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Abstract. Remote sensing (RS) data are becoming an in-
creasingly important source of information for water re-
source management as they provide spatially distributed data
on water availability and use. However, in order to guide ap-
propriate use of the data, it is important to understand the
impact of the uncertainties of RS data on water resource stud-
ies. Previous studies have shown that the degree of closure of
the water balance from remote sensing data is highly variable
across basins and that different RS products vary in their lev-
els of accuracy depending on climatological and geographi-
cal conditions.

In this paper, we analyzed the water-balance-derived
runoff from global RS products for 931 catchments across
the globe. We compared time series of runoff estimated
through a simplified water balance equation using three pre-
cipitation (CHIRPS, GPM, and TRMM), five evapotranspi-
ration (MODIS, SSEBop, GLEAM, CMRSET, and SEBS),
and three water storage change (GRACE-CSR, GRACE-JPL,
and GRACE-GFZ) RS datasets with monthly in situ dis-
charge data for the period 2003–2016. Results were analyzed
through the lens of 10 quantifiable catchment characteris-
tics in order to investigate correlations between catchment
characteristics and the quality of RS-based water balance es-
timates of runoff and whether specific products performed
better than others under certain conditions.

The median Nash–Sutcliffe efficiency (NSE) for all
gauges and all product combinations was −0.02, and only
44.9 % of the time series reached a positive NSE. A positive
NSE could be obtained for 73.7 % of stations with at least
one product combination, while the overall best-performing

product combination was positive for 58.4 % of stations. This
confirms previous findings that the best-performing products
cannot be globally established. When investigating the re-
sults by catchment characteristic, all combinations tended
to show similar correlations between catchment character-
istics and the quality of estimated runoff, with the excep-
tion of combinations using MODIS evapotranspiration, for
which the correlation was frequently reversed. The combi-
nations with the GPM precipitation product generally per-
formed worse than the CHIRPS and TRMM data. How-
ever, this can be attributed to the fact that the GPM data
are available at higher latitudes compared to the other prod-
ucts, where performance is generally poorer. When remov-
ing high-latitude stations, this difference was eliminated, and
GPM and TRMM showed similar performance.

The results show the highest positive correlation between
highly seasonal rainfall and runoff NSE. On the other hand,
increasing snow cover, altitude, and latitude decreased the
ability of the RS products to close the water balance. The
catchment’s dominant climate zone was also found to be cor-
related with time series performance, with the tropical areas
providing the highest (median NSE= 0.11) and arid areas
the lowest (median NSE=−0.09) NSE values. No correla-
tion was found between catchment area and runoff NSE. The
results highlight the importance of further studies on the un-
certainties of the different data products and how these in-
teract when combining them, as well as of new approaches
to using the data rather than simple water-balance-type ap-
proaches. Efforts to improve specific satellite products can
also be better targeted using the results of this study.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

With an increasing global population and pressure on the
available water resources, it is increasingly important to un-
derstand the spatial and temporal distribution of water re-
source availability and use. Quantifying the components of
the water balance is a necessary first step in sustainably man-
aging resources in a river basin or catchment. However, the
data available in many river basins are insufficient to make
informed water management decisions. Global monitoring
of discharge, which is one of the key variables of interest to
water managers, has been in decline since the 1980s (Voros-
marty et al., 2001). In addition, even where in situ data exist,
the accessibility of the data can be problematic.

This data gap is increasingly being filled by remote sens-
ing products, which provide many advantages (see, e.g.,
Sheffield et al., 2018 for a full review). For instance, remote
sensing data can give valuable insights into the spatial vari-
ability of water availability and consumption, which can be
difficult or impossible to obtain through in situ data collec-
tion. Utilizing the hydrological variables currently derived
from remote sensing, it is now theoretically possible to close
the water balance and to estimate runoff at the regional to
global scale. However, due to uncertainties and errors in re-
mote sensing data, this cannot currently be achieved at the
scales and precision necessary for decision making (Sheffield
et al., 2018).

Runoff estimation using remote sensing is typically done
using some form of the following water balance equation
(Eq. 1) (see, e.g., Syed et al., 2005):

Ro= P −ETa−
dS

dt
, (1)

where Ro is total runoff, P is the precipitation, ETa is the
actual evapotranspiration, and dS/dt is the total water stor-
age change. Of the quantities in Eq. (1), all but the total
runoff, which includes surface and subsurface components,
can be derived from remote sensing at the global scale: re-
mote sensing precipitation has been available for many years
and is routinely used as input to hydrological models (see,
e.g., Stisen and Sandholt, 2010); ETa is not a direct RS (re-
mote sensing) measurement, but many different algorithms
have been developed to produce global scale ETa from RS
data (Zhang et al., 2016), and total water storage change
can be monitored using measurements of the variation of
the Earth’s gravitational field by the Gravity Recovery and
Climate Experiment (GRACE, Wahr et al., 2004). We note
that, given adequate auxiliary information (such as, for ex-
ample, bathymetry or rating curves), discharge can be mon-
itored using radar altimetry (see, e.g., Kouraev et al., 2004;
Michailovsky et al., 2012). However, currently (2023), nei-
ther the radar altimetry nor the auxiliary information is avail-
able consistently at the global scale, and in situ or modeled
data are therefore necessary in order to assess the closure of
the water balance using Eq. (1).

A common approximation made when analyzing the ter-
restrial water budget using remote sensing over a hydrologi-
cal basin or sub-catchment is to equate the total runoff with
the discharge leaving the area of study. This is equivalent to
the assumption that subsurface fluxes in and out of the basin
are negligible. While this assumption is likely to have an im-
pact, particularly for studies at small spatial scales (see, e.g.,
Bouaziz et al., 2018; Fan and Schaller, 2009), it allows for
the use of in situ discharge data to evaluate the reliability of
the remote sensing inputs to Eq. (1), which is then rewritten
as Eq. (2):

Q= P −ETa−
dS

dt
. (2)

For the components of the water cycle which are available
through RS, various datasets are available, and each product
is subject to uncertainties and errors. These include the fact
that most remote sensing measurements are indirect, there-
fore requiring interpretation and calibration; subject to inter-
ference (e.g., by cloud cover and topography); and limited in
their spatial and temporal resolution relative to the phenom-
ena measured. Each product uses its own algorithms, gap-
filling procedure, parameterization, and validation methods
to produce the variable of interest. Studies have shown that
there is large variability between the different products for a
single variable (e.g., Sahoo et al., 2011).

Previous studies have analyzed the closure of the water
balance with remote sensing and other global datasets from
the regional to global scale. The first of such studies was per-
formed by Syed et al. (2005), who used the land–atmosphere
water balance to estimate discharge over the Amazon and
Mississippi River basins using data from the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) and
from GRACE to measure water storage change. They found
that the total basin outflow was well correlated with observed
streamflow in spite of phase (in the Amazon) and amplitude
(in the Mississippi) discrepancies. Sheffield et al. (2009) also
analyzed the water budget closure for the Mississippi and
found that the RS-estimated discharge was greatly overes-
timated. Sahoo et al. (2011) estimated the water budget from
remote sensing and in situ discharge gauges over 10 global
river basins and found errors in the runoff estimates of the
order of 5 % to 25 % of the mean annual precipitation val-
ues. Both Sheffield et al. (2009) and Sahoo et al. (2011) con-
cluded that the largest contributors to the lack of closure of
the water balance were errors and biases in the precipitation
products used.

