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SUMMARY

The Dutch energy strategy expects renewable energy sources like wind and solar to pro-
vide around 70% of the yearly electricity by 2030. In order to achieve these targets, it is
crucial to ensure cost-effective design and operation of wind farms. Optimizing design
variables, such as wind farm layout, requires fast and accurate numerical models. Simple
engineering models fail to capture the flow physics associated, for example, with wind
turbine wakes. An alternative is to use Reynolds-Averaged Navier-Stokes (RANS) solvers.
However, these models have structural shortcomings for industrial applications and de-
velopment of better models has stalled in the past decades. More recently, data-driven
techniques have been used to try and derive better, application-specific models. The
field is still very young and it is unclear how much impact can data-driven techniques
make in the field of RANS-based turbulence modeling.

In this work, a combined methodology between a k-corrective frozen-RANS approach
and sparse symbolic regression is used to derive data-driven nonlinear RANS turbulence
models for flow around scaled wind turbines. The resulting models give significantly
better predictions than the baseline k-ε model for both velocity and turbulent kinetic
energy (tke) in the near and far wake of the turbines with a very close match between
reference LES and corrected RANS data. For the velocity and the tke fields, the errors as
compared to the baseline models are reduced by 95% and 80%, respectively. The dataset
includes three test cases with either two or three turbines. The training is first done on
one test case, and then validated on the two other ones.

The present approach was initially developed by Schmelzer et al. [79], who referred
to it as SPARTA, and applied to 2D test cases with moderate Reynolds numbers. For this
approach to become usable for wind engineering applications, significant changes were
necessary. Besides this, in literature, many recent examples of data-driven turbulence
modeling can be found. However, the large majority of these publications focus on 2D
benchmark cases with low to moderate Reynolds numbers. In this work, results from
3D cases at a Re ≈ 100,000 were presented on a more industrially relevant case. This
highlights the novelty of this work.

While good results were obtained, similar to traditional Nonlinear Eddy Viscosity
Models, the models initially showed numerical instability. These instabilities were more
or less severe depending on model complexity, mesh density, and input feature set. En-
suring numerical stability of the models was possible by introducing two simple general
limiters that are active only in a very limited amount of cells, where a positive coupling
loop was responsible for the divergence of the entire simulation.

To conclude, the present work demonstrates the applicability and shows the limita-
tions of the SPARTA data-driven modeling approach for wind turbine wake predictions,
which is far more complex than the cases investigated before. For the future, the applica-
tion of the methodology to a larger dataset that also includes full-scale wind turbines is
recommended. This would allow to assess how general the derived models are and how

vii



viii SUMMARY

much training data is necessary to obtain usable models. Additionally, the efficiency
of the algorithm used for training the models can be a limiting factor and smart sub-
sampling of the input dataset or modification of the algorithm may become necessary
for larger datasets.



SAMENVATTING

De Nederlandse energie strategie bevat de verwachting dat hernieuwbare bronnen zo-
als wind en zon 70% van de jaarlijkse elektriciteitsvoorziening zal beslaan tegen het jaar
2030. Om dit doel te bereiken is het cruciaal de kosteneffectiviteit te waarborgen van het
ontwerp en de uitvoering van windmolenparken. Het optimalizeren van ontwerpvaria-
belen, zoals de indeling, vergt snelle en accurate numerieke modellen. Simpele techni-
sche modellen zijn niet in staat om de vloeistofdynamica te beschrijven van bijvoorbeeld
de zog van de turbines. Een alternatief hiervoor is het gebruik van Reynolds-gemiddelde
Navier-Stokes (RANS) computermodellen. Echter, deze modellen bevatten structurele
gebreken voor het gebruik in industrie en de ontwikkeling van betere modellen is ach-
tergebleven in de afgelopen decennia. Recenter is gepoogd datagedreven technieken te
gebruiken om applicatie-specifieke modellen af te leiden. Het onderzoeksveld is echter
nog jong en het is onduidelijk hoeveel datagedreven technieken teweeg kunnen brengen
in het veld van RANS-gebaseerde turbulentiemodellering.

In het huidige werk is een gecombineerde methodologie van een k-correctieve be-
vroren RANS benadering en ijle symbolische regressie gebruikt om datagedreven niet-
lineaire RANS turbulentiemodellen voor stroming rondom geschaalde windturbines af
te leiden. Het resulterende model maakt significant betere voorspellingen dan het k − ϵ
basismodel voor zowel snelheid als tubulente kinetische energie (tke) in de nabije als-
mede de verre zog van de turbines met een nauwe overeenkomst tussen de referentie
LES en gecorrigeerde RANS data. De fouten van de snelheids- en tke velden zijn in ver-
gelijking met het basismodel afgenomen met respectievelijk 95% en 80%. De dataset
bevat drie testsituaties met twee of drie turbines. De training is uitgevoerd met één test-
situatie, en dan gevalideerd met de twee andere.

De huidige aanpak was ontwikkeld door Schmelzer et al. [79] onder de naam SPARTA,
die het toepaste op 2D testsituaties met Reynoldsgetallen van gematigde waarden. Om
deze aanpak toepasbaar te maken voor de windtechniek waren significante aanpassin-
gen noodzakelijk. Daarbij zijn er in de literatuur vele recente voorbeelden van datage-
dreven turbulentie te vinden. De meesten van deze publicaties richten zich echter op
2D maatstafsituaties waarbij lage tot gematigde Reynoldsgetallen worden gebruikt. In
het huidige werk zijn resultaten van 3D situaties met Re ≈ 100,000 gepresenteerd in een
situatie relevant voor de industrie. Hiermee wordt de nieuwigheid van dit werk uitge-
licht.

Hoewel er goede resultaten zijn behaald, vergelijkbaar met traditionele niet-lineaire
wervelviscositeitsmodellen, toonden de modellen numerieke instabiliteit. De ernst van
deze instabiliteiten was variabel, afhankelijk de complexiteit van het model, de dicht-
heid van de mazen, en de meegenomen karakteristieken. Numerieke stabiliteit van de
modellen was gewaarborgd met behulp van twee simpele algemene begrenzers die al-
leen actief waren in een zeer beperkt aantal cellen waar een positieve koppelingscyclus
verantwoordelijk was voor de divergentie van de gehele simulatie.
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x SAMENVATTING

Ter conclusie, het huidige werk demonstreert de toepasbaarheid en toont de limi-
taties van het gebruik van het SPARTA datagedreven model voor voorspellingen van de
zog van windturbines, wat veruit complexer is dan eerder bestudeerde situaties. Voor de
toekomst wordt toepassing van de methodologie op een grotere dataset, die ook wind-
turbines bevat op volledige schaal, aangeraden. Hierdoor is het mogelijk om te kunnen
beoordelen hoe algemeen de afgeleide modellen zijn en hoeveel trainingsdata nodig is
voordat de modellen als bruikbaar kunnen worden beschouwd. Daarnaast kan de effici-
ëntie van de algorithmes die zijn gebruikt voor het trainen van de modellen een limite-
rende factor zijn, waardoor slimme onderbemonstering van de invoerdata of aanpassing
van het algorithme noodzakelijk mag blijken voor grotere datasets.



1
INTRODUCTION

The Dutch energy strategy expects offshore wind farms to provide 49 TWh/yr of electric-
ity by 2030, whereas onshore wind energy and solar should provide 35 TWh/yr, which
together corresponds to about 70% of the current yearly electricity consumption [75].
Even in Switzerland where average wind speeds are much lower, a recent estimate puts
the potential around 10 TWh per year which is roughly 15 % of the yearly electricity con-
sumption, two-thirds of which is in winter when solar and hydropower are insufficient
[25].

Crucial for cost-effective wind farms are the optimal design of individual turbines,
the optimal design of the farm layout, and accurate models of the energy output of the
farm once it is operational for optimizing control strategy and prediction of the farm
performance. Wind power is an interdisciplinary field and hence accurate structural,
aerodynamic, electrical, cost, and weather models are necessary to achieve such opti-
mization. Furthermore, the interaction between these models is complex. This thesis
will focus on aerodynamic models that are used at different levels in the design phase
of wind farms, to analyze: (i) airfoil performance, (ii) the performance of a full blade or
rotor, (iii) the interaction between turbines, and their surroundings (e.g. terrain), in a
farm, and (iv) the interaction of entire wind farms with the atmospheric boundary layer.

1.1. LIMITATIONS OF CURRENT AERODYNAMIC MODELS
In the design phase, wind farm layouts, and inflow conditions have to be considered.
Models that are used once the farm has been built need to be accurate and fast to al-
low for smart control of the farm. Generally speaking, this requires a trade-off between,
on the one hand, fast but inaccurate models and, on the other hand, computationally
expensive but accurate models. Engineering models for predicting the aerodynamics of
wind turbines and farms exist but only work well for very specific configurations such as
when there is little interaction between the different turbines wakes. An alternative is to
use computational fluid dynamics (CFD) models, which should improve the applicabil-
ity of the wake models to configurations with wake interaction, but may be very compu-
tationally expensive. Currently, the state of the art in CFD-based aerodynamic modeling

1
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of wind turbines on all the different mentioned design levels from the small turbulent
structures on the blade to the interaction of the wind farm with the atmospheric bound-
ary layer are large-eddy simulation (LES) or hybrid RANS/LES approaches which resolve
a large part of the spectra of the turbulent fluctuations [11]. Reynolds-Averaged Navier-
Stokes (RANS) models are low-fidelity CFD models that are about two orders of mag-
nitude less computationally expensive than LES-based approaches. If CFD is used for
wind engineering purposes in industry, it is mostly RANS-based models that are used.
RANS models provide mean values for velocity and pressure, and first-order statistics for
turbulent properties. However, they suffer from structural shortcomings for flows of in-
dustrial interest and are better at predicting tendencies than accurate values for complex
flows. For example, the stall angle for thick wind turbine airfoils is frequently overpre-
dicted especially for thick airfoils used in the root region of wind turbines [108]. Also,
for wind farms, standard RANS models such as the k-ε and the k-ω (SST) tend to over-
predict the wake recovery and hence over-predict the energy yield of a wind farm [77].

1.2. DATA-DRIVEN RANS TURBULENCE MODELS
Shortcomings of RANS turbulence models are well known beyond the wind energy com-
munity and the development of better RANS models has stalled in the past decades.
Application-specific tuning of the model parameters can help, but this cannot fully over-
come the structural shortcomings of the models. More recently, with the advent of ma-
chine learning in all other scientific areas, data-driven techniques have been used to
derive more accurate, albeit still application-specific, models [18]. In CFD modeling,
data-driven approaches are still in their infancy, but there is a need to explore if they
have the potential for improving existing RANS-based models. In the short term, data-
driven techniques may fail to derive improved general-purpose models, but can quite
possibly help derive case-specific improvements given some high-fidelity data.

1.3. MOTIVATION
For wind farms, the most frequently used turbulence model is the k-εmodel, however, it
suffers from two main shortcomings: (i) the Boussinesq hypothesis which is not a good
model in strongly non-equilibrium flow such as the near wake of a wind turbine, and (ii)
the rotor model which interacts with the turbulence model only indirectly. The Boussi-
nesq hypothesis can have different meanings in the field of flow modeling, in this in-
stance, it refers to assuming that the turbulence anisotropy is proportional to the mean
velocity based strain rate in the flow. As a consequence, it over-predicts the turbulent
kinetic energy (tke) in the near wake, and this over-predicted turbulent mixing leads to a
wake that recovers too quickly. In literature, improved models that limit the tke produc-
tion in the near wake through some sort of shear limiter exist, but they do not reliably
improve the velocity, tke, and turbulence anisotropy profiles in the wake. Hence, there is
room for improvement. Further, if a wind farm is placed in complex terrain, the limita-
tions of the turbulence model will cause inaccurate predictions for the same reasons.

Given how well-defined the shortcomings of the existing models are, there is a clear
motivation for testing how a data-driven approach can help improve predictions for
wind engineering flows without increasing the computational cost further. To put it
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more concisely:
The objective of this thesis is to work towards an efficient methodology for data-driven

turbulence modeling for wind turbine wakes by using time-averaged LES data, compar-
ing the LES data with a baseline RANS model, learning corrections to a baseline RANS
model using simple explicit regression methods and finally testing said data-enhanced
RANS models.

The starting point for this work is the previously described known shortcomings of
RANS turbulence models and the method employed by Schmelzer et al. [79] to derive
data-driven turbulence models. The authors developed a framework which injects data
from a high-fidelity model into the turbulence equations of a low-fidelity model using
a so called frozen approach. The results of the frozen approach are optimal correction
terms which ideally lead to a perfect match between the low- and the high-fidelity model
when injected into the equations of the low-fidelity model. As a second step, the au-
thors used a regression procedure referred to as SpaRTA (Sparse Regression of Turbulent
Stress Anisotropy) to derive explicit expressions for enhanced turbulence models. This
work improves this methodology and makes it more industrially applicable through ad-
justments to the methodology, the efficiency of the underlying code base and the usage
of larger datasets at higher Reynolds numbers. The dataset in this work contains about
fifty times more data points than the original ones and the Reynolds number is around
six times higher as well.

Finally, it is important to stress that the aim of this work is not to derive a methodol-
ogy that is capable of deriving a general-purpose turbulence model. Instead, this disser-
tation works towards a methodology that is capable of deriving models which are helpful
for a specific situation or application. Or more specifically, the goal is to be able to build
a better RANS model for a specified location and turbine type given a time-averaged LES
simulation of a few turbines. This is already a step in the right direction for addressing
the shortcomings mentioned above. Such an improved model could then be used for
layout and control optimization. Once the methods of data-driven turbulence model-
ing are mature enough to efficiently derive data-enhanced models that are accurate and
numerically robust, the question of generalizability can be addressed.

1.4. OUTLINE
The dissertation is structured as follows. Chapter 2 reviews the existing literature encom-
passing the derivation of the most widely-used turbulence models and their limitations,
the state-of-the-art in wind farm physics modeling, specific analysis of shortcomings of
the baseline k-ε model, and finally, an introduction to the world of data-driven turbu-
lence modeling. In Chapter 3, the methodology from data generation to the training of
the correction terms is presented. In Chapter 4, the results from each step of the method-
ology is presented and critically analyzed. Finally, the conclusions and outlook on future
developments are presented in Chapter 5.





2
LITERATURE REVIEW

The literature review presented in this chapter gives an overview of how computational
fluid dynamics is used to model the flow in wind farms and what the limitations are.
This thesis aims to develop a methodology to improve low-fidelity turbulence models
given high-fidelity reference data. In this work, the low-fidelity model will be a Reynolds-
Averaged Navier-Stokes (RANS) model, and the high-fidelity model will be time-averaged
Large Eddy Simulation (LES). Other combinations are possible. For example, some au-
thors use a Direct Numerical Simulation (DNS) high-fidelity model to provide data, while
others use measurement data. In Section 2.1, this review first briefly introduces the
reader to the relevant low- and high-fidelity turbulence models and what assumptions
are made in the derivation thereof. Understanding how those models are derived will
help understand why they fail to predict wind turbine wakes accurately. The focus is
on CFD-based models, thus engineering models, such as the Jensen model [37], are not
presented here. Then, in Section 2.2, a review of different case studies on wind turbine
wake modeling using CFD is presented. This is meant to introduce the state of the art for
both RANS and LES models as used for wind engineering purposes. Following this, Sec-
tion 2.3 presents a detailed comparison between the most frequently used RANS model
and a state of the art LES model. This will highlight the very specific shortcomings of
the low-fidelity model and tie together the first two sections of this review. Finally, Sec-
tion 2.4 presents an overview of data-driven approaches in turbulence modeling for all
applications.

2.1. INTRODUCTION TO TURBULENCE MODELING
The main characteristic of turbulent flow is unsteadiness; the flow can be seen to be
comprised of eddies of different sizes. The largest eddies of the flow are subject to ge-
ometry (for example a wall or an obstacle) and forcing (for example, a driving pressure
gradient or an actuator disk) and are responsible for the majority of the turbulent kinetic
energy (tke) production. As most of the turbulent kinetic energy is carried in the large
scales, they are referred to as the energy-containing scales. Energy is transferred from

5
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larger to smaller eddies, as eddies continuously break down into smaller ones. This is
called the turbulent energy cascade. The rate at which the kinetic energy in the eddies
is converted into internal thermal energy is the dissipation rate ε. The smallest eddies
pertain to the dissipative range, have dynamics dominated by viscous effects, and do
not significantly affect the large scales except by acting as an energy drain by convert-
ing tke to heat. If the Reynolds number is sufficiently large, there exists an intermediate
range of scales in the so-called inertial subrange. The energy contained in these scales
has a universal form determined by ε; and this range acts mainly in transferring energy
towards the dissipation range. In contrast to the dissipation range, the inertial range is
dominated by inertial effects. The size of the eddies in the dissipation range scales with
the viscosity ν and ε, whereas the size of the eddies in the energy-containing range is re-
lated to the geometry of the flow. Consequently, for flows with high Reynolds numbers,
the range of scales of the flow becomes very large, such that in computational fluid dy-
namics not all scales can be resolved. Instead, the turbulent scales have to be (at least
partially) modeled by a turbulence model.

There are many ways of achieving this aim within computational fluid dynamics.
The two main categories of methods are Large Eddy Simulations (LES) and Reynolds-
Averaged Navier-Stokes (RANS) methods. In LES, parts of the turbulence spectrum are
resolved, usually including some portion of the inertial range, and the energy removed
from the flow through the unresolved smaller scales is modeled through a sub-grid scale
model. By contrast, in RANS, a model is used for the effects of all turbulent scales. Gen-
erally, RANS simulations are computationally less expensive than LES ones but also less
accurate. Hence, there is a trade-off between computational efficiency and modeling
quality. It is worth mentioning that many more turbulence modeling frameworks have
been developed, including: (i) "hybrid" models which use both RANS and LES in dif-
ferent regions of the flow such as Delayed Eddy Simulation (DES), Delayed Dettached
Eddy Simulation (DDES) & Improved Delayed Dettached Eddy Simulation (IDDES), [85]
(ii) unsteady variants of RANS models such as unsteady RANS (URANS) and Partially-
Averaged Navier-Stokes (PANS) [27], and lastly (iii) variants of LES models such as Wall-
Modeled LES (WMLES) [9]. In this work, only RANS and LES are used, hence a brief
introduction to both methods is given hereafter. Note that the equations given apply
to the modeling of wind turbines in the atmospheric boundary layer. As such, they are
formulated to include Coriolis forcing, non-neutral stratification (buoyancy), and actu-
ator forcing [1]. The framework uses the incompressible formulations of the equations.
However, it includes small variations in density through the Boussinesq approximation
for density - a linearized version of compressibilty effects for atmospheric flows assum-
ing (ρ−ρ0)/ρ0 << 1 [51].

2.1.1. REYNOLDS-AVERAGED NAVIER-STOKES SIMULATIONS

RANS methods solve the time-averaged Navier-Stokes equations and are obtained by
decomposing all fields φ into mean and temporally fluctuating components φ= φ+φ′.
Then, the Navier-Stokes equations are solved for the mean fields and all the turbulent
fluctuations are modeled. The equations for the mass, momentum, and energy in the
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RANS framework are:
∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+u j

∂ui

∂x j
=− 1
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∂xi
+ν0

∂

∂x j
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∂x j
+ ∂u j
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− ∂τi j
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θ−θr e f
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, (2.2)

∂θ
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+u j

∂θ

∂x j
=−∂q j

∂x j
, (2.3)

where u, p and θ are the mean (i.e. ensemble-averaged) velocity, pressure, and poten-
tial temperature fields, f is a volume forcing term for the actuator disk, Θ0 and ρ0 are
the reference values for the Boussinesq approximation, ϵi j 3 is an alternating unit tensor,
and fC is the Coriolis constant. The influence of the turbulence on the mean flow is con-
tained in the turbulent flux terms τi j and q j . The nomenclature for the Reynolds stress

and the turbulent heat flux is τi j = u′
i u′

j and q j = u′
jθ

′, and they must be modeled.

