysteresis is often
encountered and needs to be addressed, such as magnetic materials, elastic
materials, electrical circuits, thermodynamics, biology, and economics.

Value proposition: This dataset serves a manifold purpose:

• It provides a platform to test new hysteresis modeling algorithms.

• It accelerates research and innovations in the domain by providing readily
available data.

• It eliminates the need for individual researchers to set up their own
experimental systems, or preventing them from replicating established
solutions.
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Access, distribution and license:

• Access mode: the dataset will be open-access and made freely available.
Additionally, sensitive portions might be restricted, shared on a need-to-know
basis after consulting with PhD supervisors.

• Distribution responsibility: the main researchers and contributors oversee
and distribute the dataset.

• Licensing: the data is under licenses such as Creative Commons, detailing its
use, sharing, and potential commercial exploitation.

Infrastructure, maintenance, and enhancement:

• Platform: hosting is possibly on university databases.

• Maintenance: the owners guarantee that the dataset is maintained on a
regular basis.

• Community contribution: researchers in the community are encouraged to
contribute, making it a collaborative resource.

• Documentation & metadata: comprehensive metadata and documentation
are provided to ensure correct usage and understanding.

Conclusion: by incorporating varied modes of valorization, from community
involvement to technical structure, this plan ensures the broad utility of the dataset
and maintains research integrity. The underlying priority remains to advance
research while respecting data privacy and ethics.

7.4 Valorization plan for a DL-based hysteresis
modeling and compensation algorithm

7.4.1 Description of the algorithm

The hysteresis modeling and compensation algorithm leverages DL techniques,
primarily developed in Python and using the PyTorch library. Utilizing GPU
acceleration, the ANN undergoes extensive training to ensure robustness and
efficiency. This algorithm has a dual function:

• Modeling of hysteresis: It can accurately model the complex rate-dependent,
asymmetric and saturated hysteresis in various systems.



180 VALORIZATION PLAN OF THE RESEARCH RESULTS

• Compensation of hysteresis: Beyond mere modeling, the algorithm is adept
at compensating for hysteresis and deriving the inverse kinematics of the
robotic system and thus allowing precise control of the system.

7.4.2 Possible failure modes of the algorithm

• Hardware and computational limitations: Challenges such as GPU overload
with delayed or inaccurate feedback, and computational limitations can
significantly impede the real-time processing and effectiveness of DL models,
especially in critical applications such as surgery.

• Data issues and model robustness: Issues like poor data quality, model
overfitting, alongside robustness and generalization problems, can limit the
practical application of models, hindering their performance in real-world
scenarios.

• Over-reliance on the DL-based method by clinicians: In medical contexts,
there is a risk of clinicians becoming overly reliant on the model’s outputs.
This can lead to problems when the model encounters untrained scenarios or
produces incorrect outputs, underscoring the need for clinician awareness of
the model’s limitations.

7.4.3 Protection strategies

Given the proprietary nature of the algorithm, protecting it as a trade secret is
a potential route. A software can be developed based on the algorithm without
revealing its intricacies:

• Develop application software: instead of sharing the algorithm directly,
software applications that leverage the algorithm could be developed. The
software provides the benefits of the algorithm without revealing its core
logic. Instead of licensing the algorithm, the software can be licensed, making
sure that the licensing agreement prohibits reverse engineering or any other
attempt to discover the underlying algorithm.

• Layered architecture: design the software in layers where the algorithm
operates at the core, isolated from user-facing interfaces. This helps to
protect the intricacies of the algorithm[293].

• Obfuscation: in software, obfuscation refers to the process of generating
source or machine code that is challenging for both humans and computers
to decipher [294, 295]. Therefore, it is considered to use code obfuscation
techniques to further disguise the algorithm within the software, making it
difficult to reverse engineer [294].
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7.4.4 Strategy for algorithm protection and development phase

The plan for protecting the algorithm is described as follows:

At the beginning, the main emphasis will be on further improving the DL algorithm
while ensuring that its design, features, and related data remain confidential. In
addition to this progress, all modifications, advances, and essential discoveries will
be carefully documented to create a precise timeline and basis. These data will only
be accessible to essential research team members, and any external collaborators or
consultants will be required to sign a non-disclosure agreement. At the same time,
the transformation of the algorithm into software will start, taking precautions to
make sure that the main algorithmic code is kept hidden and protected against
reverse engineering. Strategies such as code obfuscation may be used for this
purpose.

Once the software/algorithm reaches a mature and stable version, then copyrighting
the software may be the next step, even though this will not protect the algorithmic
concept itself. However, it will secure the particular expression and code of the
software, providing legal defense against unapproved copying or circulation.

