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Abstract
Elastic metamaterials incorporating locally resonating unit cells can create bandgap
regions with lower vibration transmissibility at longer wavelengths than the lattice size
and offer a promising solution for vibration isolation and attenuation. However, when
resonators are applied to a finite host structure, not only the bandgap but also additional
resonance peaks in its close vicinity are created. Increasing the damping of the res-
onator, which is a conventional approach for removing the undesired resonance peaks,
results in shallowing of the bandgap region. To alleviate this problem, we introduce an
elastic metamaterial with resonators of fractional order. We study a one-dimensional
structure with lumped elements, which allows us to isolate the underlying phenomena
from irrelevant system complexities. Through analysis of a single unit cell, we present
the working principle of the metamaterial and the benefits it provides. We then derive
the dispersion characteristics of an infinite structure. For a finite metastructure, we
demonstrate that the use of fractional-order elements reduces undesired resonances
accompanying the bandgap, without sacrificing its depth.

Keywords Fractional-order control · Vibration control · Elastic metamaterials ·
Bandgap · Periodic structures

Mathematics Subject Classification 74H10 · 74H45 · 34A08 · 93B52 · 93B55 · 93C80

1 Introduction

Metamaterials are structures with properties beyond those of their constituents, often
composed of repeating patterns called unit cells. The term initially emerged from
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Elastic metamaterials with fractional-order resonators 2523

the study of structures capable of manipulating waves, that could be used to create
perfect lenses, cloaking devices or superabsorbers. In this paper, we focus on mechan-
ical metamaterials for the manipulation of elastic waves. An overview of historical
developments as well as methods and trends in the field can be found in [19, 27]. A
feature of metamaterials that offers a promising solution for vibration attenuation and
isolation is the creation of bandgaps, i.e., ranges of frequencies in which vibrations
cannot propagate through a structure. In elastic metamaterials, thanks to the use of
locally resonating unit cells in their structure [6], the bandgaps can be created at much
longer wavelengths than the lattice size, which is a clear benefit when compared with
phononic crystals whose operating principle is described by Bragg scattering [25].
Within the unit cells, not only mechanical resonators but also passive and active elec-
tronic elements can be used, which increases the design freedom and scope of possible
implementations.

When a finite resonant metastructure is considered, rather than an infinite meta-
material, it is important to examine the modal behavior, especially in the case of
low-frequency vibrations [48]. Application of resonators to a finite host structure
results not only in the creation of a bandgap but also introduces additional reso-
nance peaks in the response. Dispersion characteristics of a lattice with resonators are
related to the modal behaviour of a host structure [45, 46]. The introduction of the
resonators leads to the splitting of resonance peaks corresponding to each mode of the
host structure, similar to the effect that can be observed in single-mode systems with
tuned mass dampers [12]. These additional peaks are located near the bandgap region,
thereby compromising the achieved vibration isolation performance. The modes with
resonances above the frequency of the bandgap contribute to the additional peaks
below the bandgap region and vice versa.

In the majority of elastic metamaterials presented in the literature, second-order
resonators are used. This approach simplifies the analysis and design but also results
in a tradeoff between the depth of the bandgap region and the creation of unwanted
resonance peaks. While pole placement or optimization-based designs have been pro-
posed to address this issue [47, 55], these methods may not provide the necessary
insight for the rational design of metamaterials.

In this paper, we investigate the application of fractional-order (FO) resonators in
metamaterials and demonstrate that with this approach the tradeoff between the depth
of the bandgap and creating unwanted resonance peaks can be relaxed. To facilitate the
use of the tools from control theory, unit-cell level dynamics of the metamaterial are
presented as feedback interconnection of an element representing the base structure
and the resonator. The working principle of the studied metamaterial is demonstrated
in an analysis of a single unit cell in isolation. Subsequently, we derive the dispersion
characteristics for an infinite metamaterial structure. To confirm the benefits of the use
of FO elements, we investigate vibration transmission through a finite metastructure.

