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A B S T R A C T

We extend EUCLID, a computational strategy for automated material model discovery and identification, to
linear viscoelasticity. For this case, we perform a priori model selection by adopting a generalized Maxwell
model expressed by a Prony series, and deploy EUCLID for identification. The methodology is based on four
ingredients: i. full-field displacement and net force data; ii. a very wide material model library — in our
case, a very large number of terms in the Prony series; iii. the linear momentum balance constraint; iv. the
sparsity constraint. The devised strategy comprises two stages. Stage 1 relies on sparse regression; it enforces
momentum balance on the data and exploits sparsity-promoting regularization to drastically reduce the number
of terms in the Prony series and identify the material parameters. Stage 2 relies on k-means clustering; starting
from the reduced set of terms from stage 1, it further reduces their number by grouping together Maxwell
elements with very close relaxation times and summing the corresponding moduli. Automated procedures are
proposed for the choice of the regularization parameter in stage 1 and of the number of clusters in stage 2.
The overall strategy is demonstrated on artificial numerical data, both without and with the addition of noise,
and shown to efficiently and accurately identify a linear viscoelastic model with five relaxation times across
four orders of magnitude, out of a library with several hundreds of terms spanning relaxation times across
seven orders of magnitude.
. Introduction

The mechanical behavior of linear viscoelastic materials can be
escribed by convolutional constitutive equations in which the stress
ensor is a function of the strain history. The relaxation functions
f the constitutive integrals are generally well represented by the
eneralized Maxwell model expressed through a Prony series (Tschoegl,
989; Christensen, 2013), where the unknown parameters are the shear
nd bulk moduli and their corresponding relaxation times, and the
umber of terms in the series is itself unknown. The identification of
ll these parameters requires the solution of a non-linear regression
roblem with non-negativity constraints (Gerlach and Matzenmiller,
005). If the relaxation times are known a priori, the identification
ask is drastically simplified since the associated regression problem
ecomes linear. There is a vast literature proposing methods for both
dentification scenarios, see also the review in Tschoegl (1989). An
mportant challenge is that the identification problem is known to
e ill-posed (Honerkamp, 1989), meaning that the solution may not
e unique and that small perturbations in the measured data can
roduce high variations on the identified parameters. Among the ap-
roaches in which the relaxation times are chosen upfront and the

∗ Corresponding author.
E-mail address: enzo.marino@unifi.it (E. Marino).

corresponding bulk and shear moduli are identified, we mention the
collocation method by Schapery (1962), with its more recent develop-
ments and applications in Kraus and Niederwald (2017), Kraus et al.
(2017), the windowing technique (Emri and Tschoegl, 1993; Tschoegl
and Emri, 1993), and the multidata method (Cost and Becker, 1970;
Bradshaw and Brinson, 1997). A performance comparison of some of
these methods is presented in Gerlach and Matzenmiller (2005). Ill-
posedness is addressed e.g. using Tikhonov regularization (also known
as ridge regression) (Honerkamp and Weese, 1990; Elster et al., 1992;
Weese, 1993; Diani et al., 2012; Diebels et al., 2018), or the maximum
entropy method (Elster and Honerkamp, 1991). Among the approaches
which solve for both material parameters and relaxation times, we
mention Baumgaertel and Winter (1989), Jalocha et al. (2015), Babaei
et al. (2016), and more recently Yue et al. (2021) and Monaco et al.
(2022), which respectively use Bayesian inference and multi-objective
optimization. Linear and non-linear regression methods are compared
in Orbey and Dealy (1991).

The vast majority of the available approaches make use of exper-
imental data obtained through Dynamic Mechanical Analysis (DMA)
vailable online 31 March 2023
167-6636/© 2023 The Authors. Published by Elsevier Ltd. This is an open access ar

ttps://doi.org/10.1016/j.mechmat.2023.104643
eceived 15 December 2022; Received in revised form 24 March 2023; Accepted 2
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

8 March 2023

https://www.elsevier.com/locate/mecmat
http://www.elsevier.com/locate/mecmat
mailto:enzo.marino@unifi.it
https://doi.org/10.1016/j.mechmat.2023.104643
https://doi.org/10.1016/j.mechmat.2023.104643
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechmat.2023.104643&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Mechanics of Materials 181 (2023) 104643E. Marino et al.

𝜃

w
f
a

f

𝜃

w
s

and quasi-static creep or relaxation curves. These tests do not ex-
ploit the wealth of local information contained in full-field displace-
ment/strain data, nowadays readily accessible through measurement
technologies such as Digital Image Correlation (DIC) and Digital Vol-
ume Correlation (DVC). In Pagnacco et al. (2007), full-field displace-
ment data are deployed for viscoelastic material identification by min-
imizing the difference in the forces obtained from the measured dis-
placements and from finite element analysis. The Virtual Field Method,
a method specifically designed to solve inverse problems of material
identification based on full-field data (Grédiac et al., 2008; Pierron and
Grédiac, 2012; Avril et al., 2004), is applied to viscoelastic materials
in Connesson et al. (2015), Hoshino et al. (2020).

Assuming a viscoelastic material model a priori and calibrating its
parameters by leveraging available experimental information may fail
to result in an accurate description of the material response if the
model is not chosen well to interpret the data. This observation has
prompted the emergence of data-driven approaches as more versatile
alternatives to classical material models. E.g. neural networks are pow-
erful for describing complex mathematical relations due to their flexible
architecture and large number of tunable parameters. First applied in
the context of material modeling by Ghaboussi et al. (1991), they were
more recently developed for viscoelastic material behavior; e.g. they
are used in Jung and Ghaboussi (2006) to learn the viscoelastic stress
update, in Al-Haik et al. (2006), Kopal et al. (2017), Jordan et al.
(2020) to learn temperature-dependent viscoelastic material behav-
ior, and in Linka et al. (2021) to predict the Prony parameters of a
viscoelastic material at finite strains. In Huang et al. (2022), input
convex neural networks are employed to learn the thermodynamic
potentials of viscoelastic materials which govern the material response.
Importantly, Huang et al. (2022) and Xu et al. (2021) train the neural
networks for viscoelasticity by leveraging indirect data, which are
easier to acquire through experimental testing than labeled stress–
strain data tuples. Other authors depart from pure machine-learning
models in favor of physics-augmented approaches; e.g. in González
et al. (2019) data are used for learning viscoelastic corrections to
conventional hyperelastic material models. Another stream of research
bypasses material modeling altogether by running finite element simu-
lations that are directly informed by the data (Kirchdoerfer and Ortiz,
2016; Chinesta et al., 2017), an idea which was recently extended
to viscoelastic material behavior in the frequency domain Salahshoor
and Ortiz (2023). For both machine-learning-based and model-free
approaches, the material behavior is not amenable to physical inter-
pretation nor to mathematical analysis, as it is encoded in a black-box
tool (the trained neural network) or in the raw data set.