7.4.5 Plan of licensing scheme

This plan aims to take advantage of the valorization potential of the DL algorithm
for increased precision in robotic catheter control, while carefully considering the
complex areas of licensing and regulatory compliance.

After securing protection for the DL algorithm, either through copyrighting or
keeping as know-how, the next critical step involves introducing it to the market.
Licensing is a viable option that could be used to spread the algorithm’s abilities
without giving up any proprietary rights.

The process of obtaining a license starts with recognizing potential collaborators,
particularly those companies that develop endovascular robotic system. These
include Cordindus endovascular robot of Siemens Healthineers and R-ONE robotic
catheter of Robocath Inc., but can also be companies producing other endoluminal
robotic systems such as Auris Health, Inc. and Intuitive Surgical. An exclusive
license agreement [296] with a leading company in this field (see Table 1.1) can
be investigated, allowing them the rights to employ the algorithm and thereby
improving their competitive position in the market. The right to exclusively license
a product or service may be limited to a certain period of time or contingent on
the achievement of certain objectives. After this, the opportunity to license the
product or service to other interested parties can be granted.

A carefully crafted licensing agreement is essential. This agreement should outline
the extent of utilization, the right to grant sub-licenses, integration assistance,
performance criteria, duties concerning updates or changes, and financial matters.
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It is good to include legal professionals who specialize in intellectual property and
technology licensing from the beginning. Regular meetings between technical and
licensing teams will be held to ensure seamless technology transfer and address any
potential issues that may arise during the application of the transferred technology,
thus protecting the interests of both parties.

Given the use of AI in medical contexts, it is essential to pay close attention to
regulatory demands [297]. Strict compliance with the Medical Device Regulation
(MDR) in Europe is mandatory, which means that device manufacturing partners
must conduct a thorough validation and, possibly, clinical trials to demonstrate
the safety and effectiveness of the licensed method. It is also essential to adhere to
the GDPR if the algorithm needs to use patient information to train the ANN.
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This chapter begins with a detailed summary of the research outcomes achieved. It
then proceeds to evaluate the fulfillment of each predefined sub-objective, assessing
the methods used, discussing their limitations, and providing reflections on these
aspects. Section 8.3 outlines directions for future work, and the wider impact of
our findings within the field of surgical continuum robots. The last section offers
some brief contemplations inspired by the research.

8.1 General thesis summary

The escalating prevalence of CVDs worldwide represents a pressing health concern.
CVDs, including conditions such as coronary artery disease, heart failure, and
arrhythmias, often require complex diagnostic and therapeutic procedures. As the
leading cause of mortality worldwide, CVD underscores the urgent demand for
effective treatment supported by advanced interventional instruments. Endovascular
intervention is at the forefront of this medical evolution, with the aim of improving
patient outcomes, reducing recovery time, and minimizing potential complications.

The current landscape of cardiology interventional devices is characterized by a
variety of technological innovations and methodologies. However, challenges still
exist. The primary challenges lie in control and visualization. For decades, catheter
procedures have been visualized using 2D grayscale fluoroscopy images. Although
fluoroscopy offers real-time visualization, it subjects patients and clinicians to
ionizing radiation, which can pose health risks. Furthermore, these 2D images do
not capture the intricate 3D architecture of vascular structures, making navigation
a formidable task.

Modern robotic catheterization systems address part of the drawbacks of current
procedures. Predominantly, these systems are teleoperated, translating the
clinician’s hand movements into catheter movements within the vasculature of
patients. Despite technological advances, these systems come with inherent
limitations. Many physicians find that the learning process is difficult and requires
a significant amount of time to become proficient. Issues such as hysteresis
compromise precision. Additionally, the lack of haptic feedback further prevents
clinicians from having an intuitive manipulation. Furthermore, all endovascular
robotic systems on the market currently lack autonomy. This not only increases the
physical demands on clinicians, but also makes the entire process highly dependent
on the skill and experience of the clinicians.

Addressing these challenges, the research presented in this dissertation embarked
on a comprehensive journey to further optimize robotic catheterization. The
first contribution (presented in Chapter 2) involved performing a survey of the
applications of ML, including modern DL techniques and traditional ML techniques,
in the scope of FSIR.
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The second contribution (presented in Chapter 3) investigates and compares
different teleoperated control strategies, namely teleoperation via a gamepad
versus gesture-based steering via a Microsoft Hololens. Differences in visualization
methods, namely via Hololens or via a 2D monitor, were also explored. A user study
was conducted in which users teleoperated the catheters with different interactive
modalities to follow a predefined path in in-vitro environment. Experimental results
show that the combination of gamepad and Hololens achieved the most popularity
among the users and the smallest trajectory tracking error.

