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Acoustic emission monitoring
of naturally developed damage
in large-scale low-speed roller bearings

Bart Scheeren1 , Miroslaw Lech Kaminski1 and Lotfollah Pahlavan1

Abstract
This article presents an approach to identify naturally developed damage in low-speed bearings using waveform-similar-
ity-based clustering of acoustic emissions (AEs) under fatigue loading. The approach is motivated by the notation that
each recorded AE signal from a particular damage is defined by the convolution of the source signal, transfer function of
the propagation path and transfer function of the utilised sensor, and may thusly be used to identify consistent AE
sources, for example due to crack growth. A sequential clustering procedure is proposed, that is based on waveform
cross-correlation. The supporting theoretical background of waveform similarity, rooted in an analytical formulation of
waveform propagation and transmission in complex structures, is discussed. The presented methodology is evaluated
through application to AE data obtained in a low-speed run-to-failure experiment utilising a densely instrumented
purpose-built linear bearing segment. The implemented sensor system comprises arrays of three types of AE transdu-
cers, that is relatively low - (40–100 kHz), mid - (95–180 kHz) and high-frequency (180–580 kHz), that are situated on
both the raceways and supporting substructures of either side of the bearing. Over the course of 225,000 cycles of
extension and retraction, wear has been developed. A total of about ;2,300,000 AE signals have been recorded.
Analysis of the recorded data suggests the rate of degradation increases from around 70,000 cycles onwards. Highly
consistent structures of clusters indicative of a localised defect in the raceway have been identified from around 170,000
cycles onwards. These clusters are characterised by hit-rates in the range of 1–2 hits per cycle and an average similarity
of 93%, they comprise about half the AE activity for the periods they have been identified for. These results highlight that
the proposed cross-correlation-based clustering of AE waveforms and identification of multi-channel formations in said
clusters compose a suitable methodology for assessment of damage in low-speed roller bearings.

Keywords
Acoustic emission, low-speed roller bearings, structural health monitoring, elastic stress waves, clustering, naturally
developed wear

Highlights

� An analytical framework for description of acous-
tic emission (AE) signals and propagation in low-
speed roller bearings is presented.

� A waveform-similarity-based sequential clustering
approach for identification of AE source mechan-
isms in low-speed roller bearings is proposed.

� A run-to-failure experiment utilising a densely
instrumented large-scale bearing mock-up has been
conducted.

� Severe wear comprising of increased surface rough-
ness, grooving and slight pitting has been naturally
developed over the course of approximately
225,000 cycles.

� Highly consistent structures of waveform clusters
indicative of possible localised defect in the raceway
have been identified.

� The combined clustering and event-building pro-
vides a promising methodology for isolating signifi-
cant AE activity.
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Introduction

The integrity of large-scale low-speed roller bearings is
essential to the safe and continued operation of the off-
shore energy infrastructure and its associated activities.
Notable applications of these bearings include slew
bearings of heavy-lifting cranes, turntables in single-
point mooring systems and nacelle-slew or blade-pitch
bearings in wind turbines, and as such comprise both
installations for the oil and gas and renewables indus-
try, as well as equipment supporting the energy transi-
tion. In these offshore applications, bearings are
subjected to an unpredictable interaction of operational
and motion-induced loading while also suffering from
the harsh seawater environment. This combination of
high loads and intermittent movement is a generally
unfavourable operational condition from the perspec-
tive of lubrication, as they may lead to a reduced or
broken lubrication film, which has a significant impact
on wear. To assure the integrity of these large-scale
low-speed roller bearings, robust methodologies for
their condition monitoring are required.

Development of wear in rolling element bearings is
a complex process of multiple interconnected degrada-
tion mechanisms.1 These may generally be grouped
into fatigue cracking, adhesive wear and abrasive
wear.2 Rolling elements that are starved of lubrication,
either due to improper maintenance or due to unfa-
vourable operation, operate in a regime of high fric-
tion, and are thus particularly susceptible to adhesive
wear. The resulting surface degradation induces stress
concentrations, which could lead to pitting and micro-
cracking. In contrast, sufficient lubrication provides a
regime of low friction, which under repeated loading
inevitably leads to subsurface crack initiation and the
eventual development of spalls. In particular, case-
hardened raceways are susceptible to subsurface dam-
age on the interface between the hardened material
and the softer substrate.2 All of these degradation
mechanisms eventually produce debris particles, and
together with particles that may be introduced through
improper maintenance, these act as the asperities that
initiate abrasive wear.

Regarding wear, in a critique on common experi-
mental practice, Bhadeshia2 remarks that increasing
contact stresses, as a means to accelerate wear, likely
influences the interaction of the interconnected degra-
dation mechanisms, resulting in a different damage
evolution process compared to the nominal design life.
A similar remark may be extended to the common
practice in bearing condition monitoring research of
introducing artificial damage, as such simulated dam-
age does not cover the interconnected nature of wear
in rolling element bearings.