We recently proposed a new method for automated discovery of
material models based on full-field displacement and global force data,
which we denote as EUCLID (Efficient Unsupervised Constitutive Law
Identification and Discovery). The idea behind EUCLID is to start from
a very large modeling space (a ‘‘library’’ or ‘‘catalogue’’ of material
models), and to simultaneously perform model selection and parameter
identification by enforcing balance of linear momentum along with
sparsity-promoting regularization. The outcome is a parsimonious and
interpretable expression for the material model. Thus far, EUCLID
was applied to hyperelastic (Flaschel et al., 2021) and elastoplastic
materials (Flaschel et al., 2022a), and more recently generalized to the
wide class of standard dissipative materials (Flaschel et al., 2022b).
This contribution included viscoelasticity; however, the focus was on
evaluating the ability of EUCLID to automatically discriminate between
different categories of constitutive behavior (e.g. elasticity, plasticity
with different types of hardening, viscoelasticity, viscoplasticity), and
for each category catalogues of relatively limited extent were adopted
(including a simple linear viscoelastic model with only one Maxwell
element). For hyperelasticity, we also developed versions of EUCLID
relying on Bayesian regression (Joshi et al., 2022) and on input-convex
2

neural networks (Thakolkaran et al., 2022). 𝜃
In this paper, we extend EUCLID to viscoelasticity. For this case, we
perform model selection a priori and target linear viscoelasticity with
a generalized Maxwell model. This implies no significant limitation, as
a Prony series with a sufficient number of terms is known to be able
to approximate a very general linear viscoelastic behavior. Thus, we
deploy EUCLID for the identification procedure and aim at exploiting
its favorable features to solve the aforementioned issues with identifi-
cation of linear viscoelastic models. The determination of the relaxation
times is addressed by starting with an extremely large catalogue of pos-
sible values, which has no significant impact on the overall efficiency
of the method (and is facilitated by the frequency domain formulation).
To automatically select only a few relevant features, we use Lasso (or
𝑙1) regularization (Tibshirani, 1996), which preserves the stability of
the ridge (𝑙2) regression while promoting sparsity in the set of the
Prony series terms. The non-uniqueness of the solution, which may
manifest itself with two or more Maxwell elements being associated
with very similar relaxation times, is addressed through an automatic
clustering stage. Thus, compared to previous versions of EUCLID, the
main novelty aspects lie in i. the formulation of the problem in the
frequency domain, leading to a different expression of the physics-
driven loss function; ii. the use of Lasso regularization, which leads
to a convex minimization problem and thus significantly enhances the
efficiency; the introduction of the clustering phase, which is a powerful
tool if model features in the library are highly correlated.

The remainder of this paper is organized as follows. After a brief
review of the linear viscoelastic problem in Section 2, Section 3 for-
mulates the inverse problem of material identification in the frequency
domain. In Section 4 we present our two-stage identification strategy,
which is tested and discussed in Section 5. Finally, Section 6 draws the
main conclusions.

2. Brief review of the linear viscoelastic problem

As follows, we introduce some simple relationships valid for linear
viscoelasticity, in the continuum and discretized frameworks, that are
useful for the subsequent developments.

2.1. Linear viscoelastic constitutive laws in the time and frequency domains

Let  ⊂ IR3 be our physical domain and 𝑇 ⊂ IR the time interval
of interest. For any 𝐱 ∈  and 𝑡 ∈ 𝑇 , we preliminarily write the
volumetric–deviatoric decomposition of the Cauchy stress tensor as
𝝈(𝐱, 𝑡) = 𝐬(𝐱, 𝑡) + p(𝐱, 𝑡)𝐈, where 𝐬(𝐱, 𝑡) is the deviatoric stress tensor,
p = 1

3 tr(𝝈) is the pressure, and 𝐈 denotes the identity tensor. Similarly,
for the infinitesimal strain tensor we have 𝜺(𝐱, 𝑡) = 𝐞(𝐱, 𝑡)+𝜃(𝐱, 𝑡)𝐈, where
= 1

3 tr(𝜺) is the volumetric strain, and 𝐞(𝐱, 𝑡) is the deviatoric strain
tensor. The stress–strain relations for a linear isotropic viscoelastic
material can be expressed as

𝐬(𝐱, 𝑡) = ∫

𝑡

−∞
𝐺(𝑡 − 𝜏)�̇�(𝐱, 𝜏)𝑑𝜏 , (1)

p(𝐱, 𝑡) = ∫

𝑡

−∞
𝐾(𝑡 − 𝜏)�̇�(𝐱, 𝜏)𝑑𝜏 , (2)

here 𝐺(𝑡) and 𝐾(𝑡) are independent functions referred to as relaxation
unctions (Christensen, 2013), and we denote the time derivative with
superposed dot.

Let us now consider as (steady-state) strain history a harmonic
unction of time with circular frequency 𝜔 and phase angle 𝜙, i.e.

𝐞(𝐱, 𝑡) = �̄�(𝐱, 𝜔) exp(𝑖𝜙) exp(𝑖𝜔𝑡) = �̂�(𝐱, 𝜔) exp(𝑖𝜔𝑡) , (3)

(𝐱, 𝑡) = �̄�(𝐱, 𝜔) exp(𝑖𝜙) exp(𝑖𝜔𝑡) = �̂�(𝐱, 𝜔) exp(𝑖𝜔𝑡) , (4)

here �̄�(𝐱, 𝜔) and �̄�(𝐱, 𝜔) are the (complex) deviatoric and volumetric
train moduli. Note that we have set �̂�(𝐱, 𝜔) = �̄�(𝐱, 𝜔) exp(𝑖𝜙) and
̂(𝐱, 𝜔) = �̄�(𝐱, 𝜔) exp(𝑖𝜙). Correspondingly, the deviatoric and volumetric
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stresses at steady state must be of the form

𝐬(𝐱, 𝑡) = �̄�(𝐱, 𝜔) exp(𝑖𝜑) exp(𝑖𝜔𝑡) = �̂�(𝐱, 𝜔) exp(𝑖𝜔𝑡) , (5)

