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A B S T R A C T

Evolutionary Multi-Objective Direct Policy Search (EMODPS) is a prominent framework for designing control
policies in multi-purpose environmental systems, combining direct policy search with multi-objective evolu-
tionary algorithms (MOEAs) to identify Pareto approximate control policies. While EMODPS is effective, the
choice of functions within its global approximator networks remains underexplored, despite their potential to
significantly influence both solution quality and MOEA performance. This study conducts a rigorous assessment
of a suite of Radial Basis Functions (RBFs) as candidates for these networks. We critically evaluate their ability
to map system states to control actions, and assess their influence on Pareto efficient control policies. We
apply this analysis to two contrasting case studies: the Conowingo Reservoir System, which balances competing
water demands including hydropower, environmental flows, urban supply, power plant cooling, and recreation;
and The Shallow Lake Problem, where a city navigates the trade-off between environmental and economic
objectives when releasing anthropogenic phosphorus. Our findings reveal that the choice of RBF functions
substantially impacts model outcomes. In complex scenarios like multi-objective reservoir control, this choice
is critical, while in simpler contexts, such as the Shallow Lake Problem, the influence is less pronounced,
though distinctive differences emerge in the characteristics of the prescribed control strategies.
1. Introduction

Effective control in environmental systems is essential to meet
competing demands for resources and to cope with challenging system
states. Evolutionary Multi-Objective Direct Policy Search (EMODPS)
has proven to be a flexible and generalizable approach to designing
effective operating policies in multi-purpose reservoir management due
to its ability to find trade-offs across multiple competing objectives,
with heterogeneous, non-linear objective function formulations (Giu-
liani et al., 2016). EMODPS combines Direct Policy Search (DPS), to
parameterize the control policy using global nonlinear approximators,
with multi-objective evolutionary algorithms (MOEAs) to find the set
of approximate Pareto optimal control policies (Zatarain Salazar et al.,
2016; Giuliani et al., 2016). A major benefit of this combination is
that the set of Pareto optimal control policies can be attained in a
single run (Giuliani et al., 2016) due to the MOEA’s population-based
search via the use of stochastic search operators (Zatarain Salazar et al.,
2016). The suitability of several popular MOEAs within the EMODPS
framework has been explored extensively (Zatarain Salazar et al., 2016;
Gupta et al., 2020), but the choice of the nonlinear approximators has
not received similar scrutiny.

∗ Corresponding author.
E-mail address: J.ZatarainSalazar@tudelft.nl (J. Zatarain Salazar).

Various nonlinear approximators can in principle be used. A flex-
ible structure that is capable of capturing nonlinear relationships is
required, and, so far, RBFs have been successfully applied for multi-
purpose reservoir control (Giuliani et al., 2014, 2016; Zatarain Salazar
et al., 2016; Gupta et al., 2020; Doering et al., 2021), for carbon
mitigation policies (Marangoni et al., 2021), and to control the amount
of pollution released into a lake (Quinn et al., 2017).

Various activation functions can be used within an RBF network. Bu-
soniu et al. (2009) recommends the use of a Gaussian distribution for
continuous RBF parameters due to its unbounded support. Giuliani
et al. (2014) used Gaussian RBFs for direct policy search within
the EMODPS framework. Subsequent studies using EMODPS (e.g.,
Zatarain Salazar et al., 2016; Marangoni et al., 2021; Quinn et al.,
2017) also used the same RBF as suggested by Giuliani et al. (2014).
However, the performance of alternative activation functions requires
further exploration. Specifically, we aim to understand to what extent
the choice of the activation function within the EMODPS framework
affects the quality of the Pareto optimal solutions identified.

To this end, we first introduce a set of commonly used activation
functions in Section 2, we then delineate the metrics we use to assess
the performance of the different functions. Next, in Section 3, we
vailable online 15 November 2023
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introduce two distinct cases used to assess the efficacy of the set of
activation functions. The first case is the Conowingo reservoir in the
Lower Susquehanna River Basin (LSRB) (Zatarain Salazar et al., 2016).
The second case is The Shallow Lake Problem (Quinn et al., 2017; Ward
et al., 2015; Singh et al., 2015). Section 4 presents the results for both
cases focusing on the quality of the final Pareto approximate set as well
as the dynamics of the search process. In Section 5, we discuss the
results, the trade-offs, performance metrics and policies encountered
across each RBF. Finally, Section 6 presents our main conclusions and
suggestions for future research.

2. Methods

Consider a basic control problem for which the control policy is
described in Eq. (1). Here, 𝑢𝑘 is the sum of basis functions defined
y the input vector 𝑥, and the 𝑘th node in the output layer (with

𝑘 = 1,… , 𝑁𝑢):

𝑢𝑘 =
𝑛
∑

𝑖=1
𝑤𝑘

𝑖 𝜙𝑖(𝑥𝑡) (1)

where 𝐧 is the number of RBFs and 𝐰𝐢 is the weight of the 𝑖th RBF 𝜙𝑖.
The weights are non-negative (i.e., 𝑤𝑖 ≥ 0∀𝑖) and their sum equals one
(i.e., ∑𝑛

𝑖=1 𝑤𝑖 = 1). This normalization ensures that the weights form
a convex combination of RBFs, allowing for a mixture of the various
basis functions without amplifying or diminishing the overall output.
The 𝜙𝑖(𝑥𝑡) is an activation function that transforms the input vector 𝑥 in
a non-linear manner. In the Susquehanna case, the activation function
is represented as:

𝜙𝑖(𝑥) = exp

[

−
𝑚
∑

𝑗=1

(𝑥𝑗 − 𝑐𝑗,𝑖)2

𝑏2𝑗,𝑖

]

(2)

Here, 𝐦 denotes the number of input variables in vector 𝐱, while 𝐜𝑖,
nd 𝐛𝑖 are the m-dimensional center and radius vectors for the 𝑖th RBF,
espectively. To ensure the applicability of this function, the centers of
he RBF 𝑐𝑖 are constrained to lie within the bounded input space (i.e.,
𝐜𝐢 ∈ [−1, 1]) and the radii 𝑏𝑖 are required to be strictly positive (i.e.,
𝐛𝑖 ≥ (0, 1]). The parameter vector 𝜃 is therefore composed of the RBFs
centers, radii, and the corresponding weights for each output node,
structured as 𝜃 = [𝑐𝑖,𝑗 , 𝑏𝑖−,𝑗 , 𝑤𝑘

𝑖 ], with 𝑖 = 1,… , 𝑛, 𝑗 = 1,… , 𝑚, and
𝑘 = 1,… , 𝑁𝑢 (Giuliani et al., 2016).

2.1. Activation functions (Kernels)

An activation function is classified as a radial basis function when
it satisfies two key properties: it must be semi-positive definite and
isotropic (Williams and Rasmussen, 2006). Semi-positive-definite func-
tions have the property that the function of 𝑥 is greater or equal to zero
for all 𝑥. Isotropic functions only depend on the difference between
𝑥−𝑥′ (i.e. the Euclidean distance). In this study, we explore a selection
of well-established activation functions that are definite positive and
isotropic functions detailed in Table 1 (Fasshauer, 2007; Schaback,
2007; Askari and Adibi, 2015; Zhang et al., 2014).

2.2. Assessment metrics

To evaluate the performance of the different RBF configurations, we
analyze the trade-offs in the objective space, and the convergence dy-
namics of the MOEA (Zitzler et al., 2003) using generational distance,
additive 𝜖-indicator, hypervolume, epsilon progress, and the archive
size.

