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Abstract—This paper discusses a method for data analysis of 

early failures that are typically due to defects from production 

and/or installation. The approach is based on Weighted Linear 

Regression and aims at estimating the next failure moment and 

the failure probability in an interval. As an additional goal, 

methods are intended to be suitable for light computing devices. 

Keywords—early failures, Weibull, bathtub curve, censored 

data, hazard rate, weighted linear regression, similarity index, 

asymptotic behavior, emergency 

I. INTRODUCTION EARLY FAILURE DECISION-MAKING 

The present paper discusses situations where decision-
making requires data analytics on relatively small and/or 
incomplete data sets such as with (very) early failures. An 
experienced typical example is a power grid connection that is 
supposed to last for > 40 years, but multiple cable joints fail 
in the first year. It is noteworthy that components were factory 
tested and that the connection passed a full commissioning test 
program. If the cause is not obvious from forensics (as yet), 
fears may grow that many more failures may follow. 

Resilience is the capability to recover from mishap like 
these unforeseen early failures. The present work supports 
grid resilience by developing a Weibull data analyzer for light 
computing devices to provide statistical grounds for decision-
making. It aims at estimating three often relevant quantities: 
(a) the expected moment of a next failure; (b) the probability 
of failures in a time interval; (c) the number of future early 
failures. The first two are subject of the present paper. 

Having sufficient data supports accurate analysis, but 
speed may be preferred over accuracy if decisions about repair 
or massive replacement are urgent. As an additional objective 
in our project, the methodology is aimed to be implementable 
in light computing devices, in order to be widely accessible to 
utility work force, to small and medium-sized businesses 
(SMEs) and for possible implementation into firmware of 
smart devices.  

The paper firstly discusses competing processes, bathtub 
curves and the effect of fast aging due to defective (however 
as yet functioning) components. This leads to a preliminary 
conclusion that early failures can be treated by a fairly simple 
distribution, but with a possibly unknown sample size.  

After a brief description of asymptotic behavior, censored 
data, ranking indices and similarity index, the progress with 

respect to weighted linear regression (WLR) is discussed. A 
model is presented that accurately approximates the LR-
weights by a set of asymptotic power functions and is suitable 
for light computing. Alternative approaches for estimating 
next failure times, interval probabilities and total sample size 
n are explored in parallel. The results will be compared to the 
present findings in later publications. 

II. COMPETING MECHANISMS AND BATHTUB CURVES 

The failure behavior of products in terms of the hazard rate 
h(t) is often described with a bathtub curve. Such curves are 
generally stated to consist of a competition of teething (also 
called ‘child mortality’), random failure and wear out failure. 
Assuming failure processes can be described with Weibull 
distributions, the hazard rate of each process is: 

ℎ(𝑡) =
β ∙ 𝑡β−1

αβ
 (1) 

Here α and β are the scale and shape parameter of the 
applicable Weibull distribution. The teething, random failure 
and wear-out processes are commonly associated with shape 
parameter β <1, β =1 and β >1 respectively. The total hazard 
rate for a normal product batch hn is the sum of the competing 
processes: ht, hr and hw respectively: 

ℎ𝑛 = ℎ𝑡 + ℎ𝑟 + ℎ𝑤 (2) 

The sum of these hazard rates yields the well-known 
bathtub curve, cf. Fig. 1. The bathtub curve represents the 
three typical, competing processes of teething, random failure 
and wear-out. Competition of failure mechanisms is also 
found in systems that are built from multiple components that 
each can make the system fail. For instance, a cable circuit 
will at least consist of switchgear, cable termination, cable, 
cable joints and more. If any of these fails, the circuit fails. 

 

Fig. 1. Typical bathtub curve for competition between teething, random 

failure and wear-out failure. The three hazard rates accumulate. 
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Quality control reduces teething by pre-aging products 
before delivery. This is usually done at enhanced stresses to 
accelerate aging (particularly of the teething phenomenon if 
possible) and get beyond the moment where teething 
dominates. For the case in Fig. 1, pre-aging might aim for the 
equivalent of t=0.1yr where teething has decayed to the same 
level as random aging. The surviving products then form a 
high reliability batch (Ch.14, Fig. 4 in [1]). 

III. EARLY FAILURES AND MIXED BATCHES CASES 

If early failures do occur despite quality control and 
commissioning tests, these faults are usually not due to 
teething, but rather to fast aging imperfections or defects. A 
second bathtub with a faster wear-out appears. Teething and 
random failure are assumed to be the same for simplicity.  