(𝐱, 𝑡) = p̄(𝐱, 𝜔) exp(𝑖𝜑) exp(𝑖𝜔𝑡) = p̂(𝐱, 𝜔) exp(𝑖𝜔𝑡) , (6)

here �̄�(𝐱, 𝜔) and p̄(𝐱, 𝜔) are the (complex) deviatoric and volumetric
tress moduli and 𝜑 is the stress phase angle. As for the strains, we
ave set �̂�(𝐱, 𝜔) = �̄�(𝐱, 𝜔) exp(𝑖𝜑) and p̂(𝐱, 𝜔) = p̄(𝐱, 𝜔) exp(𝑖𝜑). The linear
iscoelastic constitutive model in the frequency domain can then be
xpressed by introducing the two complex transfer functions 𝐺∗(𝑖𝜔) and
∗(𝑖𝜔) (Christensen, 2013), such that

�̂�(𝐱, 𝜔) = 𝐺∗(𝑖𝜔) �̂�(𝐱, 𝜔) , (7)

̂ (𝐱, 𝜔) = 𝐾∗(𝑖𝜔) �̂�(𝐱, 𝜔) . (8)

he functions 𝐺∗(𝑖𝜔) and 𝐾∗(𝑖𝜔) are the Fourier transforms of 𝐺(𝑡)
nd 𝐾(𝑡) (Christensen, 2013) and can be decomposed into real and
maginary parts as follows

𝐺∗(𝑖𝜔) = 𝐺𝑠(𝜔) + 𝑖𝐺𝑙(𝜔) ,
∗(𝑖𝜔) = 𝐾𝑠(𝜔) + 𝑖𝐾 𝑙(𝜔) ,

here 𝐺𝑠(𝜔) and 𝐾𝑠(𝜔) are often denoted as shear and bulk storage
oduli, respectively, whereas 𝐺𝑙(𝜔) and 𝐾 𝑙(𝜔) are the shear and bulk
oss moduli.

The relaxation functions 𝐺(𝑡) and 𝐾(𝑡), or equivalently their trans-
orms 𝐺∗(𝑖𝜔) and 𝐾∗(𝑖𝜔), entirely characterize the viscoelastic material
esponse.

.2. Discrete weak form of linear momentum balance in the frequency
omain

Neglecting body forces and inertial effects, the weak form of linear
omentum balance in the frequency domain can be written as


�̂� ∶ 𝛿�̂� 𝑑𝑉 = ∫𝜕𝑡

�̂� ⋅ 𝛿�̂� 𝑑𝑆 , (9)

here �̂�(𝐱, 𝜔) = �̂�(𝐱, 𝜔) + p̂(𝐱, 𝜔)𝐈, 𝜕𝑡 is the Neumann portion of
he domain boundary 𝜕 with imposed traction �̂�(𝐱, 𝜔) (zero in our
ase as we assume displacement-controlled loading), and the equality
as to hold for all admissible test functions 𝛿�̂�, i.e. for all those that
re sufficiently regular and vanish on the Dirichlet boundary 𝜕𝑢.
y introducing a spatial discretization in 𝑛𝑒 linear three-node finite
lements  =

⋃𝑛𝑒
𝑒=1 𝑒 for a plane strain problem, the (complex) internal

orce vector associated with element 𝑒 is obtained as

𝑖𝑛𝑡
𝑒 =∫𝑒

𝐁𝖳𝑒
[

�̂�ℎ(𝐱, 𝜔) + p̂ℎ(𝐱, 𝜔)𝐦
]

𝑑𝑉 =

=

[

𝐺∗(𝑖𝜔)∫𝑒

𝐁𝖳𝑒𝐃𝐁𝐷 𝑑𝑉 +𝐾∗(𝑖𝜔)∫𝑒

𝐛𝖳𝐛 𝑑𝑉
]

�̂�𝑒 , (10)

here �̂�ℎ(𝐱, 𝜔) and p̂ℎ(𝐱, 𝜔) are the spatially discretized counterparts of
̂(𝐱, 𝜔) and p̂(𝐱, 𝜔), respectively, with �̂�ℎ(𝐱, 𝜔) written in Voigt notation;
𝑒 is the discrete strain–displacement differential operator (a 4 × 6
rray); 𝐦 = [1 1 1 0 ]𝖳; 𝐁𝐷 = 𝜫𝐷𝐁𝑒 with 𝜫𝐷 = 𝐈4 −

1
3 𝐦𝐦𝖳 (where 𝐈4 is

the 4 × 4 unit matrix); 𝐛 = 𝐦𝖳𝐁𝑒;

=

⎡

⎢

⎢

⎢

⎢

⎣

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

, (11)

and �̂�𝑒 is the 6 × 1 vector of the element nodal displacements in the
requency domain, �̂�𝑒(𝜔) = �̄�𝑒(𝜔) exp(𝑖𝜙), where �̄�𝑒(𝜔) is the modulus

and 𝜙 the phase shift at each frequency 𝜔. From (10), the (complex)
lement stiffness matrix is thus obtained as

𝑒 =

[

𝐺∗(𝑖𝜔)∫ 𝐁𝖳𝑒𝐃𝐁𝐷 𝑑𝑉 +𝐾∗(𝑖𝜔)∫ 𝐛𝖳𝐛 𝑑𝑉
]

. (12)
3

𝑒 𝑒
m

. EUCLID for identification of linear viscoelastic constitutive
aws

As follows, we describe the four fundamental ingredients of EU-
LID (Flaschel et al., 2021; Joshi et al., 2022; Flaschel et al., 2022a;
hakolkaran et al., 2022): i. a wide and versatile material model

ibrary; ii. the data; iii. the linear momentum balance constraint; iv.
he sparsity constraint.1

.1. Material model library

As anticipated earlier, we describe linear viscoelastic behavior with
he generalized Maxwell model, a highly versatile ansatz in which the
elaxation functions are expressed as the following Prony series

𝐺(𝑡) = 𝐺∞ +
𝑁𝐺
∑

𝛼=1
𝐺𝛼 exp(−

𝑡
𝜏𝐺𝛼

) , (13)

𝐾(𝑡) = 𝐾∞ +
𝑁𝐾
∑

𝛼=1
𝐾𝛼 exp(−

𝑡
𝜏𝐾𝛼

) . (14)

Here 𝐺∞, 𝐺𝛼 , 𝜏𝐺𝛼
with 𝛼 = 1,… , 𝑁𝐺 are the material parameters related

o the deviatoric response, whereas 𝐾∞, 𝐾𝛼 , 𝜏𝐾𝛼
with 𝛼 = 1,… , 𝑁𝐾 are

hose of the volumetric response, and 𝑁𝐺 and 𝑁𝐾 are the numbers of
axwell elements for the deviatoric and volumetric series, respectively.
he generalized Maxwell model is known to be able to describe vis-
oelastic materials of arbitrary complexity if the number of rheological
lements is sufficiently large. Hence, we intend to adopt very large
alues of 𝑁𝐺 and 𝑁𝐾 to obtain a very flexible model ansatz able to
eproduce highly complex material behavior.