Generational distance measures the Euclidean distance between
the points in an approximation set and their closest counterparts in
the reference set. The metric is then computed as the average of these
distances. Generational distance is considered to be an easy metric to
meet because it often requires that only one solution be close to the
reference set to achieve good performance.
2

The additive epsilon 𝜖 indicator (Zitzler et al., 2003) assesses
the consistency of the approximate Pareto set. That is, the ability to
capture all regions of the trade-off space. The metric is calculated as
the largest distance that an approximation set must shift in order to
dominate the reference set, making it extremely sensitive to gaps in
trade-offs (Zatarain Salazar et al., 2016; Reed et al., 2013; Hadka and
Reed, 2012).

The hypervolume indicator (Zitzler et al., 2003) provides a mea-
sure of convergence and diversity by examining the multidimensional
volume attained by each approximation set in relation to a reference
set. This metric calculates the difference in hypervolume between the
reference set and the Pareto approximation set (Reed et al., 2013).

𝜖-progress is a computationally efficient indication of search
progress and stagnation. 𝜖-progress occurs when the current solution
sits in a different 𝜖-box that dominates the previous solution. The 𝜖-box
ivides the objective space into several boxes with the size 𝜖. If two

solutions reside in the same 𝜖-box, the solution closest to the optimal
solution will be kept, while the other solution will be eliminated. 𝜖-
rogress thus indicates that the optimizer is able to find solutions in a
art of the objective space that was not seen before.
The archive size is the number of non-dominated solutions held by

he archive. 𝜖 MOEAs utilize 𝜖 values to limit the size of the archive.
ll solutions that are 𝜖-dominated are eliminated. This helps to avoid
eterioration, indicating that the ability of the MOEA to find new
olutions is diminishing. The final number of non-dominated solutions
t the end of all model iterations is used to compute the performance
etrics. A larger archive size can comprehensively represent the trade-

ff space; however, this can only be argued when both convergence and
iversity are also high. The size of the archive can also give information
bout microevolution in different parts of the Pareto front.

. Case studies

.1. The Conowingo Reservoir System

The Conowingo Reservoir is an interstate water body shared by
he states of Pennsylvania and Maryland. The reservoir needs to meet
he demands for hydroelectric power, urban water supply to Chester
PA) and Baltimore (MD), cooling water for the Peach Bottom nuclear
ower station, and recreation. The downstream releases of the dam are
ubject to minimum flow requirements, which were set by the Federal
nergy Regulatory Commission (FERC) to preserve fishing resources.
he Conowingo Dam objectives are modeled over a simulation horizon
f one year. This yearly simulation horizon was selected due to the sys-
em’s limited regulatory capacity and low dependence on the reservoir
evels at the start of the simulation (Zatarain Salazar et al., 2016).
Hydropower revenue (maximized): Hydropower revenue is de-

ined as the economic revenue gained from hydropower production
t the Conowingo hydropower dam in US$/MWh defined in Eq. (3).
nergy prices are defined by the seven-hour moving average of the
nergy price trajectory in the Pennsylvania, New Jersey, Maryland
PJM) energy market. The hourly energy production (MWh) is defined
y Eq. (4), where 𝜂 is the turbine efficiency, g is the gravitational
cceleration (9.81 m∕s2), 𝛾𝑤 is the water density (1000 kg/m3), ℎ̄𝑡 is
he net hydraulic water level difference (head) in meters and 𝑞𝑇 𝑢𝑟𝑏𝑡 is
he turbine flow in m3∕s.

ℎ𝑦𝑑 =
𝐻
∑

𝑡=1
(𝐻𝑃𝑡 ⋅ 𝜌𝑡) (3)

𝑃𝑡 = 𝜂𝑔𝛾𝑤ℎ̄𝑡𝑞
𝑇 𝑢𝑟𝑏
𝑡 ⋅ 10−6 (4)

Water supply reliability for the Atomic Power Plant, Chester,
nd Baltimore (maximized): The daily average volumetric reliability
𝑉 𝑅 is computed to ensure water supply reliability to the Atomic Power
lant, Chester and Baltimore represented in Eq. (5).

𝑉 𝑅,𝑖 = 1
𝐻
∑

(𝑌 𝑖
𝑡 ∕𝐷

𝑖
𝑡) (5)
𝐻 𝑡=1
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Table 1
Selection of radial basis functions used in this study.
Activation function 𝜙(𝑥) Reference Shape

Modified squared exponential 𝑒𝑥𝑝(− (𝑥−𝑥′ )2

𝜎2 ) Giuliani et al. (2014)

Squared exponential 𝑒𝑥𝑝(− ||𝑥−𝑥′ ||2

2𝜎2 ) Williams and Rasmussen (2006)

Inverse quadratic 1
1+(𝜎∗||𝑥−𝑥𝑖 ||)2

Fasshauer (2007)

Inverse multiquadric 1
√

1+(𝜎∗||𝑥−𝑥𝑖 ||)2
Fasshauer (2007)

Exponential 𝑒𝑥𝑝( −||𝑥−𝑥
′
||

𝜎
) Fasshauer (2007)

Matern(3/2) (1 +
√

3∗||𝑥−𝑥𝑖 ||
𝜎

)𝑒𝑥𝑝(−
√

3∗||𝑥−𝑥𝑖 ||
𝜎

) Williams and Rasmussen (2006)

Matern(5/2) (1 +
√

5∗||𝑥−𝑥𝑖 ||
𝜎

+ 5∗||𝑥−𝑥𝑖 ||
2

3𝜎2 )𝑒𝑥𝑝(−
√

5∗||𝑥−𝑥𝑖 ||
𝜎

) Williams and Rasmussen (2006)
t
r
T
m

𝑋

c
s
t
i
d
b
c
s
t

p
t
o
(

Here, 𝑌 𝑖
𝑡 (𝑚

3) denotes the daily delivery, 𝐷𝑖
𝑡(𝑚

3) is the corresponding
demand, and 𝑖 represents the water supply to either Baltimore, Chester,
or the Atomic Power Plant.

Environmental Shortage (minimized): This objective aims to min-
imize the average shortage index relative to the Federal Energy Regula-
tory Commission (FERC) minimum flow requirements. It is specified as
the daily average shortage index and is calculated using the following
equation:

𝐽𝑆𝐼 = 1
𝐻

𝐻
∑

𝑡=1

(

𝑚𝑎𝑥(𝑍𝑡 − 𝑌𝑡, 0)
𝑍𝑡

)2
(6)

ere, 𝑌𝑡 (𝑚3) is the daily release and 𝑍𝑡 (𝑚3) is the corresponding
ERC flow requirement. The quadratic formulation is intended to pe-
alize substantial deficits in a single time step while allowing for more
requent, minor shortages (Hashimoto et al., 1982).
Recreation (maximized). This objective aims to maximize the

eliability of storage on weekends during the peak tourist season. It is
uantified by evaluating the proportion of weekend days in the peak
eason when the water level is maintained at or above a target level,
ecessary for enabling various recreational activities. The target water
evel for recreational activities is set at 32.5 m (106.5 ft).

The storage reliability for recreation, 𝐽𝑆𝑅, is computed using the
ollowing equation:
𝑆𝑅 = 1 −

𝑛𝐹
2𝑁𝑤𝑒

(7)

Here 𝑛𝐹 denotes the number of weekend days in the peak season
where the water level falls below the intended target level of 32.5 m
(106.5 ft), and 𝑁𝑤𝑒 is the total number of weekends in the tourist season.

3.2. The Shallow Lake Problem

The Shallow Lake Problem is a stylized decision problem in which
a town must decide the amount of pollution to release into a nearby
3

o

shallow lake over time. This hypothetical problem involves two sources
of pollution: anthropogenic pollution generated by the town through
industrial and agricultural waste, and natural inflows that are un-
controllable and come from the environment. There is also a natural
outflow process based on the capability of the lake to recycle resources
that are capable of naturally reducing pollution over time (Carpenter
et al., 1999; McInerney et al., 2012; Hadka et al., 2015).