The potential of FO calculus has been demonstrated in various engineering fields.
In addition to its use in modelling of electrical, thermal, biomimetic systems, chaos
and fractals [5, 17, 33, 44, 50], FO calculus has also been employed in the modelling
of viscoelastic materials [2, 3]. Moreover, FO calculus has been found to enhance
the performance of controllers, such as FO PID [7, 8, 10, 11], and in the field of
active vibration control, FO versions of Integral Resonant Controller (IRC) [14, 40],
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2524 M.B. Kaczmarek , S.H. HosseinNia

Positive Position Feedback (PPF) [31, 35], Negative Position Feedback (NPF) [22] and
difference feedback for active damping [54] have demonstrated better performance
than their integer-order counterparts. In the field of metamaterials, FO operators have
been used for the modelling of viscoelastic damping phenomena [4, 13, 26, 43]. In
this work, FO resonators of commensurate order [20, 29, 38] as well as power-law
generalizations of second-order elements [23, 28, 34, 53] are studied in the context of
elastic metamaterials. The theoretical framework provided by FO calculus allows for
an extension of the design freedom of a system while preserving the advantages of
linearity, making it possible to analytically determine the properties of the system.

The paper is structured as follows. In Section 2, we present background infor-
mation on FO systems and FO resonators specifically. We also discuss the possible
physical implementation of the studied elements. Themain contribution of this work is
presented in Section 3. First, we revisit a feedback model of an integer order metama-
terial. Subsequently, we demonstrate the working principle of the metamaterial with
an analysis of a single unit cell in isolation, as well as the derivation of the dispersion
relationships of an infinite structure. The analysis of the dynamics of a metastructure
with a finite number of unit cells is also conducted. In the concluding Section of the
paper, we discuss the obtained results and possible directions for further research.

2 Background

2.1 Fractional-order systems

Fractional-order calculus has been developed to generalize conventional differentia-
tion and integration to non-integer orders [34]. While there exists a vast number of
definitions of FO operators, we use the Caputo derivative defined as

CDα f (t) � 1

�(m − α)

∫ t

0

f (m)(τ )

(t − τ)α−m+1 dτ, (2.1)

where α ∈ R
+ is the order of differentiation and m is a positive integer such that

m − 1 < α < m.
The Laplace transform of (2.1) is given by

L [
CDα f (t)

] = sαF(s) −
m−1∑
k=0

sα−k−1 f (k)(0). (2.2)

Note, that for zero initial condition the Laplace transform of many FO operators is sα ,
what greatly simplifies the design of FO controllers in the frequency domain.

A continuous-time FO system is given by a transfer function of the form

H(s) = bmsβm + bm−1sβm−1 + · · · + b0sβ0

ansαn + bn−1sαn−1 + · · · + a0sα0
, (2.3)
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Elastic metamaterials with fractional-order resonators 2525

with ai , bi ∈ R. Changing the orders αi , βi ∈ R
+ in (2.3) may lead to dramatic

changes in the dynamics of a system, for example from low-pass to high-pass filter
[35]. For meaningful analysis, the character of an element should be preserved. To
assure this, two variants of FO transfer functions presented bellow will be used.

In a commensurate-order system all the orders of derivation are integer multiples
of the base order α, i.e. βk = kα with k ∈ Z

+, so the transfer function (2.3) is given
by

H(s) =
∑m

k=0 bk(s
α)k∑n

k=0 ak(s
α)k

, (2.4)

and can be presented as a pseudo-rational function H(λ) of the variable λ = sα

H(λ) =
∑m

k=0 bkλ
k∑n

k=0 akλ
k
. (2.5)

A power-law [23, 28, 34, 53] fractional-order system is described by a transfer
function of the form

H(s) =
(∑m

k=0 bks
k∑n

k=0 aks
k

)α

. (2.6)

The stability of a FO system can be assessed by studying its transfer function [34].
In general, the denominator of (2.3) is not a polynomial and has an infinite number
of roots. Among them, a finite number of roots belonging to the principle sheet of
Riemann surface will determine the systems stability. The fractional order system is
bounded-input bounded-output stable if all of the roots of the denominator that are in
the principle Reimann sheet and are not the roots of the numerator have negative real
parts [32].

For a commensurate-order system represented by (2.5), the stability condition is

| arg(λi )| > α
π

2
, (2.7)

where λi are the roots of the characteristic polynomial in λ [34]. In the case of
power-law filters (2.6), the stability is concluded when the poles of the denominator∑n

k=0 aks
k lie in the left half complex plain [23].