Through the Fourier transform of Eqs. (13) and (14), we obtain
∗(𝑖𝜔) and 𝐾∗(𝑖𝜔) as follows

𝐺∗(𝑖𝜔) = 𝐺∞ +
𝑁𝐺
∑

𝛼=1
𝐺𝛼

𝜔2𝜏2𝐺𝛼

1 + 𝜔2𝜏2𝐺𝛼

+ 𝑖
𝑁𝐺
∑

𝛼=1
𝐺𝛼

𝜔𝜏𝐺𝛼

1 + 𝜔2𝜏2𝐺𝛼

, (15)

𝐾∗(𝑖𝜔) = 𝐾∞ +
𝑁𝐾
∑

𝛼=1
𝐾𝛼

𝜔2𝜏2𝐾𝛼

1 + 𝜔2𝜏2𝐾𝛼

+ 𝑖
𝑁𝐾
∑

𝛼=1
𝐾𝛼

𝜔𝜏𝐾𝛼

1 + 𝜔2𝜏2𝐾𝛼

, (16)

hich can be conveniently written in a more compact form as

𝐺∗(𝑖𝜔) = 𝑮𝖳𝑩𝑠
𝐺(𝜔; 𝜏𝐺1

...𝜏𝐺𝑁𝐺
) + 𝑖𝑮𝖳𝑩𝑙

𝐺(𝜔; 𝜏𝐺1
...𝜏𝐺𝑁𝐺

) , (17)

𝐾∗(𝑖𝜔) = 𝑲𝖳𝑩𝑠
𝐾 (𝜔; 𝜏𝐾1

...𝜏𝐾𝑁𝐾
) + 𝑖𝑲𝖳𝑩𝑙

𝐾 (𝜔; 𝜏𝐾1
...𝜏𝐾𝑁𝐾

) , (18)

where

𝑮 =
[

𝐺∞, 𝐺1,… , 𝐺𝑁𝐺

]𝖳
,

𝑩𝑠
𝐺 =

⎡

⎢

⎢

⎣

1,
𝜔2𝜏2𝐺1

1 + 𝜔2𝜏2𝐺1

,… ,
𝜔2𝜏2𝐺𝑁𝐺

1 + 𝜔2𝜏2𝐺𝑁𝐺

⎤

⎥

⎥

⎦

𝖳

,

𝑩𝑙
𝐺 =

⎡

⎢

⎢

⎣

0,
𝜔𝜏𝐺1

1 + 𝜔2𝜏2𝐺1

,… ,
𝜔𝜏𝐺𝑁𝐺

1 + 𝜔2𝜏2𝐺𝑁𝐺

⎤

⎥

⎥

⎦

𝖳

,

𝑲 =
[

𝐾∞, 𝐾1,… , 𝐾𝑁𝐾

]𝖳
,

𝑩𝑠
𝐾 =

⎡

⎢

⎢

⎣

1,
𝜔2𝜏2𝐾1

1 + 𝜔2𝜏2𝐾1

,… ,
𝜔2𝜏2𝐾𝑁𝐾

1 + 𝜔2𝜏2𝐾𝑁𝐾

⎤

⎥

⎥

⎦

𝖳

,

𝑩𝑙
𝐾 =

⎡

⎢

⎢

⎣

0,
𝜔𝜏𝐾1

1 + 𝜔2𝜏2𝐾1

,… ,
𝜔𝜏𝐾𝑁𝐾

1 + 𝜔2𝜏2𝐾𝑁𝐾

⎤

⎥

⎥

⎦

𝖳

.

1 Conceptually, one would expect the data to be described first. However,
ince in the present investigation the data are generated numerically, for the
larity of the presentation it is more convenient to start from the material
odel library, part of which is then used for finite element data generation.
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The objective of the identification is thus to select, out of the
very wide initial library (containing 𝑁𝐾 +𝑁𝐺 Maxwell elements), the

inimum number of terms which accurately describes the material
ehavior, and to calibrate the corresponding values of the bulk and
hear moduli.

.2. Input data

In the spirit of EUCLID, we rely on the availability of experimental
ull-field displacements (e.g. from DIC/DVC) and net force data, and do
ot use labeled stress–strain data pairs. Possible data from DMA testing,
f available, could be exploited additionally but are not considered here.

In this study, we employ data generated numerically by solving the
orward discretized problem of linear viscoelasticity in the frequency
omain outlined in Section 2.2. For each frequency, the global algebraic
ystem of equations in the unknown nodal displacements is obtained
y assembling the element stiffness matrices and internal force vectors
n Eqs. (10) and (12) and applying Dirichlet boundary conditions. To
et these, we choose first the frequency range [𝜔min, 𝜔max] relevant for
he material at hand, and then the number 𝑁𝜔 of frequencies to be
xcited during the test. Then, we assign the modulus (and possibly
he phase angle) of the applied displacements. Note that the lowest
requency 𝜔min directly affects the capability of the model to discover
ery large relaxation times. Since we need to identify the moduli at
‘infinite’’ time, a sufficiently small value for 𝜔min must be used. Being
he problem formulated in the frequency domain, this is not detrimental
or the efficiency of data generation.

We mimic experimental displacements from DIC or DVC, which are
nevitably affected by noise, by adding to the numerical data a spa-
ially uncorrelated Gaussian white noise with zero mean and standard
eviation 𝜎. The noise is generated in the time domain by choosing, at
ach node of the mesh, a constant amplitude and a different seed for the
eneration of random phases. The noise in the frequency domain is then
btained through Fast Fourier Transform and added to the noise-free
olution of the forward problem at the chosen 𝑁𝜔 frequencies.

.3. Enforcing balance of linear momentum on the data

With data at hand, and having formulated a wide material model
ibrary, we now seek to identify which terms in the library are relevant
o describe the material response as observed in the data, and to
imultaneously compute the corresponding unknown material parame-
ers. As full-field displacements in the bulk and net force data for the
oaded portions of the boundary are known at different frequencies,
he material parameters remain the only unknowns in the weak linear
omentum balance equations. Hence, these equations can serve as

he basis to formulate a physics-driven inverse problem for material
arameter identification. To set this problem, it is convenient to rear-
ange Eq. (10) to express the elemental internal force vector as a linear
unction of the unknown shear and bulk moduli, i.e. as 𝒇 𝑖𝑛𝑡

𝑒 = 𝒂𝑒𝜽.
ere 𝜽 = [𝑮;𝑲] =

[

𝐺∞, 𝐺1,… , 𝐺𝑁𝐺
, 𝐾∞, 𝐾1,… , 𝐾𝑁𝐾

]𝖳
is a 𝑁𝑓 × 1

rray collecting all the unknown shear and bulk moduli,2 with 𝑁𝑓 =
𝑁𝐺+𝑁𝐾+2), and 𝒂𝑒 =