Similar to the Navier-Stokes equations for the mean fields, exact equations for the
Reynolds stresses can be derived. While these equations cannot be directly solved - "the
closure problem of turbulence" - because they contain an even higher-order combina-
tion of turbulent fluctuations, they are a helpful starting point for developing turbulence
models. The exact transport equation is:

D

Dt
u′

i u′
j︸ ︷︷ ︸

Convection

+ ∂

∂xk
Tki j︸ ︷︷ ︸

Diffusion

= P i j︸︷︷︸
Production

+ Ri j︸︷︷︸
Redistribution

− εi j︸︷︷︸
Dissipation

(2.4)

P i j ≡−u′
i u′

k

∂u j

∂xk
−u′

j u′
k

∂ui

∂xk
(2.5)

εi j ≡ 2ν
∂u′

i

∂xk

∂u′
j

∂xk
(2.6)

Ri j ≡ p ′

ρ

(
∂u′

i

∂x j
+
∂u′

j

∂xi

)
(2.7)

Tki j =
1

ρ
u′

i p ′δ j k +
1

ρ
u′

j p ′δi k +u′
i u′

j u′
k +−ν

u′
i u′

j

∂xk
(2.8)

By taking the trace of these equations, an exact transport equation for the turbulent
kinetic energy k can be derived:

Dk

Dt
+ ∂

∂xi

(
1

2
u′

i u′
j u′

j +
u′

i p

ρ

)
= ν∂

2k

∂x2
i

+P −ε (2.9)

where the total turbulence production is half the trace of the turbulence production
tensor P = 1

2 P i i and the same for the total dissipation ε= 1
2εi i .
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The third-order moments and the derivatives of the velocity fluctuations in equation
(2.4) need to be modeled for developing a turbulence model. A brief overview of how
different classes of turbulence models are derived based on the Reynolds stress transport
equation is given in the following. More information can be found in Chapters 10 and 11
of Pope [68].

From the Reynolds stress transport equation, the terms that require modeling are the
transport term Ti j , the pressure-redistribution-tensor R, and the dissipation tensor εi j .
The production tensor P i j does not contain any higher order terms, and hence it does
not need to be modeled.

The simplest term to model is the dissipation tensor. For high Reynolds number
flows away from the wall, dissipation isotropy is a reasonable assumption. Hence the
term is modeled as

εi j ≃ 2

3
εδi j , (2.10)

where ε := 1
2εi i . While this simplifies the dissipation tensor to a scalar, a model for this

scalar still needs to be constructed. This is done through a transport equation that is em-
pirically constructed, in a very similar way as for simpler two-equation models explained
below. Thus, it is not repeated here.

The Reynolds-Stress transport term Ti j is responsible for the turbulent transport of
the Reynolds stress, and the material derivative is responsible for the transport due to
the mean flow. Simple modeling approaches seem to yield satisfactory results, such as
the one from Harlow [31]:

T ′
ki j ≃−Cs

k

ε
u′

k u′
l

∂u′
i u′

j

∂xl
(2.11)

Lastly, the pressure-rate-of-strain tensor is responsible for the redistribution between
the different Reynolds stress components. This is the most challenging term to model,
and many approaches exist. No specific ones will be presented here. However, how
exactly this term is modeled will determine which class of turbulence model is used.
This has important implications for the model’s accuracy and computational robust-
ness. Physics dictates that for inhomogeneous flows, redistribution is not a purely local
phenomenon, so the flow at one location depends on the flow properties in its proximity.
Models which incorporate this and model the pressure-rate-of-strain tensor nonlocally
are referred to as elliptic relaxation models because an additional elliptic equation is
solved to obtain the tensor. If the pressure-rate-of-strain tensor is modeled through the
local Reynolds stress, dissipation, and mean velocity gradient only, the model class is
referred to as a Reynolds Stress model (RSM). This then requires solving six transport
equations for the Reynolds stresses and one for the dissipation.

A simpler, but also less accurate, class of models named algebraic stress models
(ASM) can be obtained by simplifying the left hand side of (2.4) such that the transport
equation for the Reynolds stresses turns into an algebraic equation. Rodi [76] first pro-
posed the following simplification which is referred to as the weak equilibrium condi-
tion:
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D
(
u′

i u′
j /k

)
Dt

= 0. (2.12)

Decomposing the Reynolds stress accordingly into intensity and anisotropy

u′
i u′

j /k = 2bi j + 2

3
δi j , (2.13)

highlights why this is only a weak and not a full equilibrium condition, as only the anisotropic
part of the tensor are assumed to be in equilibrium with its surroundings, and variations
in the Reynolds stresses due to the turbulent kinetic energy are retained.

Applying the simplification in (2.12) to the left hand side of the Reynolds stress trans-
port (2.4) leads to the following simpler implicit algebraic expression:

u′
i u′

j

k
(P −ε) =P i j +Ri j − 2

3
εδi j . (2.14)

For algebraic stress models, in addition to the above equation, also a transport equation
for the tke and dissipation needs to be solved.

The next simpler class of models is Nonlinear Eddy Viscosity Models (NLEVM). In
this class, an explicit expression for the k-normalized Reynolds stresses is available that
depends on local flow variables. If one assumes that the mean velocity gradient is the
only relevant non-scalar parameter for modeling the normalized Reynolds stress tensor,
then the strain S and rotation rate tensorΩ can be used to construct a finite set of ten-
sors from which every possible symmetric second order tensor can be created. This is re-
ferred to as Pope’s integrity basis [67]. Hence, a generalized expression for the anisotropy

tensor bi j = u′v ′
2k − 1

3δi j for NLEVM reads

bi j =
10∑
λ=1

G (λ) (ηi
)

T(λ) (S,Ω) , (2.15)

where G (λ) are arbitrary scalar functions of the invariants ηi . The integrity basis contains
ten tensors and five invariants; their exact expression is given in Tables 2.2 and 2.1, re-
spectively. The first tensor is simply the strain rate tensor. There are five invariants which
are also functions of the strain and rotation rate tensor.

Table 2.1: Pope’s integrity basis: Invariants. The curly bracket denotes the trace operator: {X } = tr (X ) =∑
i Xi i .

Invariants λ1 to λ5

{S2} {Ω2} {S3} {Ω2S} {Ω2S2}
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Table 2.2: Pope’s integrity basis: Tensors

Tensor number Tensor expression

T1 S

T2 sΩ−ΩS

T3 S2 − 1
3 I{S2}

T4 Ω2 − 1
3 I{Ω2}

T5 ΩS2 −S2Ω

T6 Ω2S+S2Ω− 2
3 I{sΩ2}

T7 ΩSΩ2 −Ω2SΩ

T8 SΩS2 −S2ΩS

T9 Ω2S2 +S2Ω2 − 2
3 I{S2Ω2}

T10 ΩS2Ω2 −Ω2S2Ω

The scalar functions G (λ) still need to be determined. If the expression is substituted
in an ASM model, explicit expressions for the scalar functions can be found. Hence,
for each implicit ASM, an explicit NLEVM formulation exists. Standalone NLEVMs that
are not derived from an ASM exist as well, which can also be expressed through Pope’s
integrity basis, assuming they rely solely on ∇u.

Now if all terms with λ > 1 are dropped, yet an even simpler class of models is ob-
tained, linear eddy viscoity models (LEVM), where the anisotropy tensor is assumed to
scale linearly with the mean flow stresses as only the strain rate tensor remains. This is
the most frequently used type of model. The underlying turbulent-viscosity hypothesis
(aka. the Boussinesq hypothesis) constitutes the theoretical basis for these models and
is written

ai j = 2k ·bi j = u′
i u′

j −
2

3
kδi j =−2 ·νt Si j , (2.16)

where different expressions exist for the eddy viscosity νt . If one looks at the units of the
expressions, it has to be the product of a relevant length and velocity scale.

From the simplest to the most complex LEVM there are: (i) algebraic models, (ii)
one-equation models, and (iii) two-equation models. As the name implies, for algebraic
models, an algebraic expression is used for νt . For one-equation models, frequently, a
transport equation is solved for k, which is related to the velocity scale, and a fixed ex-
pression is used for the length scale. The Spalart-Almaras model in contrast directly
solves a transport equation for the eddy viscosity νt . For two-equation models, a trans-
port equation for the tke is used, and then a second transport equation is use to model,
most frequently, either the dissipation rate ε or the specific dissipation rate ω = ε/k.
Other variables for the second equation have been proposed as well.

The k-εmodel is the most widely used model for wind farm physics, and it is used as
a baseline model in our work. The transport equation for the turbulent kinetic energy is
reasonably similar to the exact equation for tke:
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Dk

Dt
=∇·

(
νT

σk
∇k

)
+P −ε (2.17)

For the dissipation rate, an exact equation exists. However, in this case it is not very
useful for modeling because it is driven by unclosed terms. Instead, a purely empirical
transport equation is typically used [49], modeled after the tke equation:

Dε

Dt
=∇·

(
νT

σε
∇ε

)
+Cε1

P ε

k
−Cε2

ε2

k
, (2.18)

where Cµ, Cε1, Cε2, σk , and σε are constants, that may require flow-specific tuning.
Finally, the eddy viscosity νt is given by

νt =Cµk2/ε. (2.19)

Now that several different classes of turbulence models have been introduced, it re-
mains to specify what the specific shortcomings of each of them are. For anything other
than simple 2D flows with minimum streamline curvature and adverse pressure gradi-
ent, two-equation LEVM will give imperfect results. For most applications, at the very
least, tendencies will be predicted correctly. Application-specific tuning may render
some improvements, but no general purpose LEVM works well for all complex flows.
Nevertheless, LEVMs are used for many industrial applications, and despite their short-
comings, they provide added value over engineering models and measurements. NLEVMs
may give better results than LEVMs for flows with some streamline curvature and/or ad-
verse pressure gradients. However, they are more difficult to converge and may not per-
form well on fine meshes, which negates the purpose of using them. In theory, RSM
or elliptic relaxation models should yield more accurate results for flows with strong
streamline curvature, adverse pressure gradients, and strong hysteresis effects, but this
only applies if the modeling of the pressure-rate-of-strain tensor is appropriate and wall
effects are well handled. Furthermore, this does not only come at the cost of computa-
tional resources but also at the expense of numerical robustness. These models not only
require that more equations per iteration are solved but also that in total more iterations
are necessary for convergence because the resulting system of equations is stiff. Finally,
even higher-order models rely on an empirical equation for the total dissipation, and
this can affect the accuracy for lower and higher order models alike. A more complete
list of shortcomings and benefits of specific model classes is available in the literature
[68].

So far, only RANS modeling for the Reynolds stresses has been presented. For atmo-
spheric flows with non-neutral stratification, the turbulent heat flux also needs to be
modeled. This is done using methods similar to those used for the Reynolds stresses.
The integrity basis shown above can be modified by adding the temperature gradient,
and then models can be derived which are similar to NLVEM models [101]. However, for
wind engineering applications, the eddy diffusivity assumption – analogous to the eddy
viscosity assumption for the Reynolds stresses – is the most frequently used model for
the turbulent heat flux [4]
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q j = u′
jθ

′ =− νT

Prt

∂θ

∂x j
, (2.20)

where Prt ≈ 1.0 is the turbulent Prandtl number.

2.1.2. LARGE-EDDY SIMULATIONS
LES methods solve the filtered Navier-Stokes equations. Turbulent scales that are smaller
than the filter width are modeled using a subgrid scale (SGS) model, and the rest of the
scales are fully resolved. The equations for mass, momentum, and energy conservation
are:

∂ũi

∂xi
= 0, (2.21)

∂ũi

∂t
+ ũ j

∂ũi

∂x j
=− 1

ρ0

∂p̃

∂xi
−
∂τSGS

i j

∂x j
+ f̃i + fCεi j 3ũ j + g

θ̃− θ̃ref

ρ0θ0
, (2.22)

∂θ̃

∂t
+ ũ j

∂θ̃

∂x j
=−∂q j

∂x j
, (2.23)

where ũ, p̃, and θ̃ are the resolved (i.e. filtered) instantaneous velocity field, pressure
and potential temperature, respectively, f̃i is a volume forcing term for the actuator disk
representing a wind turbine, θ0 and ρ0 are the reference values for the Boussinesq ap-
proximation, and fC is the Coriolis constant. The SGS part of the stress τSGS and the
SGS heat flux qSGS require further modeling and are meant to capture the effect of the
unresolved scales on the resolved ones.

There are many different subgrid scale models. For wind engineering flows, relatively
simple models are used and are derived in a similar way as RANS models. The two sim-
plest models use the eddy viscosity and diffusivity assumption for the unresolved fluxes:

τSGS
i j =−νSF S ·

(
∂ũi

∂x j
+ ∂ũ j

∂xi

)
(2.24)

qSGS
j =−νSF S

Prt

∂θ̃

∂x j
(2.25)

where different approaches exist for determining the SGS viscosity νSGS and the tur-
bulent Prandtl number Prt . The simplest, and also frequently used, approach is the
Smagorinsky model

νSGS =C 2
s ·∆2|S̃| with S̃i j = 1

2

(
∂ũi

∂x j
+ ∂ũ j

∂xi

)
(2.26)

where ∆ is the local(ly averaged) filter width and Cs is the Smagorinsky constant.
There is a simple formula to calculate the Smagorinsky constant based on the local fil-
ter width and Kolmogorov constant. However, from numerical studies, it was found that
the best value depends on the flow type [26]. This realization led to the development of
the Dynamic Smagorinsky model, where the constant is determined by comparing the
local results from two different filter widths [26]. While this is more accurate, calculating
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the relevant values for the additional smaller filter width is computationally intensive
and may introduce numerical instabilities. Codes where spectral discretization is used
and filtering is cheap are better suited to this. The additional accuracy that the Dynamic
Smagorinsky model brings is important when strongly stably stratified flows are mod-
eled as the turbulence scales can become very small and it may no longer be possible to
reach the required resolution depth. In that case, the importance of a good SGS model
increases.

Many more options exist to model the SGS tensor, including those which use a trans-
port equation for the SGS turbulent kinetic energy or those where the turbulent Prandtl
number is varied according to a local Richardson number.

In this work, the Wall-Adapting Local Eddy-viscosity (WALE) SGS model is used [17].
Compared to the (dynamic) Smagrinsky model, the WALE model is more accurate and
stable near walls. While it still uses the eddy viscosity assumption, the formula for the
eddy viscosity is modified using both the resolved strain and rotation rate to read

νt = ρL2
s

(
ςi jςi j

)2(
Si j Si j

) 5
2 + (

ςi jςi j
) 5

4

(2.27)

with S̃i j = 1
2

(
∂ũi
∂x j

+ ∂ũ j

∂xi

)
− 1

3δi j
∂ũk
∂xk

and ςi j = 1
2

(
∂ũi
∂xk

∂ũk
∂x j

+ ∂ũ j

∂xk

∂ũk
∂xi

)
− 1

3δi j

(
∂ũl
∂xk

∂ũk
∂xl

)
and where

the length scale Ls = min
(
κz,Cw V

1
3

)
in which z is the distance from the wall and Cw is

a constant.
This modified formulation considering both strain and rotation rate is beneficial, as

the eddy viscosity automatically goes to zero at the wall. Conversely, the Smagorinsky
model is non-zero at the wall, but it can be modified by using ad hoc damping such as
Van Driest damping.
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Figure 2.1: Schematic of atmospheric boundary layer with wind turbines, reproduced with permission from
[87].
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Accurate modeling of wind turbine wakes embedded in the Atmospheric Boundary Layer
(ABL) and, in particular, the interaction between the wake of a turbine and the perfor-
mance of a downstream turbine is relevant for two stages in the life cycle of a wind farm:
firstly, during the design stage, when the layout should be chosen according to the wind
conditions at the prospective location in terms of wind speed and direction distribution,
as well as atmospheric stability and inflow turbulence; and secondly, during the oper-
ational period of the farm, when wind farm control strategies seek to find a trade-off
between power maximization and load alleviation.

2.2.1. WIND FARM PHYSICS

The wake of a single free-standing wind turbine in the ABL can generally be divided
into two regions. The near wake is dominated by the tip speed ratio and the shape of the
rotor, whereas the far wake is only indirectly affected by the rotor through the velocity
deficit and the turbulence intensity. The flow field in the near wake is dominated by
the presence of tip and root vortices that lead to strong gradients in the velocity. Due
to the momentum and energy extraction at the rotor plane a discontinuity in pressure,
an expansion of the wake and a decrease in axial velocity are observed. Generally, the
end of the near wake is characterized as the point where the shear layer reaches the
wake axis, which is usually about 2 to 5 rotor diameters downstream of the rotor position
[16]. In the far wake, the flow is dominated by turbulent mixing, eventually leading to a
recovery of the velocity deficit in the wake. The turbulence in the wake has three origins:
atmospheric turbulence from terrain and the ABL, mechanic turbulence from the blades
and the tower, and wake turbulence from the breakdown of the hub and tip vortices [77].
In existing wind farms, sometimes low-frequency oscillations of the far wake, termed
wake meandering, are observed and lead to more variable loading on the downstream
turbines. A perturbation analysis showed that the source of the meandering is most likely
large-scale atmospheric turbulence in the form of eddies with a length scale roughly
equal to the turbine diameter [56].

Once wind turbines are placed closer to each other to form a wind farm embedded
in the ABL, interaction between the different turbines and the atmospheric boundary
layer become the primary influence on the power output and the fatigue loading of the
turbines in the farm. Barthelmie et al. [6] analyzed SCADA data from two offshore wind
farms in Denmark, Horns Rev and Nysted, for wind directions aligned and ±15◦ from
the main axis of the farm. The energy yield of the turbines shows a strong dependence
on the wind direction, at least for the first few rows. Independently of wind direction,
from the fourth row downwards, the energy output of the turbines drops significantly as
compared to the first row. Moreover, in the extreme case where a downstream turbine is
directly centered in the wake of a turbine in the first row, a power reduction of up to 40 %
for the second row as compared to the first one is observed for a streamwise spacing of
around 6 times the turbine diameter with a less steep drop off in energy yield from the
third row onwards.

A coupling between the atmospheric flow above the atmospheric boundary layer and
the wind farm has even been observed for large wind farms. The main connection be-
tween the geostrophic wind and the flow inside the atmospheric boundary layer seems
to be the turbulence-induced vertical flux of mean kinetic energy given by u′w ′ ·u [87].
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In the asymptotic regime where the farm length exceeds the height of the boundary layer,
streamwise changes in the flow field can be neglected, and the kinetic energy transfer be-
tween the atmospheric boundary layer and the wind farm occurs in the vertical direction
only [13].

2.2.2. MODELING OPTIONS

While there exist a multitude of engineering models for wind turbine wakes, generally,
better results are obtained with more complete physical models such as computational
fluid dynamics codes [16, 77, 58, 28, 87]. This holds true in particular when wake in-
teraction is present. Hence, only CFD models are considered here. Due to the large
discrepancy between the time and length scales of the eddies in the boundary layer of
a wind turbine blade and the ones present in the atmospheric boundary layer, not all
relevant scales can be modeled, even with the computational resources available today.
Figure 2.1 illustrates the length scales present within the ABL and around the turbine
blades. Hence, if the interaction between wakes of different turbines is of interest, the
wind turbine blades are indirectly modeled in the CFD code through a simplified rotor
model instead of fully resolving the blade boundary layers.

In terms of turbulence modeling for the Navier-Stokes equations for wind engineer-
ing purposes, both RANS and LES models are used [77, 58, 11]. More recently, also hybrid
models have been applied to predicting the wake of a single wind turbine [88]. Currently,
LES models that use a scale-dependent dynamic SGS model are considered the state of
the art in wind farm wake modeling [58, 11].