Pollution levels are determined through Eq. (8), where X represents
the concentration of pollution in the lake, a is the anthropogenic
pollution input for the time period, Y refers to the natural inflow of
pollution which is described using a lognormal distribution, q refers to
he rate at which pollution is recycled into the lake’s sediment, and b
efers to the loss of pollution from the lake through natural outflows.
he exact specification for each of the parameters is based on the lake
odel developed by Quinn et al. (2017).

𝑡+1 = 𝑋𝑡 + 𝑎𝑡 + 𝑌𝑡 +
𝑋𝑞

𝑡

1 +𝑋𝑞
𝑡
− 𝑏𝑋𝑡 (8)

The behavior of the lake problem exhibits a tipping point. If the
ritical threshold of pollution concentration is surpassed, the lake’s
tate transitions towards a eutrophic equilibrium, making it impossible
o return to a healthier oligotrophic equilibrium without active human
ntervention to reduce the pollution in the lake. Here, we use the
irect policy search variant of The Shallow Lake Problem as proposed
y Quinn et al. (2017). In this setup, the aim is to find a state-based
losed control loop where the anthropogenic release at a given time
tep is based on the observed pollution level of the lake in the previous
ime step.

There are four conflicting objectives: to minimize the maximum
ollution level while maximizing the utility of the release policy to
he town, the reliability of the policy, and policy inertia. The multi-
bjective formulation of this problem was introduced by Singh et al.
2015) and further developed by Ward et al. (2015), with the goal

f introducing objectives that exemplify the conflicts that occur with
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a diverse group of decision-makers and a problem characterized by
both stochastic uncertainty (that is, the stochastic natural inflow) and
deep uncertainty. To address the stochastic uncertainty, the model is
executed for 𝑁 stochastic realizations, and descriptive statistics are
omputed based on these replications.
Maximum Pollution (minimized): Decision makers, such as envi-

onmental regulators, are seeking to ensure that the maximum pollution
evel reached in the lake is kept as low as possible (Singh et al., 2015).

𝑚𝑎𝑥 𝑝𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛 = 𝑚𝑎𝑥
𝑡∈{1,…,𝑇 }

1
𝑁

𝑁
∑

𝑛=1
𝑋𝑡,𝑛 (9)

where 𝑋𝑡,𝑛 is the concentration of the pollution in year 𝑡 for stochastic
realization 𝑛.

Reliability (maximized): Reliability captures the desire of decision-
akers to keep the lake below the critical pollution threshold. At the

ame time, in contrast to the maximum pollution objective, a high-
eliability policy also accepts a small amount of pollution, as long
s it remains below the critical threshold (Singh et al., 2015). The
eliability of a policy is the average reliability for each time step over
ll realizations 𝑁 , shown in Eq. (10) (Ward et al., 2015).

𝑓𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
1
𝑁

𝑁
∑

𝑛=1

(

1
𝑇

∑

𝑡∈𝑇
𝜃𝑡,𝑛

)

,where 𝜃𝑡,𝑛 =

{

1 𝑋𝑡,𝑛 < 𝑃𝑐𝑟𝑖𝑡
0 otherwise

(10)

Utility (maximized): In contrast to the objectives that align with
the goals of environmental regulators, utility represents the interests of
the town’s agriculture and industry. The aim here is to maximize the
utility of a policy for these stakeholders. Here, 𝛼 is the utility generated
by one unit of anthropogenic pollution, while 𝛿 is the discount rate.
This objective naturally conflicts with the objective of minimizing the
pollution level in the lake, providing a valuable dynamic for robust
decision support analysis (Ward et al., 2015).

𝑓𝑢𝑡𝑖𝑙𝑖𝑡𝑦 =
1
𝑁

𝑁
∑

𝑛=1

(

∑

𝑡∈𝑇
𝛼𝑎𝑡,𝑛𝛿

𝑡

)

(11)

Inertia (maximized): This objective captures the undesirability of
large year-over-year changes to the anthropogenic pollution input. The
aim is to maximize the average inertia of a policy. Similar to the utility
objective, the inertia of a policy is first calculated for every time step
involved, and across different stochastic realizations. Next, the mean
of the resulting vector of values is used to determine inertia-based
robustness. Inertia for a single time step in an experiment is determined
with Eq. (12).

𝑓𝑖𝑛𝑡𝑒𝑟𝑡𝑖𝑎 =
1
𝑁

𝑁
∑

𝑛=1

(

1
𝑇

∑

𝑡∈𝑇
𝜙𝑡,𝑛

)

,where 𝜙𝑡,𝑛 =

{

1 |𝑎𝑡,𝑛 − 𝑎𝑡−1,𝑛| < 0.01
0 otherwise

(12)

3.3. Experimental setup

Our goal is to understand how the shape of the RBF affects the
performance of the trade-offs and the convergence dynamics of the
MOEA when using EMODPS. In our experimental configuration, we
adhere to the recommendations presented by Giuliani et al. (2016) for
the RBF network design. As per their guidelines, the number of Radial
Basis Functions (RBFs) is determined by adding two to the number
of inputs. Specifically, for the Conowingo Reservoir System, which
involves two inputs (namely, time of year and storage level), we employ
a total of four RBFs, calculated as the number of inputs (2) plus two.
On the other hand, in the case of The Shallow Lake Problem, which
has a single input (pollution concentration in the lake), we utilize three
RBFs, obtained by adding two to the number of inputs (1). The centers,
radii, and weights were searched by the MOEA with 𝐜𝐢 ∈ [−1, 1],
𝐛𝑖 ∈ [0, 1], and 𝐰𝑖 ∈ [0, 1]. These ranges were preserved across all the
4

tested activation functions in Table 1. For both cases, each RBF shape
was optimized using 10 random seeds to account for variability in the
initial population. After preliminary assessment for convergence, and
based on previous studies (see Zatarain Salazar et al. (2016) and Quinn
et al. (2017)), for the Conowingo Reservoir System, we used 250 k
function evaluations per seed, while for The Shallow Lake Problem we
used 100 k function evaluations for each seed. For the MOEA, we used
𝜖-NSGA2 (Kollat and Reed, 2005, 2006). This is a population-based
MOEA that uses 𝜖-archiving (see Section 2.2). It has shown robust per-
formance attributed to its utilization of the simulated binary crossover
operator. Moreover, it has been effective in maintaining diversity and
keeping a bounded search across a large number of objectives due to
its epsilon-dominance archiving mechanism (Zatarain Salazar et al.,
2016). It is readily available in various software packages and is easy to
parallelize since the evaluation of a given population is embarrassingly
parallel, where the function evaluations are distributed and do not
interact with each other.

4. Results

We evaluated the performance of each of the activation functions
specified in Table 1 through a visual analysis of the trade-offs and
through multi-objective performance metrics that indicate their ability
to converge and diversify.

4.1. Trade-offs and release strategies for the Conowingo Reservoir System

Fig. 1 shows the trade-offs attained by the different activation
functions. Each RBF configuration is depicted by a different color, and
each axis contains the objective values, where the preferred solutions
lie at the top of each axis. If two lines cross, this indicates that a
trade-off was encountered.

Inspecting the trade-offs for each RBF configuration, we note that
the modified squared exponential RBF (Fig. 1a), the squared expo-
nential RBF (Fig. 1b), and the inverse multiquadric RBF (Fig. 1d)
attain a diverse solution space with high performance across each
objective. This is reflected by the lines reaching the upper bounds of
each objective axis, indicating near-optimal solutions for those objec-
tives. Conversely, the inverse quadratic RBF (Fig. 1c) performs slightly
worse, yet it still finds a diverse set of solutions. In contrast, the
Exponential RBF (Fig. 1e), Matern 3/2 (Fig. 1f), and Matern 5/2 kernel
(Fig. 1g), find a narrow trade-off space, reflecting limited diversity of
the approximation set. Fig. 2 illustrates the water release strategies
designed to satisfy the water demands for the atomic power plant, for
the cities of Baltimore and Chester, and to meet environmental flow
requirements. The plots show daily releases within the annual planning
horizon. Fig. 2 shows that the choice of RBFs substantially impacts both
the objective space and the attributes of the release strategies. In this
context, the intra-annual variability is particularly notable within the
release policies.