Fig. 2 compares the two bathtub curves. As mentioned 
above, the difference is in the wear-out: hazard rate hn depends 
on hw in the end, cf. (2), but on hfw for the fast-wearing defect 
products. The total hazard rate hd of the defect subgroup is: 

ℎ𝑑 = ℎ𝑡 + ℎ𝑟 + ℎ𝑓𝑤 (3) 

A flawed batch of products typically contains two 
subgroups: a fraction pn that consists of normal and a fraction 
pd =1-pn that consists of defective products. The ratio of these 
fractions is denoted as N:D = pn/pd. The subgroups have a 
reliability function Rn respectively Rd. The combined hazard 
rate hc in this case is (cf. Section 2.5.2 in [2]):  

ℎ𝑐 =
𝑝𝑛 ∙ ℎ𝑛 ∙ 𝑅𝑛 + 𝑝𝑑 ∙ ℎ𝑑 ∙ 𝑅𝑑

𝑝𝑛 ∙ 𝑅𝑛 + 𝑝𝑑 ∙ 𝑅𝑑
 (4) 

If both pn and pd are non-zero, the combined hazard rate hc 
forms a double bathtub (see Fig. 3). In the present example, 
the early failures become noticeable after about t = 0.2 yr. The 
wear-out process Weibull shape parameter β >1, but the scale 
parameter α is much smaller than normal as a result of the 
imperfections. The defect subgroup will become depleted at 
some moment and normal products will remain (unless pn =0). 
The combined hazard rate hc will then drop to the level of 
random failure of the surviving (normal) products. 

The assumption of a specific distribution (here: Weibull) 
is a big advantage in the reliability analysis. Still, the statistical 
analysis of (4) is complicated due to the involved 8 Weibull 
parameters (for the 4 processes) plus the ratio N:D. As in 
Fig. 3, strongly deviant behavior is often dominated by a 
single process, which simplifies the analysis. As an important 
consequence, early failures can often be attributed to a single 
temporarily dominant process. As a consolation, early failures 
can often be described with a single Weibull distribution. 

 

Fig. 2. Bathtub curves for a batch of only normal or defect products.  

 

Fig. 3. Bathtub curves for various fractions of defect products. N:D stands 

for the ratio pn/pd. With mixed batches of normal and defective products a 
double bathtub appears. Quality control normally removes the part before 

t = 0.1 yr. The defect failure behavior then becomes the first dominant effect. 

Moreover, if random failures occur in parallel, they are 
often caused by external impact and may easily be recognized 
as such (e.g. a cable failing due to digging). In Fig. 3, the 
failures that occur shortly after about t = 0.2 yr, are practically 
only due to the fast wear-out process with hazard rate hfw. As 
mentioned above: βfw >1, but αfw (much) smaller than normal. 

If forensic analyses and/or diagnostics are not conclusive 
(as yet), the challenge is to analyze failure data for the sake of 
grid resilience. The target is to do this by light computing. 

IV. BACKGROUND OF APPLIED METHODS 

Now, three separate subjects are described that are 
instrumental to developing the data analysis as discussed in 
the present paper: ranking adjustment with censored data sets, 
asymptotic behavior and the similarity index. 

A. Censored Data and Non-Integer Indices 

When (very) early failures occur suspicion arises that the 
delivered batch is flawed. To what extent (i.e. N:D) may 
remain unknown. Data analytics is applied to answer basic 
questions about the next failure time and the probability of 
new failure in a given interval. 

At the moment of evaluation, it is expected – or at least 
held possible - that more failures are to follow. The data 
analytics should therefore reckon with censored data, i.e. 
times of failures that are as yet unknown. If all components 
have been commissioned at once and kept in operation equally 
long, this is right censoring. If the components differ in 
operational time, then the censoring is likely random. 

With random censoring, the ranking of the observed 
failure times may be disturbed. This is the case if some 
components have been shorter in operation than already 
observed failure times. Both in plotting and linear regression 
the ranking is often adjusted [3]. The observed failure times 
are then attributed with adjusted ranking indices I(i) that are 
not necessarily integers. The procedure is [3]: 

𝐼(𝑖) = 𝐼(𝑖 − 1) +
𝑛 + 1 − 𝐼(𝑖 − 1)

𝑛 + 2 − 𝐶𝑖
 (5) 

Here i is the original ranking index of failure times ti as 
observed; I(i) the adjusted ranking index, Ci the original index 
i increased with the number of censored failure times <ti. By 
definition I(0)=0. This adjustment is based on the number of 
permutations of ranking and adopted by IEEE and IEC [3]. 
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Alternative ranking adjustments exist and/or are under 
development. E.g., intervals between observed failure times 
may be considered (e.g., [4]), using the idea that the chance to 
find an as yet censored time in that interval is proportional to 
the difference in F-value (F being the cumulative probability). 
However, at this stage the IEC standard [3] is followed. 