[

𝒂𝐺𝑒 ,𝒂
𝐾
𝑒
]

is a 6×𝑁𝑓 matrix, with the sub-matrices
𝒂𝐺𝑒 and 𝒂𝐾𝑒 given by

𝒂𝐺𝑒 =

[

∫𝑒

(

𝐁𝖳𝐃𝐁𝐷
)

𝑑𝑉 �̂�𝑒

]

[

𝑩𝑠
𝐺 + 𝑖𝑩𝑙

𝐺
]𝖳 , (19)

𝒂𝐾𝑒 =

[

∫𝑒

(

𝐛𝖳𝐛
)

𝑑𝑉 �̂�𝑒

]

[

𝑩𝑠
𝐾 + 𝑖𝑩𝑙

𝐾
]𝖳 . (20)

Let 𝐷 = {(𝑎, 𝑖) ∶ 𝑎 = 1,… , 𝑁 ; 𝑖 = 1, 2} denote the set of all
nodal degrees of freedom. 𝐷 is split in two subsets of internal and

2 We denote with [(⋅) , (⋅)] and with [(⋅) ; (⋅)] horizontal and vertical
oncatenations of arrays, respectively.
4

oundary degrees of freedom, namely 𝐷𝑖𝑛𝑡 ⊂ 𝐷 and 𝐷𝑏𝑛𝑑 = 𝐷 ⧵
𝑖𝑛𝑡, respectively. Due to the assumption of displacement-controlled

xperiments, we have on the domain boundary either homogeneous
eumann or Dirichlet boundary conditions. Let 𝐷𝑏𝑛𝑑,𝛼 ⊆ 𝐷𝑏𝑛𝑑 with
= 1,… , 𝑁𝑏𝑛𝑑 , such that 𝐷𝑏𝑛𝑑,𝛼 ∩𝐷𝑏𝑛𝑑,𝛽 = ∅ for 𝛼 ≠ 𝛽, be the boundary

ubsets where Dirichlet boundary conditions are enforced and reaction
orces can be measured. Note that, on the generic subset 𝐷𝑏𝑛𝑑,𝛼 , only
he net reaction force �̂�𝛼 (given by the sum of the reaction forces at
ll degrees of freedom in the subset) is assumed to be known, as it is
ealistically measurable through load cells.

Through the assembly of the element matrices 𝒂𝑒, the global nodal
orce vector is obtained as a linear function of the unknown moduli
(𝜔)𝜽 = �̂� (𝜔), where the system matrix 𝑨 has dimensions 2𝑁 × 𝑁𝑓 .

Let 𝑨𝑖𝑛𝑡 = 𝑨
|𝐷𝑖𝑛𝑡 be the restriction of the matrix 𝑨 to the internal

nodal degrees of freedom 𝐷𝑖𝑛𝑡 and 𝑨𝑏𝑛𝑑 = [𝑨
|𝐷𝑏𝑛𝑑,1 ;… ;𝑨

|𝐷𝑏𝑛𝑑,𝑁𝑏𝑛𝑑 ]
be the vertical concatenation of the restrictions of the matrix 𝑨 to
the boundary degrees of freedom 𝐷𝑏𝑛𝑑,𝛼 with 𝛼 = 1,… , 𝑁𝑏𝑛𝑑 . The
corresponding restrictions on the vector �̂� are �̂� 𝑖𝑛𝑡 = �̂�

|𝐷𝑖𝑛𝑡 = 𝟎 (since
we do not have body forces) and �̂� 𝑏𝑛𝑑 = [�̂�1;… ; �̂�𝑁𝑏𝑛𝑑 ].

The above matrices 𝑨𝑖𝑛𝑡(𝜔), 𝑨𝑏𝑛𝑑 (𝜔) and reaction force vector �̂� 𝑏𝑛𝑑 (𝜔)
are frequency dependent. As mentioned in Section 3.2, we assume
to perform an experiment in which 𝑁𝜔 frequencies are excited. By
vertically concatenating the contribution of each frequency 𝜔ℎ with
ℎ = 1,… , 𝑁𝜔, we build the system 𝐀𝜽 = 𝐟 , where

𝐀 =
[

𝑨𝑖𝑛𝑡(𝜔1);… ;𝑨𝑖𝑛𝑡(𝜔𝑁𝜔
);𝑨𝑏𝑛𝑑 (𝜔1);… ;𝑨𝑏𝑛𝑑 (𝜔𝑁𝜔

)
]

, (21)

𝐟 =
[

𝒇 𝑖𝑛𝑡(𝜔1);… ;𝒇 𝑖𝑛𝑡(𝜔𝑁𝜔
);𝒇 𝑏𝑛𝑑 (𝜔1);… ;𝒇 𝑏𝑛𝑑 (𝜔𝑁𝜔

)
]

, (22)

which condenses all the measured information on the material response
(combining full-field displacements and reaction forces) corresponding
to the excited frequencies.

Finally we note that the obtained complex system 𝐀𝜽 = 𝐟 is
equivalent to the two real systems of equations involving its real and
imaginary parts. Hence, the final linear system of real equations A𝜽 =
b is obtained by vertically concatenating the real and imaginary parts
of 𝐀 and 𝐟 , i.e., A = [ℜ(𝐀);ℑ(𝐀)] and b = [ℜ(𝐟 );ℑ(𝐟 )].

3.4. Sparsity promotion through Lasso regularization

The linear system obtained in the previous section is overdeter-
mined and can be solved in a least square sense as follows

𝜽𝑜𝑝𝑡 = argmin
𝜽

‖A𝜽 − b‖2 . (23)

However, due to the ill-posed nature of the problem, ordinary least
square estimates obtained by (23) are often not satisfactory. Further,
recall that we do not know the relaxation times upfront and thus start
from a highly flexible model ansatz containing a very large number
of Maxwell elements (see Section 3.1). This implies that solving (23)
would in general result in a highly complicated material model with a
very large number of material parameters (as large as in the assumed
library). In the spirit of EUCLID, we seek to promote sparsity, i.e. to
automatically select only a small subset of the material parameters con-
tained in the model library to obtain a parsimonious model. To this end,
we exploit the Lasso (least absolute shrinkage and selection operator)
regularization technique (Tibshirani, 1996) (see also the preliminary
work in Frank and Friedman (1993)) and rewrite the optimization
problem in Eq. (23) as follows

𝜽𝑜𝑝𝑡 = argmin
𝜽

⎛

⎜

⎜

⎝

‖A𝜽 − b‖2 + 𝜆
𝑁𝑓
∑

𝑖=1
|𝜃𝑖|

⎞

⎟

⎟

⎠

. (24)

The regularization term added to the loss function penalizes solution
vectors with many non-zero entries and hence promotes sparsity in 𝜽.
The penalty parameter 𝜆 controls the importance of the regularization
term relative to the linear momentum balance term. The higher 𝜆, the

larger the number of features which are set to zero in the final solution



Mechanics of Materials 181 (2023) 104643E. Marino et al.
vector, i.e. removed from our material model library. An intuitive rule
for selecting 𝜆 is discussed in Section 4. To solve (24), we use the
built-in Matlab function lasso, which employs the coordinate descent
technique (Friedman et al., 2010).