In panels (a), (b), and (d), we observe release policies that consis-
tently meet the water demands throughout the entire year. Specifically,
there is a close alignment between the projected demands and the
actual water releases, indicating effective water management. An ex-
ception to this tight alignment is noticeable in the case of Baltimore,
where a slight gap between the city’s water demand and the actual
release can be observed.

This divergence becomes more pronounced in panel (c), where,
towards the end of the year, we witness a widening gap between the
water demands of both Baltimore and Chester and the actual releases.
This suggests a potential shortfall in water supply for both cities.

Furthermore, panels (e) through (g) show more dramatic discrepan-
cies within the intra-annual release dynamics. These panels reveal con-
siderable gaps between demand and release at various points through-
out the year. In the context of reservoir management, these fluctuations
could have substantial implications, particularly for objectives that are
sensitive to the timing of water releases. For example, significant gaps
in releases during critical periods could compromise environmental

health or the reliable supply of water to urban centers.
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Fig. 1. Trade-offs in the Conowingo Reservoir System attained by each RBF configuration: In this plot, each axis represents a distinct objective, and each colored line corresponds
to a unique policy. The direction of preference is upwards, indicating that a more desirable policy would be represented as a straight line situated at the top of the axes.
4.1.1. Performance across objectives for the Conowingo Reservoir System
In Fig. 3, we inspect in detail the performance across each of the

LSRB objectives. Each panel shows the objective distributions attained
by different activation functions. The boxplots show consistent results
with the parallel coordinate plots in Fig. 1, with the benefit of detecting
detailed differences across each objective. To supplement the results of
Fig. 3, the detailed statistics can be found in the appendix, in Table 4
for the Susquehanna objectives and in Table 5 for the Lake problem
objectives.

We observe that the modified squared exponential and the squared
exponential RBFs attain the highest median values for the hydropower
objective (panel a), with a difference of approximately 10 M USD/
year reflected in their interquartile range, with several low-performing
outliers. In contrast, the inverse quadratic and inverse multiquadratic
RBFs exhibit a median value of approximately 45 M USD/year, with
an interquartile range difference of approximately 30 M USD/year.
5

Nevertheless, their whiskers indicate that these functions span the
entire range of hydropower values, with this being particularly true
for the inverse multiquadratic RBF. Conversely, the exponential and
Matern 3/2 RBFs reveal tightly clustered values around 45–50 and 50–
55 M USD/year, respectively. The Matern 3/2 and Matern 5/2 achieve
similar median values, but the Matern 5/2 RBF demonstrates a higher
upper quartile.

Moving on to panel b, all the activation functions, except for the ex-
ponential RBF, achieved a median value higher than 75% reliability for
the atomic power plant. It is worth noting that the squared exponential
variants, the inverse quadratic and inverse multiquadratic RBFs found
solutions close to 100% reliability for this objective. The exponential
RBF displayed the lowest performance with a median value at 60%.

Next, panel c shows the reliability results for water supply to Balti-
more. We observe that the modified squared exponential and squared
exponential RBFs show high performance. However, the interquartile
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Fig. 2. Release policies for the Conowingo Reservoir System: In this figure, each subplot represents a distinct RBF configuration. From top to bottom, the subplots indicate the
releases for the Atomic Power Plant, Baltimore, Chester, and the Environmental requirements. The lines within each subplot represent the release trajectory over a one-year period,
with values expressed in cubic feet per second (cfs). The bottom plot across all subplots shows the log-transformed releases for the environmental requirements.
range for the modified squared exponential is broader in this case.
The inverse multiquadratic and the exponential RBFs attain the low-
est median reliability for Baltimore at roughly 40%. Remarkably, the
former finds solutions across the entire reliability range, including
the absolute highest value for this objective. This stands in contrast
to the exponential RBF which has a tight boxplot and performance
ranging between 0.15 and 0.62. The Matern 3/2 and Matern 5/2 attain
median values around 0.5, with both whiskers skewed towards lower
reliabilities.

Panel d details the reliability results for water supply to Chester.
Here, the modified squared exponential and the squared exponential
RBFs maintain their lead reflected by the median values, upper quartile
ranges, and highest attained values. These two configurations are fol-
lowed by the inverse multiquadratic RBF with a slightly lower median
value and lower 25% score values. Once more, the exponential RBF is
6

outperformed by all the other tested configurations for water supply
reliability.

Panel e shows the environmental objective values. The modified
squared exponential, and the squared exponential RBFs find the largest
range for the environmental objective. Interestingly, the Matern 3/2
and Matern 5/2 find a large range of solutions for this objective, where
the Matern 3/2 outperforms the squared exponential variants, which
attained consistently high performance across the other objectives.
This divergence could be explained by the stark trade-off between
the environmental objective and the other objectives highlighted in
Section 4.1.

Finally, in panel f, all the RBFs attain high scores for the recre-
ation objective, with the exception of the inverse quadratic and the
exponential RBF, most of the low scores for the other RBFs are outliers.
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Fig. 2. (continued).
4.1.2. Performance metrics for the Conowingo Reservoir System
Fig. 4 shows the performance metrics for each RBF. The metrics

were computed relative to a global reference set generated from the
non-dominated solutions across the 7 activation functions over 10 ran-
dom seed trials. The 𝑥-axis shows the number of function evaluations
(nfe). Each row shows a different metric value, and each column shows
a different RBF. Finally, the colored plots depict the runtime dynamics
for each configuration.

All the activation functions reach a comparable generational dis-
tance to that of the global reference set within the first 25,000 nfe. In
this case, a low metric value is desired as it indicates the average dis-
tance between the global reference set and the Pareto approximation.
Generational distance is used in this study mainly to detect absolute
failure in the optimization.

The additive epsilon indicator measures gaps in the Pareto front,
hence, it is a harder metric to meet than generational distance. Sim-
ilarly to generational distance, this metric is computed relative to a
7

global reference set, and a low value is desired as it measures the
distance that an approximation set needs to be translated in order to
dominate the global reference set. We notice that the different random
seed trials for the modified squared exponential RBF start to stabilize
before 25,000 nfe. Further, some configurations are more sensitive to
the random seed trials (i.e., the initial population). This is particularly
stark for the exponential RBF and the Matern 5/2 RBF, where there
is a clear split between high and low seed performance. Conversely,
the squared exponential, inverse quadratic, and inverse multi-quadratic
RBF show less random seed variability but result in epsilon values far
from the global reference set.