At the global scale, one of the most comprehensive studies
of the closure of the water balance from global products (in-
cluding remote sensing products and products derived from
gauges and models) was carried out by Lorenz et al. (2014).
They compared the ability of combinations of five precipi-
tation products (four derived from gauges and one including
RS and gauge measurements), six evapotranspiration (ET)
products (including MOD16 and GLEAM from RS), and two
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storage change solutions from GRACE (GFZ and CSR) over
96 catchments spread around the world. No single product
combination was found to consistently outperform the oth-
ers across catchments, but catchments with high seasonality
tended to show better results.

More recently, Lehmann et al. (2022) performed a similar
analysis on 189 river basins covering 90 % of the global land
surface and analyzed combinations of 11 precipitation and
14 ET datasets and 11 runoff datasets (including data from
land surface models, gauge products, and reanalysis datasets)
and compared the computed storage change to GRACE data.
They found that 95 % of basins had a positive Nash–Sutcliffe
efficiency (NSE) for at least one product combination. They
considered two catchment characteristics in analyzing their
results and found that, while no correlation between catch-
ment area and closure of the water balance could be found,
there was a correlation between climatic zone and perfor-
mance for some of the datasets considered.

Other studies compared runoff computations obtained
from different remote sensing input datasets to assess the
best product combinations in specific regions. For example,
Moreira et al. (2019) computed runoff using Eq. (2) over
South America using two precipitation products (TRMM and
MSWEP), two ET products (MOD16 and GLEAM), and
three storage change solutions from GRACE (CSR, JPL, and
GFZ) and found that using GLEAM for ET estimation and
MSWEP for precipitation produced the best results. They
also reported that greater biases were found in semi-arid
basins with low runoff coefficients.

Following the findings from previous studies that different
catchment characteristics (e.g., climate and seasonality) and
different product combinations produced different results,
this study aims to investigate both the ability of different
combinations of RS products to reproduce in situ measure-
ments of discharge and to identify catchment characteristics
that affect how well the closure of the water balance can be
achieved among a wider range of catchment characteristics
than those considered in previous studies. This is necessary
in order to help water practitioners choose between differ-
ent remote sensing datasets as the use of RS becomes more
widespread in water balance assessments, as well as to better
understand the sources of uncertainties present in the differ-
ent products and to identify areas of improvement. In order to
do this, 45 combinations of RS products (three precipitation
products, five ET products, and three water storage change
products) were used as input to the water balance equation
(Eq. 2), and the discharge values computed were compared to
discharge data collected from the Global Runoff Data Center
(GRDC, 2019) over between 595 and 931 catchments (the
number of catchments analyzed for each product combina-
tion varied due to coverage extent differences between prod-
ucts). The results were then analyzed using 10 quantifiable
catchment characteristics to identify potential drivers of the
goodness of fit between computed and in situ values.

2 Methodology

The ability of different remote sensing product combinations
to correctly close the water balance was assessed by deriv-
ing runoff time series for each combination of products us-
ing the water balance equation of a river basin (see Eq. 2)
and comparing these RS-derived runoff values with monthly
time step discharge measurements obtained from the Global
Runoff Data Centre (GRDC) for a period of 14 years, for
which the RS products are consistently available.

The main drivers for the goodness of fit between calcu-
lated and observed runoff were investigated by evaluating 10
quantifiable basin characteristics.

2.1 Remote sensing data

The data needed to solve the water balance for runoff are total
water storage change, precipitation, and actual evapotranspi-
ration (see Eq. 2) over the study period. These time series
were acquired from a variety of global remote sensing prod-
ucts: three different precipitation products, five actual evap-
otranspiration products, and three total water storage change
products. An overview of these products is shown in Table 1,
and details of the products are provided in the following sec-
tions.

Data were collected for a period of 14 years between 2003
and 2016, which are the full years for which the storage
change from the Gravity Recovery and Climate Experiment
(GRACE) data is available. All the products used are avail-
able within this time frame, except for CMRSET, which was
discontinued at the end of 2012.

The products cover most of the globe (see spatial coverage
in Table 1). CHIRPS and TRMM do not cover areas north of
50◦ N and south of 50◦ S, meaning that Antarctica and the
northern parts of Canada and Russia are excluded. The spa-
tial extent of SSEBop is also limited to areas between 80◦ N
and 60◦ S. Furthermore, it is important to note that SEBS has
many missing pixels, mainly over the larger deserts, such as
the Sahara and the Arabian Desert, as well as the Taiga in
Canada and Russia.

All the products were re-sampled to a monthly timescale
and to a spatial resolution of 0.05◦ (specific methods are
detailed in the following sections), and pixel values were
weighted by area before computing the time series to account
for the changing pixel areas at different distances from the
Equator. The analysis focused on spatial aggregates of runoff
for catchments larger than 10 000 km2, and the spatial resam-
pling was therefore not expected to have a large impact on
the results. For studies which focus on smaller scales or the
pixel level, the impact of spatial resampling would need to be
carefully considered. The choice of a monthly timescale was
motivated by the timescales of the available remote sensing,
particularly the GRACE dataset.

https://doi.org/10.5194/hess-27-4335-2023 Hydrol. Earth Syst. Sci., 27, 4335–4354, 2023
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2.1.1 Precipitation

Different sensors and algorithms are used to estimate global
precipitation from remote sensing. Many of the available
precipitation products combine measurements from sensors
aboard multiple satellites in order to be able to achieve higher
temporal resolutions, and some products are merged with in
situ gauge data to improve accuracy (Sheffield et al., 2018).
In this study, the following three products were used:

– the Tropical Rainfall Measuring Mission (TRMM)
Multi-satellite Precipitation Analysis (TMPA) 3B42
product (Huffman et al., 2007)

– the Climate Hazards group Infrared Precipitation with
Stations (CHIRPS) version 2 product (Funk et al., 2015)

– the Global Precipitation Measurement (GPM) mission
Integrated Multi-satellitE Retrievals for GPM (IMERG)
final run (Huffman et al., 2019).

The datasets had to be resampled from their native resolu-
tions (see Table 1) to obtain monthly data at 0.05◦ spatial
resolution:

– The TRMM TMPA and GPM IMERG products were
resampled to 0.05◦ using the nearest-neighbor method.

– The daily TRMM and CHIRPS daily data products were
summed to obtain monthly values.

It should be noted that the products used are in large part
computed from the same source satellite measurements. In
particular, while the core GPM satellite was launched in
February 2014, the IMERG algorithm was used to extend the
time series back to June 2000 using data from the TRMM era
to produce a continuous long-term dataset.

2.1.2 Evapotranspiration

Evapotranspiration (ET) obtained from RS data is not a di-
rect measurement, and many different inputs are required for
models to be able to represent the biophysical and environ-
mental controls on ET (see, e.g., Zhang et al., 2016). Five
different evapotranspiration products have been used to solve
the water balance for runoff in this study1:

– the Operational Simplified Surface Energy Balance
(SSEBop, Senay et al. 2013)

– CSIRO MODIS Reflectance-based Evapotranspiration
(CMRSET, Guerschman et al., 2009)

– the Global Land Evaporation Amsterdam Model
(GLEAM, Miralles et al., 2011).

1Two other products were considered before being excluded
from the study: the WaPOR dataset as it does not yet have global
coverage and ALEXI as it was not available to the authors at the
time of the study.

– Surface Energy Balance System (SEBS, Chen et al.,
2021)

– MODIS Global Terrestrial Evapotranspiration Algo-
rithm (MOD16, Mu et al., 2011).

These products use different methods and data sources
for estimating evapotranspiration rates. For example, the
MOD16 algorithm is based on the Penman–Monteith equa-
tion, CMRSET and GLEAM use modified versions of the
Priestly–Taylor equation, while SSEBop and SEBS use sur-
face energy balance approaches. More details can be found
in the publications listed for each product.