During vascular interventions, knowing the catheter status would be highly
beneficial. For this reason, advanced sensing techniques were investigated in
Chapter 4, primarily aimed at monitoring catheter status and reducing radiation
exposure from fluoroscopy. The FBG sensor can reconstruct the shape of continuum
surgical robots, although the accuracy of the FBG-based reconstruction is affected
by several factors. First, the FBG-based reconstruction heavily relies on parameters
provided by the manufacturers, which may vary due to the assembly processes.
Furthermore, conventional deployment requires that the FBG sensors be placed
in the central channel of the robot. However, certain robots lack this channel
or use it for different functionalities. To avoid these issues, a DL approach that
correlates wavelength shifts with the curvature and bending plane angles at each
grating is introduced. This method offers more accurate shape reconstruction than
traditional strategies.

One of the challenges in catheterization is hysteresis. Typically, clinicians
compensate for hardware hysteresis purely by relying on their visual feedback. The
research presented in Chapter 5 introduced innovative recurrent neural networks to
minimize this phenomenon, ensuring predictable catheter movements. This method
offers a versatile solution applicable to a variety of endoluminal robotic systems
and even other disciplines, and setting the stage for increased level of autonomy.

Using the power of DL, a compliant motion control algorithm was developed in
Chapter 6. This elevated the autonomy of the catheter to level 2 [25] with a
demonstration of navigating in a 2D phantom. A significant highlight was the
capability of the controller to autonomously reduce interaction forces between the
catheter tip and the vessel, ensuring safer interventions.

This dissertation focuses primarily on the use of DL and AR techniques to elevate
the efficacy of robotic catheterization procedures. Through meticulous development,
the work has presented a synthesis of the cutting-edge technologies described above
to address the challenges in current catheterization procedure. The dissertation
presents bench-top experiments across different sub-objectives to ensure robust
validation. Significantly, at least two of these experimental evaluations were
conducted in an aortic phantom, demonstrating the applicability of the proposed
methods. Although the current scope of the dissertation remains within in-vitro,
it is planned to expand this research into ex-vivo or in-vivo environments in the
subsequent phases, paving the way for potential clinical applications.
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8.2 Analysis of the achievement of research objectives
and limitations

Sub-objective 1: Identification of the latest trends of ML techniques in FSIR.

Evaluation of the results achieved: In alignment with the first sub-objective,
a comprehensive survey was conducted on the application of ML techniques in
FSIRs. Following the trend that the application of ML grows in various fields,
its role in FSIR has also become increasingly pivotal. Specifically, ML has found
applications in various tasks in FSIR, ranging from perception and modeling to
advanced navigation and control. The review conducted describes a landscape of
increasing adoption of diverse ML algorithms across different applications. Such
insights not only indicate how ML advances might propel adoption in intraluminal
procedures but also shed light on the potential functionalities that ML can offer.
This review initially offers valuable insights into algorithm selection for the work
presented in this thesis. In addition, it could serve as a comprehensive guide for
practitioners and researchers in the field of FISR, offering recommendations for
optimal algorithmic choices for their specific cases. This guidance facilitates the
implementation of ML approaches in the field of FSIR, positioning them as effective
alternatives to traditional analytical models.

Limitations: Although the survey provides a comprehensive overview of the
application of ML in FSIR, it is not without limitations. First, due to the
absence of clinician involvement, this chapter predominantly adopts an engineering
perspective. The distinct clinical needs of various interventions, which are crucial
for the implementation and adoption of FSIR, are not comprehensively presented.
Moreover, visual elements such as images or illustrations of robots and experimental
setups from the referenced papers are omitted. This might hinder readers from
grasping the design of the robots or the specific experimental setup, necessitating
a deeper dive into the original sources. Moreover, a clearer guidance detailing the
appropriateness of specific algorithms for certain tasks would have further elevated
the utility of the review. Lastly, the rapidly evolving ML field constantly witnesses
the emergence of transformative technologies. This review does not delve deeply
into these novel ML technologies that have the potential to revolutionize the FSIR
landscape. Please note that this review is limited to works employing traditional
ML, DL, or RL methods. It does not include those that are data-driven but utilize
“gray-box” approaches such as [139]. Such methods, which potentially offer a high
degree of interpretability, would be a worthwhile subject for a separate dedicated
review.

Sub-objective 2: Investigation of the most effective interactive modality for tele-
operated endovascular intervention.