Hypervolume provides the most thorough measure of convergence
and diversity, making it the hardest metric to meet. Hypervolume
measures the volume in a multi-dimensional space attained by an
approximation set relative to the global reference set. Hence, a high
metric value is desired. The runtime dynamics show that the squared
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Fig. 3. Comparison of objective values for the Conowingo Reservoir System per RBF. The figure illustrates the distribution of objective values for various RBF configurations.
Each subplot represents a distinct objective: (a) through (d) and (f) feature upward preferences, corresponding to higher hydropower revenue (Panel A) and reliability values. In
contrast, for Panel (e), a downward preference is desired, indicating the necessity for a smaller shortage index. Within each subplot, individual box plots the objectives’ statistics
obtained using different RBF configurations.
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Table 2
Average performance metrics and reference set contribution per RBF.
Activation
function

Non-
dominated
solutions

Mean
generational
distance

Mean epsilon
indicator

Mean
hypervolume

Set
contribution

Modified SE 2675 0.022556 0.349520 0.716880 0.743
Squared Exponential 2142 0.020800 0.411422 0.641916 0.183
Adapted Inverse Quadratic 1684 0.030182 0.472414 0.333763 0.020
Adapted Inverse Multiquadric 1636 0.023650 0.582708 0.350160 0.052
Exponential 1585 0.042522 0.363626 0.151511 0.000
Matern 3/2 2268 0.032786 0.356777 0.374623 0.001
Matern 5/2 1774 0.031683 0.369322 0.334237 0.002
exponential variants (in blue and orange) attain the highest hyper-
volume. In contrast, the inverse quadratic, the inverse multiquadric
and the exponential RBFs achieve hypervolume values far from the
global reference set. Interestingly, all the RBFs, with the exception of
the squared exponential variants, seem to stabilize after 25,000 nfe
and do not show signs of further hypervolume improvements beyond
100,000 nfe. These results are contrary to the trends observed for
the modified and the squared exponential RBFs, which may indicate
that further hypervolume improvements are possible by continuing
exploration with a larger number of function evaluations. These two
RBF configurations could be suitable in combination with asynchronous
evolutionary optimization to capitalize on parallel function evaluations.

Epsilon progress indicates the ability to escape local optima and to
find continued improvements to the non-dominated archive. Specifi-
cally, the epsilon value indicates the user-specified threshold for which
the search algorithm needs to produce at least one solution above this
threshold at a certain frequency to avoid stagnation. To this effect,
the search dynamics for the modified squared exponential RBF show
practically a linear relationship between nfe and epsilon progress. In
contrast, the squared exponential RBF shows milder progress through-
out the search and a wider performance range across random seed
trials. This is also true for the exponential, for the Matern 3/2, and
for the Matern 5/2 RBFs, whose high-performing seeds show fast
epsilon progress, whereas the seeds that perform poorly flatten quickly,
indicating stagnation, or infrequent or no improvements to the archive.

The archive contains the population of non-dominated solutions.
The size is adapted based on the epsilon-dominance criterion, which
guarantees simultaneous diversity and convergence of the set. This
explains the similar trends observed between hypervolume and archive
sizes. In essence, a large archive size can contribute to the diversity of
the approximation sets. In these results, the modified squared exponen-
tial and squared exponential RBFs contain between 500–1000 members
in the archive at the end of the run, depending on the seed. These two
RBFs also achieved the highest hypervolume values at the end of the
run. Evidently, the archive sizing is highly dependent on the starting
populations reflected by large random seed variability across all the
activation functions.

Overall, this analysis suggests that the modified squared exponential
and the squared exponential RBFs are able to escape local optima, while
the other configurations either suffer stagnation or have two modes of
performance between seeds; some are able to make epsilon progress
while others get stuck in local optima.

Table 2 shows an overview of the statistical differences observed
among the assessed RBFs. The table presents the averaged outcomes
across various seed runs, encompassing both the maximum and min-
imum metric values illustrated in Fig. 4. Furthermore, it outlines the
individual contributions of each RBF to the global reference set. The
global reference set refers to a collection of non-dominated solutions,
and the contribution of each activation function to this set represents
the proportion of these non-dominated solutions that were produced
using that specific activation function. As highlighted in the table, the
modified squared exponential RBF was the most influential activation
function, contributing significantly to the global reference set with
a substantial 56%. Following this, the squared exponential RBF also
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showed a notable contribution of 28%. In contrast, the exponential
RBF exhibited minimal impact, contributing only 0.1% to the global
reference set.

4.2. Trade-offs and emission policies for the Shallow Lake Problem

Fig. 5 shows the parallel coordinate plots for each of the RBFs for
The Shallow Lake Problem. Again, each RBF configuration is depicted
by a different color, and each axis contains the objective values, where
the preferred solutions lie at the top of each axis. If two lines cross, this
indicates that a trade-off was encountered. Fig. 7 shows the boxplots
across the RBFs for each objective.

Looking across the results for the different RBFs, we see largely
the same trade-offs and similar ranges for the individual outcomes of
interest. Only on the inertia objective do we see a slight deviation
where the Matern 5/2 RBF is able to find a solution with high inertia
and higher reliability, while the other RBFs generally have higher
inertia at the expense of reliability. The large similarity across RBFs can
also be seen in Fig. 7, where the boxplots and median values are largely
the same across the different RBFs for each outcome of interest. Only
for inertia do we see some small differences in the outliers. Examining
Figs. 5 and 7 together, we observe that, for The Shallow Lake Problem,
there is no major difference in performance across the various RBFs.
However, a closer inspection of the emission strategies prescribed by
each configuration, as depicted in Fig. 6, reveals stark differences in
phosphorus release decisions.

Specifically, the choice of RBF significantly influences the release
decisions. Some configurations lead to decreasing phosphorus dis-
charges at much lower lake phosphorus concentrations, strategically
reducing pollution to preserve lake health. In contrast, other configu-
rations may increase phosphorus releases under similar conditions to
maximize further economic benefits. Yet, there are also configurations
that maintain a constant phosphorus release, regardless of the lake’s
condition.

This scenario exemplifies the concept of equifinality. In this con-
text, different pollution release policies can achieve similar trade-offs
as observed in Fig. 5 despite their distinct approaches to managing
phosphorus releases in Fig. 6.

4.2.1. Performance metrics for the Shallow Lake Problem
Fig. 8 presents performance metrics for each of the RBFs, following

the same setup as Fig. 4. In terms of generational distance, there is
swift convergence observed across all RBFs. Conversely, the additive
epsilon indicator exhibits a somewhat erratic pattern across the RBFs,
indicating gaps within the Pareto fronts of individual seeds relative to
the reference set.

For the hypervolume indicator, the modified squared exponential,
inverse multiquadratic, exponential, and Mattern 5/2 RBFs display a
distinct outlier seed with relatively low hypervolume, indicating stag-
nation in their search. The inverse quadratic and Mattern 3/2 RBFs also
exhibit a similar outlier seed, but this seed starts to make progress again
after approximately 50 k nfe and eventually converges to a similar
hypervolume as the other seeds.
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Fig. 4. Comparison of performance metrics for the Conowingo Reservoir system. This figure displays the search dynamics throughout the duration of the run. Each column,
distinguished by color, represents a unique RBF configuration, while the rows depict the metrics used for evaluation. A smaller generational distance and epsilon indicator are
preferable, as they signify proximity to the reference set and minimal translation distance, respectively. Conversely, a high hypervolume is desirable, as it indicates the volume
dominated by the approximation set relative to the reference set—it entails a comprehensive measure of both diversity and convergence. A consistent epsilon progress, represented
by a steep slope, is desired. The archive size is closely related to the diversity of the solution set, and this relationship is particularly noteworthy when the hypervolume exhibits
high performance.
On the other hand, the remaining RBFs all converge to a nearly iden-
tical hypervolume, which is also relatively close to the hypervolume of
the reference set. The epsilon progress indicator suggests a phase of
steady and then stabilizing progress, while the archive size indicates
outlier seeds with larger archives. Similarly, the inverse quadratic and
Mattern 3/2 RBFs display a similar outlier, which, at around 50k nfe,
begins to approach the average size across the seeds, indicating a
connection between larger archives and stalled search phases.

Table 3 gives an overview of some summary statistics across the
different RBfs for the different performance metrics. Again it is notable
how similar the results are across RBFs. The archive size is basically the
same across all RBFs. There are some small differences for the other
indicators. The squared exponential RBF, followed by the modified
squared exponential are the main contributors to the reference set.
Conversely, the inverse multiquadratic and the Matern 5/2 do not
contribute to the reference set, despite having similar average metric
values relative to the other RBFs.