In order to obtain monthly data at 0.05◦ spatial resolu-
tion from the resolutions listed in Table 1, the following was
done:

– The daily and dekadal (10 d) fluxes from SSEBop and
GLEAM were summed to obtain monthly values.

– The 8-daily data from MOD16 were summed to
monthly values (with reduced weights for images par-
tially within a specific month). Missing data within a
month were filled by setting the missing data to the
monthly average of the available 8-day evapotranspira-
tion in that month.

– MOD16, SSEBop, and GLEAM were resampled to
0.05◦ using the nearest-neighbor method.

2.1.3 Storage change

Total water storage (the sum of surface and subsurface wa-
ter storage) cannot be directly measured from remote sens-
ing. However, total water storage anomalies (TWSAs), i.e.,
the deviation in total water storage relative to the long-term
mean, can be obtained from the Gravity Recovery And Cli-
mate Experiment (GRACE) satellites, which map the Earth’s
gravity field approximately every 30 d (Biancamaria et al.,
2019).

The TELLUS GRACE Level-3 Monthly Land Water-
Equivalent-Thickness Surface Mass Anomaly release 6.0
products from three processing centers were used in this
study (Landerer and Swenson, 2012):

– the University of Texas – Center for Space Research
(CSR, Landerer, 2019a)

– GeoForschungsZentrum (GFZ, Landerer, 2019b)

– Jet Propulsion Laboratory (JPL, Landerer, 2019c).

GRACE data are available between January 2003 and July
2017. The data are available in quasi-monthly time steps with
variable windows of observation. However, most of the data
are centered on the 16th of each month. The data were in-
terpolated to the 16th day of every month, and the central-
difference method was used to calculate the change in storage
(see, e.g., Biancamaria et al., 2019). Finally, the data were re-
sampled to 0.05◦ using the nearest-neighbor method.

Hydrol. Earth Syst. Sci., 27, 4335–4354, 2023 https://doi.org/10.5194/hess-27-4335-2023
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2.2 In situ data: Global Runoff Data Centre

The RS-derived runoff was validated using observed runoff
from the Global Runoff Data Centre (GRDC), whose dataset
comprises more than 9900 gauging stations all over the
world. By filtering to identify stations with an upstream
catchment larger than 10 000 km2 and at least one record af-
ter 1 January 2003, an initial selection of 1149 gauging sta-
tions was made.

A large number of these stations are located in northern
America, while the rest are spread out across the other con-
tinents (see Fig. 1). Unfortunately, among the selected sta-
tions, there are very few stations located in some parts of
the world, particularly in northern Africa, central Asia, and
southern Asia.

Within the period 2003–2016, the selected stations have an
average of 125 months of data, with just over half (515 sta-
tions) having more than 160 months of data out of a maxi-
mum possibility of 168 months. For the first 5 years of this
period, nearly all the selected stations have data, with an av-
erage of 1015 data points being available each month. After
2008, the availability starts to decrease, and by 2008, the av-
erage number of data points per month drops to 580. A total
of 143 117 monthly runoff records were used for the analysis.

Watershed boundaries were also obtained from the GRDC
(GRDC, 2011). The largest catchment covers 4 680 000 km2

(the Amazon River), and most of the catchments (862) are
between 10 000 and 93 600 km2. The mean catchment size is
141 259 km2. Altitude was known for 764 of the stations, and
the mean station altitude is 298.4 m a.s.l., with a large number
(161) of stations being located at altitudes below 40 m a.s.l.

Many river basins contain multiple GRDC stations, mean-
ing that, among the 1149 selected stations, some represent
nested catchments.

The monthly mean GRDC data are given in cubic meters
per second (m3 s−1) and were converted to millimeters per
month (mm month−1) in order to be compared to the monthly
runoff computed from remote sensing data. This was done by
dividing by the catchment area.

2.3 Runoff time series from remote sensing

Solving the water balance for the different combinations of
three precipitation, five actual evapotranspiration, and three
storage change products results in a total of 45 solutions.
Each of these solutions consists of a series of maps of the
RS-derived runoff in millimeters per month (mm month−1).
For each GRDC station, the RS-derived runoff time series
is obtained by averaging the pixels within the corresponding
catchment.

Extracting these time series at the 1149 locations of the
selected GRDC stations from these 45 combinations gives
51 705 time series to analyze.

In practice, the number of time series analyzed was lower
due to several issues. First of all, calculated time series that

have fewer than 30 matching data points with the GRDC
data were omitted. Secondly, some of the selected stations
(or their catchments) are (partially) located outside of the
coverage area of some of the products (see Table 1). Finally,
months for which more than 20 % of the pixels in a catchment
were missing have been excluded (no gap filling has been
done), occasionally leading to the loss of an entire times se-
ries (for example, as mentioned previously, SEBS has many
missing pixels in some parts of the world). This finally re-
sulted in 931 locations with sufficient data and 31 734 time
series.

2.4 Validation

The computed monthly runoff time series have been com-
pared with the GRDC data through the Nash–Sutcliffe ef-
ficiency (NSE) coefficient. The NSE is defined as follows
(Nash and Sutcliffe, 1970):

NSE= 1−

∑T
t=1
(
Rot

c−Rot
o
)2∑T

t=1
(
Rot

o−Roo
)2 , (3)

where Roo is the mean of the observed runoffs, Rot
c is the

RS-derived runoff at time t , and Rot
o is the observed runoff

at time t .

2.5 Catchment characteristics

We selected 10 RS-derived catchment characteristics based
on the findings of earlier studies to investigate correlations
with the quality of RS estimates of discharge. These are sum-
marized in Table 2 and detailed below.

Catchment area was chosen as a catchment parameter as
it is expected that, in larger catchments, the random errors
may be compensated for by averaging over large areas. Be-
yond this, the resolution of the GRACE product should also
allow for better performance over larger catchments. While
Biancamaria et al. (2019) found that GRACE could provide
good estimates of storage change for catchments larger than
50 000 km2, most studies have considered only very large
basins (> 100 000 km2).

The latitude of the outlet of the catchment (or the distance
to the Equator in degrees) and the snow cover were both cho-
sen because precipitation products are known to have higher
uncertainties at high latitudes and in the estimation of snow
than in that of liquid precipitation (Tian and Peters-Lidard,
2010). Snow cover also adds a storage and therefore lag to
the runoff generated in the basin which, while it should be
captured by the GRACE data, can add another layer of un-
certainty. ET products, in particular those based on measure-
ments of land surface temperature, may also face issues in
computing sublimation (Xu et al., 2019).

The altitude of the catchment outlet is evaluated to see any
difference in accuracy between river catchments with an out-
let at sea level and sub-catchments with an outlet at a higher

https://doi.org/10.5194/hess-27-4335-2023 Hydrol. Earth Syst. Sci., 27, 4335–4354, 2023
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Figure 1. Locations of the acquired GRDC stations with runoff data.

Figure 2. Distribution of NSE values for all time series; 891 time
series with NSE <−3 not shown (2.8 % of time series).

altitude. The altitude of a catchment outlet is also used as a
proxy for topography, and precipitation products are known
to have higher uncertainty over areas of rough topography
(Tian and Peters-Lidard, 2010).

Dam storage capacity was also considered due to the
smoothing effect on the runoff. While the dam storage should
be captured by the GRACE data, it has been shown that
GRACE solutions do not always correctly locate the rela-
tively punctual changes in dams’ storage due to signal leak-
age which could impact the results (Wang et al., 2019). Dam
storage capacity relative to mean annual runoff was also con-
sidered both as a measure of the level of modification of the
basin and as normalization for total dam storage capacity.