B. Asymptotic Behavior as a Power Function 

One criterion for good estimators is consistency. This 
implies that the estimated parameter En asymptotically 
approaches a true value E∞ with increasing n. Such asymptotic 
behavior can often be described in terms of a power function 
model with parameters P, Q and R (not to be confused with 
probability or a reliability function), cf. Section 6.1.3 in [2]: 

𝐸𝑛 = 𝐸∞ + 𝑄 ∙ (𝑛 − 𝑅)𝑃 (6) 

En asymptotically approaches E∞ if the power P is negative 
and a singularity appears at n = R consequently (unless Q = 0). 
This asymptotic model was used for the regression weights. 

C. Similarity Index 

A Similarity Index Sfg is used to quantify how similar two 
(normalized) distribution densities f and g are, (cf. Section 3.6 
in [2]). If f and g are identical, Sfg=1, if f and g have nothing in 
common Sfg = 0. The definition of Sfg is: 

𝑆𝑓𝑔 =
〈𝑓 ∙ 𝑔〉

〈𝑓 ∙ 𝑓〉 + 〈𝑔 ∙ 𝑔〉 − 〈𝑓 ∙ 𝑔〉
 (7) 

Here 〈𝑓 ∙ 𝑔〉  is an inner product of two probability 
densities or mass functions that is usually defined as a time 
integral or an indexed summation. Sfg can also be used over 
intervals for comparison. E.g., the similarity of observations 
and specifications can be evaluated for an interval up to τe by 
Sfg(0,τe) and compared to Sfg(0,∞) extrapolating the trend to 
infinitely [5]. The significance of Sfg increases with lifetime 
[6]. In the presently discussed work, Sfg is used for testing the 
distribution of the model regression weights against theory. 

V. WLR PARAMETER ESTIMATION 

The most widely applied parameter estimator families are 
Linear Regression (LR) and Maximum Likelihood (ML). The 
focus in this paper is on Weighted Linear Regression (WLR) 
An advantage of (W)LR is that the estimated parameters, the 
errors and the confidence limits are analytically obtained. This 
is particularly useful for light computing. Secondly, the least 
squares (LS) estimates and the best fit in a plot are fully 
consistent. These advantages are not fundamental or absolute 
arguments, but do serve the goal of light computing. 

A. Weighted Linear Regression  

(W)LR is based on a linear relationship between plotting 
position Z and ln(t) from which α and β are estimated: 

𝑍(𝑝) = ln(−ln(1 − 𝑝) = β ∙ ln(𝑡) − β ∙ lnα (8) 

Here p is a probability, i.e., a value of the Weibull 
cumulative distribution F(t; α, β). If preferred, the first ‘ln’ in 
each term can be replaced by 10log, which differs by a factor 
10log(e). Parameters are estimated by an LS method. The terms 
LR and LS commonly refer to the same parameter estimators. 
Ordinary LS (OLS) minimizes the sum of deviations of actual 
data and fit. WLR or WLS is somewhat more accurate than 
OLS by attributing weights wi to each observation. 

In a Weibull plot, the observed ln(ti) are plotted against the 
expected value 〈𝑍𝑖〉 . Contrary to most practice in graphs, 

probability plots have variables 〈𝑍𝑖〉 scaled along the vertical 
axis and covariables ln(ti) along the horizontal axis. WLR 
estimators aWLR and bWLR of α respectively β are: 

𝑎𝑊𝐿𝑅 = exp (ln(𝑡)̅̅ ̅̅ ̅̅ ̅
𝑤 −

〈𝑍〉̅̅ ̅̅
𝑤

𝑏𝑊𝐿𝑅

) (9) 

𝑏𝑊𝐿𝑅 =
(〈𝑍〉 − 〈𝑍〉̅̅ ̅̅

𝑤)
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑤

((〈𝑍〉 − 〈𝑍〉̅̅ ̅̅
𝑤) ∙ (ln𝑡 − 𝑙𝑛𝑡̅̅ ̅̅

𝑤))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑤

 (10) 

The suffix w means that the averages are weighted, i.e., the 
weighted average �̅�𝑤 of a series of observations ui (i=1,..,n) is: 

�̅�𝑤 =
∑ (𝑤𝑖 ∙ 𝑢𝑖)
𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

 (11) 

With OLS, for all i: wi,n =1. With WLR, the wi,n are taken 
as the inverse variances vi of the plotting positions Zi: 

𝑤𝑖,𝑛 =
1

𝑣𝑖,𝑛
=

1

〈𝑍𝑖,𝑛
2 〉 − 〈𝑍𝑖,𝑛〉

2
 (12) 

The smaller variance vi,n, the heavier weighs observation ti. 