4.3. Kruskal–Wallis test to detect statistical differences for the objectives
values

A Kruskal–Wallis test was performed to assess whether the ob-
jective values obtained for each RBF are statistically different. This
10

S

non-parametric statistical test compares more than two independent
groups when the data is not normally distributed. The Kruskal–Wallis
test is therefore suitable when the data does not meet the normality or
equal variance assumptions of parametric tests like one-way ANOVA.
It is robust to non-normality, does not assume equal variances, and can
handle ordinal or continuous data, widely used in other diagnostics
studies (see Hadka and Reed (2012), Gupta et al. (2020)). For the
Kruskal–Wallis test, each data point in the samples is ranked, and
the test measures whether the observed differences in these ranks are
statistically significant. The hypotheses for the Kruskal–Wallis test are
defined as follows:

• Null Hypothesis (𝐻0): There is no difference between the groups
(i.e., the medians are equal across all groups). The null hypothesis
is accepted if the calculated 𝜒2 is less than 3.84146.

• Alternative Hypothesis (𝐻1): There is a difference between the
groups (i.e., at least one group median is different from the
others). The alternative hypothesis is accepted if the calculated
𝜒2 is greater than 3.84146.

For this test:
ignificance Level (𝛼) = 0.05
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Fig. 5. Trade-offs for The Shallow Lake Problem attained by each RBF configuration. Each axis represents a distinct objective, and each colored line corresponds to a unique
policy. The direction of preference is upwards, indicating that a more desirable policy would be represented as a straight line situated at the top of the axes.
Table 3
Average performance metrics and reference set contribution for the shallow lake problem.
Activation
function

Non-
dominated
solutions

Mean
generational
distance

Mean epsilon
indicator

Mean
hypervolume

Set
contribution

Modified SE 21 0.018994 0.242975 0.468240 0.250
Squared Exponential 23 0.020191 0.253429 0.471526 0.542
Inverse Quadratic 19 0.022929 0.271876 0.464444 –
Inverse Multiquadric 19 0.025915 0.259099 0.463475 0.042
Exponential 23 0.021459 0.285110 0.465515 0.083
Matern 3/2 20 0.015791 0.318811 0.467675 0.083
Matern 5/2 22 0.020485 0.268411 0.466675 –
11
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Fig. 6. Phosphorus emission policies for the Shallow Lake Problem: This figure illustrates the various policy approaches prescribed by each RBF tested for managing phosphorus
emissions. The intuition is that each policy begins with a default maximum phosphorus release. As the phosphorus concentration in the lake rises, the policies generally dictate a
reduction in anthropogenic emissions. However, upon crossing a critical tipping point once the lake’s health can no longer recover, several policies advocate for a sharp increase
in emissions to maximize economic benefits. The depicted rules vary in how they adjust anthropogenic releases based on the state, with distinct patterns on how they increase
emissions.
Degrees of Freedom = 1 (in this case, 2 samples tested against each other)

𝜒2 (Critical Value) = 3.84146

For each score with a 𝜒2 value greater than 3.84146, the null hy-
othesis is rejected. This indicates that the sets are statistically different
t a significance level of 𝛼 = 0.05. If the 𝑝-value is less than or equal to

this significance level, we conclude that not all the group medians are
equal.

Kruskal–Wallis test for the Conowingo Reservoir System
Fig. 9 visually represents these pairwise comparisons for different

objectives in the case of the Conowingo Reservoir System. In this figure,
the colorbar indicates the 𝑝-value, with dark purple grids signifying
12
cases where the sets are statistically different. In the Susquehanna case,
we observe that the majority of the pairwise comparisons exhibit p-
values below the 0.05 threshold, indicating significant differences, this
is visually denoted by dark purple grids. This statistically supports
our findings from the main study that the choice of RBF significantly
impacts the objective values attained for the Conowingo Reservoir
System.

Kruskal–Wallis pairwise comparison of objective values across RBF config-
urations for the Shallow Lake Problem

A similar test was conducted for the Lake Problem, with results
presented in Fig. 10. In this figure, the colorbar represents the 𝑝-value,
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Fig. 7. Comparison of objective values for the Shallow Lake Problem per RBF configuration. The figure illustrates the distribution of objective values for various RBF configurations.
Each subplot represents a distinct objective: (b) through (d) feature upward preferences due to the maximization objectives, whereas panel (a) features a downward preference as
minimizing the maximum phosphorous level is desired. Within each subplot, individual box plots indicate the objectives’ statistics obtained using different RBF configurations.
used to assess the statistical significance of the differences between ob-
jectives attained by each RBF configuration. Contrary to the Conowingo
test results, the pairwise comparisons in the Lake Problem reveal no
statistical significance; all the p-values exceed the 0.05 threshold. This
outcome indicates that there are no notable differences between the
objectives for the various RBF configurations examined in this case.
This finding corroborates the conclusions drawn from both visual trade-
off analysis and objective performance evaluations: while the policies
prescribed by different RBF configurations exhibit varied behaviors,
they do not result in statistically significant differences in the objectives
they achieve.

5. Discussion

Does the choice of RBF within Evolutionary Multi-Objective Direct
Policy Search influence both the search process and the resulting set of
solutions? In the context of the Conowingo Reservoir System, the choice
of RBF clearly has a substantial impact. Specifically, the modified
squared exponential and the squared exponential RBFs yielded high-
quality and diverse solutions. Our analysis highlights the considerable
effect that the choice of RBF has on the objective space, the attributes
of the release strategies, and the intra-annual variability within these
policies. We observed that top-performing RBFs consistently align with
and satisfy water demands over the year. In contrast, lower-performing
RBFs exhibit a significant divergence between water demands and
13
actual releases particularly later in the year. From a reservoir manage-
ment perspective, these fluctuations can have extensive implications
for objectives sensitive to the timing of water releases. For instance,
deviations in releases during critical periods may jeopardize environ-
mental goals or the reliable supply of water to urban centers. On the
other hand, for the Shallow Lake Problem, the choice of RBF resulted
in only minor differences. Across multiple seeds, all RBFs converged to
very similar results. Nevertheless, a detailed inspection of the emission
strategies prescribed by each configuration reveals variations in phos-
phorus release decisions. In this context, disparate pollution release
policies, despite their different approaches to managing phosphorus
releases, are able to achieve nearly identical trade-offs. Furthermore,
some RBFs had exhibited an outlier seed indicative of a stalled search.

What factors determine whether the choice of the RBF matters? A
first partial explanation might be found in the nature of the control
problem. For the Conowingo Reservoir System, the control setup is
high dimensional. There are time-varying demands from the atomic
power plant, and, to a lesser extent, from Chester. Baltimore’s demand
is stable over time. Hydropower revenue is also time-dependent. The
net result is that the ideal control rule has to approximate as best as
possible these different patterns over the year. In contrast, The Shallow
Lake Problem requires a relatively simple control rule: start with a
default maximum release, step the anthropogenic release down with
an increasing pollution level, then increase the release again sharply
once the tipping point in the lake has been crossed. If we compare the
control rules for the modified squared exponential (best-performing)
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Fig. 8. Performance metrics for the Shallow Lake Problem. In this figure, each color and column represents a unique RBF configuration, while the rows illustrate the performance
metrics. Lower values for the generational distance and epsilon indicator are favored, indicating closer proximity to the reference set and minimal translation distance, respectively.
In contrast, a higher hypervolume is preferred, reflecting a larger volume dominated by the approximation set relative to the reference set; serving as a suitable measure of solution
diversity and convergence. A steep slope in the epsilon progress is indicative of consistent advancement by adding new solutions to the archive. The relationship between archive
size and solution diversity becomes especially relevant when the hypervolume is also high.