Evaluation of the results achieved: A user study was conducted to
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compare different interactive modes in human-in-the-loop teleoperated endovascular
intervention. Three interactive modes were implemented with different control
input devices and visualization devices. Implementing validation through in-
vitro vessel navigation presents significant challenges. These challenges stem from
the limited availability of robust steerable catheter systems, the recent presence
of high-quality AR-HMDs, and the complex requirements for integrating these
components. Nevertheless, an AR user interface was developed, which facilitates
not only catheter control, but also visual feedback. Another important preparation
was the integration of an endovascular catheterization system, which included a
robotic catheter, a HoloLens, and a gamepad for experimental validation. The
findings of the user study suggest a clear preference for the use of the gamepad as
a control input device and HoloLens as a visualization tool. The gamepad emerged
as an intuitive, responsive, and portable control device, while HoloLens offered the
possibility to allow users to navigate and change perspectives in physical space to
interact with holographic images.

Limitations: One aspect to note is that the study focused solely on the intrinsic
differences between 2D and 3D visualization, as the guidance cues were kept
consistent across both methods. It is worth further investigating the differences in
guidance cues. For example, our visualization strategy, which shows the catheter’s
tip pose with an arrow, might not be intuitive enough. Although this approach is
easy to implement, it potentially leaves out crucial information such as the shape
of the catheter during navigation. Using technologies such as FBG-based shape
sensing can enable visualization of the complete shape of the catheter. This provides
physicians with more information during catheter navigation and thereby enhancing
the safety of interventional procedures. Additionally, the phantom employed in this
study may not accurately reflect the vascular dynamics observed in the vessels. For
a closer approximation to real-world conditions, it would be beneficial to conduct
tests using phantoms filled with blood mimicking fluids, simulating the motion and
characteristics of blood flow. Finally, the scope of the user study, in terms of the
number of trials and the diversity of the participants, was also limited. Expanding
the trials by involving a more extensive set of participants, especially clinicians,
would offer richer insights. Moreover, advancing this study into in-vivo animal
experiments could be a valuable extension, presenting a more holistic understanding
of the capabilities and challenges of the system.

Sub-objective 3: Determination of the 3D catheter shape using a non-radiative
method.

Evaluation of the results achieved: A DL approach for improved shape
sensing of continuum robots utilizing a multi-core fiber FBG sensor was introduced.
Traditionally, precise shape reconstruction necessitated extensive characterization
of numerous parameters, and most methods demanded either multiple fibers with
accurately known relative locations or a singular multi-core fiber aligned with
the neutral line. The proposed method overcomes these restrictions, allowing for
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shape sensing with an off-center multi-core fiber. This opens up an opportunity
for miniaturization and retains the central channel of the robot available for other
utilities. Upon comparison with a recent state-of-the-art model-based shape-sensing
technique, the superiority of the proposed method became evident. Additionally, to
improve the interpretability of the ANN, multiple ablation studies were conducted.
Note that the technologies developed in this chapter are not only compatible with
robotic systems but can also be applied to passive or non-motorized instruments.
This allows for real-time acquisition of the instrument’s shape. Furthermore, when
combined with the advancements presented in Chapter 3, the instrument’s shape
can be visualized in an Augmented Reality Head-Mounted Display (AR-HMD),
enabling 3D visualization.

Limitations: Firstly, despite the advancements, its foundation on an ANN,
commonly viewed as a “black box”, could raise concerns of limited interpretability.
While our ablation studies do improve the interpretability of the ANN, the use
of Explainable AI models [298] could provide even greater transparency and
effectively address this issue. Furthermore, the DL approach, though compared
with conventional shape reconstruction techniques, has not yet been benchmarked
against traditional ML methods. Such a comparison could offer more comprehensive
insights into its advantages or potential areas of improvement. In addition, the
datasets used for training were built on the constant curvature assumption derived
from the catheter tip and base poses. In future work, alternative sensing modalities,
such as shape reconstruction from silhouette, could be considered for training data
generation. This would pave the way for the application of the proposed method to
other flexible instruments that may not strictly adhere to the constant curvature
assumption during training. Lastly, while demonstrating the superior accuracy of
our method in shape reconstruction is an important achievement, its full impact
can only be assessed when integrated into the control system. Evaluating how
these advances in shape sensing could influence the accuracy of catheter control
will be critical for understanding the comprehensive benefits of improved shape
sensing.

Sub-objective 4: Identification and compensation of non-linearities in catheters.