B. Calculation of LR Weights 

For given n, the variance vi,n=var(Zi,n) can be calculated as 
a summation (Equation 2.7 in [7]). For larger i and n the 
calculation becomes demanding and such a summation is not 
suitable for var(ZI,n) with (often non-integer) adjusted ranking 
indices I. A look-up table and round I to an integer can be used 
[3]. However, 〈𝑍𝑖(𝑝)〉 can also be assessed in the p-domain, 
cf. (8), and the Beta distribution B(p). This allows non-integer 
parameters x, y and indices I. The Beta density function fB is: 

𝑓𝐵(𝑝; 𝑥, 𝑦) =
Γ(𝑥 + 𝑦)

Γ(𝑥) ∙ Γ(𝑦)
∙ 𝑝𝑥−1 ∙ (1 − 𝑝)𝑦−1 (13) 

The expected jth moment of ZI,n is: 

〈𝑍𝐼,𝑛
𝑗 〉 = ∫𝑍𝑗(𝑝) ∙ 𝑓𝐵(𝑝; 𝐼, 𝑛 + 1 − 𝐼)d𝑝

1

0

 (14) 

In terms of which the variance vI,n is given by: 

𝑣𝐼,𝑛 = 〈𝑍𝐼,𝑛
2 〉 − 〈𝑍𝐼,𝑛

1 〉2 (15) 

Z is singular at p = 0 and 1, implying that care is required 
in numerical integrations if I is close to 1 or n. As for I = 1, the 
summation shows that 𝑣1,𝑛 = π2 6⁄  for every n. 

 

Fig. 4. For various sample sizes n=5,..,50 and n→∞, the variances var(Zi) 

with i ≤ n. The inverse variances are the weights for regression analysis. 
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Fig. 5. For various sample sizes n=5,..,50 and n→∞, the weights wi with 

i ≤ n. The small upward curl in the vi curve causes a significant drop in wi. 

The domain was subdivided into k segments concentrated 
near the endpoints, where Z is singular. The segment 
boundaries were chosen at [cos(𝑖𝜋 𝑘⁄ ) + 1]/2with i = 0,..,k. 
Within the segments 64-point Gauss-Legendre quadrature was 
used, in which the integral is approximated as a weighted sum 
of integrand values (see pp. 887 and 918 of [8]). The variances 
vi were calculated for all i=1,..,n with various n in the range 
[1,2000] and used as references for a model to fit wi. 

Fig. 4 and Fig. 5 show the distribution of vi respectively wi 
for sample sizes n=5,10(10)50 and n→∞. ‘A(B)C’ means a 
sequence from A to C with an increment B. For finite n > 6, 
the vi distributions curl up at both ends (i.e., at i↓1 and i→n). 
As a consequence, the wi distributions appear to have a 
maximum for finite n > 6 in the range (n/2) ≤ i ≤ n (cf. Fig. 5). 

C. The Multiple Asymptotic Model 

In order to obtain a model that is suitable for both light 
computing and for non-integer indices I, the asymptotic 
behavior was studied in detail. After an explorative research 
on for n ≤ 200 yielded two parametric models [9], the merits 
of power functions for approximating the variances and 
weights were investigated in greater depth, up to n = 2000.  