Fig. 9. Kruskal–Wallis pairwise comparison of objective values across RBF configurations for the Conowingo Reservoir System. In this matrix, both rows and columns represent the
pairwise comparisons between different RBF configurations, while the inner rows specify the objectives being compared. The colorbar encodes the 𝑝-value for statistical significance,
with dark purple grids indicating high levels of significance and yellow grids denoting low statistical significance. In the Conowingo Reservoir case, it is evident that the majority
of the comparisons yield statistically distinct outcomes.
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Fig. 10. Kruskal–Wallis pairwise comparison of objective values across RBF configurations for the Shallow Lake Problem. In this matrix, both rows and columns represent the
pairwise comparisons between different RBF configurations, while the inner rows specify the objectives being compared. The colorbar encodes the 𝑝-value for statistical significance,
with dark purple grids indicating high levels of significance and yellow grids denoting low statistical significance. In the Shallow Lake Problem, it is evident that the majority of
the comparisons do not yield statistically distinct outcomes.
and the exponential (worst-performing) for the Conowingo Reservoir
System, we see that the exponential struggles much more to match the
demand patterns. The RBFs’ shape plays a role here, with the modified
square exponential (more concave), outperforms the exponential (more
convex) in matching the demand profiles for the atomic power plant,
Baltimore and Chester (see also Table 1). This difference in shape is not
relevant in the case of The Shallow Lake Problem.

A second partial explanation can be gleaned from Fig. 6. Despite
quite different looking control rules, we see that the performance in
the objective space is quite similar. That is, the Shallow Lake Problem
shows a form of equifinality that is absent in the Conowingo Reservoir
system. This might be due to the simple nature of The Shallow Lake
Problem with a single input, single output, no competing demands,
and strong tipping point behavior, so the system can only exist in
two distinct states. In contrast, the Conowingo Reservoir System, is
markedly more complicated, with multiple inputs and outputs, and no
clear tipping point behavior.

There are two possible threats to the validity of these results. First,
in our work, we fixed the number of RBFs following the guidance from
the literature (Giuliani et al., 2016). It is conceivable that by increasing
the number of RBFs, the observed differences for the Conowingo case
might be reduced. However, this would increase the complexity of the
optimization formulation and thus, in turn, affect the search behavior
of the MOEA. Still, future research is needed to explore the impact
of the number of RBFs. Second, we constrained the decision variables
within the bounded normalized input space for the centroids of the
RBF (i.e., 𝐜𝐢) and specified that the radius had to be strictly positive
(i.e., 𝐛𝐢 ≥ (0, 1]). It is conceivable that allowing wider radii or allowing
centroids outside the normalized input space might partially alleviate
the observed search defects.

6. Conclusions

In recent years, there has been a growing interest in employing
Evolutionary Multi-Objective Direct Policy Search (EMODPS) for the
optimization of control rules in environmental systems, including reser-
voir control and pollution emissions (Quinn et al., 2017; Marangoni
et al., 2021; Giuliani et al., 2014; Arnold et al., 2023). EMODPS
relies on many-objective evolutionary algorithms to optimize control
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rules, typically constructed using radial basis functions (RBFs), which
serve as universal approximators. While many studies have followed
the guidance outlined in the seminal work by Giuliani et al. (2016),
which includes the use of modified square exponential RBFs, the lit-
erature also presents various other RBF variants with subtle shape
differences. However, it has remained unclear whether and to what
extent the choice of a specific RBF impacts the effectiveness of the
multi-objective evolutionary algorithm (MOEA) and the quality of the
resulting solutions. In this paper, we address this gap by investigating
the performance of seven different RBFs in the context of optimizing
control rules for the Conowingo Reservoir system and the Shallow Lake
Problem.

For the Conowingo Reservoir problem, there is a clear and distinct
difference in performance across the different RBFs. Looking at the
overall attained hypervolume as a proxy for the overall quality of
the set of identified solutions, the modified squared exponential, as
suggested by Giuliani et al. (2016), performed the best, followed closely
by the original squared exponential. The other five shapes all performed
poorly on hypervolume. Likewise, other indicators for analyzing the
search behavior of the MOEA also show the difficulty of finding high-
quality solutions across multiple seeds for the MOEA. This performance
disparity was clearly reflected in a visual inspection of the trade-
offs and release strategies. High-performing RBFs produced release
strategies that were consistently aligned with daily annual demands,
while low-performing RBFs manifested poorer trade-offs and release
strategies marked by substantial gaps between demands and actual
releases. Conversely, for The Shallow Lake Problem, the choice of RBF
had minimal impact. No discernible differences in search behavior or
quality of solutions were observed between the various RBFs. Never-
theless, despite yielding nearly identical performance in the objective
space, there were substantial differences in the emission strategies
prescribed.

A possible explanation for the observed difference in the perfor-
mance of the RBFs for the Conowingo Reservoir System is the difference
in shape between e.g., the modified squared exponential and the expo-
nential, with the former being more concave while the later is more
convex. This difference enabled the (modified) squared exponential
to better approximate the time-varying demands. In turn, this sug-

gests that careful consideration of the control problem can guide the
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selection of appropriate RBFs, although we still suggest experimenting
with multiple shapes (e.g, modified squared exponential, and either a
Mattern or exponential).

In summary, our study highlights the substantial influence of Radial
Basis Functions (RBFs) on the performance of Evolutionary Multi-
Objective Direct Policy Search, particularly in the context of managing
complex environmental systems like the Conowingo Reservoir System.
This impact is evident through the quality of trade-offs achieved and
the alignment of water release strategies with multiple demands.

However, it is worth noting that in simpler problems, such as the
shallow lake problem, the choice of RBF has a relatively minor impact
on solution quality. Nevertheless, it does result in variations in emission
strategies.

Looking ahead, future research should prioritize investigating the
effects of altering the number of RBFs and introducing constraints
on RBF parameters. We propose the use of a diagnostic assessment
framework, which holds the potential to extend its applicability to a
wider range of cases that use EMODPS to find optimal control policies
for multiple objectives.

Moreover, future research should also encompass the extension of
this diagnostic assessment to problems featuring a higher number of
objectives, increased uncertainties, and a larger number of states. In
doing so, we can delve deeper into understanding the influence of
global approximators on solution quality.

Furthermore, addressing another critical challenge lies in the in-
terpretability of RBF control parameters, which play a central role in
EMODPS. The lack of intuitive meaning in these parameters could hin-
der the real-world adoption and usability of EMODPS, where clear and
understandable rationale behind strategies is crucial. Therefore, future
research efforts should also prioritize enhancing policy interpretability.
16
This entails striking a balance between the flexibility of mapping states
to actions in systems with multiple states and objectives, while ensuring
that these mappings are intuitively meaningful in decision-making
contexts.
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ppendix
Table 4
Susquehanna problem objective value’s statistics across radial basis functions (RBFs).