The seasonality of rainfall varies greatly around the world.
Some regions have a clear dry and wet season, while others
receive rainfall throughout the entire year. In order to make a
distinction between these different rainfall patterns, the stan-
dard deviation of the monthly rainfall was chosen as a param-
eter. A catchment with a clear wet and dry season will have a

higher standard deviation than a catchment with precipitation
throughout the year.

Finally, the ratio between runoff and precipitation is con-
sidered. Catchments with a low runoff-to-precipitation ratio
will typically have a high evapotranspiration rate relative to
precipitation, while a higher ratio indicates a low evapotran-
spiration rate. Catchments with ratios above 1 indicate dis-
charge originating from either storage depletion in the basin
or inter-basin transfers.

Besides the above characteristics which can be described
by continuous variables, the following two discrete charac-
teristics were considered.

The dominant climate class according to the Köppen–
Geiger climate classification was computed for each catch-
ment based on data from Beck et al. (2018). This was
considered as previous water balance closure studies have
shown variable performance under different climate condi-
tions (e.g., Lorenz et al., 2014),

The final catchment characteristic considered was the
dominant land cover class (LCC) in the catchment (com-
puted from GlobCover2009 (ESA and UCLouvain, 2010)).
This was considered due to the variable performance of ET
products over different land cover types (e.g., Senay et al.,
2013).

For each of the continuous catchment characteristics, the
Spearman rank correlation coefficient, which is the Pearson
correlation coefficient between the ranks of the variables,
was computed to assess the correlation between each catch-
ment characteristic and the NSE values of the discharge time
series. The significance of the correlations (p < 0.05) was
tested using a two-sided Student’s t test.

For the two non-continuous characteristics (LCC and cli-
mate class), the influence of the characteristics on the perfor-
mance was analyzed by comparing the NSE values obtained
per class.

Hydrol. Earth Syst. Sci., 27, 4335–4354, 2023 https://doi.org/10.5194/hess-27-4335-2023
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Figure 3. Median NSE for different product combinations at each GRDC station; 125 stations have a median NSE below−1. The color scale
was cropped to −1 for legibility.

3 Results and discussion

3.1 Results per GRDC station

NSE values were computed for the 45 possible product com-
binations for all GRDC stations possible for each combina-
tion. Figure 2 shows a histogram of the NSE values for all
31 734 time series computed, and Fig. 3 shows the median
NSE values for all possible product combinations at each of
the 931 GRDC stations for which at least one NSE value
could be computed.

For all combinations of products at all available GRDC
stations, 44.9 % of the generated discharge time series
achieve a positive NSE value, with only 3.4 % obtaining an
NSE > 0.5. When split by GRDC station, 36.9 % of the sta-
tions achieve a positive median NSE value, and 2.5 % achieve
a median NSE of > 0.5. A positive NSE indicates that a
model performs better than the long-term mean of the ob-
served time series as a predictor. Hydrological models are
often considered to be of good quality when reaching NSE
values of > 0.5, although many studies use different thresh-
olds (Moriasi et al., 2007).

When considering the maximum NSE reached at each sta-
tion, it was determined that a positive NSE was reached for
at least one product combination for 73.7 % of the stations,
and an NSE of more than 0.5 was reached for 7.3 % of the sta-
tions. The geographical distribution of maximum NSE values
is shown in Fig. 3.

In the studies performed by Lorenz et al. (2014), positive
NSE values were reached in 29 of the 96 (30 %) basins con-
sidered, while in the study by Lehmann et al. (2022), this was
achieved in 180 of 189 (95 %) of the basins. These results
are, however, difficult to compare directly due to the differ-
ent products chosen and the different basins considered. In
terms of the datasets considered, we chose to limit our study
to remote sensing products, excluding land surface models,
station-based gridded products, and reanalysis products. This
differs from the two aforementioned studies as our goal is to

specifically investigate the remote sensing products and work
with independent datasets.

Our study, while it considers the largest number of catch-
ments, was limited to those with GRDC station data avail-
able over our time period of interest, which excluded some
large basins. On the other hand, many smaller catchments
were considered, including nested catchments where mul-
tiple stations were available. Areas with more dense gaug-
ing networks are therefore overrepresented in our study, and
these correlate with particular catchment characteristics (for
instance, climate zone) which can influence the ability of re-
mote sensing to close the water balance, as will be seen in
Sect. 3.3.

3.2 Results per product and product combination

For the product combinations based on the GPM rainfall
product, an average of 925 time series NSE values could
be calculated per combination, while for the combinations
based on the TRMM and CHIRPS products, an average of
599 NSE values per combination could be calculated (due to
the smaller spatial coverage of TRMM and CHIRPS).

The median NSE values for all GRDC stations avail-
able for the 45 possible product combinations are presented
in the Appendix A. The best-performing combination was
CHIRPS–SEBS–JPL, which yielded 58 % of positive NSE
values, while GPM–GLEAM–CSR/GFZ/JPL yielded 35 %
of positive NSE values. Only 3.4 % of the discharge time
series generated reached the threshold of 0.5, with the best
combination (CHIRPS–CMRSET–GFZ) reaching this value
for 5.9 % of stations. The worst-performing combination
(GPM–GLEAM–GFZ) reached NSE > 0.5 for only 1.3 % of
stations.
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Figure 4. Max NSE achieved at each GRDC station; 43 stations have a maximum NSE below −1. The color scale was cropped to −1 for
legibility.

In order to make the product combinations more compara-
ble, the same results are presented for (1) all possible time se-
ries (column A in Appendix A) and (2) only those stations for
which all products could be used (column B in Appendix A).
The main consequence of this is that the high-latitude sta-
tions which are only covered by GPM are removed from the
analysis, which narrows the performance gap between GPM
and other precipitation products.

Table 3 shows that the NSE of the computed discharge is
most sensitive to the choice of ET product, with median NSE
values ranging from −0.02 to 0.01. The ET product with the
highest median NSE and number of NSE series with values
above 0 is MOD16. The product with the highest number
of series producing NSE values above 0.5 is SEBS (followed
closely by SSEBop and CMRSET). For precipitation, the im-
pact of different products on the overall median NSE is negli-
gible when not considering high-latitude stations where only
GPM is available. GPM produces the highest number of se-
ries with NSE values above 0, while CHIRPS produces the
highest number of series with NSE values above 0.5. The
computed NSE was not found to be sensitive to the choice of
GRACE solution used.

The precipitation and ET products used in the best-
performing combination for each station are shown in Figs. 4
and 5. Because of the low sensitivity of NSE to the storage
change solution, no map was generated for the different stor-
age change products.

These results show that no single product or combination
consistently outperformed others when it comes to the clo-
sure of the water balance. This is consistent with findings of
previous studies (Lehmann et al., 2022; Lorenz et al., 2014).
Some geographic patterns in the better-performing products
appear in Figs. 4 and 5 and will be discussed in the context
of the catchment characteristics in the following section.

3.3 Results per catchment characteristic

For each of the continuous catchment characteristics listed in
Table 2, correlations between the characteristic and the NSE
at the GRDC station were computed. Figure 6 shows a sum-
mary of the correlations found for all product combinations
and the catchment characteristics.

The presence or absence of correlation and the correlation
strength and sign are consistent across most product combi-
nations.