2.2 Fractional-order resonators

In this section, we review the available results relevant to fractional-order generaliza-
tions of second-order high-pass filters close to the limits of the stability, which will
be used in the remainder of this paper. FO generalization of elementary transfer func-
tions has been a topic of extensive study. Stability conditions, resonance conditions and
characteristic frequencies of such filters were analysed in [20, 29, 38]. These results
were generalized to systems of non-commensurate order in [21, 56]. The trajectories
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2526 M.B. Kaczmarek , S.H. HosseinNia

of marginally stable FO systems were studied in [49]. Closely related results were
obtained for mechanical oscillators with components characterized by FO operators
[18, 37, 39, 42].

A commensurate order generalization of a second-order high pass filter is given by

Rα(s) = KR
( s

ωr
)2α

( s
ωr

)2α + 2ζα( s
ωr

)α + 1
, (2.8)

whereα ∈ (0, 1) denotes the order of the pseudo-poles of the system. The FO resonator
(2.8) can be represented by a pseudo-rational transfer function

Rα(λ) = KR/ω2α
r λ2

1/ω2α
r λ2 + 2ζα/ωα

r λ + 1
, (2.9)

with λ = sα , which is characterised by conjugate pair of pseudo-poles at

pα = −ζαωα
r ± jωα

r

√
1 − ζ 2

α . (2.10)

The stability condition (2.7) states, that the roots of a stable fractional-order transfer
function must lie outside of a closed angular sector. For α = 1 this condition is
equivalent to the roots remaining in the left half complex plain and can only be satisfied
with positive damping coefficients. For α ∈ (0, 1), the stability region is larger and the
transfer function (2.8) is stable for ζα > − cos(π

2 α) [29]. This leads to greater design
freedom and allows for maintaining a high resonance peak for transfer functions with
α < 1.

Finding the frequency at which the magnitude response of (2.8) has a maximum
in general, involves solving a nonlinear equation [29, 38]. However, for a marginally
stable (2.8) the resonance frequency always matches ωn [29]. This allows us to derive
simple approximations useful in the “lightly-damped” case. The resonance peak can
be measured by a quality factor Q, determined by the maximum value of the peak,
relative to the crossing point of the lowand high-frequency asymptotes in the frequency
response plot [41]. By evaluating the magnitude of (2.8) with the assumption that the
fractional-order attenuator has the peak of response at ω = ωr we obtain

Qα = |Rα(ωr )|
|Rα(∞)|

∗ =
((

2ζα sin
(π

2
α
)

+ sin
(
πα

))2 +
(
2ζα cos

(π

2
α
)

+ cos
(
πα

)
+ 1

)2)− 1
2

, (2.11)

which reduces to Q = 1
2ζα

for α = 1.
The equivalent damping for an attenuator with fractional order α, that leads to the

same Q-factor as for the integer order attenuator with ζr is given by

ζα = ζr − cos
(π

2
α
)

, (2.12)
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Elastic metamaterials with fractional-order resonators 2527

Fig. 1 Frequency responses of commensurate-order (solid lines) and power-law (dashed lines) fractional-
order resonators with different values of α. The values of the damping ratio are adjusted to maintain the
same quality factor for all compared elements

which is obtained by comparing the quality factor in (2.11) with its integer-order
equivalent and finding ζα such that both are equal.

The power-law fractional-order generalization of a second-order high-pass filter is

R̃α(s) = KR
( s

ωr
)2α(

( s
ωr

)2 + 2ζ̃α( s
ωr

) + 1
)α , (2.13)

which is stable for ζ̃α > 0 [23]. Using the same approach as for (2.8), the quality
factor and the equivalent damping ratio are defined as

Q̃α = 1
(2ζ̃α)α

, (2.14)

ζ̃α = (2ζr )1/α

2 . (2.15)

The frequency responses of integer and fractional-order resonators are compared
in Figure 1. The influence of the gain KR and natural frequency ωr of the resonator
are the same as in the integer-order case. Their change leads to modification of the
magnitude and shift of the frequency response along the frequency axis respectively.
At low frequencies, the magnitude of the frequency response is proportional to ω2α ,
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2528 M.B. Kaczmarek , S.H. HosseinNia

which is linked to the phase of απ/2. This effect, as explained in [22], leads to a
lower amplitude of introduced resonance peaks when the element is used for vibration
control. In the high-frequency region, all the elements have a constantmagnitude of the
frequency response and the phase of 0. For the commensurate-order FO element (2.8),
decreasing α leads to the widening of the resonance peak. At the same time, the phase
close to the resonance frequency exceeds the low and high-frequency asymptotes.
The phase of the power-law element (2.13) does not intersect the asymptotes, but the
resonance peak narrows down as α is decreased.