Radial basis function Hydropower Atomic power plant Baltimore Chester Environment Recreation

Modified SE Percentile 25: 57.09
Percentile 75: 65.55
Median: 59.70
Min: 35.43
Max: 81.10

Percentile 25: 0.68
Percentile 75: 0.94
Median: 0.85
Min: 0.05
Max: 0.99

Percentile 25: 0.34
Percentile 75: 0.73
Median: 0.53
Min: 0.01
Max: 0.92

Percentile 25: 0.55
Percentile 75: 0.88
Median: 0.76
Min: 0.02
Max: 0.95

Percentile 25: 0.05
Percentile 75: 0.08
Median: 0.06
Min: 0.03
Max: 0.11

Percentile 25: 1.0
Percentile 75: 1.0
Median: 1.0
Min: 0.89
Max: 1.0

Squared exponential Percentile 25: 56.13
Percentile 75: 60.50
Median: 58.51
Min: 36.05
Max: 81.12

Percentile 25: 0.60
Percentile 75: 0.94
Median: 0.82
Min: 0.05
Max: 0.99

Percentile 25: 0.37
Percentile 75: 0.75
Median: 0.56
Min: 0.01
Max: 0.92

Percentile 25: 0.59
Percentile 75: 0.88
Median: 0.79
Min: 0.04
Max: 0.95

Percentile 25: 0.05
Percentile 75: 0.08
Median: 0.06
Min: 0.03
Max: 0.11

Percentile 25: 1.0
Percentile 75: 1.0
Median: 1.0
Min: 0.93
Max: 1.0

Inverse quadratic Percentile 25: 37.54
Percentile 75: 53.73
Median: 44.91
Min: 23.58
Max: 79.90

Percentile 25: 0.60
Percentile 75: 0.92
Median: 0.81
Min: 0.12
Max: 0.99

Percentile 25: 0.29
Percentile 75: 0.60
Median: 0.43
Min: 0.00
Max: 0.87

Percentile 25: 0.47
Percentile 75: 0.81
Median: 0.68
Min: 0.02
Max: 0.91

Percentile 25: 0.06
Percentile 75: 0.08
Median: 0.07
Min: 0.04
Max: 0.10

Percentile 25: 0.96
Percentile 75: 1.00
Median: 1.00
Min: 0.86
Max: 1.00

Inverse multiquadratic Percentile 25: 39.17
Percentile 75: 68.77
Median: 43.63
Min: 21.26
Max: 81.84

Percentile 25: 0.57
Percentile 75: 0.93
Median: 0.79
Min: 0.02
Max: 0.99

Percentile 25: 0.30
Percentile 75: 0.70
Median: 0.51
Min: 0.01
Max: 0.92

Percentile 25: 0.55
Percentile 75: 0.90
Median: 0.77
Min: 0.00
Max: 0.96

Percentile 25: 0.07
Percentile 75: 0.08
Median: 0.08
Min: 0.06
Max: 0.09

Percentile 25: 0.96
Percentile 75: 1.00
Median: 1.00
Min: 0.86
Max: 1.00

Exponential Percentile 25: 43.58
Percentile 75: 50.11
Median: 47.03
Min: 24.33
Max: 69.69

Percentile 25: 0.54
Percentile 75: 0.78
Median: 0.68
Min: 0.06
Max: 0.86

Percentile 25: 0.30
Percentile 75: 0.52
Median: 0.41
Min: 0.02
Max: 0.62

Percentile 25: 0.37
Percentile 75: 0.60
Median: 0.51
Min: 0.06
Max: 0.66

Percentile 25: 0.05
Percentile 75: 0.07
Median: 0.06
Min: 0.03
Max: 0.09

Percentile 25: 0.96
Percentile 75: 1.0
Median: 1.0
Min: 0.82
Max: 1.0

Matern 32 Percentile 25: 52.44
Percentile 75: 56.38
Median: 54.08
Min: 32.02
Max: 76.15

Percentile 25: 0.57
Percentile 75: 0.90
Median: 0.77
Min: 0.01
Max: 0.98

Percentile 25: 0.30
Percentile 75: 0.61
Median: 0.46
Min: 0.00
Max: 0.76

Percentile 25: 0.47
Percentile 75: 0.72
Median: 0.62
Min: 0.01
Max: 0.81

Percentile 25: 0.04
Percentile 75: 0.07
Median: 0.06
Min: 0.03
Max: 0.10

Percentile 25: 1.0
Percentile 75: 1.0
Median: 1.0
Min: 0.89
Max: 1.0

Matern 52 Percentile 25: 52.30
Percentile 75: 56.93
Median: 54.52
Min: 35.92
Max: 75.13

Percentile 25: 0.62
Percentile 75: 0.89
Median: 0.78
Min: 0.07
Max: 0.97

Percentile 25: 0.38
Percentile 75: 0.61
Median: 0.51
Min: 0.00
Max: 0.74

Percentile 25: 0.48
Percentile 75: 0.70
Median: 0.61
Min: 0.01
Max: 0.78

Percentile 25: 0.05
Percentile 75: 0.07
Median: 0.06
Min: 0.03
Max: 0.09

Percentile 25: 1.0
Percentile 75: 1.0
Median: 1.0
Min: 0.86
Max: 1.0
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Table 5
Lake Problem objective value’s statistics across radial basis functions (RBFs).
Radial basis function Max P Inertia Utility Reliability

Modified SE Percentile 25: 1.74
Percentile 75: 2.06
Median: 2.00
Min: 0.10
Max: 2.28

Percentile 25: 0.98
Percentile 75: 0.99
Median: 0.99
Min: 0.96
Max: 0.99

Percentile 25: 0.60
Percentile 75: 0.94
Median: 0.71
Min: 0.27
Max: 1.73

Percentile 25: 0.07
Percentile 75: 0.73
Median: 0.17
Min: 0.07
Max: 1.00

Squared exponential Percentile 25: 1.68
Percentile 75: 2.08
Median: 2.02
Min: 0.10
Max: 2.28

Percentile 25: 0.98
Percentile 75: 0.99
Median: 0.99
Min: 0.97
Max: 0.99

Percentile 25: 0.60
Percentile 75: 0.97
Median: 0.76
Min: 0.27
Max: 1.73

Percentile 25: 0.07
Percentile 75: 0.72
Median: 0.19
Min: 0.07
Max: 1.00

Inverse quadratic Percentile 25: 1.82
Percentile 75: 2.10
Median: 2.02
Min: 0.10
Max: 2.28

Percentile 25: 0.98
Percentile 75: 0.99
Median: 0.99
Min: 0.97
Max: 0.99

Percentile 25: 0.60
Percentile 75: 1.06
Median: 0.72
Min: 0.27
Max: 1.73

Percentile 25: 0.07
Percentile 75: 0.64
Median: 0.16
Min: 0.07
Max: 1.00

Inverse multiquadratic Percentile 25: 1.99
Percentile 75: 2.10
Median: 2.04
Min: 0.10
Max: 2.28

Percentile 25: 0.98
Percentile 75: 0.99
Median: 0.99
Min: 0.97
Max: 0.99

Percentile 25: 0.60
Percentile 75: 1.06
Median: 0.75
Min: 0.27
Max: 1.73

Percentile 25: 0.09
Percentile 75: 0.55
Median: 0.20
Min: 0.07
Max: 1.00

Exponential Percentile 25: 1.68
Percentile 75: 2.08
Median: 2.00
Min: 0.10
Max: 2.28

Percentile 25: 0.98
Percentile 75: 0.99
Median: 0.99
Min: 0.97
Max: 0.99

Percentile 25: 0.60
Percentile 75: 0.97
Median: 0.75
Min: 0.27
Max: 1.73

Percentile 25: 0.07
Percentile 75: 0.59
Median: 0.18
Min: 0.07
Max: 1.00

Matern 32 Percentile 25: 1.71
Percentile 75: 2.06
Median: 2.01
Min: 0.10
Max: 2.28

Percentile 25: 0.98
Percentile 75: 0.99
Median: 0.99
Min: 0.97
Max: 0.99

Percentile 25: 0.60
Percentile 75: 0.98
Median: 0.73
Min: 0.27
Max: 1.73

Percentile 25: 0.07
Percentile 75: 0.57
Median: 0.18
Min: 0.07
Max: 1.00

Matern 52 Percentile 25: 1.69
Percentile 75: 2.05
Median: 2.00
Min: 0.10
Max: 2.28

Percentile 25: 0.98
Percentile 75: 0.99
Median: 0.99
Min: 0.97
Max: 0.99

Percentile 25: 0.60
Percentile 75: 0.92
Median: 0.68
Min: 0.27
Max: 1.73

Percentile 25: 0.07
Percentile 75: 0.57
Median: 0.25
Min: 0.07
Max: 1.00
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