Of the catchment characteristics described by a continu-
ous variable, seasonality (SDp) shows the strongest correla-
tion with the NSE of the discharge. All product combinations
showed a significant correlation with the standard deviation
of precipitation. It should be noted that precipitation from
GPM was used to compute seasonality, meaning that errors
and uncertainties in GPM data could affect catchment classi-
fication. The influence of seasonality is in agreement with the
findings of Lorenz et al. (2014), who found that the closure
of the water balance can be better achieved in basins with
a strong seasonal precipitation signal. Lorenz et al. (2014)
observed that, in catchments with low seasonal runoff vari-
ability, the biases in the different input datasets prevented the
accurate computation of runoff.

Snow cover has the strongest negative correlation with
NSE. The mean normalized difference snow index (NDSI)
shows a significant negative correlation for 39 of the 45 prod-
uct combinations. Combinations including MODIS ET and
CHIRPS or TRMM precipitation are the only ones for which
no correlation or a positive correlation was found. Altitude
at the gauging station, which is correlated to snow cover
for smaller basins, shows a weaker negative correlation with
NSE. The strong negative correlation with snow could be due
to multiple factors. For instance, snow retrievals have lower
accuracies as compared to liquid precipitation retrievals from
satellites, and precipitation retrievals are less accurate over
frozen ground (Tang et al., 2020; Tian et al., 2014; Tian and
Peters-Lidard, 2010); ET products may not capture the pro-
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Figure 5. Precipitation product used in the combination with the highest NSE at each station. Note that GPM is the only product available
for latitudes > 50◦.

Figure 6. ET product used in the combination with the highest NSE at each station.

cess of sublimation as well as other types of ET (see, e.g.,
Xu et al., 2019), and the snow storage variations which drive
discharge timing in some catchments may not be adequately
captured by GRACE. Analysis of runoff versus discharge to-
tals over hydrological years rather than monthly could mit-
igate the snow storage issue. A similar analysis with more
recent data should also be carried out to check if better re-
sults for catchments further from the Equator (> 50◦ N and
> 50◦ S) can be obtained as the GPM data from the TRMM
era (pre-2014) for higher latitudes are considered to consti-
tute partial coverage. The GPM core observatory also has
higher sensitivity to snowfall than earlier sensors (Behrangi
et al., 2018) and was only launched in 2014.

Latitude also shows a correlation with NSE for 39 out of
45 product combinations, while the remaining 6 show the
same pattern as for snow cover. This negative correlation was
expected based on the more extensive snow cover and frozen
ground found further from the Equator, which negatively im-
pacts performance for both P and ET products, as explained
above. GRACE measurements are also subject to the effects

of the glacial isostatic adjustment (GIA), the redistribution
of mass within the Earth resulting from the end of the last
ice age (Wahr et al., 1998). While the GIA signal is removed
from GRACE TWSA data products, any errors in the GIA
models used in this process will result in higher errors in
TWSA where the GIA signal is strongest, which correlates
with higher latitudes.

Dam storage capacity shows a negative correlation with
NSE only for product combinations using GPM as a precipi-
tation product and for the TRMM–MOD16 combination. For
other combinations, no significant correlations were found.
Total runoff relative to dam storage capacity shows a neg-
ative correlation for most product combinations, except for
CHIRPS–GLEAM (positive) and TRMM–GLEAM (no sig-
nificant correlation).

Runoff ratio shows a negative correlation with NSE for
12 out of the 45 combinations and a positive correlation for
24 out of the 45. Runoff ratio is computed as the ratio of
discharge from GRDC and precipitation from GPM, and the
maximum value found was 42, indicating potentially erro-
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Figure 7. Spearman correlations for different product combinations
between the NSEs of catchments and characteristics of those catch-
ments. See Table 2 for an overview of the catchment characteristics.
White dots were added to the negative correlations for monochro-
matic legibility.

neous data or a strong proportion of discharge originating
from storage depletion or inter-basin transfers. Inter-basin
transfers in particular would not be represented in our com-
putation of runoff. The runoff ratio was found to be above 1
for 103 stations (out of 931).

A weak negative correlation was found between drainage
area and the NSE of the RS-derived runoff for 28 of the com-
binations. The lack of a strong correlation between NSE and

Figure 8. Distribution of NSE values for all time series for the
standard and anomaly time series. Time series with NSE <−3 not
shown – 2.8 % of time series for standard and 0.7 % for the anomaly
time-series.

catchment area is surprising as the storage change component
from GRACE is expected to perform better over larger catch-
ments, particularly because we limited the catchment size
here to catchments larger than 10 000 km2, while GRACE
has an inherent spatial resolution of ∼ 300 km (90 000 km2)
and has been found to produce reliable estimates of storage
change for catchments with areas of more than 50 000 km2

(Biancamaria et al., 2019). Smaller catchments will also be
more susceptible to signal leakage from outside the catch-
ment (Dutt Vishwakarma et al., 2016). Catchment size is also
expected to influence the applicability of the hypothesis of
negligible subsurface fluxes, which is necessary for the ap-
plication of Eq. (2), as this hypothesis has been shown to
be incorrect for smaller catchments (Bouaziz et al., 2018;
Fan and Schaller, 2009). Sahoo et al. (2011) and Lehmann
et al. (2022) similarly found no correlation between basin
area and water balance closure, though their studies were
limited to 10 very large basins and basins with areas larger
than 65 000 km2, respectively.

Results for the two discrete variables (dominant land cover
type and dominant climate class) are shown in Tables 4, 5, 6,
and 7.

Variability was found between the results for different land
cover types. Results for basins with dominant land cover
codes 40 and 50 (both types of broad-leaved forests; see Ta-
ble 4) perform better than other land cover types, with me-
dian NSE values of 0.21 and 0.14, respectively.

Some land cover classes, for example open (15 %–40 %)
needle-leaved deciduous or evergreen forest (> 5 m) (class
90), perform particularly poorly, which can be expected as
these have a near-complete overlap with higher-latitude ar-
eas. MOD16 performs better than other products in this land
cover class, with a median NSE value of −0.1, while com-
binations using the other ET products produce median NSE
values between −0.33 and −0.96 (Table 5).

Variability is also observed between climate zones, with
tropical (median NSE= 0.11 and median NSE for trop-
ical monsoon of 0.28; see Table 6 and Appendix A
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Table 1. Overview of the different remote sensing products acquired.

Product (version) Availability Spatial
resolution

Temporal
resolution

Spatial
coverage

Reference Obtained from

Precipitation

CHIRPS (v2) 1981–present 0.050◦ Daily 50◦ S–50◦ N Funk et al. (2015) https://data.chc.ucsb.edu/products/CHIRPS-2.
0/ (last access: 29 November 2023)

TRMM TMPA (3b42 v7) 1998–2020 0.25◦ Daily 50◦ S–50◦ N Huffman et al. (2007) https://disc2.gesdisc.eosdis.nasa.gov/opendap/
TRMM_L3/TRMM_3B42_Daily.7/
(last access: 29 November 2023)

GPM 3IMERGDF (v06) 2000a–present 0.10◦ Monthly 90◦ N–90◦ S Huffman et al. (2019) https://gpm1.gesdisc.eosdis.nasa.gov/opendap/
GPM_L3/GPM_3IMERGDF.06/ (last access:
29 November 2023)

Evapotranspiration

MOD16 A2 (v006) 2001–present 500 m 8-Daily 90◦ N–90◦ S Mu et al. (2011) Google Earth Engine image collection:
MODIS/006/MOD16A2

SSEBop (v4) 2003–present 0.010◦ Dekadal 80◦ N–60◦ S Senay et al. (2013) https://edcintl.cr.usgs.gov/downloads/
sciweb1/shared/fews/web/global/monthly/
eta/downloads/ (current version: v6,
last access: 29 November 2023)