4. Two-stage identification strategy

To promote parsimony in the most effective way, we propose an
identification strategy based on two subsequent stages. In the first
stage, the Lasso-regularized optimization problem (24) is solved to
obtain a sparse solution with a small number of Maxwell elements; in
the second stage, the sparsity of the solution is further enhanced by
merging Maxwell elements with similar relaxation times.

4.1. Stage 1: sparse regression

The first stage of the discovery process consist in the following steps:

1. Set the size of the material library, i.e. choose 𝑁𝐺 and 𝑁𝐾 , from
which the total number of unknown model features results as
𝑁𝑓 = 𝑁𝐺 +𝑁𝐾 + 2.

2. Choose the range of relaxation times [𝜏min, 𝜏max] relevant for the
material at hand and a discrete set of relaxation times in the
range. We assume the 𝑁𝐺 relaxation times for the shear defor-
mation and the 𝑁𝐾 relaxation times for the bulk deformation
to be both equally spaced on a logarithmic scale in the chosen
range.

3. Build the arrays A and b in (24) as described in Section 3.3.
4. Define a discrete set of 𝜆 values from very small (corresponding

to almost no regularization) to very large (causing all features
to be set to zero) and solve (24) for each of these values.

5. Set a threshold 𝑒𝜆 for the Mean Squared Error (MSE), defined
as ‖A𝜽 − b‖2∕𝑁𝑓 , and identify the largest value of 𝜆 (i.e. the
one leading to the most parsimonious model) which corresponds
to an MSE below the threshold, 𝜆𝑜𝑝𝑡. Further clarification will
follow in Section 5.3.

The solution of (24) obtained for 𝜆 = 𝜆𝑜𝑝𝑡 is the outcome of stage
1. It delivers a material model characterized by a drastically reduced
number of features 𝜽𝑜𝑝𝑡,(1) ⊂ 𝜽𝑜𝑝𝑡 with respect to the initially chosen
number 𝑁𝑓 . The model is thus at the same time parsimonious and
accurate, whereby the accuracy (in the satisfaction of linear momentum
balance on the data) is dictated by the user-defined choice of 𝑒𝜆.

4.2. Stage 2: clustering

The standard EUCLID strategy proposed in Flaschel et al. (2021,
2022a,b) is limited to stage 1. With respect to the previous investiga-
tions, the present linear viscoelastic case displays two unique features
which motivate the introduction of a second stage, namely,

• the a priori choice of a discrete set of relaxation times stem-
ming from the fine discretization (in the logarithmic scale) of a
relaxation time interval, and

• the equivalence of two (or more) Maxwell elements with the same
relaxation times and different shear (bulk) moduli to a single
Maxwell element with the same relaxation time and shear (bulk)
modulus equal to the sum of the two (or more).

This equivalence naturally calls for a clustering procedure able to
condensate Maxwell elements with close relaxation times and thus to
further reduce the number of features, reaching the highest level of
parsimony in the material model. The ensuing second stage compen-
sates for the difficulties of Lasso regression in choosing among almost
linearly dependent features, such as in the case of Maxwell elements
with very close relaxation times. Moreover, the clustering algorithm in
stage 2 is extremely efficient, since it operates on the results of stage
5

Fig. 1. Mean Squared Error and number of non-zero features vs. 𝜆 for the noise-free
case (𝜎 = 0).

1, for which the number of features is already reduced by orders of
magnitude with respect to the initial catalogue size.

Let 𝑁 (1)
𝐺 < 𝑁𝐺 and 𝑁 (1)

𝐾 < 𝑁𝐾 be the number of Maxwell elements
with non-zero moduli selected in stage 1 for shear and bulk deforma-
tions, respectively, such that 𝑁 (1)

𝑓 = 𝑁 (1)
𝐺 + 𝑁 (1)

𝐾 + 2 is the number
of non-zero model features (dimension of 𝜽𝑜𝑝𝑡,(1)) after stage 1. Our
objective is to find the minimum number of clusters 𝑁 (2) = 𝑁 (2)

𝐺 = 𝑁 (2)
𝐾

such that the material model obtained by condensing the Maxwell
elements belonging to each cluster accurately describes the material
response.3

To this end, we gradually increase the number of clusters, 𝑖𝑐𝑙𝑠,
starting from 1. For each 𝑖𝑐𝑙𝑠 we deploy a k-means clustering algorithm,
based on Lloyd (1982) and implemented in the built-in Matlab function
kmeans, which partitions the active relaxation times selected in stage
1 into 𝑖𝑐𝑙𝑠 clusters by minimizing the sum of the distances of the
relaxation times within a cluster to the centroid relaxation time. After
clustering, the centroid of a cluster represents the corresponding relax-
ation time, whereas the sum of the moduli belonging to that cluster is
the corresponding modulus. For each 𝑖𝑐𝑙𝑠 we compute the associated
MSE, and the optimal number of clusters is automatically identified as
the value of 𝑖𝑐𝑙𝑠 at which the MSE decreases abruptly. More details will
follow in Section 5.

5. Numerical results

In this section we test the performance of EUCLID by applying the
identification strategy described in Section 4 to numerically generated
data augmented with artificial noise.

5.1. Data generation

Data are generated numerically by adopting a generalized Maxwell
model characterized by a total of 𝑁𝑓 = 12 rheological components
with 𝑁𝐺 = 𝑁𝐾 = 5. These ‘‘true’’ parameters, selected from Kim et al.
(2010), are reported in Table 1.

The specimen has a rectangular shape with dimensions 𝐿𝑥 = 100mm
and 𝐿𝑦 = 500mm. The two vertical sides are free, the bottom side
is fixed in both directions (𝑢𝑥 = 𝑢𝑦 = 0), whereas on the top side

3 We assume here that the optimal final number of Maxwell elements is
the same for shear and bulk deformations. This assumption, however, could
be easily removed by formulating two separate clustering algorithms, one for
the shear and one for the bulk elements.
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Fig. 2. Activated shear (a) and bulk (b) moduli over the entire library of rheological components after stage 1 for the noise-free case (𝜎 = 0).
Fig. 3. Activated shear (a) and bulk (b) moduli and corresponding relaxation times after stage 1 for the noise-free case (𝜎 = 0).
Fig. 4. Mean Squared Error vs. number of clusters for the noise-free case (𝜎 = 0).