2.3 Physical implementation of fractional-order resonators

In active structures with sensors and actuators, the fractional-order resonators can be
implemented as controllers with appropriate transfer functions. A common way to
implement FO systems is to approximate them in an appropriate range of frequencies
using finite-dimensional integer-order transfer functions. An overview of approxi-
mation techniques can be found in [52]. In continuous time, expansion-based and
frequency-domain identification methods can be used to find the approximation. In
the latter category, the approximation can be found analytically, like in the method of
Oustaloup [36], or identified directly from the desired frequency response using com-
mercial software. While direct discrete-time approximations of FO systems exist, it is
also possible to discretise a continuous-time approximation, which yields satisfactory
results if the sampling ratio is sufficiently high.

Alternatively, the fractional-order resonators can be implemented by shunting the
transducers present in the structure with electronic components with FO dynamics. In
[1, 51] the direct implementation of electronic resonators was studied. To the best of
authors’ knowledge, passive mechanical resonators with FO dynamics have not been
developed yet. Similarly, emulation of an FO resonator dynamics be a higher number
of integer-order resonators remains an open question.

3 Fractional-order metamaterials

In this section, we present the main contribution of the paper and study the application
of fractional-order resonators in an elastic metamaterial. First, the dynamics of the
system in the integer case are revisited. Second, the working principle is presented in
an analysis of the dynamics of a single cell in isolation. Subsequently, we conduct the
dispersion analysis for an infinite structure. The section concludeswith an investigation
of vibration transmission through a finite structure.

3.1 Systemmodel

Consider the granular metamaterial [16] presented in Figure 2. This choice of simple
lumped parameter models allows us to focus on the underlying phenomena free from
the distraction of irrelevant system complexities. Each unit cell of the metamaterial
consists of a host-structure element with mass mp connected to neighbour unit cells
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Elastic metamaterials with fractional-order resonators 2529

Fig. 2 A chain of masses with resonators. Grey loops indicate the resonators, whose dynamics are extended
using fractional-order calculus

by stiffness kp and viscous damper cp. To the host element of each unit cell a resonator
characterised by mass mr , stiffness kr and damping cr is attached. The dynamics of
nth unit cell are described by

mpün = kp(un−1 + un+1 − 2un) + kr (Un − un)

+cp(u̇n−1 + u̇n+1 − 2u̇n) + cr (U̇n − u̇n), (3.1a)

mrÜn = kr (un −Un) + cr (u̇n − U̇n), (3.1b)

where un and Un denote the displacement of the host element and the resonator of
nth unit cell. To clearly present the band-gap region, ωr << ωp is selected. The
damping ratio ζp is small since it is determined by the host structure and ζr ≈ 0 is
desired to create deep band gaps. By taking the Laplace transform of (3.1) and defining
ω2
p = 2k/m, ω2

r = kr/mr , KR = kr/kp, ζp = 2cp/2
√
2kpm p, ζr = cr/2

√
krmr we

obtain

⎛
⎜⎝

(
s

ωp

)2

+ 2ζp

(
s

ωp

)
+ 1 + 1

2

Kr

(
s
ωr

)2 (
2ζr

(
s
ωr

)
+ 1

)
(

s
ωr

)2 + 2ζr
(

s
ωr

)
+ 1

⎞
⎟⎠ un(s)

= 1

2
(un−1(s) + un−1(s)) , (3.2)

with ui (s) denoting Laplace transform of the signal ui . The dynamics between
neighbour unit cells can be represented as

un = Tun−1 + Tun+1, (3.3a)

T (s) = un(s)

un−1(s)
= un(s)

un+1(s)
= P(s)

1 + P(s)R(s)
= P(s)S(s), (3.3b)

P(s) =
1
2(

s
ωp

)2 + 2ζp
(

s
ωp

)
+ 1

, (3.3c)
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2530 M.B. Kaczmarek , S.H. HosseinNia

R(s) =
KR( s

ωr
)2

(
2ζr

(
s
ωr

)
+ 1

)
(

s
ωr

)2 + 2ζr
(

s
ωr

)
+ 1

, (3.3d)

which can be related to the “vibration reduction ratio” concept [24].
In the remainder of the paper, we study the effects that replacing the resonator

(3.3d) with FO counterparts (2.8) and (2.13). The transfer function (3.3d) describes
the relation between the displacement of the main body of the unit cell un and the
force applied on it due to the presence of the resonator. For lightly damped resonators,
the zero at s = −ωr/(2ζr ) can be neglected, so the proposed FO generalization is
justified.