GLEAM (v3.3b) 2003–2018 0.25◦ Daily 90◦ N–90◦ S Miralles et al. (2011) https://www.gleam.eu/ (current version: v3.7b,
last access: 29 November 2023)

CMRSET 2003–2012 0.050◦ Monthly 90◦ N–90◦ S Guerschman et
al. (2009)

Shared by Juan Pablo Guerschman

SEBS (5 km Global Daily ET) 2000-02017 0.050◦ Monthly 90◦ N–90◦ S (Chen et al., 2021) Obtained from: https://data.tpdc.ac.cn/en/data/
df4005fb-9449-4760-8e8a-09727df9fe36/ (last
access: 29 November 2023)

Water storage change

GRACE CSR
(TELLUS_GRAC_L3_CSR_RL06_LND
v6.0)

2003–2017b 1.0◦ Monthly 90◦ N–90◦ S Landerer (2019a) Retired product – see: https://podaac.jpl.
nasa.gov/dataset/TELLUS_GRAC_L3_CSR_
RL06_LND (last access: 29 November 2023)

GRACE GFZ
(TELLUS_GRAC_L3_GFZ_RL06_LND
v6.0)

2003–2017b 1.0◦ Monthly 90◦ N–90◦ S Landerer (2019b) Retired product – see: https://podaac.jpl.
nasa.gov/dataset/TELLUS_GRAC_L3_GFZ_
RL06_LND (last access: 29 November 2023)

GRACE JPL
(TELLUS_GRAC_L3_JPL_RL06_LND
v6.0)

2003–2017b 1.0◦ Monthly 90◦ N–90◦ S Landerer (2019c) Retired product – see: https://podaac.jpl.nasa.
gov/dataset/TELLUS_GRAC_L3_JPL_RL06_
LND (last access: 29 November 2023)

a The TRMM mission ended in 2015, but the TMPA product continued to be produced using data from GPM; the GPM satellite was launched in 2015, but the IMERG product
started in 2000 using TRMM data. b The GRACE mission produced data until July 2017, and the GRACE-FO satellite started producing data from June 2018.

Figure 9. Median NSE for the anomaly time series for different product combinations at each GRDC station; 49 stations have a median NSE
of below −1. The color scale was cropped for legibility.
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Table 2. Catchment characteristics considered in this study.

Description (continuous or discrete) Abbreviation Unit Data source

Size of the catchment (continuous) Area km2 GRDC (GRDC, 2019)

Distance of the catchment outlet to the Equator
(continuous)

|Latitude| DD GRDC (GRDC, 2019)

Altitude of the catchment outlet (continuous) Altitude m a.s.l. GMTED10

Total dam storage capacity in the catchment
(continuous)

Sdam 106 m3 GRAND (Lehner et al., 2011)

Seasonality: standard deviation of the monthly
precipitation in the catchment (continuous)

SDP mm month−1 GPM (Huffman et al., 2019)

Ratio between the mean annual runoff and the
total dam storage capacity (continuous)

Royearly :
Sdam

− GRAND, GRDC

Mean ratio between the monthly runoff and
precipitation (continuous)

Ro: P – GRDC, GPM

Mean of the temporal and spatial snow cover
(continuous)

NDSI % MOD10 (Hall et al., 2006)

Dominant land cover class (discrete) LCC – GlobCover2009 (ESA and
UCLouvain, 2010)

Dominant climate class (discrete) Climate – Köppen–Geiger Classification
(Beck et al., 2018)

Table 3. Median NSE for time series containing specific products, as well as percentage of time series with positive NSE and NSE above
0.5 (n. NSE > 0.5) and the total number of time series using the product (n. series). Series have been limited to those covered by all product
combinations (591 GRDC stations).

Variable Product Median NSE %NSE > 0 %NSE > 0.5 No. series

P TRMM −0.00 49 3.2 8850
GPM −0.00 50 3.9 8850
CHIRPS −0.00 49 4.7 8850

ET SSEBop −0.00 48 4.9 5310
MOD16 0.01 52 3.2 5310
SEBS 0.01 54 4.9 5310
GLEAM −0.02 43 2.0 5310
CMRSET −0.01 49 4.8 5310

GRACE JPL −0.00 50 3.9 8850
CSR −0.00 49 4.0 8850
GFZ −0.00 49 4.0 8850

for the detailed results per climate zone) and temper-
ate zones (median NSE= 0.08) performing better than
arid (median NSE=−0.04) and continental zones (median
NSE=−0.08). The SSEBop and CMRSET products pro-
duce the highest NSE values in tropical climates, with me-
dian NSE values of 0.17, followed by SEBS at 0.15 (Table 7).
In temperate zones, using GPM produces the highest median
NSE values of 0.11. Lehmann et al. (2022) also analyzed the
water balance closure by climate zone and found that errors
were relatively consistent within zones, with some excep-

tions. As in this study, the best performance was observed
in the equatorial rain forest/monsoon zone. This result is also
in agreement with the influence of seasonality of rainfall dis-
cussed above and observed by Lorenz et al. (2014). Sahoo et
al. (2011), on the other, hand did not find consistent behavior
based on climate zone.

Hydrol. Earth Syst. Sci., 27, 4335–4354, 2023 https://doi.org/10.5194/hess-27-4335-2023



C. I. Michailovsky et al.: Investigating sources of variability 4347

Table 4. NSE values for basins classified by dominant land cover class (LCC) and percentage of time series with positive NSE, percentage
NSE above 0.5, and total number of time series with the corresponding land cover (no. of series) and the corresponding number of catchments
(no. of catchments).

LCC Land cover description Median % NSE % NSE No. of No. of
GlobCover NSE > 0 > 0.5 series catchments

14 Rain-fed croplands −0.01 45 1 1920 65

20 Mosaic cropland (50 %–70 %)/vegetation (grassland/shrubland/forest) (20 %–50 %) −0.03 44 1 1080 33

30 Mosaic vegetation (grassland/shrubland/forest) (50 %–70 %/cropland (20 %–50 %) 0.01 55 0 2220 56

40 Closed to open (> 15 %) broad-leaved evergreen or semi-deciduous forest (> 5 m) 0.21 75 19 3612 83

50 Closed (> 40 %) broad-leaved deciduous forest (> 5 m) 0.14 68 4 6045 162

60 Open (15 %–40 %) broad-leaved deciduous forest/woodland (> 5 m) −0.12 36 0 417 19

70 Closed (> 40 %) needle-leaved evergreen forest (> 5 m) −0.21 25 1 2619 62

90 Open (15 %–40 %) needle-leaved deciduous or evergreen forest (> 5 m) −0.61 16 1 2547 173

100 Closed to open (> 15 %) mixed broad-leaved and needle-leaved forest (> 5 m) −0.53 5 0 390 17

110 Mosaic forest or shrubland (50 %–70 %)/grassland (20 %–50 %) −2.51 0 0 30 2

120 Mosaic grassland (50 %–70 %)/forest or shrubland (20 %–50 %) −0.04 28 0 297 8

130 Closed to open (> 15 %) (broad-leaved or needle-leaved, evergreen −0.02 39 2 4086 95
or deciduous) shrubland (< 5 m)

140 Closed to open (> 15 %) herbaceous vegetation (grassland, savannas, −0.03 34 0 4557 116
or lichens/mosses)

150 Sparse (< 15 %) vegetation −0.72 23 0 1521 75

180 Closed to open (> 15 %) grassland or woody vegetation on regularly −0.07 17 0 36 1
flooded or waterlogged soil – fresh, brackish, or saline water

200 Bare areas −0.33 11 0 297 7

210 Water bodies −0.48 0 0 60 4

Figure 10. Difference in median NSE values between anomaly and original time series. Positive values denote an increase in NSE for
anomaly time series – all stations saw an increase in median NSE by moving to the anomaly; 26 stations saw an increase of more than 2. The
color scale was cropped for legibility.