𝑢𝑥 = 0 and 𝑢𝑦 is given by a periodic function �̄�𝑦(𝜔𝑗 ) exp(𝑖𝜙𝑗 ) with 𝑗 =
1,… , 𝑁𝜔, such that 𝑁𝜔 frequencies equally spaced over a logarithmic
scale spanning from 𝜔min = 0.0009 rad∕s to 𝜔max = 907.5291 rad∕s are
excited. In this study we have set 𝑁𝜔 = 15.

We performed several tests considering different levels of noise. In
the following, we report the results for the two most representative
cases, namely the one with no noise and the one with a magnitude
6

Table 1
True material parameters selected from Kim et al. (2010).
𝐺 𝜏𝐺 𝐾 𝜏𝐾
[N∕mm2] [s] [N∕mm2] [s]

500 – 2000 –
779 0.0728 2242 0.007693

1019 0.4824 2712 0.063440
529 3.9150 2366 0.457000
201.1 30.2100 1097 4.197000
96 629.4000 460.1 35.120000

of the noise which starts influencing results to a non-negligible extent.
This noise level is quite high, indicating a low sensitivity of the pro-
posed strategy to noisy data (at least for the type of noise considered
here). All the other tested cases with intermediate levels of noise are
not discussed, as their results are nearly indistinguishable from those
of the noise-free case.

5.2. Inverse problem settings

For the material library we choose 𝑁𝐺 = 𝑁𝐾 = 300, hence our
identification procedure starts with a total number of features 𝑁𝑓 =
602. Additionally, we choose a relaxation time range spanning seven
orders of magnitude between 𝜏min = 10−3 s and 𝜏max = 104 s. The 300
candidate relaxation times for both shear and bulk moduli are taken
equally spaced on a logarithmic scale ranging from 𝜏min to 𝜏max. For the
regularization parameter 𝜆, we consider 1000 values equally spaced in
a logarithmic scale between 10−12 and 10−1.
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Fig. 5. Comparison of true and identified response functions ordered as: shear loss, shear storage, bulk loss, bulk storage (row-wise from left to right) and with increasing number
of clusters from 1 to 5 (column-wise from top to bottom) for the noise-free case (𝜎 = 0).
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5.3. Noise-free case

Fig. 1 shows the MSE obtained for the range of tested values
of the regularization parameter 𝜆. As 𝜆 increases, the MSE increases
accordingly, indicating that linear momentum balance is satisfied with
decreasing accuracy; at the same time, the number of active (non-zero)
features in the identified model decreases. Thus the model becomes
increasingly simple and decreasingly accurate, confirming a trend that
was consistently encountered in the previous investigations on EU-
CLID (Flaschel et al., 2021, 2022a,b). The horizontal line corresponds
to the MSE threshold (here 𝑒𝜆 = 1 × 10−5) selected by the user as the
accepted level of error in the satisfaction of linear momentum balance.
The largest value of 𝜆 leading to an MSE below this threshold, 𝜆𝑜𝑝𝑡, is
chosen as the best compromise between complexity and accuracy (in
our case, 𝜆𝑜𝑝𝑡 = 0.0025). Note, however, than any value of 𝜆 larger
than about 10−6 leads to approximately the same number of non-zero
features, hence the specific choice of 𝜆𝑜𝑝𝑡 (or of 𝑒𝜆) is not crucial for the
success of the method.

With this value of 𝜆, the active parameters automatically selected by
sparse regression are illustrated in Fig. 2, which gives the magnitude
of the identified moduli vs. their position in the features vector. Out
of the original 602 features, the vast majority are automatically set to
zero and only 22 are retained (11 for the shear and 11 for the bulk
response). Fig. 3 provides further details by illustrating the selected
moduli (excluding 𝐺∞ and 𝐾∞, so that we now show 10 shear and 10
bulk moduli) with the corresponding relaxation times in comparison
with the true moduli hidden in the input data. It is evident that the
active moduli correspond to quite accurate relaxation times; however,
the number of active moduli is the double of the true number, as in
the neighborhood of each true relaxation time two moduli are active
after stage 1. A closer look reveals that, for each couple of moduli
corresponding to the neighborhood of a given relaxation time, the sum
of the moduli is very close to the true modulus. Indeed, two Maxwell
elements with equal (in our case, very similar) relaxation times are
equivalent to a single Maxwell element with the same relaxation time,
and modulus given by the sum of the moduli. Thus, the results in
Fig. 3 motivate the need for stage 2 of the identification procedure (see
Section 4.2).

To set an automated procedure to group Maxwell elements, we loop
over the number of clusters, 𝑖𝑐𝑙𝑠, starting from 1 and ending at the
unclustered number of moduli (in the present case, 11 for shear and
11 for bulk). For each 𝑖𝑐𝑙𝑠 we perform clustering using the k-means
algorithm implemented in Matlab and compute the MSE. Results are
shown in Fig. 4, and indicate that a sudden decrease in the MSE (three
orders of magnitude) is obtained as the optimal number of clusters is
reached (5 in our case). For a number of clusters between 5 and 7
the MSE does not vary appreciably, whereas for a number larger than
7 it slowly decreases further. The observed trend indicates that the
choice of 5 as the optimal number of clusters can be easily automatized
introducing a suitable criterion on the MSE drop.

The final identified material parameters after stage 2 are reported
in Table 2. To assess their quality, Fig. 5 reports a comparison of
identified (red dashed line) vs. true (solid black line) loss and storage
functions, both for shear and bulk deformations, and for different
number of clusters. Column-wise, the figure shows the improvement of
the agreement as the number of clusters increases until an excellent
matching is achieved with 5 clusters. Plots with higher number of
clusters are not reported since they would be indistinguishable from
those with 5 clusters.

5.4. Noisy data case

We now test the sensitivity of the proposed strategy to noise by
adding to the data an artificial noise with a quite high standard de-
viation 𝜎 = 1 × 10−2 mm, corresponding to a noise-excitation standard
deviation ratio of about 0.001. In additional tests which we do not
8

Table 2
Identified parameters after the two-stage procedure for the
noise-free case (𝜎 = 0).
𝐺 𝜏𝐺 𝐾 𝜏𝐾
[N∕mm2] [s] [N∕mm2] [s]

499 – 2000 –
778 0.0726 2239 0.0075

1019 0.4793 2711 0.0635
527 3.9232 2365 0.4541
201 30.4283 1095 4.1405
96 622.7509 460 35.7694

Fig. 6. Mean Squared Error and number of non-zero features vs. 𝜆 with noise 𝜎 =
1 × 10−2 mm.

show here, all noise levels below this value gave results practically
indistinguishable from the noise-free results.