3.2 Single unit-cell analysis

To demonstrate the root cause of the tradeoff between attenuation of vibrations in
the bandgap and amplification at unwanted resonance peaks, as well as the proposed
solution, consider the nth unit cell in isolation, driven by displacement nn−1 and with
un+1 = 0. If a fractional-order resonator (2.8) is used, the transmissibility (3.3b) is
given by

T =
1
2

((
s
ωr

)2α + 2ζα
(

s
ωr

)α + 1

)
((

s
ωr

)2α + 2ζα
(

s
ωr

)α + 1

) ((
s

ωp

)2 + 2ζp
(

s
ωp

)
+ 1

)
+ 1

2KR

(
s
ωr

)2α ,

(3.4)

with α = 1 representing the integer-order case. The response of the unit cell is char-
acterized by a pair of pseudo-zeros at the location of the resonator poles pα (2.10),
which are related to the creation of a band gap in themetamaterial. The denominator of
(3.4) contains terms with different fractional order, which complicates the analysis. In
order to enable pseudo-pole analysis, P(s) and R(s) will be approximated at different
frequency ranges.

Recall that ωr < ωp are selected. At frequencies ω >> ωr the response of the
resonatorwith any value ofα can be approximated by the gain KR . The transmissibility
(3.4) is then approximated as

Tω>ωr ≈
1
2(

s
ωp

)2 + 2ζp
(

s
ωp

)
+ 1 + 1

2KR

, (3.5)

with poles at pω>ωr = −ζpωp ± jωp

√
1 + KR/2 − ζ 2

p . The location of the poles is

illustrated in Figure 3a. Since ζp ≈ 0 we have ∠pω>ωr ≈ π/2 and a resonance peak
with high-quality factor is created. To reduce the height of this resonance peak, the
value of ζp has to be increased.
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Fig. 3 Locations of approximated (pseudo)poles of a single unit cell for a) ω >> ωr and b) ω ≈ ωr or
ω < ωr . The absolut values of poles are scaled to enable comparison

In the vicinity of ωr and at lower frequencies, the response of P(s) can be
approximated by the gain 1

2 . The transmissibility (3.4) is then approximated as

Tω<≈ωr ≈
1
2

((
s
ωr

)2α + 2ζα

(
s
ωr

)α + 1

)
((

s
ωr

)2α + 2ζα

(
s
ωr

)α + 1

)
+ 1

2KR

(
s
ωr

)2α , (3.6)

which is characterized by a pair of pseudo-zeros at pα (2.10) and a pair of poles

at pω<≈ωr = 1
1+KR/2

(
−ζαωα

r ± jωα
r

√
1 + KR/2 − ζ 2

α

)
. From (2.12), for α = 1

we have ζα ≈ 0, so ∠pα|α=1 ≈ ∠pω<≈ωr |α=1 ≈ π/2, which means that the low-
frequency resonance with high-quality factor is created. The presence of the resonance
peak in the response is undesired since the function of a resonant metamaterial is to
reduce vibration transmission. The height of the resonance peak can be reduced by
increasing ζr , by the cost of also reducing the depth of the zero, since the damping
of both poles and zeros of the structure increases simultaneously. This illustrates a
fundamental tradeoff in elastic metamaterials.

With a fractional-order resonator with α < 1, a damped low-frequency resonance
peak can be created without affecting the damping ratio of the zero pair, therefore
relaxing the aforementioned tradeoff. The pole locations, in this case, are presented in
Figure 3b. For α < 1, the high-quality factor of the resonator is obtained with |ζα| > 0
and the pair of the pseudo-zeros is placed close to the stability margins ∠pα ≈ απ/2.
Simultaneously, ∠pω<≈ωr |α<1 > ∠pα as the poles of the transmissibility are moved
deeper into the stable region. A similar effect is expected for power-law resonators
(2.13), however, the pseudo pole analysis in not possible due to the definition of
resonator’s dynamics.