3.4 Results considering anomalies

Remote sensing products are known to be subject to biases,
and in the results presented so far, no bias correction was
considered. In order to investigate how biases may impact the

results, we computed the NSE using the anomalies from the
mean of the computed runoff and GRDC data. The anomalies
from the mean were computed by subtracting the mean of
each time series from the time series values.
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Considering anomalies rather than absolute values pro-
duces a shift in the distribution of the computed NSE values
towards higher values (Fig. 8), with the percentage of time
series reaching NSE > 0, going from 44.9 % to 72.1 %, and
the percentage of time series reaching NSE > 0.5, going from
3.4 % to 4.8 %.

Increases in NSE for the anomaly time series are most pro-
nounced in the areas which had very low NSE values (see
Figs. 3 and 10), but many of these retain low NSE values, as
can be seen, for example, in the northwestern Americas in
Fig. 9.

Results in terms of the correlation of NSE with catchment
characteristics show some differences in the magnitude of the
correlations but very few in the sign of the correlation, with
the notable exception of the correlations between runoff-to-
precipitation ratios for GPM products. We therefore expect
that, while using NSE for the anomalies from the mean may
show some differences, the general conclusions would be
similar to those presented for the standard time series. The
table of correlations for the anomaly time series is shown in
Appendix B.

4 Conclusions and perspectives

In this study, we analyzed the closure of the water bal-
ance at the monthly timescale for catchments of more than
10 000 km2 by using remote sensing to compute runoff and
by comparing the computed runoff to in situ measurements
of discharge from the GRDC using the Nash–Sutcliffe effi-
ciency as the performance metric. We computed the results
for 45 different remote sensing product combinations at be-
tween 595 and 931 gauging stations, depending on the prod-
uct combinations, and we analyzed the results through the
lens of both the remote sensing products and 10 catchment
characteristics which we computed globally.

Overall, a positive NSE could be reached for at least one
product combination for 73.7 % of the stations considered.
While some product combinations showed better results than
others, no one combination or product stood out as system-
atically performing better than the others. Correlations were
found between the NSE values obtained and the ability of
remote sensing to close the water balance between areas
with different precipitation patterns, in areas with large snow
cover, in different climatic zones, and in areas with different
dominant land cover classes. This highlights the importance
of validating RS products widely. In particular, our results
point to the necessity of the improvement of products in con-
tinental and arid climate zones and some land covers.

While a number of catchment characteristics were an-
alyzed, these are not exhaustive, and those chosen could
have also been computed differently. For example, for larger
basins, selecting only one land use category as representa-
tive can obscure some differences, and using percentages of
area under different types of vegetation may help to further

refine results. The same may be considered for climate class.
An additional characteristic which could be interesting to in-
vestigate is the percentage of area under irrigation, particu-
larly for potentially differentiating the different ET products
and as a measure of the degree of alteration. One limitation
of such an analysis would be the accuracy of global irriga-
tion maps. Some examples of other catchment characteristics
which suffer from similar limitations in terms of global data
availability or quality but would be of interest are soil type
and hydrogeology.

Many satellite products are also calibrated in specific ar-
eas, though it is not always straightforward to obtain this in-
formation consistently. It would be very interesting to assess
how different the performance is in areas where calibration
activities are carried out versus others and how this impacts
the choice of product. These areas may also be correlated
with areas with a high density of GRDC stations. Efforts to
collect discharge data in underrepresented areas should be
undertaken to be included in future studies.
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Table 5. Median NSE values per product and per dominant LCC. Cells in italic bold have median values > 0, and cells in bold have val-
ues > 0.1. Empty cells represent a category where a specific product is not available.

TRMM GPM CHIRPS SSEBop MOD16 SEBS GLEAM CMRSET JPL CSR GFZ

Med. NSE Med. NSE Med. NSE Med. NSE Med. NSE Med. NSE Med. NSE Med. NSE Med. NSE Med. NSE Med. NSE

Dominant land 14 0.01 −0.04 −0.02 −0.14 −0.03 −0.01 −0.0 0.01 −0.01 −0.01 −0.02
cover class 20 0.02 −0.11 −0.03 0.04 −0.32 0.04 −0.11 −0.06 −0.03 −0.03 −0.03

30 0.01 0.02 0.01 −0.01 −0.0 0.04 0.03 0.02 0.01 0.01 0.01
40 0.21 0.18 0.24 0.21 0.21 0.25 0.07 0.27 0.2 0.2 0.21
50 0.14 0.17 0.12 0.19 0.19 0.12 0.05 0.1 0.14 0.15 0.14
60 −0.07 −0.13 −0.12 0.07 −0.46 −0.13 −0.13 0.01 −0.13 −0.11 −0.12
70 −0.25 −0.17 −0.2 −0.12 0.02 −0.34 −0.17 −1.43 −0.22 −0.22 −0.2
90 −0.42 −0.62 −0.41 −0.58 −0.1 −0.33 −1.12 −0.96 −0.61 −0.6 −0.62
100 −0.53 −0.47 −0.78 −0.41 −0.21 −0.52 −0.79 −1.1 −0.53 −0.55 −0.5
110 − −2.51 − −3.72 −7.14 −2.66 −4.11 −2.41 −2.45 −2.6 −2.7
120 −0.03 −0.08 −0.02 −0.29 −0.5 0.0 −0.04 −0.03 −0.04 −0.04 −0.04
130 −0.02 −0.03 −0.02 −0.03 −0.01 −0.0 −0.01 −0.09 −0.02 −0.02 −0.02
140 −0.03 −0.04 −0.01 −0.04 −0.05 −0.0 −0.02 −0.02 −0.02 −0.03 −0.03
150 −0.18 −0.88 −0.32 −0.84 −0.27 −0.44 −1.33 −0.79 −0.72 −0.72 −0.69
180 −0.09 −0.08 0.0 −0.02 −0.66 − −0.1 −0.06 −0.06 −0.07 −0.07
200 −0.29 −0.35 −0.32 −0.06 −0.27 −0.19 −0.33 −2.01 −0.34 −0.32 −0.32
210 −0.66 −0.48 −0.8 −0.22 −0.25 − −0.7 −1.24 −0.5 −0.49 −0.47

Table 6. NSE values for basins classified by climate class.

Climate Median % NSE % NSE No. of No. of
class NSE > 0 > 0.5 series catchments

A Tropical 0.11 67 12 5301 127
B Arid −0.04 30 1 6483 153
C Temperate 0.08 63 3 6039 162
D Continental −0.08 35 1 13 509 526
E Polar 0.02 52 0 402 11

Table 7. Median NSE values per product and dominant climate class. Cells in italic bold have median values > 0, and cells in bold have
values > 0.1.