Analyzing the vi distribution, it was firstly observed that 
for n → ∞ and finite i, the variances vi can be described as a 
power series:  

𝑣𝑖,𝑛→∞ =
π2

6
−∑

1

(𝑗 − 1)2

𝑖

𝑗=2

 (16) 

Describing the asymptotic behavior with a power function, 
for large (but finite) i, the vi,n→∞ can be largely described with 
a power function with (P,Q,R)=(-1,1,0.5). For small i, adding 
a second power function with (P,Q,R)=(-3,0.1,0.3445) yields 
a very good approximation of (16). The wi,n→∞ appear almost 
linear with finite i (Fig. 5). The vi,n→∞ are approximated: 

𝑣𝑖,𝑛→∞ ≈ (𝑖 − 0.5)−1 − 0.1 ∙ (𝑖 − 0.3445)−3 (17) 

The weights significantly drop for finite n and i→n. A 
large variety of asymptotic relations n, i and n-i were explored 
for vi,n and wi,n yielding power functions with varying success. 
A very successful model for vi,n with finite n appeared an 
extension of (17) with mixed power functions of n, n-i and i: 

𝑣𝑖,𝑛 ≈ (𝑖 − .5)−1 − 0.1 ∙ (𝑖 − 0.3445)−3

+ (0.125 ∙ (𝑛 + 0.343)−1.656)
∙ (𝑛 + 0.8 − 𝑖)−0.75 ∙ (𝑖 − 1)1.4 

(18) 

 

Fig. 6. Similarity between theoretical weights and the (18) model.  

The wi,n by this model were tested against the theoretical 
wi,n for n=1(1)60,75(1)80,80(10)120,125(25)250(250)2000. 
A total of 27750 wi,n-values were involved in the test.  

For all investigated n ≤ 2000, the Sfg appeared >0.9999885 
which is very close to 1. The largest deviation between the 
model and theory was found for n = 6, where 1-Sfg =1.02∙10-5 
(see Fig. 6). For each individual wi,n, the absolute error is < 1% 
for n ≤ 500; and < 2.7% for n ≤ 2000. The model is suitable 
for light computing as well as for non-integer ranking index I.  

With these weights, the Weibull parameters for the best 
WLR fit follow from (9) and (10).  

VI. TIME AND PROBABILITY TO NEXT FAILURE  

Within the present approach, the Weibull distribution with 
the estimated parameters is the starting point for inferences. 
Other approaches are being explored as well, such as directly 
estimating expected quantities like next failure time 〈𝑡𝑟+1〉 
from the data. Which is to be preferred and why, is subject of 
the program and debate. Here, the distribution is determined 
by: (a) observed and censored data; (b) adjusted ranking I 
through (5); (c) the weights wI through (18); (d) estimated aWLR 
and bWLR through (9)-(11) (summing over wI of known tI). 

As for censoring, if components are installed by 
replacement or in various non-simultaneous projects, the start 
of operation and lifetimes will vary. Failure of components 
will then lead to random censoring. Equation (5) can be used 
for adjusting rankings and estimating the ruling Weibull 
distribution. It depends on the individual cases how 
complicated the forecast of failures will be.  

In the following, however, the focus is on cases where all 
products were put into service simultaneously such as joints 
in a cable circuit. This is called right censoring, i.e. r out of n 
objects have failed with r < n. The censored failure times ti 
(r < i ≤ n) are larger than a minimum time θ. So, we assume 
that the moment of evaluation is sometime after the last failure 
tr. So, as for the next failure time tr+1: 

𝑡𝑟+1 > θ ≥ 𝑡𝑟 (19) 

The expected next failure time τ ≡ 〈𝑡𝑟+1〉 and confidence 
limits ti,A% are studied for two cases: without and with taking 
the (19) condition into account. It is also noted that the inverse 
Weibull distribution relates time t and probability F: 

𝑡(𝐹) = α ∙ [−ln(1 − 𝐹)]
1
β (20) 

 So, θ is associated with a Fθ. It is noteworthy, that in this 
approach the times do depend on n, which may be unknown. 
If so, reasonable assumptions must be made about this n. 
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A. Next failure time from the Beta distribution 

Without taking (19) into account, the expected next failure 
time τ follows from the Beta density (cf. (13)), (20) and known 
or estimated Weibull parameters α and β as: 

τ𝑖=𝑟+1 = ∫ 𝑡(𝑝) ∙ 𝑓𝐵(𝑝; 𝑟 + 1, 𝑛 − 𝑟)d𝑝
1

0

 (21) 

The 𝐴%  confidence limits tr+1,A% are found by firstly 
determining FA%. The Beta distribution B(FA%;x,y) is: 

𝐵(𝐹𝐴%; 𝑥, 𝑦) = ∫ 𝑓𝐵(𝑝; 𝑥, 𝑦)d𝑝
𝐹𝐴%

0

= 𝐴% (22) 

The inverse Beta distribution Binv(A%;x,y) yields FA% for 
given 𝐴% and is commonly available in spreadsheets. The 
𝐴% limits tr+1,A% are found with known or estimated n as: 

𝑡𝑖=𝑟+1,𝐴% = 𝑡 (𝐵𝑖𝑛𝑣(𝐴%; 𝑟 + 1; 𝑛 − 𝑟)) (23) 

In a Weibull plot, ln(t) is used and 〈ln(𝑡𝑟+1)〉  can be 
determined in a similar fashion as in (21). The ∆𝐴% Beta 
confidence intervals between two 𝐴% confidence limits (i.e. 
the quantiles) define a range where the r+1th failure is 
expected with ∆𝐴% probability. These intervals are generally 
very wide due to ignoring the already observed failure times.  