The influence of commensurate-order and power-law FO resonators with different
orders α on the transmissibility of a single unit cell is presented in Figure 4. For all
the elements, a zero in transmissibility is created at ωr and the same attenuation of
vibration transmission at this frequency is obtained, as it is related to the location of
(pseudo)zeros in the complex plain. The bandwidth at which the influence of the zeros
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2532 M.B. Kaczmarek , S.H. HosseinNia

Fig. 4 Infuence of α on the
transmissibility of a single unit
cell for resonators with
commensurate-order (solid
lines) and power-law (dashed
lines) definitions. The damping
of all the resonators is adjusted
to maintain the same quality
factor

is visible increases with decreasing α for commensurate-order resonators. For the
power-law FO resonators decreasing α has the opposite effect, which can be related to
thewidth of resonance peaks of (2.8) and (2.13). The benefit of the use of FO resonators
is visible in the height of the resonance peak below ωr . As α is decreased, the height
of the resonance peak is decreased for both types of FO resonators, but the attenuation
is significantly stronger in the power-law case. In the high-frequency region, if ωr is
sufficiently smaller than ωp the second resonance peak remains unaffected with all
the resonators.

3.3 Dispersion analysis of a fractional-order resonant metamaterial

In this subsection, we analyse the vibration transmission in an infinite elastic meta-
material with fractional order resonators using the dispersion method. Following the
Bloch-Floquet theory, the spatial component of the harmonic wave solution for the nth
unit cell can be expressed as un(ω) = ũ (μ(ω)) e jμn , where ũ defines the amplitude of
the wave motion and the exponential term describes the magnitude and phase changes
as the wave propagates thru the unit cells [19], with μ denoting the propagation con-
stant. Wave propagation without magnitude change corresponds to real μ, while the
imaginary part of μ indicates attenuation of the wave as it progresses thru the lattice.
By implementing this in (3.3), considering nontrivial solutions (ũ �= 0) and taking
s = jω we obtain

cos(μ) = 1

2T (ω)
. (3.7)

The attenuation factors can be found by solving (3.7) in terms of the propagation con-
stant at given frequencies. The band gaps can be identified as ranges of frequencies in
which the propagation constant takes pure imaginary values. A physical interpretation
of this problem is related to wave propagation in a medium due to sustained sinusoidal
excitation with dissipation limited to spatial attenuation [15].
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(a) α = 1, ζp = 0, ζr = 0 (b) commensurate-order,
ζp = 0, ζr,α=1 = 0

(c) power-law, ζp = 0,
ζr,α=1 = 0

Fig. 5 Dispersion diagrams for metamaterials with (a) integer-order and (b) commensurate-order or (c)
power-law fractional-order resonators

To create the baseline for the analysis, Figure 5a presents the dispersion diagram
of an integer-order metamaterial (i.e. with (2.8), α = 1) with ζp = 0 and different
values of ζr . As the value of ζr increases, the maximal value of achieved attenua-
tion factor �(μ) decreases, due to the lowering of the quality factor of the resonator.
Simultaneously, the range of frequencies with non-zero attenuation increases, which
can be used for widening the band-gap region [9, 30]. Moreover, the range of frequen-
cies in which μ takes pure imaginary values disappears. This is caused by the phase
of the frequency response of the resonator diverging significantly from the low and
high-frequency asymptotes in the vicinity of the resonance peak.

Figure 5bpresents a dispersiondiagram formetamaterialwith commensurate - order
resonators and ζp = 0, ζα = − cos(απ/2). Since the quality factor of the resonator
does not change with changing α, high values of attenuation ratio �(μ) are preserved.
However, values for α < 1 are slightly lower than in the integer case due to the phase
at the resonance lower than 90◦ [6]. Simultaneously, the width of the frequency range
with �(μ) �= 0 increases. Similar to the integer-order case with ζr �= 0, the region of
frequencies with pure imaginary μ disappears.