The two most prevalent rotor modeling approaches for LES are a non-uniformly
loaded Actuator Disk (AD) and an Actuator Line (AL) [77]. Both of these models represent
the blades through distributed forcing terms in the Navier-Stokes equations. However,
for the AD model, azimuthal averaging is applied. Consequently, the AL model can re-
solve the tip and root vortices of the blades, whereas the AD model can only reproduce
the shear layer of the wake. However, changes in the circulation along the blades that
are different from rotation effects can be captured by the AD model through shedding
in an azimuthally continuous sheet. Figure 2.2 visualizes these differences. Comparison
between the results for these two models can be found in [77, 105, 70, 57]. The main
conclusion from the comparison studies is that if wake rotation is included in the AD
model, on average, the results are almost identical in the far wake but are a bit different
in the near wake. As the near wake is mostly not of interest here, an AD model is used for
most cases in this work. In terms of computational cost, AL is more expensive because it
requires a smaller time step. For unsteady simulations the size of the time step is usually
governed by accuracy and numerical stability concerns. The Courant–Friedrichs–Lewy
(CFL) condition which relates the grid size, time step and velocity is also frequently used
as a measure especially if explicit time discretisation schemes are used. These consid-
erations also apply to the AD model. However, for the AL model, the maximum time
step is also limited by the resolution of the blade rotation, which usually leads to a larger
restriction on the time step than the other mentioned considerations [57]. The blade
rotation is sufficiently resolved when the blade tip does not pass through more than a
single finite-volume cell within a single time step. Hence, the maximum time step for AL
model simulations is governed by the tip speed ratio of the turbine.
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(a) ALM (b) ADM

Figure 2.2: AL (a) and AD (b) model LES simulations where the blue isosurface is of the second invariant of the
velocity-gradient tensor. The contours are of streamwise velocity. Reproduced with permission from [57].

2.2.3. PERFORMANCE OF DIFFERENT RANS MODELS
While LES is the current state of the start in high-fidelity aerodynamic wind farm model-
ing, it remains too computationally expensive to be used for wind farm design or control
purposes. Using RANS models for the same purpose is estimated to yield a decrease in
computation time by two orders of magnitude [77].

The simplest and most commonly used RANS models for wind farm modeling are
Linear Eddy Viscosity Models. The flow around a wind turbine is highly three-dimensional,
and the rotor leads to large changes in the mean strain rate over a short distance. This
means the flow is anisotropic and locally not in equilibrium, and these are both con-
ditions that differ vastly from the ones LEVM are derived for, as shown in Section 2.1.
Further, the turbulence in the atmospheric boundary layer itself is anisotropic. Things
like complex terrain and large surface roughness may further complicate the situation.
The most recent and popular results of a literature review for different RANS models in
combination with an actuator disc rotor model are listed below. All of these models are
derived for neutral atmospheric conditions and flat terrain. Stratification will be consid-
ered in Section 2.2.4.

• Standard k-ε [49] and k-ωmodels [102]: These two models underpredict the wake
deficit and the turbulence intensity (peaks) because the eddy viscosity is overpre-
dicted and the wake becomes too diffusive [77, 71, 46, 5]. A detailed comparison
between LES and RANS results with the k-εmodel shows that this particular LEVM
RANS model cannot quantitatively predict the correct turbulent kinetic energy and
its dissipation [72]. In fact, in the near wake region, the realizability constraints are
significantly violated.

• Modified k-ε and k-ω models: Based on the results obtained with the standard,
simple LEVM models, various modifications were applied most of which aim to
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reduce the eddy viscosity in the near wake. El Kasmi and Masson [40] used a modi-
fied version of the k-εmodel, which introduces a source term in both the turbulent
kinetic energy as well as the dissipation transport equation. They argue that the
source term in the dissipation rate equation suppresses the overproduction of tur-
bulent kinetic energy in the near wake, where strong shear gradients are present.
Prospathopoulos et al. [71] apply an eddy viscosity limiter (Durbin limiter) based
on a realizability constraint. Réthoré [72] used two different eddy viscosity limiters
based on a realizability constraint and based on the adverse pressure gradient in
the near wake region. Van der Laan et al. [46] developed a model named the k-ε- fP

model with a limiter that reduces the eddy viscosity in regions with high-velocity
gradients. The limiter is a simplified version of a cubic nonlinear EVM and is ap-
plied directly in the relation for the eddy viscosity. In a follow-up publication, van
der Laan et al. [45] compare this eddy viscosity limiter to the ones from Shih [80]
and Durbin [20], all for the k-ε model. They recommend using either the fP or the
Shih limiter since the Durbin limiter [71] is very sensitive to the ambient turbu-
lence levels. While all of these models offer some improvements over the standard
k-ε model, the improvements are test-case dependent, and some of them require
tuning parameters. The k-ε- fP model seems like the most promising one as it con-
sistently increases the prediction of the velocity field. However, the improvement
for the tke is less consistent, and it is still an isotropic model.

• Standard [59] and modified k-ω SST [81] models: Because the k-ω SST model
from Menter is very popular for wall-bounded flow with adverse pressure gradi-
ents and already includes an eddy viscosity limiter, Shives and Crawford [81] com-
pared it to the k-ε model with and without tuning of the Cε4 parameter. Overall,
the k-ω SST model yields better predictions of the velocity deficit in the near wake,
whereas the k-ε model provides better predictions of the velocity deficit in the far
wake. Both models are inadequate at predicting the turbulence intensity in the
wake. Both Shives and Crawford [81], as well as Réthoré et al. [73], argued that the
underprediction of the turbulence intensity in the near wake originates from the
shortcomings of the actuator disk model. Hence, Shives and Crawford introduced
a scaling term for the turbulent kinetic energy production in a circular tube that
roughly covers the near wake region of the turbine. They calibrated the correction
term with existing wake measurement data. The now corrected k-ω SST - referred
to as the k-ω SST +Sk model - vastly improved the prediction of the turbulence
intensity and to some extent also the velocity deficit in the wake.

• RSM models: Cabezon et al. [12] tested a Reynolds Stress Model (RSM) for a sin-
gle wake analysis and then compared the results to different two-equation RANS
models, parabolic models, LES and experimental data. The more sophisticated
turbulence model improved the prediction of the velocity deficit, in particular,
in the near wake as compared to the standard and corrected k-ε model. More-
over, more physical turbulence intensity predictions were obtained. However, the
agreement with LES data was not consistently improved since sometimes also
some of the more simple RANS models gave better results. Comparison between
the different models in terms of velocity deficit, turbulence intensity and stream-
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wise shear stress are shown in Figure 2.3.

• Parabolic codes: This type of model neglects both the diffusion and pressure gra-
dient in streamwise direction to reduce computational cost [77]. Cabezon et al.
[12] showed that parabolic codes can yield surprisingly good results for the near
wake below 3 diameters downstream of the rotor, because they inherently lack dif-
fusive terms as compared to elliptic models which tend to be too diffusive in the
near wake region. However, beyond the near wake region, this type of model leads
to much less accurate results than elliptic models.

(a) Velocity deficit

(b) Turbulence intensity

(c) Reynolds stress

Figure 2.3: Wake deficit, turbulence intensity and plane Reynolds stress for different inflow directions, repro-
duced with permission from [12]. From left to right the plots are stream-wise slices at 2.5, 5.5, and 8 diameters
downstream of the rotor. UPMPMARK and UPMANIWAKE are parabolic codes, the rest of the labels should be
self-explanatory.

Antonini et al. [5] argue that the inaccuracy of the k-ω SST and the RSM model arise
not only from modeling limitations but also from uncertainty in the inflow wind direc-
tion. They derived a method to consider uncertainty in the inflow direction by com-
bining steady-state RANS simulations for different inflow angles. This yielded a more
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favorable comparison to measurement results regarding the energy yield of turbines em-
bedded in the Horn Rev wind farm.

Summarizing, standard linear eddy viscosity turbulence models in combination
with an actuator disk model suffer from structural shortcomings when modeling wind
turbine wakes and their interactions. For this application, the most frequently used
RANS turbulence model to date is the k-ε model. However, in its standard form, this
model results in an underprediction of the velocity deficit and an overprediction of the
turbulence intensity in the wake. Various modifications have been proposed, most of
which aim at reducing the eddy viscosity in the near wake region. The most successful
ones rely on an eddy-viscosity limiter in areas of high shear. While these corrected mod-
els have shown some improvements over the original model, so far, no model has shown
consistent improvement in both the prediction of the velocity field and the turbulence
anisotropy in the near- and far-wake. The shortcomings of these models in predicting
the wake of a free-standing turbine will no doubt be further propagated once interacting
turbines are investigated. While some improvements over these models could be ob-
tained using a Reynolds Stress Model, still a large deviation between averaged LES and
RANS results was observed [12]. Moreover, a Reynolds Stress Model requires solving five
additional transport equations compared to the standard two-equation linear eddy vis-
cosity models.

It should be mentioned that unsatisfactory results in predicting the mean flow fea-
tures in wind farms are most likely not solely due to the structural limitations of LEVMs,
but possibly also due to limitations in the rotor modeling. Current actuator disk models
only indirectly account for the effect of the rotor on the turbulent structures, which can
lead to large errors in the flow properties close to the rotor plane. This will be explained
in detail in Section 2.3.

2.2.4. ADDING STRATIFICATION TO RANS MODELS

So far, none of the aforementioned publications have considered atmospheric stability.
In literature, there are only a few examples of RANS simulations for wind energy where
stratification is modeled [8, 92, 97, 48]. However, previous work exists in the field of wind
engineering and industrial aerodynamics [62]. Under unstable atmospheric conditions,
the air is warmer close to the ground than at higher altitudes. Under stable conditions,
the situation is reversed. The resultant buoyancy forces influence the undisturbed ve-
locity and tke profiles. For stable stratification, the turbulence intensity is lower and the
shear in the velocity profile over rotor area is larger as compared to neutral stratification.
For unstable stratification, again the situation is reversed. Higher turbulence intensity
leads to faster wake recovery, whereas a larger shear in the velocity profiles leads to more
fatigue loading on the rotor. As mentioned in the previous subsection, in Eq. (2.2), the
effect of local temperature gradients on the mean flow is modeled through the Boussi-
nesq approximation, (ρ−ρ0)/ρ0 << 1. Due to this linearization, the incompressible NS
formulation can be used by adding one correction term. Additionally, a transport equa-
tion for potential temperature (energy conservation) needs to be solved, and a model for
the turbulent heat flux is also necessary. The effect of buoyancy on the turbulent proper-
ties can be modeled by adding a turbulence production term in the transport equations
for the turbulence model. The formulation of these source terms for the k-ε model were
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introduced in the previous subsection in (2.18).
Assuming that the stratification mainly affects the undisturbed velocity and tke pro-

files, and only indirectly interacts with the turbine wake, simpler models that do not
require the addition of the energy equation have been found in the literature. Laan et al.
[48] have derived correction terms for the k-ε turbulence equation based on the Monin
Obukhov Similarity Theory (MOST). The correction to the turbulence equations is cho-
sen such that inflow profiles chosen according to MOST will not further develop even in
a large domain. MOST theory assumes that the flow is in equilibrium and only changes
in the vertical direction such that the only input parameter relating to the stratification
is the Monin-Obukhov length

L =− u3∗θ0

κgθ′w ′ .

This approach works well for weakly stratified flows, but it has not been tested suffi-
ciently for strongly stratified flows yet. Later, Baungaard et al. [7] further simplified the
model and simulated a single wind turbine wake under stratified conditions. Addition-
ally, they combined the k-ε- fP model with the MOST k-ε model from Laan et al. This
required the introduction of an additional parameter to the limiter formulation for fP

as the original model is calibrated for neutral stratification. This gave improved results
compared to the k-ε baseline model, but again tke and turbulence anisotropy predic-
tions can be further improved. The underlying assumption for these simplified strat-
ification models is that the undisturbed flow is in equilibrium, i.e. it will not further
develop from the inflow. This is of course nonphysical as the heat flux from the ground
into the domain will continuously modify the energy in the domain, and thus, also the
flow. However, the important thing is the relevant time and length scales of this pro-
cess. Quite possibly, the undisturbed profiles will not change much over the length of
a wind farm, even if the unsteadiness due to buoyancy is modeled. Hence, if one is in-
terested only in a snapshot analysis of the wind farm for a specific wind profile, this is a
valid approach. However, if one wants to observe a wind farm over several hours, with
stratification changing due to night/day time, then an equilibrium approach is not valid.

2.2.5. DATA-DRIVEN MODELS FOR WIND ENERGY
A handful of data-driven RANS models have been derived specifically for wind farm
wake modeling to counter these shortcomings [34, 41, 2]. Iungo et al. [34] employed
LES results for a single free-standing turbine to find an optimal mixing length distri-
bution for a mixing length LEVM model in combination with an actuator disk turbine
model. Checking the magnitude of the different strain rate-dependent terms contribut-
ing to the eddy viscosity revealed that the radial gradient of the streamwise velocity ∂Ux

∂r
component is the most important term. Comparison with the corresponding Reynolds

stress term u′
x u′

r gave way to find an optimal mixing length distribution using

−u′
x u′

r = l 2
m
∂Ux

∂r

2

.

They assumed that the resulting mixing length distribution is mainly sensitive to the
streamwise position. The best fit to the LES Reynolds stress and mean velocity revealed
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that up to one rotor diameter downstream of the rotor, it remains constant and beyond
that distance starts to increase linearly. The slope of this increase is related to the tip
speed ratio of the turbine. Assuming measurements of both streamwise and radial ve-
locity components are available at a location downstream of a rotor, this is a simple way
to correct some of the shortcomings of LEVM models for predicting the wake develop-
ment of a wind turbine.

A similar but more sophisticated approach was taken by Adcock and King [2] who
used Lidar data for different atmospheric stability conditions with the aim to better cap-
ture the effects of atmospheric stability using a RANS turbulence model. However, the
flow field was only a horizontal slice of the flow field at hub height. The turbine was
modeled using an actuator disk. An adjoint-based optimization was used to find an op-
timized mixing length distribution for stable, unstable, and neutral stratification. The
measured turbulence intensity was used to assign the measurements to different atmo-
spheric stability classes. The optimization objective was formulated to minimize both
the deficit between the mean velocity and thrust coefficient of the turbine as compared
to measurements. The results for a single turbine are shown in Figure 2.4. Subsequently,
a rotor-centric correction term was calibrated using the linear combination of three
Gaussian distributions. Vast improvements as compared to the uncorrected simulations
were obtained even for wind farm layouts that the model was not calibrated on.

Figure 2.4: Original and optimized mixing length field, as well as, the resulting eddy viscosity and velocity field.
Reproduced with permission from [2].

Later, King et al. [41] extended the previously mentioned framework to 3D. Again an
adjoint-based optimization was carried out to find an optimized eddy viscosity distribu-
tion for a RANS simulation given averaged LES reference data. Subsequently, this opti-
mized eddy viscosity field was sampled, and Gaussian Process Regression was employed
to construct a data-driven turbulence model, including uncertainty of the predictions.
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The inputs to the machine-learning algorithm were based on velocity, pressure, and spa-
tial gradients thereof. Figure 2.5 shows the results of an entire wind plant simulation un-
related to the training set. The flow field is improved compared to the original mixing
length model and produces structured changes in the wake shear layers.

Figure 2.5: Plant flow field prediction from LES, the calibrated Gaussian Process model and the original mixing
length model. Reproduced with permission from [41].

More recently, Eidi et al. [24] have developed a combined approach where machine
learning is used to estimate uncertainty bounds for velocity and tke in the wake of mul-
tiple interacting turbines. The approach is based on perturbation of the realizable k-ε
base model towards limiting states on the barycentric map. The amount of perturbation
toward one/two/three-component turbulence is determined by a reference LES simu-
lation; perturbation towards two-component turbulence is omitted because it is mostly
zero compared to LES. In the next step, a gradient-boosted decision-tree technique (XG-
Boost) is used to learn the perturbations using an extended integrity basis that also in-
cludes pressure and tke gradients fields as input. A mutual information script reduces
the feature input set from 54 to 13. The generated models also generalized well between
training and test datasets which all included multiple interacting turbine wakes. Figure
2.6 shows the LES, the baseline RANS, the perturbed RANS, and the learned perturbed
RANS simulation results.
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Figure 2.6: Lateral profiles of the normalized velocity deficit (a,b) and turbulence intensity (c,d) at 5D down-
stream of each turbine at the hub height in Case C. Here, for the perturbed RANS (toward one- and three-
component turbulence), δ calculated based on LES data (a,c) and δ predicted by the ML model (b,d) are uti-
lized. Picture reproduced with permission from Eidi et al. [24].

2.3. SPECIFIC SHORTCOMINGS OF k −ε MODEL FOR WIND EN-
ERGY

The previous subsection presented a general analysis of the shortcomings of RANS tur-
bulence models for wind farm modeling. In this section, we go more in detail on the
specifics of these shortcomings for the most frequently used k-ε model.

In his dissertation, Réthoré made a detailed comparison between an LES simulation
using the Smagorinsky model and a RANS simulation using the k-ε model for a single
wind turbine under neutral conditions [72]. This setup allows the evaluation of spe-
cific shortcomings of the RANS model as compared to LES. There are two primary error
sources for the RANS model: (i) the eddy viscosity assumption, and (ii) the simplified tur-
bulence transport equations themselves. The validity of the eddy viscosity assumption,
i.e.

τi j = 2

3
kδi j −2νt Si j with νt =Cµ

k2

ε
(2.28)

can be evaluated in terms of the magnitude (i.e. eddy viscosity νt ) or the normalized
anisotropy tensor bi j = τi j /2k. Réthoré carried out both of these analyses and found
that the eddy viscosity assumption was violated in particular in the near wake, both in
magnitude and directionality.

Further, realizability constraints are also violated in the near wake region. Pope [68]
reformulates this constraint for simple shear flow as follows
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Cµ ≤ 4/9

P /ε
. (2.29)

For the k-ε model, Cµ is a constant whose default values vary between 0.03 < Cµ <
0.09 and in the near wake of a wind turbine P /ε>> 1 as the flow is not in equilibrium. If
the ratio of turbulence production and dissipation is also only P /ε≈ 20, the constraint
will not hold anymore. Thus, realizability constraints do not hold for a constant Cµ.

Additionally, in the derivation of the simplified transport equations for the tke and
the dissipation from the exact equations, two terms were left out in both the tke and
dissipation equation

Ak = u′
i Fi −u′

i

∂p

∂xi
(2.30)

Aϵ = 2ν
∂Fi

∂x j

∂u′
i

∂x j
−2ν

∂2p

∂xi∂x j

∂u′
i

∂x j
, (2.31)

compare to Eqs. (2.17) and (2.18) of the k-ε model.
The first terms in Eqs. (2.30) and (2.31) capture the effect of the volume forcing F on

the turbulence, and this is left out in the derivation of the turbulence transport equations
because for most flows volume forcing is not applied. The second term refers to the
pressure-velocity coupling, which is assumed to be negligible. However, this does not
hold in the presence of an actuator disk, which introduces a strong adverse pressure
gradient at the rotor disk, and in the near wake. Hence, the terms that are neglected in
the derivation of the RANS transport equations describe the effect of the actuator forcing
on the turbulence. In fact, from measurement and LES simulations, it is clear that the
turbine can extract energy from the turbulent fluctuations [94]. Since a RANS model
cannot capture this, tke is overpredicted in the near wake and the wake recovers too fast.
Compared with the LES simulations, Réthoré was able to show that the Ak term is up
to two orders of magnitude larger than the local dissipation, and the Aε term was much
smaller and is negligible.

2.4. DATA-DRIVEN TURBULENCE MODELING
Given the complexity of turbulent flows and the shortcomings of the currently available
RANS turbulence models, not only for wind farm applications but also for more gen-
eral applications, more recently, data-driven models have been used to formulate clo-
sure models based on calibration data from higher fidelity models such as DNS and LES
[44, 18]. Ideally, these data-driven models exceed the accuracy of classical RANS clo-
sure models in the domain in which they are trained, approaching the accuracy of LES
or DNS at only a fraction of the cost. Data-driven modeling uses existing baseline LEVM
models and modifies them to predict the same Reynolds stresses as the high-fidelity data
on which they are trained. The corrections to the baseline model are usually calculated
from local parameters that are used as inputs to train the data-driven model.