Evaluation of the results achieved: In line with the sub-objective to model
and compensate for the non-linearities in a catheter system, substantial progress
was achieved. The research successfully demonstrated the potential of employing
AI, specifically DL, to model hysteresis, a phenomenon that is inherently rate-
dependent, asymmetric, and saturated. The intricacies of this hysteresis are sourced
from various factors, including the actuation method, friction between different
catheter components, the compliant nature of materials, and the non-linearity of
pressure valves. The proposed DL method is able to model all these contributory
elements in one shot. This model effectively predicted the bending angle of the
catheters with sub-degree precision, outperforming traditional analytical models.
This accomplishment was further enhanced by integrating the model with a Forward-
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Looking OCT fiber, enabling real-time environmental reconstruction directly in
front of the catheter tip. This method does not need dedicated sensors at the
catheter tip for localization. Additionally, an open-loop controller that uses a
control-LSTM has been designed to manage and compensate for the hysteresis in
the catheter system. The control-LSTM is developed by training the LSTM with
reversed input-output mappings. The proposed control-LSTM serves as a robust
feedforward controller for catheter motion in free space, effectively eliminating
the influence of severe hysteresis. The control-LSTM is precise and has a simple
training procedure. Moreover, it is a direct inverse mode. In other words, the
control-LSTM does not require a separate inversion step to be used in a controller,
as would be required by most traditional analytical hysteresis models, such as [139].

Limitations: Despite these advances, certain limitations underscore the future
direction of the research. The validation was solely based on a pneumatically driven
system, leaving exploration in the realm of cable-driven systems as a future work. It
would be valuable to investigate whether the hysteresis pattern observed in a cable-
driven system differs substantially from that in a pneumatically driven system, and
how well the suggested DL model can be adjusted and used for different patterns
of hysteresis. In addition, the study only focused on a 1-DOF unidirectional and
a bidirectional system. This prompts an exploration into a system with spatial
bending capabilities (2-DOF). Theoretically, 2-DOF bending would make the issue
of dead zones more complicated, which increases the efforts of modeling. Finally,
the interpretability of the ANN could be further improved. This can be achieved
either through an ablation study, or by incorporating explainable AI models to
provide more transparent insights into its decision-making process [299].

Moreover, in endovascular interventions, hysteresis is present in each DOF of the
catheter, including translation, rotation, and bending. However, the findings in
Chapter 5 primarily address bending hysteresis. Translational hysteresis is often a
result of complex vascular anatomy. For instance, during interventions, a physician
may encounter a delay when changing the motion direction of catheter. Catheter
only becomes responsive again after a certain distance of insertion or retraction.
Rotation hysteresis refers to the non-linear relationship between the rotation at
the catheter tip and its proximal end. Addressing translational hysteresis presents
a greater challenge as it is influenced not only by the catheter’s characteristics but
also by the surrounding environment. The LSTM method, as applied in Chapter 5,
should be further developed to effectively tackle hysteresis in both translation and
rotation.

Sub-objective 5: Elevation of the level of autonomy in robotic catheters, along
with its demonstration in an in-vitro environment.

Evaluation of the results achieved: In this study, a novel compliant motion
control algorithm, which operates solely based on the position sensing of the
catheter tip and the modeling of the catheter behavior, was introduced. Central
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to our method is the data-driven tip position controller that is trained based on
the “control Long Short-Term Memory Network” (control-LSTM). To determine
the efficacy of the control-LSTM, trajectory following experiments were carried
out on four distinct trajectories. The control-LSTM exhibited superior positioning
abilities, managing sub-degree precision while robust to rate-dependent hysteresis.
Both simplified setups and aortic phantom experiments highlighted the effectiveness
of the proposed method in reducing the interaction forces with the environment by
70%. This underscores the potential of leveraging DL techniques to avoid exhaustive
modeling that was traditionally needed for accurately navigating continuum robots
in intricate environments such as the patient’s vasculature.

Limitations: Despite the advances, the study has its set of challenges. Validation
was limited to a 2D phantom. Extending this to a 3D phantom filled with blood
mimicking fluid to replicate blood flow dynamics would undoubtedly enhance the
practical relevance of our results. Moreover, our compliant motion control was
exclusively operational in a single bending plane. Given that catheters in actual
clinical settings encounter forces from multiple directions, expanding our method to
accommodate forces in 2DOF becomes imperative. The manual insertion method
in our validation is another point for potential improvement. True autonomy in
navigation would mean a combination of both autonomous insertion and bending,
preferably integrated with a catheter driver. Building on the expertise garnered from
the research presented in Chapter 3, integrating a catheter driver into validation
does not pose challenges. In terms of sensing, the current feedback mechanism relies
on an EM sensor, which offers limited control information. In contrast, the use of
an FBG sensor could substantially expand the range of information available. This
FBG can not only determine the tip position, but also provides a comprehensive
understanding of the catheter’s shape, along with the magnitude and location of
forces applied to it. This information can be beneficial for evaluating the extent
to which interaction forces have been reduced. Lastly, increasing the inference
speed of the ANN could potentially enhance the bandwidth of the controller, thus
offering more real-time control responses.