TRMM GPM CHIRPS SSEBop MOD16 SEBS GLEAM CMRSET JPL CSR GFZ

Med. NSE Med. NSE Med. NSE Med. NSE Med. NSE Med. NSE Med. NSE Med. NSE Med. NSE Med. NSE Med. NSE

A Tropical 0.12 0.11 0.12 0.17 0.03 0.15 0.02 0.17 0.11 0.12 0.12
B Arid −0.03 −0.05 −0.04 −0.05 −0.07 −0.01 −0.03 −0.12 −0.04 −0.04 −0.04
C Temperate 0.05 0.11 0.08 0.07 0.08 0.1 0.06 0.07 0.08 0.08 0.08
D Continental −0.03 −0.15 −0.04 −0.09 0.02 −0.11 −0.12 −0.19 −0.08 −0.08 −0.08
E Polar 0.16 −0.0 −0.03 0.34 0.13 0.28 −0.32 −0.28 0.01 0.01 0.02
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Appendix A: Full result tables for all combinations and
by climate zone

Table A1. Median NSE values for the 45 product combinations. No. of NSE > x is the number of time series for which NSE > x, and no. of
catchments is the number of series considered for the specific combination (one per catchment). The results are presented both for all GRDC
stations available for each combination (A) and for the GRDC stations common to all product combinations (B).

Product combination Median No. of No. of No. of Median No. of No. of No. of
NSE NSE > 0.5 NSE > 0 catchments NSE NSE > 0.5 NSE > 0 catchments

A: For all possible catchments B: For catchments common to all products

TRMM–SSEBop–JPL 0.0 24 296 601 0.0 24 295 590
TRMM–SSEBop–GFZ 0.0 24 286 601 0.0 24 285 590
TRMM–SSEBop–CSR 0.0 25 292 601 0.0 25 290 590
TRMM–CMRSET–JPL 0.0 21 291 604 0.0 21 288 590
TRMM–CMRSET–GFZ 0.0 22 290 604 0.0 22 287 590
TRMM–CMRSET–CSR 0.0 21 292 604 0.0 21 289 590
TRMM–GLEAM–JPL −0.01 10 259 599 −0.01 10 256 590
TRMM–GLEAM–GFZ −0.01 10 253 599 −0.01 10 250 590
TRMM–GLEAM–CSR −0.01 10 256 599 −0.01 10 253 590
TRMM–SEBS–JPL 0.01 25 324 602 0.01 25 320 590
TRMM–SEBS–GFZ 0.01 26 326 602 0.01 26 321 590
TRMM–SEBS–CSR 0.01 25 322 602 0.01 25 317 590
TRMM–MOD16–JPL 0.0 14 310 595 0.0 14 309 590
TRMM–MOD16–GFZ 0.0 14 311 595 0.0 14 310 590
TRMM–MOD16–CSR 0.0 14 308 595 0.01 14 307 590
CHIRPS–SSEBop–JPL 0.0 35 289 601 0.0 35 286 590
CHIRPS–SSEBop–GFZ 0.0 35 290 601 0.0 35 287 590
CHIRPS–SSEBop–CSR 0.0 35 289 601 0.0 35 286 590
CHIRPS–CMRSET–JPL −0.04 33 251 598 −0.03 33 250 590
CHIRPS–CMRSET–GFZ −0.04 35 247 598 −0.03 35 246 590
CHIRPS–CMRSET–CSR −0.03 33 251 598 −0.03 33 250 590
CHIRPS–GLEAM–JPL −0.01 11 257 599 −0.01 11 254 590
CHIRPS–GLEAM–GFZ −0.01 13 252 599 −0.01 13 249 590
CHIRPS–GLEAM–CSR −0.01 12 247 599 −0.01 12 245 590
CHIRPS–SEBS–JPL 0.01 34 348 596 0.01 34 345 590
CHIRPS–SEBS–GFZ 0.01 31 340 596 0.01 31 337 590
CHIRPS–SEBS–CSR 0.01 32 342 596 0.01 32 339 590
CHIRPS–MOD16–JPL 0.01 26 320 595 0.01 26 318 590
CHIRPS–MOD16–GFZ 0.0 27 314 595 0.0 27 312 590
CHIRPS–MOD16–CSR 0.01 26 315 595 0.01 26 313 590
GPM–SSEBop–JPL −0.06 26 337 931 0.0 26 282 590
GPM–SSEBop–GFZ −0.05 27 336 931 0.0 26 280 590
GPM–SSEBop–CSR −0.05 29 330 931 0.0 28 275 590
GPM–CMRSET–JPL −0.07 28 379 928 0.02 28 331 590
GPM–CMRSET–GFZ −0.07 31 377 928 0.02 31 326 590
GPM–CMRSET–CSR −0.08 28 378 928 0.02 29 328 590
GPM–GLEAM–JPL −0.06 14 327 929 −0.01 14 257 590
GPM–GLEAM–GFZ −0.06 12 325 929 −0.02 12 257 590
GPM–GLEAM–CSR −0.06 15 327 929 −0.01 15 256 590
GPM–SEBS–JPL −0.22 16 319 919 0.0 29 306 590
GPM–SEBS–GFZ −0.23 17 319 919 0.0 30 296 590
GPM–SEBS–CSR −0.22 16 320 919 0.0 30 299 590
GPM–MOD16–JPL −0.02 23 425 917 0.01 16 307 590
GPM–MOD16–GFZ −0.02 20 423 917 0.01 17 307 590
GPM–MOD16–CSR −0.02 24 427 917 0.01 18 304 590
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Table A2. Full results by climate zone – % NSE > x is the percentage of time series for which NSE > x, no. of series is the number of time
series produced for each climate class, and no. of catchments is the number of catchments located in the different climate classes.

Climate class Median % % No. of No. of
NSE NSE > 0 NSE > 0.5 series catchments

1 Af Tropical rainforest climate 0.14 68 11 450 10
2 Am Tropical monsoon climate 0.28 69 34 945 21
3 Aw/As Tropical wet and dry or savanna 0.09 66 7 3906 96

4 BWh Hot desert climate −0.06 31 0 579 14
5 BWk Cold desert climate −0.2 10 0 315 7
6 BSh Hot semi-arid climate −0.01 46 6 1137 28
7 BSk Cold semi-arid climate −0.04 27 0 4452 104

8 Csa Hot-summer Mediterranean climate −0.04 37 0 90 2
9 Csb Warm-summer Mediterranean climate −0.0 49 10 441 10
11 Cwa Monsoon-influenced humid subtropical climate 0.05 55 15 396 21
12 Cwb Monsoon-influenced temperate oceanic climate −0.05 41 0 225 5
14 Cfa Humid subtropical climate 0.12 68 3 3594 89
15 Cfb Temperate oceanic climate 0.06 61 1 1293 35

18 Dsb Mediterranean-influenced warm-summer humid continental climate −0.81 21 0 345 9
19 Dsc Mediterranean-influenced subarctic climate −0.07 27 6 135 7
21 Dwa Monsoon-influenced hot-summer humid continental climate 0.74 100 100 45 3
22 Dwb Monsoon-influenced warm-summer humid continental climate −0.06 16 0 105 3
23 Dwc Monsoon-influenced subarctic climate −0.66 18 0 120 8
24 Dwd Monsoon-influenced extremely cold subarctic climate −0.7 20 0 30 3
25 Dfa Hot-summer humid continental climate 0.13 74 3 2295 51
26 Dfb Warm-summer humid continental −0.08 32 0 7491 248
27 Dfc Subarctic climate −0.71 16 1 2871 189
28 Dfd Extremely cold subarctic climate −1.25 4 0 72 5

29 ET Tundra climate 0.06 55 0 312 9
31 EF Ice cap climate −0.09 40 0 90 2
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Appendix B: Correlation table for anomaly time series

Figure B1. Spearman correlations for different product combina-
tions between the NSEs of anomaly time series for catchments and
characteristics of those catchments. See Table 2 for an overview of
the catchment characteristics. White dots were added to the negative
correlations for monochromatic legibility.
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