While classical RANS closure models are also calibrated using either numerical or
experimental reference data, this is only done for special flow scenarios, such as for ex-
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ample isotropic turbulence, and is restricted to constant tuning parameters only. Re-
cently, Menter et al. [60] have developed the Generalized k-ε model (GEKO), which is
a consolidation of different two-equation models into one model. Depending on the
application, the user has the ability to tune the model using six coefficients relating to
separation, non-equilibrium flow at walls, mixing strength of free shear layers, free jet
flows, curvature correction, and secondary corner flows. The coefficients are designed
such that validity of the models for the flat plate and simple mixing layer calibration
cases still holds. This goes in the same direction as data-driven models but still falls back
on existing models, whose flaws have been described previously in this chapter.

However, in practice, data-driven turbulence models are a relatively new field of re-
search, and their limitations are not well defined yet [44, 18]. Intrinsically such models
depend on training data which may only be available for a very limited application range.
For example, DNS data are only available at low Reynolds numbers. How far extrapola-
tion outside of the training range still yields improved results is unclear. Additionally, as
compared to traditional turbulence models, it may be more difficult to physically inter-
pret what the model does, especially if black box models are used. In addition to this,
there remain challenges concerning implementation, as outlined in the following along
with some mitigation strategies.

First, given ground-truth data from a higher fidelity model such as DNS or LES, the
"accurate" Reynolds stresses are a second-order statistic whereas the mean velocity field
is a first-order statistic. Consequently, the mean velocity field is more converged than
the mean Reynolds stresses and errors in the prediction of the latter will be propagated
to the data-driven model [89, 69]. These publications showed that when computing
RANS channel flow solutions using DNS Reynolds stresses with relatively small errors,
significant deviations occurred between the resulting RANS mean velocity profile and
the DNS mean velocity profile. Repeating this procedure for available DNS data for chan-
nel flow at different friction Reynolds numbers showed that the error amplification be-
comes more significant as the Reynolds number increases [69]. Wu et al. [103] tried to
explain this observation by formulating a local, mesh-independent condition number
for the RANS equations to quantify the sensitivity of the solved mean velocity at a given
location for a perturbation of the Reynolds stress field. For channel flow, they showed
an increase of this local condition number with the friction Reynolds number. Further,
they show that an implicit treatment of the linear part of the Reynolds stresses leads to
a reduction of the condition number by at least an order of magnitude as compared to
the explicit treatment of the linear Reynolds stresses. Thus, according to this limited evi-
dence, consistency between different turbulence modeling approaches such as RANS,
DNS, and LES is not a given.

Second, the mapping between the local mean flow quantities and local mean Reynolds
stresses is not unique due to non-local and non-equilibrium physics. One of the as-
sumptions behind linear and nonlinear eddy-viscosity models is that the mean Reynolds
stresses depend only on the local mean strain and rotation tensor. This implies equi-
librium turbulence meaning the turbulence production balances the dissipation every-
where in the flow field [68]. Of course, this does not hold true in general. Through ma-
chine learning, to some extent, this can be modeled by including the kinetic energy gra-
dient and the pressure field in the model input [38, 104]. A more complete picture of the
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influence of the flow history can be obtained by solving transport equations for the flow
anisotropy or the turbulent kinetic energy [30, 21]. However, suppose such a transport
equation with, for example, one scalar field parameter of interest is to be included in a
machine learning model. In that case, an inversion problem needs to be solved to obtain
an optimal distribution of this parameter. One example of this is the local scaling of the
turbulence production term in the Spallart-Allmaras turbulence model to better predict
the stall onset on wind turbine airfoils [83].

Third, physical constraints such as Galilean and rotational invariance, as well as, re-
alizability are not enforced by default by machine-learning algorithms, neither in their
inputs nor outputs. Hence, the input to an algorithm needs to be formulated such that
physical constraints are automatically fulfilled. Alternatively, if this is not possible, pe-
nalizing non-physical terms in the objective function is also an option. Galilean invari-
ance can be ensured through the smart selection of the form of the input variables. Given
a local tensor, such as the spatial gradient of the velocity field, or a vector, such as the
spatial gradient of the pressure, the rotational invariance of any tensor constructed as a
linear combination of this basis can be enforced through the use of a minimal integrity
basis [68]. Such a tensor basis has already been successfully employed in machine learn-
ing for the mean strain and rotation rate, as well as the mean gradient of the pressure and
the kinetic energy of a given flow field [53, 95, 38, 104]. Realizability is more difficult to
parameterize and at this point the author is not aware of any frameworks where this is
automatically fulfilled.

Finally, the resulting Reynolds stress field needs to be smooth. Since ∇ ·τ appears
in the RANS equations, to ensure that the robust convergence of the solver is not lost,
the addition of a data-driven turbulence model should be continuous. So far, two tech-
niques have been used to stabilize machine-learning-enhanced turbulence models. Kaan-
dorp and Dwight [38] employed under-relaxation of the anisotropic tensor against the
prediction from the LEVM model and subsequent substitution of this term into the tur-
bulent kinetic energy transport equation. Wu et al. [104] use the already mentioned
implicit treatment of the linear Reynolds stress components through an optimized eddy
viscosity.

This gave an overview of the requirements that data-driven models have to fulfill.
Now, an overview of the most frequently explored approaches is given.

Initial approaches to data-driven turbulence modeling aimed at explicit substitution
of terms such as the Reynolds stresses and turbulence production through a data-driven
model [53, 18]. However, due to the previously mentioned ill-conditioning of the result-
ing system of equations, Duraisamy et al. [18] suggest that learning discrepancy func-
tions between existing physics-based models and reference data may be the more suc-
cessful approach to incorporate machine learning into turbulence modeling. However,
depending on the methodology the calculation of those discrepancy terms may not be
as straightforward as the explicit substitution of fields obtained from a higher fidelity
model.

A critical aspect of data-driven modeling is the location in the governing equations
at which the baseline model is modified. Simply scaling terms in the transport equation
of the baseline model can be effective for some applications [90, 18, 33]. Alternatively,
introducing correction terms in the formulation of the Reynolds stresses, with and with-
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out additional source terms in the turbulence transport equations, can capture more
complex phenomena [79, 53, 39, 99, 35, 106]. Variations of these approaches exist.

Another important aspect is how the correction fields are derived. Field inversion
approaches are a possibility [33, 18], but they require an adjoint formulation of the prob-
lem. Implementing an adjoint approach can be labour intensive and is not always nu-
merically stable. An alternative is to use a frozen approach, which does not need an
adjoint because it solves for the correction terms based on the frozen mean flow and
turbulence properties by algebraically manipulating the turbulence transport equations
and the definition of the turbulence quantities [79, 99, 106]. However, a frozen approach
needs full-field data. Both of these approaches are suitable for offline learning. Alter-
natively, if online learning is possible, then cost functions that are evaluated at every
step and penalize deviation from the high-fidelity reference data may also be considered
[110]. This does not necessarily require the availability of gradients.

Once it is clear where the corrections should be applied and how they will be calcu-
lated, it remains to determine how they will be learned. Two broad model categories can
be distinguished based on the underlying regression model: (i) blackbox models such
as neural networks and random forests [39, 90, 66, 82, 83, 53, 106, 33], and (ii) explicit
models built using symbolic algorithms such as sparse regression and Gene Expression
Programming (GEP) [79, 99, 100, 35, 109, 110].

Independent of the choice of algorithm is the need for an objective function. For
scalar, frame-independent fields, an appropriate formulation will be obvious. However,
for frame-dependent fields such as the anisotropy components, evaluating the objec-
tive function in terms of deviation from the reference anisotropy tensor eigenvalues and
eigenvectors may be worth considering. A few publications use a frame-independent
objective function for the anisotropy correction in the form of deviation of the eigenval-
ues and eigenvectors of the Reynolds stress tensor [95, 104, 96].

Lastly, while most authors use deterministic models, some authors have also used
uncertainty quantification to obtain bounds on predictions. Bayesian inference can be
used to obtain bounds on the coefficients of turbulence models. When adding Bayesian
Model Averaging, predictive models, including uncertainty quantification, can be ob-
tained [22, 23, 21]. The approach from Eidi et al. [24] that was mentioned in Section
2.2 does something similar by perturbing the eigenvalues of the Reynolds stress tensor
towards limiting turbulence states.

Finally, a brief introduction to classifiers in traditional and data-driven turbulence
modeling is presented, as this could potentially help develop data-driven models. A clas-
sifier is a function that yields values between zero and one, and could hence be used to
switch closure corrections off and on, so they are active where needed, whilst elsewhere
the unmodified base model is used. This is analogous to sensors in traditional closures,
which detect specific physical effects and active, relevant terms locally. Classifiers also
have the potential to reduce the training cost for the algorithms as corrections only need
to be trained in specific areas. Of course, this only works if the training cost of the clas-
sifier is manageable. In the literature, there are only a handful of examples of classifiers
used within the context of data-driven turbulence modeling. Gorlé et al. [29] devel-
oped a simple nonlinear marker for RANS simulations to identify regions where the flow
field deviates from parallel shear flow. Ling et al. [54] defined three separate markers
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that pertain to different ways in which the Boussinesq hypothesis fails: (i) the negativity
of the eddy viscosity, (ii) turbulence anisotropy, and (iii) the difference between a lin-
ear and nonlinear eddy-viscosity model prediction. The markers were derived by solv-
ing a classification problem using different supervised machine-learning approaches:
Support Vector Machines (SVMs), Adaboost decision trees, and Random Forests (RFs).
Longo et al. [55] used the marker from Gorlé et al. and blended a LEVM model with an
NLEVM in regions of non-parallel shear flow around buildings. A blending function was
used to smooth the marker properties further, because the marker itself can have very
sharp gradients.

To finish this chapter, some concrete examples of data-driven turbulence are given
below.

In one of the most well-known publications on data-driven turbulence modeling,
Ling et al. [53] developed tensor basis neural networks to predict improved anisotropy
tensors for standard low Reynolds benchmark cases. These neural networks were specif-
ically developed to be used with Pope’s integrity basis. This is important because this
allows learned quantities such as an anisotropy tensor to be rotationally invariant. The
models were trained to learn not a correction to the anisotropy tensor but the full anisotropy
tensor. Their training database consisted mainly of DNS data available from literature
such as duct flow, channel flow, perpendicular jet in cross-flow, inclined jet in cross-
flow, flow around a square cylinder, and flow through a converging-diverging channel.
The test cases were duct flow at Re = 2000, and flow over a wavy wall at Re = 6850. The
results were compared to a simple LEVM and a cubic NLEVM, and the learned models
outperformed both baseline models. They were able to resolve secondary flow struc-
tures, such as corner vortices for the duct flow and flow separation for the wavy wall
case, but still, they did not fully match with DNS, and there is room for improvement.
The authors also mention that predicting the anisotropy tensor perfectly does not guar-
antee a matching velocity field. Hence they suggest including an inference step in their
methodology to further improve their results.

In 2020, Zhao et al. [110] use Gene-Expression Progamming (GEP) to improve the
predictions of the k-ω SST model with γ-ReΘ transition model for two-dimensional sim-
ulation of turbomachinery blades. The Reynolds number of the cases is around Re ≈
500,000. The correction to the baseline model is introduced as a simple anisotropy cor-
rection. The GEP algorithms input list consists of the first three tensors and the first two
invariants of Pope’s integrity basis. In this publication, the learning is done online, un-
like earlier versions of the authors, where they used a frozen approach [99]. The cost
function for the learning penalizes deviations from the reference anisotropy tensor ob-
tained from LES simulations and is evaluated for every model of every generation of the
genetic algorithm. The resulting models are significantly simpler than the ones obtained
from the frozen procedure, and this makes them more numerically robust. Compared to
the baseline model and reference LES data, marked improvement is observed on both
training and test cases. The authors conclude that the framework works well for deriving
simple, accurate, and robust corrections to the baseline model, the only drawback being
the prohibitive cost of the online training routine.

The last example from Edeling et al. [23] used Bayesian inference to assess the pa-
rameter uncertainty of five frequently used LEVM models on flat plate boundary layer
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flows at varying pressure gradients. The training dataset consisted of experimental data.
The Markov-Chain Monte-Carlo method was used to obtain probability distributions.
A large variance in the coefficients for all the LEVM models was observed. To obtain
bounded predictions, Bayesian model-scenario averaging was applied, but the obtained
bounds were very large and hence not useful. To remedy this, the authors also devel-
oped a smart sensor that weights the different scenarios in the Bayesian model averag-
ing based on similarity to the test case at hand. This yielded more useful bounds on the
predictions. The authors propose to extend their methodology to more complicated test
cases.

2.5. CONCLUSION
The purpose of this Section is to put the previous Sections into context and motivate the
methodology presented in Chapter 3.

In Section 2.1 a brief introduction to different turbulence modeling approaches was
given and it was reasoned that, in general, increased accuracy comes at the cost of com-
putational time and possibly also numerical robustness. Then, in Section 2.2, the state
of the art in CFD for wind energy was presented: LES simulations are the state-of-the-
art, but RANS simulations are most frequently employed as LES is too computationally
expensive for most users. Additionally, different RANS models have been trialed in lit-
erature for modeling wind turbine wakes, but there is no model that gives consistent
improvement while being numerically robust. In Section 2.3, a study in the literature
highlighted the specific shortcomings of the k-ε model as compared to and LES model
applied to a wind turbine wake: (i) the eddy viscosity assumption is violated in both
magnitude and directionality especially in the near wake, (ii) the Reynolds stresses are
unrealizable in areas of high shear, (iii) terms relating to the pressure gradient and vol-
ume forcing are dropped in the derivation of the transport equation for the tke and the
dissipation and are introducing errors at the actuator disk. Finally, in Section 2.4, the
field of data-driven turbulence modeling is introduced highlighting both the difficulties
and the potential of this young research field.

In summary, for wind turbine wakes, it would be beneficial to develop RANS models
which are more accurate, numerically robust and which address the structural short-
comings of the existing models. So far, traditional approaches to turbulence modeling
have failed to produce such models and it makes sense to investigate the potential of
data-driven approaches.

Then, the review showed that there are different classes of RANS turbulence models.
The most accurate ones being RSM models, then NLEVM and finally LEVM. The usage
of an RSM model is appropriate if there are either strong curvature effects, strong hys-
teresis effects or strong adverse pressure gradients at work. On the other hand, LEVM
are indicated if none of these aspects apply. Wind turbine wakes with exception of the
actuator disk do not display any of these effects very strongly, but they are present. In
standard RSM models the effect of the actuator disk on the turbulence is not modeled,
hence they do not present an advantage over NLEVM in this aspect. The author thus
suggests investigating a data-driven approach based on a NLEVM model that can bet-
ter model anisotropy and the interaction between the actuator disk and the turbulence
model. Such an approach will be presented in the next chapter.
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This chapter gives an overview of the methodology that underlies the work presented
in this thesis. The complete data-driven turbulence modeling chain consists of three
main steps. First, we define a set of cases and perform LES simulations of those cases,
to provide training and validation data. This data serves as a target and ground-truth of
subsequent RANS modeling efforts, as documented in Section 3.1. Second, we solve for
RANS corrective fields, as explained in Section 3.2. The frozen approach used here deliv-
ers corrective fields which, when injected in the RANS simulations of the training-cases,
reproduce very accurately the LES mean-fields. Note that it is not sufficient to merely
use the LES-obtained Reynolds-stress tensor (RST) to correct the momentum equation,
as established by Thompson et al. [89], as this does not necessarily lead to the correct
mean flow. Rather, our procedure serves the same purpose as field inversion in the work
of Parish & Duraisamy [66], but does not require an adjoint or an optimization. Section
3.3 presents the requirements for the training data when a classifier is used. A classifier
can turn models "on" and "off" by weighting the corrections in the turbulence model,
such that they are only active in flow regions where the corrections obtained from the
frozen method are large. Finally, in Section 3.4, we use sparse symbolic regression to
discover a concise algebraic expression approximating these corrective fields, using only
local flow quantities available in the RANS simulations. The result is a new turbulence
closure model, customized to the training cases, which can be used to make predictions
for similar setups outside the training set. The author will refer to this methodology,
without classifier, as the base methodology. The base methodology is used in the re-
sults section, but additionally a second slightly modified methodology was tested as well
to deal with some shortcomings of the base methodology. On the cases tested in this
work, the base methodology leads to rather complex corrections. Hence, in an updated
methodology, a classifier is used and obtained through logistic sparse regression, analo-
gously to the turbulence correction terms. This is presented in Section 3.4 as well.

1The writing presented in this chapter is heavily based on the two most recent publications of the author, they
are listed in B.2
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3.1. CASE DEFINITION AND LES DATABASE GENERATION
The first step in the proposed methodology is to set up a database of cases that serve as a
ground-truth, to both train and validate new closure models. In this work, the database
consisted of two different cases. The same surface roughness and hub-height velocity
were used for both cases, but the turbine configuration was changed, as visualized in
Figure 3.1. The turbine and inflow properties correspond to the wind-tunnel experi-
ment from Chamorro and Porté-Agel [14]. The most important parameters are listed in
Table 3.1. As a consequence, variations in the inflow conditions and the turbine opera-
tional conditions are not considered in this work, however this would be interesting to
do in the future. The author chose to look at a variety of configurations of turbines only
since it is a more challenging generalization task, compared to parametric variation that
might be tackled with surrogate modeling.

−1 0 1 2 3 4 5 6
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−3
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−1
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1

2

Case A

Case B

Case C

Figure 3.1: Case configurations, turbine diameter is to scale.

For the CFD model, OpenFOAM-6.0 is used in conjunction with the SOWFA-6 tool-
box [15]. For the RANS solver, a modified k − ε model [78] is the baseline closure. For
the LES solver, the WALE model is used to model the unresolved scales [64, 78]. The
closure coefficients used here for the two models can be found in Table 3.2. Validation
of both turbulence models is carried out on the benchmark case from Chamorro and
Porte-Agél [14]. Additionally, Xie and Archer’s results [107] are used to determine an ap-
propriate mesh resolution for the LES simulations. SOWFA’s actuator disc model with
the same turbine geometry, rotational speed and force projection parameter is used in
both the RANS and LES simulations. The turbine diameter, hub height and rotational
speed are given in table 3.1, Stevens et al. [74] give a more detailed description of the
rotor geometry. No controller is used in the simulations, and the turbine is run at a fixed
rotational speedΩ. For the force projection, the Gaussian width is chosen to be twice the
largest cell size in the rotor area ϵ= 0.03m [57]. For simplicity and to avoid interpolation
errors, the same mesh resolution was used for both RANS and LES throughout the ma-
jority of the work, though in practice the RANS simulations could potentially be run at a
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Turbine

Diameter D = 0.15m
Hub height hhub = 0.125m
Rotational speed Ω= 1190rpm

Inflow boundary layer

Velocity U (hhub) = 2.2m/s
Turbulence intensity σU (hhub) = 1.0%

Mesh

Domain size 5.4×1.8×0.46m3

Resolution 360×120×64

Table 3.1: Case setup parameters

WALE model

Ce 0.93
Ck 0.0673
Cw 0.325

k −εmodel

Cµ 0.03
Cε1 1.42
Cε2 1.92
σε 1.3
σk 1.3

Table 3.2: Turbulence model parameters

slightly lower resolution, at least in the wall normal direction. To clarify, while a coarser
mesh would help reduce the computational cost of RANS, the main cost reduction as
compared to LES comes from the fact that the RANS simulation is steady-state and no
time-averaging is necessary. In the next chapter, in Section 4.1.6, a mesh convergence
study is carried out by varying the mesh density of the baseline and the corrected RANS
simulations. The ABL is modelled in the LES by means of a precursor simulation with
doubly periodic boundary conditions, and a uniform body-force applied to achieve the
desired hub height velocity. A zero-flux condition was used at the top of the domain for
both the precursor and the simulations with turbines. In the latter, periodic boundary
conditions were used at the sides, a zero-gradient boundary condition at the outlet, and
at the inlet plane, instantaneous fields from the precursor are applied. At the ground,
standard boundary conditions for a rough wall are used, see Section 3.2. For both RANS
and LES, second-order discretization schemes are used in space with the exception of
the convection terms in the turbulence transport equations for the RANS model where
a first-order upwind scheme is used for numerical stability. The temporal discretization
for the LES simulations is a second order Crank-Nicolson scheme.