8.3 Future directions

8.3.1 DL-based catheter control under environmental contact

This thesis has showcased the promise of DL techniques for achieving precise control
over the distal segment of flexible/continuum robots in free space [138, 239]. This
approach holds significant utility in specific clinical scenarios, for example, within
the heart. However, there are a few instances during cardiovascular interventions
in which the catheter comes into contact with blood vessels and other soft tissues.
In these cases, the performance of an ANN trained on data collected in free space
scenarios would inevitably deteriorate.
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Past efforts, including those of this author, to train different ANNs with obstacles
present at varying locations have encountered challenges. Such attempts require a
large amount of data, a tedious data collection procedure, and significant training
time, yet they offer limited generalizability [300]. The potential of ANN to improve
catheter control can be further explored. A notable shift from our previous strategy
is that the structure of the ANN can be adjusted to include the obstacle’s position as
a continuous input. Data collection is carried out with obstacles placed at different
locations. During the testing, the FBG sensor is used to first estimate the location
of contact, following the methodology of [128]. The position of the predicted
contact point and the desired trajectory are then fed into the ANN, allowing it to
forecast the appropriate control commands. This methodology will first undergo
verification in a 1-DOF setting, followed by an expansion to a more complex 2-DOF
spatial bending. This strategy is expected to pave the way for accurate control of
the varied instruments when they interact with their surroundings, eliminating the
need for embedded sensors at the distal end.

8.3.2 Validation of the hysteresis compensation method on
catheters with other types of actuation

Cable-driven catheter system: DL methodologies were used to model and
compensate for hysteresis in pneumatically-driven catheter systems. The hysteresis
phenomenon predominantly results from the intricate nonlinear behavior stemming
from the compressibility of the air, friction between the balloon and the braid, and
the non-linear nature of the soft materials used to build PAM.

Nevertheless, when applying this DL-based approach to cable-driven robotic
systems, it presents a new set of difficulties. Cable-driven mechanisms present
hysteresis rooted in distinct characteristics, such as cable stretch under tension
and friction as cables navigate through guides or pulleys. The intricate interplay
between cable tensioning, frictional forces, and potential backlash may require an
evolved model that can capture these nuances. Furthermore, managing phenomena
such as cable slack will demand enhanced adaptability from our models. Drawing
inspiration from our previous successes with pneumatic actuation, our future
endeavors will be geared towards tailoring and validating our DL models to address
these unique challenges posed by cable-driven systems such as those in [301, 302].
The overarching goal remains consistent: ensuring precise and predictable catheter
control by effectively compensating for hysteresis, regardless of the actuation
method.

Magnetically-driven catheter system: Magnetically-driven catheter systems [303,
304] are gaining significant traction nowadays. These systems, whether in micro-
or standard-size, leverage magnetic fields to induce motion, making them especially
suited for intricate surgical procedures where non-contact actuation is beneficial.
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Magnetically-driven catheters offer enhanced maneuverability, reduced mechanical
friction, and potential for miniaturization, while mitigating wear-and-tear challenges
present in mechanically-actuated systems. However, magnetic actuation brings its
own set of complexities, the main of which being hysteresis [305].

The hysteresis observed in magnetic-driven systems often arises from the nonlinear
relationship between the magnetic field strength and the induced motion. Factors
such as varying distances between the magnet and the catheter, magnetic field
interference, and magnetic material characteristics can introduce unpredictability
in the catheter’s response. This unpredictable behavior further underscores the
need for sophisticated modeling techniques, such as the DL approaches that we have
used previously. With our established foundation in compensating for hysteresis in
pneumatic systems, it stands to reason that adapting and refining our methodologies
for magnetic-driven catheters is a promising and logical next step, ensuring that
the benefits of non-contact actuation are not overshadowed by control challenges.

8.3.3 Integration of technologies and developmental outcomes
from this thesis

The developments presented across various chapters of this thesis hold significant
potential for integration, paving the way for a more comprehensive system for
endovascular interventions. The integrated system was envisioned to involve the
use of a gamepad for remote catheter steering, complemented by visual feedback
through an AR-HMD as implemented in Chapter 3. This system would offer real-
time updates on the pose and motion of the catheter, as well as the surrounding
environment, thereby improving the control and situational awareness of physicians
during procedures.

In such a system, a robotic catheter is manipulated by a dedicated catheter driver,
supported by a serial robotic arm to adjust insertion angles for optimal navigation.
Following further development of the semi-autonomous control method presented
in Chapter 6, the system could have varying levels of autonomy tailored to the
complexity of different procedures. For simpler tasks, such as aortic navigation,
the system could operate autonomously, requiring the physician to only monitor
the procedure. More complex procedures, such as navigating the coronary arteries,
would utilize teleoperation for greater safety and precision.