B.  Next failure time conditional on previous failures 

Taking the (19) condition and relation (20) into account, 
the next n-r failures will have associated probabilities p with: 
𝐹θ < 𝑝 < 1.  Unordered future failures are uniformly 
distributed over [Fθ,1]. The ranked failures are Beta 
distributed over this range with coordinate q: 

𝑞 =
(𝑝 −𝐹𝜃)

(1 −𝐹𝜃)
 (24) 

Let the index of ranked future failures be j = 1,..,n-r. 
Failure i = r +1, i.e. j = 1, is the first out of n-r, as yet 
censored, failures. The applicable Beta density is fB (q;1,n-r). 
With the condition tj > θ, the expected next failure time τθ ≡
〈𝑡𝑗=1〉 and the 𝐴% limits tj=1,A%,θ are found from (20)-(23) after 

elaborating p in terms of q using (24) and substituting 
fB (q;1,n-r) for fB (p;r+1,n-r). Consequently: 

τθ = ∫ 𝑡(𝐹𝜃 + 𝑞 ∙ (1 − 𝐹𝜃)) ∙ 𝑓𝐵(𝑞; 1, 𝑛 − 𝑟)d𝑞
1

0

 (25) 

𝑡𝑗=1,𝐴%,θ = 𝑡 (𝐹𝜃 + (1 − 𝐹𝜃) ∙ 𝐵
𝑖𝑛𝑣(𝐴%; 1; 𝑛 − 𝑟)) (26) 

VII. DISCUSSION AND CONCLUSIONS 

This study is initiated after some high impact incidents in 
the Dutch power grid. This urged to review the concepts of 
teething and early failures. E.g., 5 joints failed after 58, 78, 90, 
100 and 107 days (cf. Section 9.4.3 in [2]). The decision to 
replace >100 joints was proven right by forensics afterwards. 

The commonly encountered bathtub curve for the hazard 
rate of product batches implies that multiple processes are 
active. This means that the total failure distribution is a mix of 
multiple distributions as well. A proper set of factory tests and 
commissioning tests should reduce the teething problems, 
after which a well performing batch should remain. 

If early failures occur despite factory and commissioning 
tests, these may be due to a subgroup of defective components 

that wear abnormally fast. If a Weibull distribution applies to 
these faults, then probably β >1 and α is much smaller than 
specified for this process. Typically, the components seem to 
work well for a short period and then the faults occur with 
decreasing intervals (as in the case of the five early joint faults 
mentioned above). Though the overall statistics seem 
complicated, early failures can often be treated as a single 
distribution as its hazard rate dominates other processes. This 
makes the statistical analysis relatively simple. However, the 
total sample size of the subgroup of defects may be unknown. 

A situation of early failures often calls for a decision to 
preventively replace or continue to repair. Either choice can 
have a big impact, whether it is the right choice or not. This 
applies to large utilities and small and medium enterprises 
(SMEs) alike. The challenge is taken up to develop methods 
that are accessible for a wide audience, which is translated into 
developing methods for light computing devices. 

One objective was to develop WLR with an accurate 
weight approximation that is suitable for light computing and 
for non-integer ranking indices. With (18), this is achieved for 
sample sizes up to n = 2000. The similarity of two 
distributions can be tested with the similarity index, Sfg (7). Sfg 
was also used to compare the distributions of the observed and 
approximated weights. These proved to be very similar. The 
WLR is built into a spreadsheet that is published as freeware 
for educational and non-commercial use [10]. 

As discussed here, the approach is to first estimate the 
ruling distribution for a single dominant failure mechanism 
and conduct inferences based on that. After the WLR 
estimation of α and β, the methods aim at estimating the time-
to-next failure and confidence intervals. Typical expected 
times and limits follow from (21)-(23), but these are very wide 
and do not acknowledge already observed failure times. 
Taking the known previous failure time tr into account, leads 
to alternative estimates for the expected next time and the 
confidence limits through (25)-(26). 
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