Figure 3.2 shows the validation of the models on the benchmark case in terms of
mean velocity and turbulence intensity. As expected, RANS over-predicts turbulence
intensity and wake recovery as compared to LES. Nevertheless, neither of the models
perfectly matches the experiment, possibly also due to the relatively low Reynolds num-
ber of the wind tunnel setup whilst the wall functions and the RANS turbulence model
are derived for higher Reynolds numbers. The Reynolds number based on the boundary
layer height δ of the wind tunnel experiment is Reδ =U∞δ/ν≈ 930,000 [14]. Further, the
LES simulations show an unphysical overshoot in the turbulent kinetic energy close to
the wall. The peak in the turbulent kinetic energy in the LES simulations is a well doc-
umented problem for LES simulations with wall functions for rough walls [10]. This is
something that can be improved in future work. It is worth noting that the aim of this
work is not to perfectly reproduce the experiments, but to showcase the potential of a
methodology that systematically improves RANS based predictions using time-averaged
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LES data.
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Figure 3.2: Validation of case setup and turbulence models through vertical and horizontal slices of the flow
field up and downstream of the rotor plane in terms of velocity and turbulence intensity, solid line corresponds
to LES, dash dotted line corresponds to RANS k −ε, and dots refer to experimental results.

3.2. DISCOVERY OF OPTIMAL CORRECTIVE FIELDS
Given LES reference data for a given setup, this work aims to find corrections to the RANS
equations in the form of frozen fields for that same setup, such that RANS matches time-
averaged LES in terms of mean velocity and turbulence intensity. The core approach
presented here was developed by Schmelzer et al. [79], to which we add two modifica-
tions specific to the wind-farm application.

The method is similar to the “frozen approach” for estimating turbulence dissipa-
tion rates from LES results. Namely variables that are known from LES are injected into
model equations, and the values of the remaining variables are deduced. Specifically, let
LES quantities be denoted by a ⋆, so the LES mean velocity is U⋆, turbulent kinetic en-
ergy k⋆ and Reynolds stresses τ⋆i j , whereby both resolved and SGS modeled turbulence

quantities are implied. Let the baseline k −ε model be modified in two places: (i) in the
momentum equation, a correction to the normalized anisotropy tensor, denoted b̃∆i j , is

added, and (ii) in the equation for k, a scalar correction term R̃ is added and accounts for
errors in the turbulent kinetic energy production and other inconsistencies in the trans-
port equation for the turbulent kinetic energy. These correction terms are both spatially
varying fields (tensor and scalar, respectively), and are embedded in the model as:

Dk⋆

Dt
=P ⋆

k + R̃ −ε+ ∂

∂x j

[
(ν+νt /σk )

∂k⋆

∂x j

]
, (3.1)

Dε

Dt
= [

Cε1
(
P ⋆

k + R̃
)−Cε2ε

] · ε
k⋆

+ ∂

∂x j

[
(ν+νt /σε)

∂ε

∂x j

]
(3.2)

where the production term is defined as

P ⋆
k := 2k⋆b⋆i j Si j (3.3)
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with

b⋆i j :=
τ⋆i j

2k⋆
− 1

3
δi j =− νt

k⋆
S⋆i j + b̃∆i j . (3.4)

The equation to calculate the eddy viscosity is the same as for the baseline model,
namely:

νt :=Cµ
k⋆2

ε
. (3.5)

Given an initial guess for ε (e.g. from the baseline k − ε model or just a reasonable
constant value), νt can be calculated from Eq. (3.5). Then, R̃ can be computed directly
from (5.1). Subsequently ε can be updated by solving (5.2) with the most recent R̃, and
we iterate back and forth until convergence. Then b̃∆i j can be computed directly from
(5.5).

The resulting fields satisfy the modified k −ε equations, with the LES data as a solu-
tion.

In practice, two adjustments are made to this procedure to address issues specific to
the wind farm application: (i) blending of the correction terms to zero at the bottom and
the top of the domain, and (ii) an atmospheric boundary-layer correction which only
varies in the direction perpendicular to the wall.

BLENDING OF THE TURBULENCE CORRECTION TERMS
The blending term at the top and the bottom of the domain is introduced to avoid inter-
action between the correction terms and the boundary conditions. The blending term
Fβ employed in this work is a simplified version of the one used by Menter [59] for the
blending of the k −ε model and the k −ω model in the k −ω SST model. It is formulated
as

Fβ(z) =
tanh

[(
z

zlower,β

)α]
for z ≤ zmid

tanh
[(

zmax−z
zmax−zupper,β

)α]
for z > zmid

(3.6)

where the exponent α determines how fast the blending transitions between 0 and 1,
β ∈ {ABL,wake} is used to distinguish between the different blending applied to the cor-
rection terms for the ABL precursor and for the main simulation, zmid and zmax are re-
lated to the domain dimensions, and finally, zlower,β and zupper,β are domain specific
threshold parameters. In [59] the lower bound for the blending is chosen according to
the nondimensional wall distance. This is not necessary here, since a relatively simple
case with uniform surface roughness and flat terrain is used. Generally, different blend-
ing terms can be used for all the correction terms. However, in this particular case, using
two different blending functions between the ABL and the wake correction worked well.
The parameters used here are found in Table 3.3. The wall blending for the ABL correc-
tions was chosen such that the correction is zero in the first cell center.

MATCHING RANS BOUNDARY-LAYER PROFILES TO LES
In the undisturbed ABL, LES and the baseline RANS model give different profiles for
mean-velocity and turbulent kinetic energy. Even though the LES precursor profile is



3

36 3. METHODOLOGY

Parameter Value

α 4
zmid 0.23m
zmax 0.46m

zupper,all 0.4m

Parameter Value

zlower,ABL 0.01m
zlower,wake 0.05m

Table 3.3: Blending parameters for the blending function Fβ.

set as the RANS inflow, it evolves before contact with the turbines. As such, if the profiles
are not matched, the RANS corrective fields that are discovered will necessarily include
some component that corrects the ABL mismatch, and some other component to cor-
rect the turbine wake. We prefer to separate these corrections, and so first match the
ABL profiles. To achieve this, two modifications are applied: (i) the boundary condition
representing the ground for the two simulations is made consistent, and (ii) the velocity
profiles away from the boundaries are adjusted through a one-dimensional RANS clo-
sure correction varying as a function of wall normal distance only.

Matching the boundary condition at the wall is complicated by the use of wall models
in both LES and RANS. In particular, both use equilibrium assumptions and the log-law
for a rough wall to determine skin-friction. They assume that first cell is in the log-layer,
so that e.g.

τxz ≃−ρu2
⋆

but they estimate u⋆ differently. In the LES, the time averaged velocity at the first cell U1

at height z1 above the wall, is used to estimate an average friction velocity, using

uLES
⋆ ≃ κU1

log(z1/z0)
,

where κ is the von Karman constant and z0 is the surface roughness length. The local
instantaneous wall friction is then computed using a Schumann boundary condition.
On the other hand, RANS relates the local friction velocity to the turbulent kinetic energy
in the first cell

uRANS
⋆ ≃ 4

√
Cµ

√
k1

and then uses the log-law to determine an expression for the eddy viscosity there. For
consistency, we require that in the RANS boundary-condition

Cµ =
(
uLES
⋆

)4
/k2

1 . (3.7)

The model parameter Cµ appears also in the definition of the eddy viscosity and it
has a large influence on the turbulent kinetic energy. In fact, in this role it can be used
to regulate the turbulence intensity at hub height. In the standard k −ε model [50], the
recommended value is Cµ = 0.09, but for atmospheric boundary layers a value of Cµ =
0.03 is often suggested [84].
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In addition, in RANS, we use the standard equilibrium-assumption boundary-condition
for epsilon [50]:

ε=
C 3/4
µ k3/2

κz0
.

Having matched boundary conditions between RANS and LES, the profiles of U and
k may still not match sufficiently well. In this case, the frozen approach described above
can be applied using the LES precursor as a data source, and a RANS simulation of a flat-
plate with fully periodic boundary conditions on the sides of the domain (a 1D domain).
Two corrections for the ABL, b∆,ABL

i j and RABL, are obtained that can then be used to

eliminate remaining differences almost everywhere.

FULL FORMULATION OF CORRECTION TERMS
Finally, now the full formulation for the correction terms can be written as

R =σ ·Fwake ·Rwake +FABL ·RABL (3.8)

b∆i j =σ ·Fwake ·b∆,wake
i j +FABL ·b∆,ABL

i j (3.9)

with blending terms Fβ, ABL correction terms RABL, b∆,ABL
i j , wake correction terms Rwake,

b∆,wake
i j , and classifier σ. In case no classifier is used, σ is one everywhere, otherwise it

varies between zero and one. Henceforth, unless explicitly mentioned, the ABL terms
are included in the simulation and the wake superscript will be dropped, such that
Rwake becomes R and b∆,wake

i j becomes b∆i j . The next section has a closer look at the

classifier. Then, in Section 3.4, generalized expressions for the wake correction terms are
inferred. Contrary to the wake correction terms, the ABL correction terms can be used
as is. However, this means that they are not general and need to be recomputed if one of
the following parameters changes: surface roughness, inflow velocity, and - depending
on how strong Coriolis effects are - wind direction.

3.3. SPECIFICATION OF THE CLASSIFICATION TARGET
The corrective fields b̃∆i j (x) and R̃(x) defined above are non-zero everywhere, but negli-

gible in large regions of the flow. We define a single classification target σ̃(x) :Ω→ {0,1},
a function of the spatial coordinate x taking the value 0 when no model correction is re-
quired, and 1 where correction is required. This assessment is based on the values of the
corrective fields. Specifically we define

σ̃(x) :=

1 if

( ∣∣∣P̃ ∆
k

∣∣∣∣∣∣P ⋆
k

∣∣∣+ϵ > 0.2

)
∪

(
|R̃|∣∣∣P ⋆
k

∣∣∣+ϵ > 0.2

)
0 otherwise,

, (3.10)

where P ⋆
k is the LES tke production, and

P̃ ∆
k := 2k⋆b̃∆i j

∂Ui

∂x j
,
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is the extra tke production (beyond Boussinesq) due to b̃∆i j . This marker is thus active

when the correction due to either R̃ or b̃∆i j exceeds 20% of the reference tke production.

Note that P̃∆
k may be zero, even when other measures of the tensor-valued correction b̃∆i j

are significant. This choice of classification target was made based on the observation
that b̃∆i j tends to have the biggest effect on the mean flow via the production term.

A small threshold, ϵ := 0.01, is added to avoid division by zero. Finally, multi-dimensional
Gaussian smoothing with a filter width of two cells has been applied to all the fields in
the marker expression before using them to calculate the marker. This mitigates noise in
the input data. The implied frozen corrections with classification then become:

R̃σ(x) := σ̃(x) · R̃(x), b̃∆,σ
i j (x) := σ̃(x) · b̃∆i j (x), (3.11)

i.e. the same classification is applied to both corrections, and to all components of b̃∆i j .

The effect is simply to switch corrections off when they fall below the threshold given in
(3.10).

3.4. MODELING THE CORRECTION TERMS AND THE CLASSIFIER
The objective of this section is to take the corrective fields b̃∆i j (x) and R̃(x), and the clas-

sification target σ̃(x) (which are all functions of space), and make generalizable models
for them in terms of local flow quantities available to RANS. This is the point at which
the methods of supervised machine learning are valuable.

The input features we use are as comprehensive as we can achieve. In a later stage,
sparse regression will eliminate features that are not informative. We closely follow Wu
et al. [104], and use an integrity basis based on the set {S,Ω,Ap ,Ak } where:

S := 1

2

k

ε
(∇U +∇U T ),

Ω := 1

2

k

ε
(∇U −∇U T ),

Ap :=−
p

k

ε
I ×∇

(
p

ρ

)
,

Ak :=−
p

k

ε
I ×∇k,

all of which are non-dimensional. We obtain a generalization of the Pope basis [67] aug-
mented with pressure- and k-gradients, resulting in 47 scalar invariants I := [I1, . . . , I47].
In addition, we supplement the feature set with 11 non-dimensionalized physical fea-
tures such as actuator forcing, q := [q1, . . . , q11]. We use all these features when approxi-
mating both the corrective fields and the classification target. The full list of features can
be found in [86].

Where approximating b̃∆i j , we employ the first four Pope basis tensors T (n)
i j , and by

construction guarantee Galilean and rotational invariance:

b̂∆i j

(
I,q

)
:=

4∑
n=1

T (n)
i j αn(I,q). (3.12)
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An analogous modeling approach is taken for approximating R̃, i.e.

R̂
(
I,q

)
:= 2k

∂ui

∂x j

[
4∑

n=1
T (n)

i j βn
(
I,q

)]+ε ·γ(
I,q

)
, (3.13)

In the above αn(·), βn(·) and γ(·) are arbitrary scalar-valued functions of the features.
In (3.13) we allow two types of terms: (i) those that mirror a correction to the turbu-

lence production, and (ii) those that represent a correction to the dissipation rate. Since
the production term should already be correct (due to knowledge of the RST from LES),
we expect most corrections to take the latter form. Nonetheless, the former form allows
us to capture other model-form errors - in our case notably the omission of the effect of
the rotor forcing on the turbulence.

For the modeling of the classification target σ̃(x) the sigmoid function, s(x) := 1/(1+
exp(−x)), is used in conjunction with a scalar-valued function of the features, δ(·):

σ̂
(
I,q

)
:= s(δ(I,q)) (3.14)

where – by construction – σ̂ ∈ [0,1] for arbitrary δ(·).

SPARSE REGRESSION
Any functional representation can be used to parameterize the scalar-valued functions
αn , βn , γ, and δ. We use a library approach with sparse regression [79].

The 47+ 11 = 58 input features are used to build a large library of L ∈ N candidate
(basis) functions (ℓ1, . . .ℓL). This is done by recombining features with each other (up to
a maximum of three features), and applying exponentiation by 1

2 and 2. This results in a
library cubically larger than the feature set. Each scalar function is then represented as:

α(I,q) :=
L∑

k=1
θkℓk (I,q), (3.15)

i.e. a linear representation with coefficients θ ∈RL . An elastic net is then used to identify
an optimal regressor with sparsity (most of the coefficients are zero) [111].

Logistic regression is appropriate for the problem of discovering a classifierσmatch-
ing the classification target σ̃. In this case, δ(·) takes the form (3.15), and we solve:

min
θ∈RL

{
N∑

k=1
log

[
σ̃(xk )− σ̂(I(xk ),q(xk ))

]+λρ∥θ∥1 +0.5λ
(
1−ρ)∥θ∥2

}
. (3.16)

where 1 ≤ k ≤ N indexes the mesh-points of the training data, and ρ ∈ [0,1] and λ ∈ R+
control the level of sparseness and coefficient magnitude, respectively.

Given a classifier σ(I,q) for the anisotropy correction we solve

min
θ∈R4×L

{
N∑

k=1
σ̂(Ik ,qk )∥b̃∆i j (xk )− b̂∆i j (Ik ,qk )∥2

F +λρ∥θ∥1 +λ(1−ρ)∥θ∥2

}
,

where ∥·∥F is the Frobenius norm, and we have 4×L coefficients in total (due to the four
functions α1, . . . ,α4 in (3.12)). The presence of the multiplicative σ(·) term in the sum,
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limits training to locations where the (previously trained) classifier is active. The model
for R is trained similarly.

Note that, in the above, θ is a placeholder for the regression coefficients and takes
different values for R, b∆i j and σ. Similarly, the values of λ and ρ may be different for

each model. The final correction models are then:

R(I,q) := σ̂(I,q) · R̂(I,q), b∆i j (I,q) := σ̂(I,q) · b̂∆i j (I,q),

in an analogous fashion to (3.11).
The outline of the full procedure is:

1. Preprocessing: Use a mutual-information criterion to remove features that have
no relationship to the target. Then build the library, and reduce it by cliqueing
(identifying and removing clusters of multi-colinear functions).

2. Train a classifier: Match the classification target with a model expression σ(·).

3. Data reduction: Use the classifier σ from the previous step as a condition for in-
clusion of a point in the training dataset.

4. Model discovery: Use the elastic net to identify model forms. By varying regular-
ization parameters λ and ρ, obtain an array of models with a variety of non-zero
terms.

5. Model re-calibration: For each model from the previous step, recalibrate the non-
zero model terms using Ridge regression (i.e. L2 regularization only). Select a reg-
ularization parameter λ to encourage small coefficients.

The preprocessing step makes use of two probabilistic procedures: mutual informa-
tion (MI) [63, 93] and cliqueing [3]. MI can identify nonlinear relations between input
features and correction terms and can hence help reduce the input feature set. Clique-
ing checks if there is multi-collinearity in the input library and is thus useful for discard-
ing co-linear input functions. Both of these procedures are vital for making the learning
procedure manageable for our dataset.



4
PRACTICAL APPLICATION

1

This chapter presents the results of the step-by-step application of the methodology de-
scribed in Chapter 3. The chapter has two sections. Section 4.1 shows how well the
approach works when no classifier is used, while Section 4.2 introduces models that are
combined with a classifier and compares the results to those obtained without classifier.

The models obtained from the regression procedure are explicit, hence they can be
directly integrated into the RANS solver. However, in order to study the errors of the
optimal corrections from the k-frozen approach, the errors introduced by the sparse re-
gression, and the errors in the final coupled models separately, we consider three kinds
of corrections. To avoid confusion short definitions are listed below:

• Frozen (or optimal) refers to correction terms obtained from the frozen procedure
of Section 3.2. For frozen corrections, the terminology is R̃ and b̃∆i j . For the classi-

fier, there is no optimal solution, there is only the one we define with the threshold
criteria. That one will be denoted as σ̃.

• Fixed refers to the correction term that results from applying a trained model to
the LES flow field without coupling said correction to the flow field. This is gen-
erally a good representation of the optimal correction, but includes errors due to
the inability of the elastic-net to represent the optimal correction with the given
features. For fixed corrections, the terminology is R̂, b̂∆i j , and σ̂.

• Coupled refers to a correction term that is a function of the flow field, so that it
changes as the flow field changes, e.g. at every iteration of the flow solver. In this
sense, it is a genuine turbulence model, operating independently of LES data. For
coupled correction terms, the terminology is R, b∆i j , and σ.

• Specific models will be denoted via a subscript independent of whether they are
fixed or coupled, for example [R]1 or b̂∆1 .

1The writing presented in this chapter is heavily based on the two most recent publications of the author which
are listed in B.2.
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4.1. WIND TUNNEL SETUP WITHOUT CLASSIFIER
This section details the models derived when applying the regression procedure directly
to the data obtained from the frozen step. Subsection 4.1.1 will show how the RANS
model is matched to the LES precursor data, such that the inflow profiles are in equilib-
rium. Then, Subsection 4.1.2 will show how closely the RANS simulation matches the
LES data when injected with the frozen correction for the turbine wakes. Subsection
4.1.3 will document the application of the regression algorithm to the frozen data. Fol-
lowing this, in Subsection 4.1.4, the robustness of the learned correction terms is tested
and the results are used to aid the model selection. What happens when the RANS model
is fully coupled with the correction terms is shown in Subsection 4.1.5. Finally, in Subsec-
tion 4.1.6, a mesh sensitivity study is done to show if the models still work with a coarser
and finer mesh.

4.1.1. MATCHING RANS BOUNDARY-LAYER PROFILES TO LES
The matching procedure for the undisturbed boundary layer has been described in Sec-
tion 3.2. The parameter Cµ is chosen according to relation 3.2 that is based on the wall
friction and wall tke from the LES data. This yields Cµ = 0.055. This will match the
boundary conditions perceived by RANS to the ones used for the LES simulation. For
the baseline RANS simulations, the standard value of Cµ = 0.03 will be chosen [84].

Having matched boundary conditions between RANS and LES, the profiles of U and
k still do not match sufficiently well. The frozen approach described in Section 3.2 is
used to match the profile better. The LES precursor is used as a data source, and a RANS
simulation of a flat-plate with fully periodic boundary conditions on the sides of the
domain (a 1D domain) is performed. Two corrections for the ABL, b∆,ABL

i j and R ABL , are

obtained that eliminate remaining differences almost everywhere.