Before each robotic catheter is used, its input-output data are meticulously
collected for the purpose of training an ANN as introduce in Chapter 5 and
Chapter 6. This ANN is adept at compensating for hysteresis of a catheter and
effectively establishing a robust kinematic model, thereby enhancing the catheter’s
functionality. Additionally, incorporating the FBG sensor within the catheter for
real-time shape sensing, as implemented in Chapter 4, would allow the physician
to visualize the catheter position and configuration in 3D through AR-HMD.
Combined with pre-operative CT scans and intraoperative imaging such as IVUS
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or OCT, this would provide a detailed and constantly updated view of the vascular
environment.

The clinical workflow envisioned for the integrated system, with a focus on CTO
treatment, is outlined as follows.

• Utilizing ML techniques to analyze patient-specific data and previous
cases, identifying the latest trends and optimal approaches for the specific
intervention.

• Planning the intervention using 3D models of the patient’s vasculature,
constructed using pre-operative CT. The physician can view the patient’s
anatomy in an AR-HMD to gain a comprehensive 3D visualization.

• The assistant will collect the input-output behavior of the catheter to be
used and utilize this data to train various ANNs for hysteresis compensation
and kinematic modeling. The assistant will interact with a GUI, focusing on
user-friendly operation without delving into technical details.

• Preparing the robotic catheter system, ensuring it is equipped with an
interface for tele-operated control using the chosen effective interactive
modality, and another option for (semi-) autonomous control.

• Vascular access is typically gained through the radial or femoral artery. For
illustration, accessing via the femoral artery is used as an example. Catheters
and guidewires are inserted into the femoral arteries.

• Initiating the procedure with semi-autonomous or fully autonomous modes
for navigating the descending aorta, aortic arch, and ascending aorta. The
physician supervises the entire procedure while wearing an AR-HMD, which
displays both the 3D shape of the catheter reconstructed by FBG and the
vessel shape reconstructed from the IVUS probe at the catheter tip.

• Once the catheter reaches the aortic root, delivery catheter is anchored. The
aortic root serves as the entry point to the coronary arteries.

• Deploying a micro-catheter/guidewire from the delivery catheter and
switching to teleoperation modes for navigating the coronary arteries. The
physician continues to receive 3D visualization through AR-HMD, displaying
the catheter status and the surrounding vessel environment.

• Navigate the microcatheter/guidewire through the coronary artery to reach
and cross the CTO. The selection of techniques and tools varies based on the
chosen approach (antegrade or retrograde) and the specific characteristics of
the occlusion.

• Following the crossing of the CTO, retract the microcatheter and the delivery
catheter.
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• Conduct further imaging to confirm the restoration of adequate blood flow
so as to evaluate the performance of treatment.

However, such integration faces considerable challenges, particularly in minimizing
latency in the visualization pipeline for effective real-time feedback. Overcoming
these challenges is important for the successful application of these advanced
technologies in enhancing the safety and effectiveness of endovascular interventions.
New hardware design is also anticipated to play a key role in realizing the above
clinical workflow for treating CTO.

8.3.4 Towards in vivo experimental validation

The advances that were validated through the phantom study are noteworthy.
However, the next logical progression in our research trajectory is to bridge the
gap between phantoms and real-world scenarios through animal trials. While the
aortic phantom has provided invaluable insights and a controlled environment, it
does not replicate the dynamic intricacies of blood flow, tissue responses, or the
complexity of live surgical procedures.

Given the context and requirements of our trials, the pig may be the best choice for
our animal experiments. Their significant anatomical and physiological similarities
to humans make them ideal [306]. The cardiovascular system of the pigs is
particularly suitable to test our catheterization methods. The fact that young or
small pig breeds are compatible with the same catheters used for humans suggests
that our findings can be more easily applied to human procedures.

Embarking on these trials involves multiple preparatory steps. First, ethical
clearance from a recognized committee will be applied. This process is stringent,
ensuring the welfare of the animals. It would require us to meticulously detail the
purpose of our research, the number of pigs involved, and the exact procedures.
In addition, our commitment to minimizing pain and ensuring the well-being of
animals must be demonstrated. Once approved, the selection of the pigs becomes
important. Healthy pigs without conditions are essential. Their housing, nutrition,
and post-operative care, both before and after procedures, must be of the highest
standards to ensure their well-being and the validity of our findings.

The process will be designed to mimic human catheterization as closely as possible.
Pigs will be placed under anesthesia in a suitable manner, and our catheterization
methods will be used with careful, ongoing observation. This will provide immediate
feedback on our methods and the animals’ responses. After the procedure, a
comprehensive evaluation is necessary. This will involve examining any tissue
responses at the catheter insertion sites, and evaluating the reactions of the
cardiovascular system.
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In conclusion, in-vivo experiments could provide insight that will not only validate
current methodologies, but also lay a strong foundation for future endeavors,
progressing towards human clinical trials.