In Figure 5c a dispersion diagram of metamaterial with power-law fractional-order
resonators and ζp = ζ̃α = 0 is presented. Similar to the commensurate-order case,
the high attenuation ratio �(μ) is preserved, with only a slight decrease in maximal
magnitude, when α decreases. The range of frequencies with �(μ) �= 0 extends
towards lower values thanks to the lower phase of the frequency response of the
resonator for α < 1, and shrinks in the high-frequency side due to the narrowing of the
resonance peak. The phase of the resonator does not extend beyond the high-frequency
asymptote, which prevents the expansion of the band gap towards high frequencies.
Simultaneously, the same leads to the reappearance of the range of frequencies with

(μ) = 0.
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Fig. 6 Transmissablity of a finite metastructure of 10 cells with (a) integer-order and (b) commensurate-
order or (c) power-law fractional-order resonators. The base chain of the metastructure is nearly undamped

3.4 Fractional-order resonant metastructure

The effectiveness of the proposed fractional-order resonators for attenuation of unde-
sired resonance peaks in the vicinity of the bandgap region can be fully seen when a
finite metastructure is considered. In a finite chain of N cells, the transmission of the
vibrations from the base with displacement u0 to the end of the chain can be calcu-
lated using (3.3) and assuming uN+1 = uN to represent the free boundary condition
at the end of the chain. The dynamics of the complete resonant metastructure are then
represented by

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −T 0 · · · · · · 0
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. . .
. . .
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. . .
. . .

. . . 0
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⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Tu0
...

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.8)

and transmissability of the complete metastructure is defined as TT OT (ω) =
uN (ω)/u0(ω).

Figures 6 and 7 compare responses of finite metastructures with N = 10 cells with
integer and fractional-order resonators, for different values of damping in the base
chain. The lightly-damped case, presented in Figure 6, is showcased to clearly present
the behaviour of the system, however, if implemented, may lead to instability of a
structure since the commensurate-order resonator is not negative imaginary and e.g.
time delays if a digital implementation of the resonator is used. When such a system is
implemented, the stability of not only unit cells in isolation, but completemetastructure
should be validated. The structure in Figure 7 has a significant dampening and would
yield a stable system even in presence of the aforementioned effects.
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Fig. 7 Transmissablity of a finite metastructure of 10 cells with (a) integer-order and (b) commensurate-
order or (c) power-law fractional-order resonators. The base chain of the metastructure has significant
damping

In Figures 6a and 7a the effect of increasing the damping in the integer-order res-
onators is presented.As ζr increases, the resonance peaks created by the introduction of
the resonators are damped, but with the price of increasing the vibration transmission
within the band-gap region.

The use of commensurate-order resonators, presented in Figures 6b and 7b, reduces
the undesired resonance peaks below and above the bandgap frequencies, without
significant shallowing of the depth of the bandgap. Moreover, the bandgap expands as
the order α is decreased. These effects are related to the dispersion diagram present
in Figure 5b and the widening of the regions with |�(μ)| > 0.

In the power-law FO case, presented in Figures 6c and 7c, the additional resonance
peaks are attenuated only at lower frequencies, the bandgap region narrows down
as α is decreased and the bandgap is not diminished significantly. All effects again
correspond to the dispersion diagram in Figure 5c. In many applications, however,
the disadvantages of the power-law element, when compared with the commensurate-
order FO resonator, will be however outweighed by its stability properties, thanks to
the phase of the element remaining between the low and high-frequency asymptotes.
Moreover, when a bandgap is placed below the lowest resonance frequency of a finite
host structure no additional resonance peaks above the bandgap frequencies are created
[45, 46].

4 Conclusion

Elastic metamaterials with embedded resonators provide a promising approach to
vibration isolation and attenuation. However, when resonators are applied to a finite
host structure, not only the bandgap but also additional resonance peaks in its close
vicinity are created. Increasing the damping of the resonator, which is a conven-
tional approach for removing the undesired resonance peaks, results in shallowing
of the bandgap region. We introduced an elastic metamaterial with fractional-order
resonators and demonstrated that they can reduce the undesired resonances with-
out significant changes to the maximal attenuation in the bandgap region. Both
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commensurate-order and power-law definitions of the fractional-order dynamics of
the resonators were considered. The working principle of the proposed system was
demonstrated on a single-unit cell and explained with the analysis of (pseudo)pole
locations of the element. The properties of infinite metamaterial with FO resonators
were studied using the dispersionmethod. Finally, we demonstrated that the fractional-
order elements provide the desired effect by showcasing the transmissibility of a finite
chain of unit cells. Analysis in this paper was limited to a granular metamaterial.While
it can be expected that similar effects should be observed in other cases e.g. beamswith
translational resonators or piezoelectric patch actuators, detailed study is still required.
The physical implementation of the studied elements also remains an open problem.
While the FO resonators can be implemented as electronic or control elements, passive
mechanical components with such dynamics still have to be developed.
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