Figure 4.1 shows the resulting profiles from the frozen approach and then the pro-
files in the case where the corrections are propagated (referred to as a corrected sim-
ulation). For corrected cases, the domain forcing is chosen such that the hub height
velocity matches. The velocity profiles between the frozen and the corrected RANS sim-
ulation match very well, but the turbulent kinetic energy profiles do not match well close
to the wall. In fact, the unphysical overshoot in the turbulent kinetic energy is also ob-
served in the corrected RANS simulations, even though the peak was removed from the
LES reference data. However, the turbulent kinetic energy in the rotor wake matches well
between LES and corrected RANS, and this is what is relevant for this work.

4.1.2. FLOW FIELD WITH OPTIMAL CORRECTION TERMS

The optimal correction terms are derived for the training case A. Subsequently, the (static)
optimal corrections are integrated into the RANS turbulence models for this setup. The
results obtained from this are referred to as “frozen” or “optimally corrected” RANS. Fig-
ures 4.2 and 4.3 show the wake development as predicted by the LES, the baseline RANS,
and the frozen RANS simulations using vertical slices through the flow field. The hori-
zontal slices can be found in the appendix in Figures B.1 and B.2. Optimally corrected
RANS represent the best-case scenario that can be obtained when using this methodol-
ogy. In the next subsection, the generalized models for the correction terms will intro-
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Figure 4.1: Matching of ABL profiles between the frozen RANS, the baseline RANS and, the corrected RANS
simulations. The one-dimensional profiles for the velocity, the turbulent kinetic energy and the two correction
terms are shown. The scalar correction term is normalized with the Boussinesq turbulent kinetic energy pro-
duction at hub height.

duce additional errors. The results in the figure show that indeed the optimal correction
terms lead to an almost perfect match between LES mean and frozen RANS velocity and
turbulent kinetic energy fields.

The relative importance of the different frozen correction terms for the prediction of
the velocity and turbulent kinetic energy field is also visible from Figures 4.2 and 4.3, re-
spectively. Some conclusions can be drawn from the selective inclusion of the correction
terms. The free-stream corrections, R ABL and b∆,ABL

i j , do not have much effect on the ve-

locity field, but they slightly reduce the overprediction of the turbulent kinetic energy. Of
course, this is closely tied to the choice of Cµ. The anisotropy correction term b∆i j is more

important than the scalar correction terms R. If only a correct prediction of the velocity
field is necessary, then the scalar term R can be neglected. However, the scalar correction
term R does yield some improvement for the prediction of the turbulent kinetic energy
over the case where only the tensor correction term b∆i j is used.
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Figure 4.2: Comparison between LES, RANS baseline, and frozen RANS with selective inclusion of the different
components of the (frozen) correction terms. Vertical slices of the velocity field up and downstream of the rotor
plane of the two turbines of case A.

Figure 4.3: Comparison between LES, RANS baseline, and frozen RANS with selective inclusion of the differ-
ent components of the (frozen) correction terms. Vertical slices of the turbulent kinetic energy field up and
downstream of the rotor plane of the two turbines of case A.
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4.1.3. LEARNING OF CORRECTION TERMS
The results presented in the following are based on the datasets for configuration A & B,
as presented in Figure 3.1. Case A is used for the training of the models and case B is
used to cross-validate the learned correction terms. Note that case B is more complex
than case A because it includes one more turbine and one of the turbines is yawed with
respect to the incoming flow. The training dataset does not include the entire dataset
of case A, rather only entries centered around the turbines wake are used. This helps to
avoid overfitting and reduces the dataset somewhat. The exact criteria for inclusion in
the training dataset are xr otor −1D < x < xr otor +20D , yr otor −1.5D < y < yr otor +1.5D ,
and 0.05m < z < zr otor +1.5D .

ID Description Raw feature Normalization

qγ Shear parameter
∥∥∥ ∂Ui
∂x j

∥∥∥ ε
k

qτ Ratio of total to normal
Reynolds stresses

||u′
i u′

j Boussi nesq
|| k

qν Viscosity ratio νt 100ν
q†

T I Turbulence intensity k 1
2UiUi

q†
F Actuator forcing ∥Fcel l∥ 1

2ρ0 Acel l ∥U∥2

Table 4.1: List of non-dimensionalized physical features used in the model discovery phase and their precise
definition. The features that are not Galilean invariant are marked with †.

Following the methodology outlined previously, the feature set used to construct a
library of basis functions is based on the results of the mutual information analysis be-
tween features and correction terms. A list of the input feature set divided into physical
parameters and invariants that were obtained as a result of the preprocessing step can be
found in Tables 4.1 and 4.2, respectively. The full list of physical features and invariants
used as an input to the mutual information algorithm can be found in the Appendices
A.2 and A.1. Additionally, only the first four tensors of the integrity basis are used where
T (1) = S, T (2) = SΩ−ΩS, T (3) = dev

(
S2

)
, T (4) = dev

(
Ω2

)
and where dev is the deviatoric

part of the tensor. Applying the cliqueing algorithm to the library of basis functions that
was constructed from the reduced feature set, further reduced the size of the library by
around a factor of 6.

Invariant ID Definition

I1 S2

I2 Ω2

I19 ΩAk S2

I25 A2
k SΩS2

I35 Ap Ak S2

Tensor ID Definition Normalization

S 1
2

(
∂ui
∂x j

+ ∂u j

∂xi

)
ε
k

Ω 1
2

(
∂ui
∂x j

− ∂u j

∂xi

)
ε
k

Ak −I ×∇p εp
k

Ap −I ×∇k ρ0 ∥u∇u∥

Table 4.2: List of invariants used in the model discovery phase and their precise definition.
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Subsequently, the three-step regularization methodology is applied to determine,
firstly which candidate functions are important, and secondly what the magnitude of
these coefficients should be. The result is a very large number of potential models. Fig-
ure 4.4 shows the results of this process for both the anisotropy correction b∆i j and the

scalar correction term R. The left side of the figure illustrates the trade-off between the
anticipated robustness and the model accuracy by showing the influence of the Ridge
regularization parameter λR on the mean and maximum error of the model on the train-
ing data set. The right side of the figure visualizes the trade-off between the model com-
plexity and the model accuracy by highlighting the number of terms of the model. But
the results are not straightforward and only limited trends can be identified. In general,
more complex models are seen to give better predictions for both correction terms, but
this is not always the case. The trend with respect to an increasing regularization param-
eterλR is different for the two correction terms. For the anisotropy correction b∆i j , higher

regularization correlates with a higher mean error but a lower maximum error. For the
scalar correction term R, higher regularization generally leads to both higher mean and
maximum error.
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Figure 4.4: Scatter plot of all the models obtained for both correction terms. Members of the three-
dimensional Pareto front with respect to mean and max error, as well as model complexity are highlighted
in black. The coloring of the elements is according to the magnitude of the Ridge λR penalization parameter
and the model complexity nC .
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Because the model discovery and calibration phase generate many models and be-
cause it was difficult to pick which models should be selected for further investigation,
the three-dimensional Pareto front in terms of mean error, maximum error, and model
complexity was computed. This is indicated in Figure 4.4 by black outlines. Going for-
ward only the models which are a member of the Pareto front are investigated. Since the
number of Pareto optimal models is still of the order of around 500, a further automated
selection procedure is necessary. Cliqueing was again applied, this time to predictions
of complete models, and models that were too similar were discarded.

The effect of this procedure is visualized in Figures 4.5 and 4.6 for R and b∆ respec-
tively. The figures show the spread of Pareto-optimal models, the selection of models
obtained from the cliqueing, and finally the models selected for implementation in the
CFD solver. The anisotropy correction is visualized by means of its effect on the turbu-

lent kinetic energy production P ∆
k = 2kb∆i j

∂ui
∂x j

. Our experience shows that this is a good

indicator for the accuracy of the anisotropy correction term, and substantially easier to
visualize.

Figure 4.5: Spread of trained models for R for Case A. The subscript Ra,r ed refers to models whose terms only
contain positive powers. Vertical slices at the rotor plane at different streamwise stations. The model spread
is for all models that are Pareto optimal. The models selected during the cliqueing post-processing step are
shown explicitly either in color or in dark gray. The models selected for further investigation are highlighted in
color. Finally, the optimal correction term is shown in black.

Figure 4.5 shows the predictions for the scalar correction term R. It can be seen that
the entire selection of the spread of models can be reduced to about 20 models. The
four models highlighted in color are the ones that will be implemented in the CFD solver
in the next section. The four models were selected based on accuracy and complexity.
Further, also the models named [R]1 and [R]2 contain terms with both negative and pos-
itive powers of the input features, whereas the models named [R]1,r ed and [R]2,r ed (i.e.
reduced) only contain terms with positive powers. This was done because the negative
powers negatively affected the convergence of the models once implemented in the CFD
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model. For the R term this effect was not always present, but for the anisotropy correc-
tion term b∆i j none of the models including negative powers lead to convergence. As

such they are not discussed further.

Figure 4.6: Spread of trained models for b∆, visualized using P ∆
k for case A. Vertical slices at the rotor plane

at different streamwise stations. The model spread is for Pareto optimal models. The models selected during
the cliqueing post-processing step are shown explicitly either in color or in dark gray. The models selected for
further investigation are highlighted in color. Finally, the optimal correction term is shown in black.

Figure 4.6 shows the spread of the model prediction for the anisotropy prediction.
Again, with a reduced set of about 10 models, the entire spread of results can be covered.
Two models were selected for further investigation as a trade-off between accuracy and
complexity. All of the models contain only positive powers of the input features. Going

forward the two selected models will be referred to as
[

b∆i j

]
1

and
[

b∆i j

]
2

.

4.1.4. ROBUSTNESS OF CORRECTION TERMS
The correction-learning methodology employed in this work is completely decoupled
from the CFD model. This significantly simplifies the regression as compared to an on-
line approach, where the terms are trained while coupled with the CFD model. However,
this also means that once a coupling with the CFD solver is constructed, the correction
terms may not be the same as predicted during the learning stage. Further, at this point,
there is no clear criteria or methodology to determine the stability of a correction model
a priori. Hence simple testing and cross-validation is the most immediate strategy.

Experience with the framework has shown that models that are very complex, i.e.
above about 50 terms, tend not to converge for either one of the correction terms. Fur-
thermore, in models trained on our data, the Ridge regression parameter should be at
least λR ≥ 0.001 to assure convergence not only on the training but also on test datasets.

To make the assessment of the models structured, the robustness of the two correc-
tion terms is assessed separately before implementing both terms simultaneously in the
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Figure 4.7: Spread of fixed and coupled corrections R for the training case A via vertical slices at the rotor
plane up and downstream of the two turbines. The subscript Ra,r ed refers to models whose terms only contain
positive powers.

turbulence model. For example, the robustness of the model for R can be assessed by
using the frozen correction for b∆i j , and vice versa. In Figures 4.7 and 4.8 the robustness

of the previously selected correction terms is shown for the scalar and the anisotropy
correction models on the training setup, i.e. case A.

Figure 4.7 compares the optimal correction terms for R with the one obtained when
coupled with the CFD model and the fixed one obtained during the learning phase with
no coupling to the CFD solver. Ideally, the coupled and the fixed term would overlap
perfectly. However, as visible from the figure, this is not the case and the effect is more or
less pronounced for the different pictured correction models. The discrepancy between
the coupled and the fixed terms is larger in regions where the optimal term has high
gradients. If the discrepancy between the two terms is too large, the model not only be-
comes inaccurate but may also lead to an unstable coupling once both correction terms
are introduced simultaneously.

Figure 4.8 shows the same analysis for the two selected model for the anisotropy cor-
rection b∆i j in terms of the modified turbulent kinetic energy production term P ∆

k =
2kb∆i j

∂ui
∂x j

. Again, in regions where the optimal correction term and its derivative are

large, the disparity between the fixed and the coupled term is largest. Nevertheless, both
terms lead to a converging simulation and hence will be further tested going forward.

4.1.5. FLOW FIELD WITH LEARNED CORRECTION TERMS

Finally, now that model selection and assessment of model robustness have been carried
out, both correction terms can be implemented simultaneously while coupled to the
RANS flow field. The models will be tested on case B, since they were trained on case
A. The vertical profiles of velocity and k are shown in Figures 4.9 and 4.10 for case B.
For comparison, also the baseline model, the frozen case, and the flow field with fixed
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Figure 4.8: Spread of fixed and coupled corrections b∆i j in terms of P ∆
k for the training case A via vertical slices

at the rotor plane up and downstream of the two turbines.

learned correction terms are shown. For the cases with the fixed correction terms, only
the spread between all possible combinations of the correction terms is shown.

As is visible from the figures, the spread between the simulations with the fixed cor-
rection terms is smaller than the spread for the simulations where the correction terms
are coupled to the RANS velocity field. This is quite logical given the results from the
robustness analysis. Nevertheless, all the shown models yield a solid improvement over
the baseline model in the wake region. No results for the scalar correction term [R]2,r ed

are shown because this term would lead to diverging simulations on both the test and
training case, even when strong under-relaxation was used.

All the velocity profiles in Figure 4.9 from simulations with the coupled correction
terms show significant improvement over the baseline model. In fact, the spread be-
tween the different models is minimal and the difference between the fixed and the cou-
pled models is quite small. However, the discrepancy with respect to the reference profile
increases further downstream akin to an error accumulation. Thus, it would be interest-
ing to test the models on a case with more turbines to see how robust the enhanced
models actually are.

In Figure 4.10 the tke profiles are shown for the baseline and the improved mod-
els. Here, the spread between the coupled and the fixed models is larger, especially
in the near wake of the second rotor. Comparison between the results for the various
enhanced models indicates that the scalar correction term R is what leads to the large
spread between the models in the wake of the turbine. As compared to the velocity pro-
files, the discrepancy with respect to the reference does not increase downstream which
is encouraging. There is also an unphysical underprediction of the tke close to the wall
for the frozen case which is not present in the enhanced simulations: it seems the cou-
pling with the flow field helps alleviate it. However, the tke close to the wall is still lower
than the one for the reference time-averaged LES simulations, which show an unphysi-
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Figure 4.9: Comparison between LES, RANS baseline, frozen RANS and corrected RANS models via vertical
slices of the velocity field up and downstream of the rotor plane for the three turbines of case B.

cal overshoot there, so this discrepancy is actually a positive. The peak in the tke in the
LES simulations is a well documented problem for LES simulations with wall functions
for rough walls [10]. This could be addressed in further work.

Overall, the combination of the correction terms [R]1,r ed and
[

b∆i j

]
2

yielded the best

results and hence the full formulation for these correction terms is:

[R]1r ed = 2kSi j [ 1.4771 ·10−4 · I 0.5
1 ·q3.0

ν ·T(1)
i j −1.9183 ·q0.5

T I ·q1.5
F ·T(4)

i j ]

+ε [ 1.0970 ·101 ·q0.5
T I ·qF · I 0.5

1 +6.1657 ·10−5 ·qT I · I 2.0
1 · I34

+8.3864 ·10−3 ·q1.5
T I · I25 −1.7888 ·102 ·q2.0

T I · I25

−1.3956 ·101 ·qF ·q0.5
γ +2.5231 ·10−7 ·q2.5

T I · I 2.0
25

−2.2330 ·qF ·qγ−5.2367 ·10−6 · I 2.0
1 ·q4.0

ν

−5.5597 ·10−2 ·q3.0
ν ]

(4.1)
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Figure 4.10: Comparison between LES, RANS baseline, frozen RANS and corrected RANS models via vertical
slices of the turbulent kinetic energy field up and downstream of the rotor plane for the three turbines of case
B.

and [
b∆i j

]
2
= [ 2.5095 ·10−2 ·q0.5

T I · I 0.5
1 +1.090 ·10−5 ·qT I ·q0.5

F · I 2.0
1

+3.4089 ·10−4 ·q2.0
T I ·q0.5

F · I 2.0
1 −4.0175 ·10−6 ·q2.0

T I · I 2.0
1 ·qν

−3.6356 ·10−5 ·q2.0
T I · I 2.5

1 +9.6825 ·101 ·q3.0
T I ·q2.0

ν

−2.8904 ·103 ·q3.5
T I +6.1482 ·10−2 ·q0.5

F

−9.4482 ·10−5 ·q0.5
F · I1 ·q2.0

ν −2.1767 ·10−3 ·q2.5
ν

+8.6126 ·10−4 · I 0.5
1 ] ·T(1)

i j

+[−9.4932 ·10−2 ·q0.5
T I ·qF +1.0716 ·10−2 ·q0.5

T I ·q1.5
F

+6.3229 ·10−4 ·q0.5
T I ·q2.5

ν +6.3233 ·10−5 ·q0.5
T I ·q3.0

ν

+3.7871 ·10−4 ·qT I · I34 +7.5746 ·10−4 ·q2.5
T I · I18

−1.7673 ·103 ·q4.5
T I +4.8578 ·10−3 ·qF

−4.1741 ·10−8 · I 0.5
1 · I2 +1.3261 ·10−6 · I1] ·T(2)

i j

+[−1.3262 ·10−3 −2.7248 ·10−6 · I 0.5
1 ·q4.0

ν

+6.5684 ·10−7 · I1 ·q2.5
ν ] ·T(3)

i j

−3.5887 ·10−5 ·q4.5
ν ·T(4)

i j

(4.2)

The anisotropy correction term
[

b∆i j

]
2

consists of 25 terms of which 11 are multi-

plied by the first tensor of Pope’s invariant basis, T(1) = S, i.e. the correction tensor is
linear. Thus, this part of the correction tensor is implemented in the turbulence model
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in a semi-implicit form, and the remaining non-linear terms are incorporated in a fully
explicit manner. It is expected that this further increases the stability of the numerical
implementation.

Some of the coefficients for the two correction models have a very small magnitude,
so it may seem that they are not necessary. However, the influence of neglecting each
coefficient was checked and the shown coefficients all result in a change in the relative
mean or maximum error of at least three percent as compared to the full formulation
shown above. Hence, all the shown terms have a non-negligible contribution. Neverthe-
less, the models are quite complex and there is also at least partial cancellation between
the different terms.

4.1.6. MESH CONVERGENCE WITH LEARNED CORRECTION TERMS
As pointed out by van der Laan [91], nonlinear eddy viscosity models can be prone to nu-
merical instability when a fine mesh is used. To check whether the results of the devel-
oped model correction terms are actually grid-independent, a mesh convergence study
is carried out both for the baseline, as well as, the corrected model. The results for the
vertical velocity and the turbulent kinetic energy profiles are shown in Figures 4.11 and
4.12 for case B. The mesh properties are shown in Table 4.3.
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Figure 4.11: Mesh convergence study for the baseline and the corrected model. Shown are the vertical slices
of the velocity field upstream and downstream of the rotor plane for the three turbines of case B.

The velocity profiles in Figure 4.11 are insensitive to the mesh for both the baseline
and the corrected models. Hence, in terms of velocity the results are close to mesh in-
dependent at the presented refinement levels. There is more variation in the tke, see
Figure 4.12, and the baseline model shows less sensitivity than for the corrected model.
However, even for the corrected model the difference between the reference and the fine
mesh is small indicating that the mesh is fine enough and that results are largely mesh
independent.
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Name Density nx ×ny ×nz

Coarse 240×120×48
Reference (same as for LES) 360×120×64
Fine 540×240×64

Table 4.3: Mesh convergence parameters.
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Figure 4.12: Mesh convergence study for the baseline and the corrected model. Shown are the vertical slices
of the turbulent kinetic energy field up and downstream of the rotor plane for the three turbines of case B.

Overall, these results are encouraging. The correction terms depend on the normal-
ized rotor forcing which in turn depends on the actuator model, so there is an additional
coupling loop in the prediction. Despite this there is little variation between the results.