8.4 Concluding remarks

This thesis has demonstrated the far-reaching potential of using DL and augmented
reality techniques to advance the control and sensing of robotic catheters. One
critical lesson learned is the importance of remaining open to emerging technologies,
even those with limitations and doubts. Taking DL for instance, while concerns over
its interpretability remain, this should not deter us from employing its predictive and
modeling capabilities. Technologies evolve, and advancements such as explainable
AI are already emerging to address these limitations.

It is also crucial to learn that DL is not a one-size-fits-all solution. Overuse of DL
is pointless. It is recommended to systematically compare DL approaches with
model-based methods on the same subject matter. Following this comparison, the
decision to employ DL should be carefully evaluated, considering key metrics such
as performance and interpretability for each approach.
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Rating Task  ID_________ 
 

 

Task:    Mode 1 / 2 / 3           Date: ___________ 
 

NASA Task Load Index (1 page) 
 

We are interested in the workload you experienced while completing this task. As workload can 

be caused by several different factors, we ask you to rate several of the factors individually on 
the scales provided.  

Note: Performance goes from good on the left to bad on the right. 
 
 

 
Mental Demand: How mentally demanding was the task? 

 
 

                    
Very 
Low 

                Very 
High 

 
Physical Demand: How physically demanding was the task? 

 

 

                    
Very 
Low 

                Very 
High 

 
Temporal Demand: How hurried or rushed was the pace of the task? 

 

                    
Very 
Low 

                Very 
High 

 
Performance: How successful were you in accomplishing what you were asked to do? 

 

 

                    
Perfect                 Failure 
 

Effort: How hard did you have to work to accomplish your level of performance? 

 
                    
Very 
Low 

                Very 
High 

 
Frustration: How insecure, discouraged, irritated, stressed, and annoyed were you? 

 
                    

Very 
Low 

                Very 
High 

                  

Figure A.1: NASA Task Load Index, a subjective workload assessment form
designed to measure the perceived workload of individuals performing a task,
adapted from [205].
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Questionnaire                                                                                                                          ID_________ 

 

Questionnaire on new technologies in advanced vessel navigation      

(2 pages) 

1. Wearing glasses:  

 yes 

 no 

2. Handedness:  

 right hand 

 left hand 

3. Experience in Hololens:  

 novice 

 intermediate 

 proficient 

4. Experience in gaming:  

 novice 

 intermediate 

 proficient 

5. Experience in steerable catheters: 

 novice 

 intermediate 

 proficient 

6. Please sort the three modes from highest to lowest according to your preference. Why? 
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Questionnaire                                                                                                                          ID_________ 

 

7. Is there anything you particularly like during the experiment? 

 

8. Is there anything you are not satisfied with or do not like during the experiment? 

 

9. What suggestions do you have for this experiment? 

 

10. Assistance provided by the internal view. Is the additional feature of the internal view 

helpful even if there is no such view in reality?   

● Strongly disagree 

● Disagree 

● Neither agree nor disagree 

● Agree 

● Strongly agree 

 

 

 

 

Figure B.1: Custom-designed questionnaire employed for the user study presented
in Chapter 3.
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Propositions

accompanying the dissertation

Control of multi-degree-of-freedom catheters in

unknown environments

exploring the potential of deep learning and augmented reality

by

Di Wu

1. Within the next 10 years, we will witness the advent of autonomous surgery.
[This thesis]

2. Public understanding of robotic surgery is very limited. It is urgent for us
researchers to engage more in scientific popularization. [This thesis]

3. Efforts invested in deep learning methods are consistently undervalued by
peers in the field.

4. As a PhD student, the ultimate measure of your work lies in its potential for
product translation, rather than publishing in top-tier journals.

5. When we dislike something, such as deep learning, it is more insightful to
examine its downsides in depth, instead of disregarding it superficially.

6. The policy of sequential listing for co-first authors unfairly disadvantages the
secondly listed one. This practice is not good for collaboration and requires
improvement.

7. Choosing industry over academia is a more effective path to turn ideas into
reality.

8. Life’s greatest lesson is learning to be satisfied.

9. “The world is a book, and those who do not travel read only one page.” — Saint
Augustine

10. Learning to prioritize work-life balance should be the first lesson for everyone
in academia.

11. A dual PhD degree teaches important skills, especially negotiation between
two parties.



These propositions are regarded as opposable and defendable, and have been
approved as such by the promotors prof. dr. J. Dankelman, and dr. ir. E. Vander

Poorten.
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