Fig. 6 shows the MSE vs. the regularization parameter 𝜆, which
confirms the trend of Fig. 1 but expectedly with larger MSE values. We
now choose an error threshold 𝑒𝜆 = 2 × 10−4 and identify 𝜆𝑜𝑝𝑡 = 0.0062
(however, also in this case any 𝜆 larger than about 10−5 is equally
effective in inducing sparsity). The parameters automatically selected
by Lasso in stage 1 are shown in Fig. 7, and Fig. 8 illustrates the selected
moduli with their corresponding relaxation times in comparison with
the true values. As in the noise-free case, most of the features are
suppressed in stage 1; now 12 features remain active for the shear
response and 11 for the bulk response. As highlighted in the insert
of Fig. 7(a), an extra feature with respect to the noise-free case is
now active, corresponding to the upper bound of the relaxation times.
This indicates that the noise disturbance affects the small frequency
response, leading to the identification of 𝐺∞ = 495N∕mm2 as opposed
to the true value of 500N∕mm2. Interestingly, the identification of 𝐾∞
is instead almost unaffected by the presence of noise.

Fig. 9 shows the results of the clustering procedure in stage 2 and re-
veals once again a drastic drop of the MSE at 5 clusters. However, while
in the noise-free case the use of 6 or 7 clusters leads to no improvement,
here considering 6 clusters does improve results at the small cost of
adding one extra rheological component. To understand the reason,
we compare in Table 3 the final identified material parameters for the
choices of 5 and 6 clusters. It is clear that with 5 clusters the largest
relaxation time for the shear deformation is not correctly identified,
as no shear modulus should be activated around 1571 s. Instead, with
6 clusters, a shear modulus much closer to the true value (95N∕mm2

vs. 96N∕mm2) is correctly activated in the neighborhood of the true
relaxation time 629.40 s. Moreover, a shear modulus of 3N∕mm2 is
activated at the upper limit of the relaxation times (1 × 104 s), indicating
that such a value improves the accuracy of the long-term response. This
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Fig. 7. Activated shear (a) and bulk (b) moduli over the entire library of rheological components after stage 1 with noise 𝜎 = 1 × 10−2 mm.
Fig. 8. Activated shear (a) and bulk (b) moduli and corresponding relaxation times after stage 1 with noise 𝜎 = 1 × 10−2 mm.
Fig. 9. Mean Squared Error vs. number of clusters with noise 𝜎 = 1 × 10−2 mm.

is confirmed by noting that, summing this value to the identified long-
term shear modulus, a better 𝐺∞ is found (495+3 = 498N∕mm2, which
is much closer to the true value).

Finally, we plot in Fig. 10 the comparison between identified and
true shear/bulk loss/storage functions. As expected, for the 5-cluster
solution a small deviation from the true response is observed at very
9

low frequencies (long-term response). Consistently with Fig. 9, as a
sixth cluster is added (bottom row), an excellent agreement with the
true response is achieved at all frequencies.

6. Conclusions

We extended EUCLID, an automated material model discovery and
identification strategy relying on full-field displacement and net force
data, to linear viscoelasticity. For this case, we perform a priori model
selection and adopt a generalized Maxwell model expressed by a Prony
series, which is known to be able to approximate an arbitrarily complex
linear viscoelastic behavior if a sufficiently large number of terms is
included. For the identification procedure we deploy EUCLID, which
consists of four ingredients: i. the data, assumed to be delivered from
material testing on a single specimen, using a loading excitation with
a sufficiently rich frequency content and monitoring the full-field dis-
placements (e.g. with DIC); ii. a very wide material model library
— in our case, a very large number of terms in the Prony series,
corresponding to equally spaced relaxation times on a logarithmic scale
within a chosen range; iii. the physics constraint of linear momentum
balance, enforced weakly on the data both in the interior and on
the loaded sides of the specimen; iv. the sparsity constraint, enforced
through sparsity-promoting regularization in the optimization problem.

The devised strategy comprises two stages. Stage 1 relies on sparse
regression; starting from a very large number of terms in the Prony
series, it enforces linear momentum balance on the data and exploits
sparsity-promoting regularization to drastically reduce the number of
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Fig. 10. Comparisons of true and identified response functions ordered as: shear loss, shear storage, bulk loss, bulk storage (rows-wise from left to write) and with increasing
number of clusters from 2 to 6 (columns-wise from top to bottom). Noisy data with 𝜎 = 1 × 10−2 mm.
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Table 3
Identified parameters with 5 clusters after the two-stage procedure with noise 𝜎 = 1 × 10−2 mm.
5 Clusters 6 Clusters

𝐺 𝜏𝐺 𝐾 𝜏𝐾 𝐺 𝜏𝐺 𝐾 𝜏𝐾
[N∕mm2] [s] [N∕mm2] [s] [N∕mm2] [s] [N∕mm2] [s]

495 – 1999 – 495 – 1999 –
777 0.0726 2237 0.0080 777 0.0726 2110 0.0078

1017 0.4793 2709 0.0635 1017 0.4793 127 0.0082
531 3.9232 2368 0.4541 531 3.9232 2709 0.0635
201 30.4283 1091 4.1405 201 30.4283 2368 0.4541
99 1571.1208 457 35.7694 95 622.7509 1091 4.1405

3 10000 457 35.7694
terms (identifying the few most relevant relaxation times) and simulta-
neously identify the values of the non-zero material parameters (i.e. the
corresponding bulk and shear moduli). Stage 2 relies on k-means
clustering; starting from the reduced set of terms in the Prony series
from stage 1, it further reduces their number by grouping together
Maxwell elements with very close relaxation times and summing the
corresponding moduli. Automated procedures are proposed for the
choice of the regularization parameter in stage 1 and of the number
of clusters in stage 2. The overall strategy is demonstrated on artificial
numerical data, both without and with the addition of noise, and shown
to efficiently and accurately identify a linear viscoelastic model with
five relaxation times across four orders of magnitude, out of a library
with several hundreds of terms spanning relaxation times across seven
orders of magnitude.

Further research should address the application to real experimental
data, which is expected to pose challenges related to the quality of the
DIC measurements (e.g., loss of grid points during loading, unavail-
able measurements close to the boundary, non-Gaussian noise). A fur-
ther interesting and meaningful extension would be that to non-linear
viscoelasticity.
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