4.2. WIND TUNNEL SETUP WITH CLASSIFIER
In this section, the regression procedure will not be directly applied to the corrections
obtained from the frozen procedure. A classifier will be used as an intermediate step to
discard data points for which the corrections are below a certain threshold. This dramat-
ically reduced the training data set for the turbulence corrections. However, the classi-
fier needs to be trained on the full data set which adds computational cost. Due to this
modified training process, the resulting models will look different. Here, the results are
compared to the final model from the previous section. The exact model formulation
can be found in equations 4.2 and 4.1 and will be referred to as the reference model.

The section is structured as follows. First, in Section 4.2.1, the results from injecting
the frozen corrections in the RANS simulations are again shown, but additionally also
the effect of the ideal classifier will be pictured. Then, in Sections 4.2.2 and 4.2.3, the re-
sults from the training process for the classifier and the two correction terms are shown,
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respectively. In Section 4.2.4 two limiter functions are introduced to increase the robust-
ness of the models. Finally, in Section 4.2.5 the obtained models are coupled with the
CFD solver and they are compared to the models obtained without using the classifier.

4.2.1. INJECTION OF FROZEN CORRECTION TERMS

We first inject the frozen corrections of (3.11) into a RANS simulation. The fields R̃σ(x)
and b̃∆,σ

i j (x) are calculated using the procedure of Section 3.2 for Case A, and are there-

after injected into a RANS simulation of the same case. This is therefore not a predictive
test, but is useful for assessing the best-case scenario that can be obtained using our
methodology. In the next subsection, the models for the correction terms will introduce
additional errors.

Figure 4.13 shows the wall-normal profiles of the flow velocity and the turbulent ki-
netic energy (tke) (non-dimensionalised by their values at the turbine hub height) as a
function of non-dimensional height, at different stream-wise locations in the domain:
from a distance of −1D upstream of the first turbine T1 to a distance of 10D downstream
of the second turbine T2, where D is the turbine diameter. The locations of the turbines
and the locations of the profiles are indicated in the figure. Wake profiles are shown for
the LES, the baseline RANS (k −ε), and the frozen RANS simulations.

The results in the figure show that – in terms of these quantities – indeed the frozen
correction terms lead to an almost perfect match between the LES mean and frozen
RANS velocity, and only localized mismatch of k near the wall. In particular we see
that restricting the corrective fields based on the threshold of (3.10) has not significantly
harmed the quality of the fit. On this basis we progress to discovering models for the
corrections.

Note that we can assess the relative importance of the two corrective fields by in-
jecting only one or the other, see Figure 4.13. The anisotropy correction term b̃∆,σ

i j is

significantly more important than the k-equation correction R̃σ. In fact, if only a correct
prediction of the velocity field is necessary, then R could be neglected completely. How-
ever, it does yield a significant improvement in the prediction of the turbulent kinetic
energy, suggesting that in a predictive context it might become important.

4.2.2. TRAINING OF THE CLASSIFIER

Based on the mutual information analysis, the feature set for the classifier was reduced
to only four variables, listed in the first four rows of Table 4.4. Other features did not
show significant correlation with the classification target. Varying the regularization pa-
rameters of the elastic net resulted in the identification of a large number of classifiers, of
which five were selected for further testing based on complexity and achieved fit. These
are denoted σ1 to σ5 in the following. The complexity of the chosen classifiers ranges
from one to nine terms; and notably much more complex models do not show a sig-
nificant increase in accuracy. Figure 4.14 is a visualization of the terms used. There is
significant overlap between the terms used by the classifiers, notably turbulence inten-
sity, velocity shear and eddy viscosity ratio are dominant in all. Note that not all features
used are Galilean invariant, notably turbulence intensity qT I and actuator forcing qF rely
on a reference-frame fixed with the ground. As such, the developed models cannot be
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Figure 4.13: Vertical velocity and tke profiles for Case A; positions of the two turbines, and the profile locations
are shown in gray. Comparison of LES; RANS baseline; RANS with injected frozen corrections; and RANS with

injection of R̃σ and b̃∆,σ
i j separately.

considered general-purpose, but specific to wind farms.
In order to investigate the effect of the classifier models in isolation from the cor-

rection models, all five were implemented in the RANS solver in combination with the
frozen correction terms. In particular, the corrections implemented were:

R(I,q) :=σl (I,q) · R̃, b∆i j (I,q) :=σl (I,q) · b̃∆i j , l ∈ {1, . . . ,5},

and the classifier was updated at every iteration of the flow solver until the system con-
verged.

Figure 4.15 shows tke profiles and the classifier fields (velocity profiles are almost
identical for all classifiers and are not shown in the figure). There is minimal variation in
the tke profiles, except close to the wall. The classifier values themselves show significant
spread in the bottom part of the wake and towards the wall which does not seem to
affect the mean fields significantly. This could be a consequence of the corrections being
generally small in the lower part of the wake. On this basis, classifierσ1 is considered the
most promising candidate as it is the simplest, with a single term. We also retain σ3, of
intermediate complexity and slightly higher accuracy.
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Figure 4.14: Visualization of non-zero terms in the five discovered classifier models, σ1 to σ5. Model coeffi-
cients are not shown.

ID Description Expression Normalization

qγ Shear parameter
∥∥∥ ∂Ui
∂x j

∥∥∥ ε
k

qτ Ratio of total to normal
Reynolds stresses

||u′
i u′

j Boussinesq
|| k

qν Viscosity ratio νt 100ν
qT I Turbulence intensity k 1

2UiUi

qF Actuator forcing ∥Fcel l∥ 1
2ρ0 Acel l ∥U∥2

q⊥ Nonorthogonality of U
and ∇U

|UiU j
∂Ui
∂x j

|
√

UlUlUi
∂Ui
∂x j

Uk
∂Uk
∂x j

I1 – trS2 –
I2 – trΩ2 –
I19 – trΩAk S2 –
I25 – trA2

k SΩS2 –
I35 – trAp Ak S2 –

Table 4.4: Non-dimensional features used in the discovered models of the classifiers and corrective fields.
Other features not listed, while included in the model discovery process, were ultimately not part of any model.

Note that the classifiers themselves might not be considered a particularly good fit to
the classification target. There are two main reasons for this:
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Figure 4.15: LES; RANS baseline; and corrected RANS simulations of Case A. Correction terms are frozen and
classifiers are coupled with the solver. The figures depict vertical slices the tke (top) and classifier (bottom).

1. The classification target contains global information such as transport within the
flow, whereas the classifiers are a function of local features only. As such there are
regions in the lower part of the wake that cannot be effectively distinguished from
regions in the upstream boundary layer. Thus the classification problem is harder
than it appears.

2. The objective is to obtain good models that are as simple as possible, i.e. a better
fit (of the classifier or the corrections) must be traded-off with model complexity.
Dramatically increasing the number of terms involved in the symbolic classifier
did not significantly improve the fit, and was therefore not considered. It is per-
haps the case that by using a random-forest, ANN or other very highly parame-
terized model, a better fit may be possible – but at the cost of significant model
complexity.

4.2.3. TRAINING OF CORRECTION MODELS

The correction models are now trained for regions of the flow where the classifier is
active. The classifier is always trained first (see previous section), and used to discard
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points from the training data-set. As such the correction model only has to reproduce
the frozen correction where the classifier is active, potentially allowing for a better fit
with simpler models. Experiments with σ1 and σ3 showed no benefits of using the more
complex σ3, therefore, all models here are trained with data selected using σ1.

ANISOTROPY CORRECTION

All features were used in the model discovery phase resulting in a large number of can-
didate models. The procedures described in Section 3.4 was used to select a small set of
promising models, and in addition we preferentially selected models without T (2), . . . ,T (4)

terms – i.e. linear eddy-viscosity models. Table 4.4 lists the features that were ultimately
part of the resulting models.

Figure 4.16 visualizes the nonzero terms of the selected model formulations for the
anisotropy correction term. We denote the models b∆1 to b∆6 in order of increasing model
complexity, which ranges from 6 to 15 terms. Models b∆1 to b∆4 use only T (1) – making
them linear EVMs – whereas b∆5 and b∆6 also use higher-degree base tensors, so we refer
to them as non-linear EVMs. Four terms are used by all models (the first four rows of
Figure 4.16): these use T (1) combined with qT I and qF , and/or the invariant I1. In the
remaining terms, the physical features qν and q⊥ are most often represented, followed
by the invariant I2. The most frequently used feature overall is I1. For the nonlinear
eddy viscosity models a large overlap between the terms with nonlinear tensors is seen.
The reference SpaRTA model without classifier is shown in the figure as “ref”, and can be
seem to be significantly more complex.

We assess the models for b∆i j independently of the classifier and R models, by using

the frozen R̃ and σ̃, and coupling only the model for b∆i j . Figure 4.17 shows the effect

of these partially coupled models for Case A. Again, the spread between the models is
significantly larger for the k profiles than for the velocity profiles. Further, there is no
significant spread between the models for the first turbine’s wake, while the models differ
for the second turbine – though all represent a significant improvement over the baseline
model. Remarkably, it is the simplest linear model b∆1 and the simplest nonlinear model
b∆6 which yield the most consistent improvement over the baseline model, with the latter
having a slight edge in the wake of T2.

TURBULENT KINETIC ENERGY EQUATION CORRECTION

The nonzero terms of the correction models discovered for R are shown in Figure 4.18,
and in this case the models are denoted R1, . . . ,R7. The first observation is that terms
describing a correction of the dissipation rate ε dominate these models, compared to
terms describing a modification of production. Two terms are used in all models (the
first two rows of Figure 4.18): (i) a modified linear production and (ii) a dissipation asso-
ciated with actuator forcing. When compared to the anisotropy correction models, the
tke production correction models use a wider range of features, most likely because this
correction term is more complex and not as strongly related to velocity shear.

Once more, in Figure 4.19 we visualize the effect of coupling these models with the
flow solver using frozen b̃∆i j and σ̃. The models are not distinguished in the plot since

their predictions are largely consistent with each other, with very little spread. Indeed,
since this correction term mainly affects the turbulent kinetic energy, there is no visible
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difference in the velocity profiles. There is some spread in the turbulent kinetic energy
profiles which is largest in the near wake of the second turbine. The most complex model
yields the most consistent improvement over the baseline model, but the differences be-
tween models is not significant, so again we select the simplest model for further inves-
tigation.

4.2.4. ROBUSTNESS OF CORRECTION TERMS
We observe the introduction of the classifier makes the data-driven SpaRTA models more
prone to instabilities. NLEVMs are typically less stable than linear EVMs, and models
produced by SpaRTA are no exception. However the classifier exacerbates this problem.
This is probably because models derived in conjunction with classification are not re-
quired to be zero in non-wake regions. As such the models have become more sensitive
to changes in the input features and tensors.

The instabilities manifest themselves as divergence of the anisotropy correction in
the near wake of the turbines, and the R correction close to the rotor disk. Both manifes-
tations are based on the same underlying effects:

1. The baseline k−ϵmodel tends to over-predict k in the wake, and the actuator disc
model does not remove turbulence kinetic energy from the flow. As a result, in the
near-wake, the correction terms act mainly to remove energy.

2. The discovered models depend on the shear strain invariant I1, which increases in
magnitude as shear increases.

As a consequence, a model removing too much energy in the near wake results in larger
velocity gradients there (not seen during training), which leads to larger I1 and increas-
ing amounts of energy removed.

To break this positive feedback loop, in as flow-agnostic a way as possible, two lim-
iters are proposed for the two corrective terms:

• Eddy viscosity limiter: Inspired by the k-ε- fP model [47], the linear components
of the present anisotropy models were limited to a proportion of Boussinesq:

α1 = min
(
0.8 · ε

k2 ·νt ,α1

)
. (4.3)

• Form error limiter: This addresses the tendency of the correction models to ag-
gressively remove energy near the actuator discs. This limiter is only active in areas
where actuator forcing is applied, and is chosen based on the Boussinesq turbu-
lent kinetic energy production as:

R = sgn(R) ·min
(
0.5P Boussinesq

k , |R|
)

. (4.4)

The thresholds were derived based on an analysis of the available data-set and are cho-
sen sufficiently low that limiters are only active during the convergence of the solver.
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4.2.5. PREDICTIVE SIMULATIONS
Any meaningful test of these models must be in a predictive setting on unseen cases, in
this work Cases B & C. Based on the partially coupled results of Sections 4.2.2 and 4.2.3,
models composed of the following components are selected:

• the simplest σ1,

• the simplest linear b∆1 and nonlinear b∆5 models,

• the simplest R1 and medium complexity R4.

All four model combinations were implemented in a fully coupled manner in the simu-
lation code, and predictions compared with LES data for Cases B & C. Figure 4.20 shows
the predictions for Case C. Additional figures for Case B (and Case A, not predictive) are
presented in Appendix B.2 and give broadly similar results. All the results, except those
from the simplest model, are not distinguished in the figure, for the benefit of visualiza-
tion.

Examining the predictions, firstly all the correction models yielded a significant im-
provement over the baseline k − ε model. The variability in the predictions of the four
models did not increase significantly beyond the variability observed in the partially
coupled results. This suggests that there is no apparent strong interaction between the
two correction terms which is reassuring. Given the similar performance of all four mod-
els, we again use our bias for parsimony to select a single “best” model consisting of b∆1 ,
R1 and σ1. Explicitly this model is:

b∆1 := [1.62 ·10−1 ·q1/2
T I ·q1/2

F

+4.84 ·10−3 ·q1/2
T I · I 1/2

1

−1.90 ·10−11 ·qT I · I 4
1

+2.51 ·10−2 ·q1/2
F

+2.00 ·10−3 · I 1/2
1

+1.49 ·10−15 · I 9/2
1 ] ·T (1)

i j

(4.5a)

R1 := 8.06 ·10−5 · I 1/2
1 ·q3

ν ·k ·T (1)
i j

∂ui

∂x j
+

[−2.91 ·101 ·q1/2
T I ·qF · I 1/2

1

+4.28 ·10−1 ·q2
⊥ ·qF · I 1/2

1

−1.22 ·qF ·qγ

+2.30 ·q2
F · I2] ·ϵ

(4.5b)

σ1 := 1/
(
1+exp

(
−205.041112 ·q1/2

T I ·q1/2
γ ·qν+9.01862802

))
(4.5c)

The magnitude of the coefficients of the terms can be misleading, because the range of
magnitude of the features is quite large. For example, although the first term of R1 has
a small coefficient, but it is one of the largest terms in the near wake. Similarly the tiny
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coefficient of the last term of b∆1 is counteracted by the high power of I1, leading to this
term having an effect in regions of high shear. Of course it is to be supposed that such
high powers and small coefficients may not generalize to other cases well – although they
generalize to our Cases B & C here.

The ability of our procedure to produce many diverse models, all with similar perfor-
mance, suggests on the one hand that procedure is reasonably robust, but on the other
hand that perhaps the model space is not being sufficiently explored. For example none
of the discovered models come close to matching the frozen correction results (which
themselves match LES well), even for the training Case A. It would be expected that with
sufficiently many terms, an overfit model for Case A could be developed – but this was
not achievable with less than 50 terms. There may be a case to be made for very highly
parameterized models such as neural networks in this context.

In these results, the eddy viscosity limiter was active on average in about 1500 cells
mainly in the upper part of the near wake, and the form error limiter was active on aver-
age in about 4000 cells mainly in the center of the rotor disk. Given that the total number
of cells in the domain is around 3 million, the limiter is seldom used, which is deemed
acceptable.

COMPARISON WITH CORRECTIVE MODEL WITHOUT CLASSIFIER

Figure 4.21 presents a comparison between the simplest model with classifier above,
a the reference SpaRTA model discovered without classifier in [86], whose expression
is given in equations 4.1 and 4.2. In both cases the training data is Case A only, and
prediction is for Case C.

There are some minor differences between predictions of the reference and the model
with classifier, although overall the reference model performs slightly better. However,
the reference model contains a total of 36 terms, 25 for b∆i j and 11 for R, including terms

involving T (2), . . . ,T (4). On the other hand, our simple classifier model of (4.5) contains
only 12 terms in total – including the classifier, and does not exploit base tensors beyond
T (1). If our premise is accepted, that – all else being equal – simple models should be pre-
ferred to complex ones, then the use of the classifier has been seen to have the potential
to simplify the resulting models for similar predictive accuracy.

Admittedly, it is indeed the case that without classifiers, we were able to find models
that worked without limiters, and that here (with classifiers) that was not possible. A pos-
sible reason for this is as follows. When training corrections without a classifier, the cor-
rection model is encouraged to predict zero, or very small, corrections in large regions of
the flow. As a result, it is often less aggressive everywhere. When training with a classifier,
all regions of small correction have been filtered out by the classifier, and the corrector
only has to match what remains. It can therefore be more aggressive, and matches the
correction better with fewer terms. This aggressive fitting is what leads to the instabili-
ties we observe. We expect to see a similar correspondence between goodness-of-fit and
stability whenever the power of the fitting method increases – as seen in other work with
random forests [39], which also fit training corrections very well, and are often unstable
in prediction.

It is worth noting that, in general, issues of instability are not restricted to the present
classifier-correction framework. In our experience, they are a problem for data-driven



4.2. WIND TUNNEL SETUP WITH CLASSIFIER

4

63

RANS modeling in general and the SpaRTA approach without classifier in particular. Al-
though it was possible to find stable SpaRTA models, by selecting them from the multiple
models we generated, the more complex the cases studied, and in particular the more
significant the corrections needed, the more difficult it becomes to find stable models.
This is one of the main motivating factors behind so-called CFD-consistent modeling
approaches [32, 98], in which the CFD code is inside the training loop, automatically
making unstable models unfit. Our work attempts to achieve as much as possible with-
out CFD-in-the-loop [110] in order to build methods that are more scalable to expensive
simulations and work without adjoints.
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Figure 4.16: Visualization of non-zero terms in the six discovered anisotropy-correction models, b∆1 to b∆5 , as

well as b∆ref from [86]. Terms based on T (1) only are gray, while terms involving T (2−4) are black. The model
coefficients are not shown.
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Figure 4.17: LES, RANS baseline, and RANS coupled with different anisotropy correction models for Case A. The
tke production correction R̃ and the classifier σ̃ are frozen. Only two of the six b∆ models are distinguished
with color; the remaining are all gray (not distinguished) in order to visualize the spread of predictions.
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R1 R2 R3 R4 R5 R6 R7 Rref

Figure 4.18: Visualization of non-zero terms in the seven discovered R models, R1 to R7. Light-gray indicates a
dissipation-rate correction; gray indicates the use of T (1); and black the use of T (2−4).
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Figure 4.19: LES, RANS baseline, and RANS coupled with seven different models for R for Case A. The tke
production correction R̃ and the classifier σ̃ are frozen. The seven R models are all gray (not distinguished) in
order to visualize the spread of predictions.
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Figure 4.20: LES, RANS baseline, and SpaRTA RANS models for Case C.
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Figure 4.21: LES, RANS baseline, SpaRTA model with classifier, and a reference SpaRTA model without classi-
fier for Case C.
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5
CONCLUSIONS

This work uses a methodology combining a k-corrective frozen-RANS approach with
sparse symbolic regression to derive data-driven RANS turbulence models for flow around
scaled wind turbines. The resulting models give significantly better predictions than the
baseline k-εmodel for both velocity and turbulent kinetic energy (tke) in the near and far
wake of the turbines, with an almost perfect match between reference LES and corrected
RANS data. The dataset includes three test cases with between two and three turbines.
The training was done on test case A and then validated on the training cases B and C.

The approach was initially developed by Schmelzer et al. [79] - who referred to it
as SpaRTA - and applied it to 2D test cases at moderate Reynolds numbers. For this
approach to become useable for wind energy applications, it needed some extensions:
(i) a more comprehensive feature set that includes physical features such as normalized
actuator forcing; using only invariants of Pope’s extended integrity basis was found to
be inadequate, (ii) the introduction of blending functions to allow integration with wall
functions and suppression of corrections at the wall, (iii) the splitting of corrections into
ABL and wake corrections, and (iv) algorithmic developments for the sparse regression
procedure to allow the processing of larger datasets.

The field of data-driven turbulence modeling is rather young. It is a reaction to the
field of traditional turbulence modeling, where further improvements to RANS for indus-
trial applications have been limited. With the boom of artificial intelligence in general,
there have been many recent examples of data-driven turbulence modeling as summa-
rized by Duraisamy et al. [18]. However, most of these cases consider 2D benchmark
cases with low to moderate Reynolds numbers. In this work, results from 3D cases with
Re ≈ 100,000 were presented for more industrially relevant cases. Furthermore, the dif-
ferent case settings considered show what improvements are necessary for currently ex-
isting algorithms to take the field of data-driven modeling to industrial practice. Finally,
the work also combines corrections models with a classifier. There are no examples of
this in the literature.
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DISCUSSION
The remaining methodology of this work will now be assessed to draw conclusions and
highlight shortcomings in each step of the process.

Summary of the Frozen Approach: The k-corrective frozen formulation relies
on an anisotropy correction term b̃∆i j and a source correction term R̃. Expres-

sions for these terms are obtained by solving the k-ε turbulence model transport
equations using frozen time-averaged LES data for the velocity and tke. The cor-
rection terms are included in the equations as follows:

Dk⋆

Dt
=P ⋆

k + R̃ −ε+ ∂

∂x j

[
(ν+νt /σk )

∂k⋆

∂x j

]
, (5.1)

Dε

Dt
= [

Cε1
(
P ⋆

k + R̃
)−Cε2ε

] · ε
k⋆

+ ∂

∂x j

[
(ν+νt /σε)

∂ε

∂x j

]
(5.2)

where the production term is defined as

P ⋆
k := 2k⋆b⋆i j Si j (5.3)

with

b⋆i j :=
τ⋆i j

2k⋆
− 1

3
δi j =− νt

k⋆
S⋆i j + b̃∆i j . (5.4)

The k-corrective frozen RANS approach is numerically stable, and the propagation
of the obtained correction terms in a baseline simulation leads to a very close match
between reference LES and corrected RANS simulation except near the wall, where some
issues must be appropriately managed.

Making sure that the boundary conditions for the velocity and the tke, as well as the
domain forcing, match between RANS and LES is essential for matching the undisturbed
inflow profiles (including the ABL corrections). An analysis of the wall boundary condi-
tions for LES and RANS was carried out, and to perfectly match them, the constant Cµ

had to be modified to a non-standard value. Because these profiles did not match away
from the wall, horizontally constant corrections were also introduced to the inflow pro-
files. Both the LES and RANS also showed an unnaturally large peak in the tke near the
wall, which is a numerical artifact that is difficult to remove but does not significantly
influence the profile in the rotor area [10]. Wall blending was therefore introduced such
that no corrections were applied in the cells closest to the wall, as the corrections were
not accurate there due to the numerical artifact.

While this procedure for matching the undisturbed profiles from the precursor worked,
it could potentially be simpler. Not trying to establish a perfect match from the wall up
and just trying to get a good match in the rotor area only could be a better solution.
This could be achieved by modifying the forcing and wall roughness. If the said matched
profile is not accurate enough, then again corrections could be introduced for the undis-
turbed profiles as well. However, it would be more difficult to determine those correc-
tions due to the deviations at the wall.
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Once the undisturbed profiles were matched, the injection of the corrections for the
wakes was found to be much less complicated. Selective injection of the wake source
and anisotropy correction lead to some interesting conclusions. If only the anisotropy
correction was injected, then the velocity profiles matched well, but the tke fields did
not match completely. The source term R was then also injected and both velocity and
tke fields matched well. This indicates that modeling approaches focusing solely on im-
proving the anisotropy term will not succeed in getting a good match for both velocity
and tke fields. The source term can account for the direct interaction between the actu-
ator forcing, and the turbulence model - the rotor will extract energy from the tke as well
- the anisotropy correction cannot. However, the source term is not only large in areas
where there is actuator forcing, but also further downstream in the wake. One possible
explanation is that it captures hysteresis effects in the flow. It would thus be interest-
ing to explore the frozen approach in combination with a lag turbulence model [52]. A
lag model solves an additional transport equation called the lag equation which is sup-
posed to account for non-equilibrium effects. Preliminary results from this approach
have been obtained internally [65].

Summary of the Learning Procedure: The correction terms are formulated us-
ing a combination of an extension of Pope’s integrity basis and physical fea-
tures. Sparse regression is used to determine the scalars αn , βn , and γ as a
function of the input features. The tensors T (n)

i j that are used for the regres-

sion are determined a priori. The first of these is always the strain rate tensor

T (n)
i j = Si j = 1

2

(
∂ui
∂x j

+ ∂u j

∂xi

)
. The correction tensors are then formulated as

b∆i j =
∑
n
αnT (n)

i j

and

R =∑
n
βnT (n)

i j

∂ui

∂x j
+γ ·ε.

The learning of the frozen terms using the elastic net (essentially a least-squares fit
with regularization to penalize complex and redundant models) required modifications
to Schmelzer’s original setup. Normally, the input features are combined to give a list of
basis functions. The regression procedure then delivers a list of models that are a linear
combination of the input basis functions. Using only the first few invariants of Pope’s in-
tegrity basis as input features did not yield good results. The inclusion of more invariants
and tensors from the extended integrity basis was attempted, but the input feature set
became too big resulting in several thousand basis functions. Two preprocessing steps
were introduced to remedy this: (i) a mutual information step to reduce the input feature
set and (ii) a cliqueing step to remove colinear basis functions. These are common pre-
processing steps for machine learning algorithms to reduce the dimensionality of the
input feature set. This made the training process manageable but did not give signifi-
cantly better models. Finally, the inclusion of physical features such as actuator forcing
and a reformulation of the source term in the tke equation gave much better results.
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Additionally, correction models were combined with a classifier in order to turn cor-
rections off outside of the wake. Logistic regression was used for this purpose with the
same input features as for the learning of the correction terms. This procedure simpli-
fied the learning procedure for the correction terms as the amount of data points in the
input data set could be significantly reduced. It also produced simpler correction mod-
els. This indicates that in the models trained without the classifier some cancellation
between terms occurs, requiring the models to be more complex.

Implementing the models obtained from the elastic net in OpenFOAM was straight-
forward, but the model selection was more complicated. The regression algorithm pro-
duced a large array of models. Cliqueing was applied in the model selection, and an array
of models was selected based on accuracy and complexity. For some models, there was
little difference between offline (or uncoupled) and online (or coupled) performance.
For others, the coupling to the evolving flow field made them unstable. For the selection
of the classifier formulation, the spread between proposed classifier models was much
smaller, such that very simple classifier models could be used.

For most models the deviation between uncoupled and coupled values was largest
in the near wake near the top of the wake. This is the area of the domain where the
shear is largest (apart from the near wall area where the correction terms are blended
out). Things that made the models less robust in this area - meaning a larger deviation
between online and offline performance - were more complex models, higher-order in-
variants, a finer mesh, and combination with a classifier. For some models, a bit more
energy was removed than intended. For others, too much energy was removed in a very
local area leading to negative eddy viscosity and divergence of the simulation. A pos-
itive coupling loop was identified involving the velocity gradient and the corrections.
This shortcoming is similar to what van der Laan [48] described for traditional nonlinear
Eddy Viscosity models.

For the corrections obtained with the classifier, two limiters had to be introduced to
avoid divergence: (i) an eddy viscosity limiter which ensured that the total tke produc-
tion could be reduced to a maximum of 20 % of the Boussinesq production, and (ii) a
form error limiter which ensured that at most 50 % of the Boussinesq turbulence pro-
duction could be removed in the rotor wake area by the source term. These limiters were
active only in a handful of cells but managed to stabilize the models. These limiters were
also applied to the corrections that were obtained without the classifier and slightly im-
proved the results there as well.

These results indicate that, unsurprisingly, traditional and data-driven turbulence
models suffer from the same numerical instabilities. The difference is that for data-
driven models, more flexibility is available in the formulation of the model terms. The
author has some ideas on how this could be remedied besides the use of the limiters out-
lined above. First, online learning could potentially be used to avoid instabilities as the
coupling loops are then included in the training process, but online learning is also much
more expensive in terms of CPU time. Hence, using the results from the offline learning
process and just tuning the parameters of the basis functions online could provide relief.
Second, avoiding the combination of velocity gradient-based features and tensors could
be helpful as this stops the positive coupling loop, although this might negatively affect
accuracy. Third, the anisotropy correction term could be reformulated as
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τi j

2k
− 1

3
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k
Si j +b∆i j =−νt
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(
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)
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·νt

k
Si j + k

ε

∑
n>1

αnT (n)
i j ,

(5.5)

where α1 would then revert to a scaling function αnew for the linear part of the
anisotropy tensor instead of a basis function for a tensor. This is similar to the formu-
lation used in Wu et al. [104], in which the implicit treatment of the linear part and the
explicit treatment of the nonlinear part was found to make the data-driven turbulence
model more robust. Lastly, extending the data-set with data points that experience even
more shear than the ones already in the data-set would most likely help a lot. The exist-
ing models remove too much energy as the velocity gradients increase due to the positive
coupling loop explained before. Since the data-set does not contain any points with such
high shear, then the models are used outside of the area where they were trained.

Finally, it should be noted that, the model for R contains terms resembling produc-
tion (dimensioned by G1, etc.) and terms resembling dissipation (dimensioned by ε).
Arguably the former are inconsistent with the momentum equation, in the sense that
they represent production which does not arise as a direct consequence of the modelled
RST - unlike P∆

k , which is exactly the production resulting from the model for b∆i j . Such

inconsistencies have been referred to as a lack of energy conservation in the literature
[19], though some successful models are also inconsistent in this respect, notably the
Mentor SST model with vorticity source term [61]. For production corrections involving
only G1 the inconsistency can be fixed by modifying the eddy-viscosity [36]. Alternatively
in SpaRTA, models for R could be restricted to ε terms only.

OUTLOOK
One big shortcoming of the work presented in this dissertation was the limited dataset
available. If one wants to further pursue a data-driven approach for wind energy pur-
poses, the training dataset needs also to contain full-scale cases. Furthermore, the test
dataset needs to contain more conditions in order to generalize the models as regres-
sion algorithms are prone to overfitting even when regularization is used. For example,
it would be interesting to see if a wake correction is trained for one turbine only, how
well will it perform when applied to multiple turbines in a row. The previously presented
work from King et al. [41] suggests that such a model might already provide significant
improvement.

The corrections were split into an ABL and a wake part. The wake part should also
work for different ABL properties as long as Cµ is kept the same. However, the ABL part
should be recalibrated for a different hub height velocity, wind direction, or to a lesser
extent, surface roughness. Some preliminary work not included in this thesis on the
neutral boundary layer at full scale suggests that simply tuning forcing and the surface
roughness can already give a very reasonable match in the rotor area in many cases. Of
course, this then comes at the cost of accuracy at the wall, further investigation would
be necessary to quantify when this is a useful approximation.
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Additionally, stratification has not been considered in this work. However, the work
from Baungaard et al. [7] implies that at least for stably stratified flow and weakly con-
vective flows, the effect of stratification on undisturbed ABL profiles is much more im-
portant than its effect on the development of the turbine wake. In fact, Baungaard et
al. only model the effect of buoyancy on the flow through a Buoyancy term in the trans-
port equation of the turbulence model. This Buoyancy term varies only in wall-normal
direction and is formulated such that the inflow profiles for the velocity, turbulent ki-
netic energy and the turbulent dissipation are in accordance with MOST profiles. Other
than that, the system of equation is the same as for neutral stratification. Hence for
these specific conditions, it might be sufficient to neglect the interaction between wake
and stratification as long as the undisturbed profiles are captured well by the (corrected)
baseline model. Preliminary work from MSc students that the author supervised gave
similar results [43, 42]. As stratified flows are inherently unsteady, the methodology pre-
sented in this work can not be directly applied. The mentioned MSc reports used short
intervals (ten minutes to an hour) over which time-averaged results for both fields and
boundary conditions were saved. Then, those fields were used for the frozen simula-
tion; whatever time-dependent changes remained were unintentionally dumped in the
source term R. The underlying idea is that the time scale of the turbulent fluctuations
in the flow are much smaller than the time scales of the whole boundary layer, such that
the unsteadiness due to stratification does not directly affect the modeling of Reynolds
stresses due to turbulence fluctuations. This assumption is appropriate for stable and
weakly convective boundary layers. For strongly unstable ABLs, the difference between
time scales is less significant, making the assumption inappropriate. Corrections de-
rived for a steady-state frozen simulation might also be applied to a URANS simulation,
where the unsteadiness comes from the heat flux at the ground only.

While extending the dataset makes sense to get more relevant models, the current
implementation of SpaRTA in scikit-learn is limited by the amount of memory that is
necessary for building the basis function library. For running an elastic net procedure, a
full matrix with dimensions (number of data points×number of linear basis functions)
is built. Comparatively, for running the equivalent CFD simulations, a sparse matrix
where the number of non-zero entries is (number of data points×number of equations, here five)
is loaded. The number of linear basis functions obtained with the procedure presented
in this thesis can be of the order of several thousand. Hence, the memory required for the
full system matrix of the elastic net and/or the learning procedure can quickly become
larger than the available memory even on an HPC node.

Simple methods like limiting the feature and basis function space using a feature
selection algorithm, user knowledge and sub-sampling of the input dataset can all be
helpful in this context. More integral or automated methods also exist: (i) bagging, where
several models are trained on partitions of the dataset and the final model is an average
of the models trained on the different partitions, (ii) chunking, where the dataset is also
divided into partitions and then the model is trained sequentially on the different parti-
tions, and (iii) batch gradient descent methods where the gradient is calculated several
times on a subset of the data points per iteration of the algorithm. While these meth-
ods reduce memory requirements they require more computational steps, so, as always,
a balance has to be struck between memory and power usage. Alternatively, other ma-
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chine learning algorithms that do not suffer from these restrictions could be considered,
but all algorithms come with their own drawbacks.

Overall, while data-driven methods have potential to improve turbulence modeling
for wind turbines wakes, given the challenges outlined previously, human judgement
will likely remain important in the selection of turbulence models, feature sets and data
for quite some time.
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APPENDIX A1: FEATURES AND

INTEGRITY BASES

A.1. POPE’S INTEGRITY BASIS

Invariants λ1 to λ5

{S2} {Ω2} {S3} {Ω2S} {Ω2S2}

Tensor number Tensor expression

T1 S

T2 sΩ−ΩS

T3 S2 − 1
3 I{S2}

T4 Ω2 − 1
3 I{Ω2}

T5 ΩS2 −S2Ω

T6 Ω2S+S2Ω− 2
3 I{sΩ2}

T7 ΩSΩ2 −Ω2SΩ

T8 SΩS2 −S2ΩS

T9 Ω2S2 +S2Ω2 − 2
3 I{S2Ω2}

T10 ΩS2Ω2 −Ω2S2Ω
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Table A.1: Physics interpreted flow features. For each feature qi the physical description is denoted including
the raw feature with its normalization. The features that are not Galilean invariant are marked with †.

ID Description Raw feature Normalization

qQ Ratio of excess rotation
rate to strain rate (Q cri-
terion)

1
2 (∥Ω∥2 −∥S∥2) ∥S∥2

q†
T I Turbulence intensity k 1

2UiUi

qReD Wall distance based
Reynolds number

p
kd

50ν -

q†
∂p∂s Pressure gradient along

streamline
Uk

∂P
∂xk

√
∂P
∂x j

∂P
∂x j

UiUi

qT Ratio of mean turbulent
to mean strain time scale

k
ε

1
∥S∥

qν Viscosity ratio νt 100ν

q†
⊥ Nonorthogonality be-

tween velocity and its
gradient

|UiU j
∂Ui
∂x j

|
√

UlUlUi
∂Ui
∂x j

Uk
∂Uk
∂x j

q†
Ck /Pk

Ratio of convection to
Boussinesq production
of TKE

Ui
dk
d xi

|u′
j u′

k S j k |

qτ Ratio of total to normal
Boussinesq Reynolds
stresses

||u′
i u′

j BS
|| k

qγ Shear parameter
∥∥∥ ∂Ui
∂x j

∥∥∥ ε
k

q†
F Actuator forcing ∥Fcel l∥ 1

2ρ0 Acel l ∥U∥2
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A.3. EXTENDED INTEGRITY BASIS

Table A.2: Invariant bases, number of symmetric and antisymmetric tensors for each invariant are indicated
by ns and nA , respectively. The invariant bases are the trace of the tensors listed. The asterisk on a invariant
bases indicates that also the cyclic permutation of the antisymmetric tensors are included.

(nS ,nA) Feature index Invariant bases

(1,0) 1-2 S2, S3

(0,1) 3-5 Ω2, A2
p , A2

k

(1,1) 6-14 Ω2S,Ω2S2,Ω2SΩS2

A2
p S, A2

p S2, A2
p SAp S2

A2
k S, A2

k S2 , A2
k SAk S2

(0,2) 15-17 ΩAp , Ap Ak ,ΩAk

(1,2) 18-41 ΩAp S,ΩAp S2,Ω2Ap S∗,Ω2Ap S2∗,Ω2SAp S2∗

ΩAk S,ΩAk S2,Ω2Ak S∗,Ω2Ak S2∗,Ω2SAk S2∗

Ap Ak S, Ap Ak S2, A2
p Ak S∗, A2

p Ak S2∗

(0,3) 42 ΩAp Ak

(1,3) 43-47 ΩAp Ak S,ΩAk Ap S,ΩAp Ak S2,ΩAk Ap S2,ΩAp SAk S2
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Figure B.1: Comparison between LES, RANS baseline and frozen RANS with selective inclusion of the different
components of the correction terms via horizontal slices of the velocity field up and downstream of the rotor
plane of the two turbines of case A.
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Figure B.2: Comparison between LES, RANS baseline and frozen RANS with selective inclusion of the different
components of the correction terms via horizontal slices of the turbulent kinetic energy field up and down-
stream of the rotor plane of the two turbines of case A.
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Figure B.3: Spread of learned model correction R for case A through horizontal slices at the rotor plane at
different streamwise stations as labeled in the subplots. The subscript Ra,r ed refers to models whose terms
only contain positive powers. The model spread is for all models that are Pareto optimal as defined previously.
The models selected during the cliqueing post-processing step are shown explicitly either in color or in dark
gray. The models selected for further investigation are highlighted in color. Finally, the optimal correction term
is shown in black.
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Figure B.4: Spread of learned model correction P ∆
k for case A through horizontal slices at the rotor plane at

different streamwise stations as labeled in the subplots. The model spread is for all models that are Pareto opti-
mal as defined previously. The models selected during the cliqueing post-processing step are shown explicitly
either in color or in dark gray. The models selected for further investigation are highlighted in color. Finally,
the optimal correction term is shown in black.
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Figure B.5: Spread of fixed and coupled corrections R for the training case A via horizontal slices at the rotor
plane up and downstream of the two turbines. The subscript Ra,r ed refers to models whose terms only contain
positive powers.
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Figure B.6: Spread of fixed and coupled corrections b∆i j in terms of P ∆
k for the training case A via horizontal

slices at the rotor plane up and downstream of the two turbines.
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Figure B.7: Comparison between LES, RANS baseline, frozen RANS and corrected RANS models via horizontal
slices of the velocity field up and downstream of the rotor plane for the three turbines of case B.
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Figure B.8: Comparison between LES, RANS baseline, frozen RANS and corrected RANS models via horizontal
slices of the turbulent kinetic energy field up and downstream of the rotor plane for the three turbines of case
B.
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Figure B.9: Mesh convergence study for the baseline and the corrected model. Shown are the horizontal slices
of the velocity field up and downstream of the rotor plane for the three turbines of case B.
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Figure B.10: Mesh convergence study for the baseline and the corrected model. Shown are the horizontal
slices of the turbulent kinetic energy field up and downstream of the rotor plane for the three turbines of case
B.
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B.2. MODELS WITH CLASSIFIER - ADDITIONAL FIGURES FOR

CASES A & B
Figures B.11 and B.12 show the results for the training data-set A. Figures B.11 and B.12
in the appendix show the results for the test data-set B.
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Figure B.11: LES, RANS baseline, and corrected RANS model predictions for Case A.
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Figure B.12: LES, RANS baseline, and corrected RANS model predictions for Case B.
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