To monitor degradation in rolling element bearings,
several techniques have been suggested to date. Most
conventional are the applications of strain and vibra-
tion monitoring,3,4 which may be effective in high-
speed applications, but suffer from decreased detect-
ability at low speeds. On alternatives, comprehensive
review studies have been published,5–8 which include
techniques such as lubrication analysis,9 electrostatic
monitoring10 and temperature monitoring.11 In this
study, passively generated acoustic emissions (AEs) are
explored, for their potential to detect early-stage degra-
dation. AE refers to the release of energy as elastic
stress waves in a material when the microstructure of
said material is irreversibly altered (e.g. crack growth
or dislocation movement). The analysis of AE signals
in a bearing is a non-trivial challenge, due to the com-
plex geometry and interfaces giving rise to additional
reflection, scattering and diffraction of the ultrasonic
waves.

The prior art on the application of AE techniques
for bearing condition monitoring seems to originate
with Balderston,12 who identified it as promising in
1969. In the subsequent decades, a few other investiga-
tions have been reported, describing experimental stud-
ies of AE bearing condition monitoring. Of primary
interest is the combination of naturally introduced
damage and very-low speed (\20 rpm), for which liter-
ature is limited due to the practical challenges associ-
ated with developing the degradation. In some early
studies, this problem is mitigated by performing in-situ
tests,13,14 or by evaluating naturally pre-worn bearings
from industry applications in the laboratory.15 A
downside of these approaches is the loss of information
on the progression on the damage; however, these
studies have successfully demonstrated a greater sensi-
tivity of AE compared to vibration monitoring at low
speeds. Also particularly Mba et al.14 observed that the
recorded waveforms are specific to the propagation
path between source and receiver. Moreover, if the
bearing may be considered nearly static relative to the
propagating elastic stress waves, transmission of those
stress waves in between the rolling elements is expected
to remain measurable by proper hardware and
sensor layout despite substantial losses.16,17 Sako and
Yoshie18 identified naturally developed flaking in a
small-scale bearing at speeds between 1 and 10 rpm.
However, the induced damage was the result of run-
ning for 98% of the lifetime at 400 rpm while over-
loading the bearing in the range of plastic deformation.
Liu et al.19 applied cyclostationary frequencies to eval-
uate a naturally worn bearing from a 15-year-old wind
turbine at speeds ranging 0.5–5 rpm, while using dis-
crete/random separation-based cepstrum editing lifter-
ing to amplify weak fault features from the AE signal.
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Finally, Caesarendra et al.20 studied the development
of degradation in a run-to-failure experiment lasting
nearly 300 days, and identified a significant change in
the bearing condition through conventional AE
features.

Regarding studies on naturally induced damage at
higher speeds (.60 rpm), Li et al.21 successfully differ-
entiated between minor and major wear through eva-
luation of waveform features. Elforjani and Mba
observed a correlation between increasing AE energy
and the evolution of cracks and spalls in bearings22–27

and made an attempt to estimate the size of surface
defects from the AE signal duration.28 Elforjani29 also
applied artificial neural networks to predict the
remaining useful life of a grease-starved bearing. With
further increasing speed, studies on applications of
cyclostationary techniques become of note,30–33 which
also propose down-sampling of continuous AE data to
ease data handling.34 The correlation between AE
energy and damage evolution and severity is further
explored.35,36 Hidle et al.37 propose a detector for sub-
surface cracks based on the pulse integration method.
And in comparative studies also involving vibration
monitoring, AE demonstrates earlier damage detec-
tion36,38 – particularly when combined with spectral
kurtosis33 – and fusion of vibration and AE data has
shown to increase the reliability with respect to either
method separately.39 Besides these, k-means clustering
of AE waveform features has been applied to identify
crack initiation and propagation.40 A correlation has
been observed between lubrication film thickness and
AE energy.41,42 Furthermore, in a fundamental study
on rolling contacts, a correlation has been reported
between evolving surface damage and the AE hit-
rate.43

Although experiments involving artificially intro-
duced damage are not considered representative of
those involving naturally developed degradation, these
studies may still provide informative insights regarding
the effectiveness of the explored signal processing tech-
niques. Broad speed-range (10–1800 rpm) assessments
have been performed by Smith4 and McFadden and
Smith.44 For very-low speeds (;1 rpm), later studies
implemented classification through autoregressive coef-
ficients to differentiate between the unique transmis-
sion paths of several artificially introduced damages,45

and ensemble empirical mode decomposition with mul-
tiscale principle component analysis46 or multiscale
wavelet decomposition47 to identify the damaged com-
ponent through characteristic frequencies. The applic-
ability of multiscale wavelet decomposition was also
demonstrated at a somewhat higher speed representa-
tive of the main bearing of a wind turbine.48 For a sim-
ilar speed range (20–80 rpm), in comparisons between

relevance vector machine (RVM) and support vector
machine, RVM was demonstrated to be effective at
classifying several damages in different compo-
nents.49,50 In high-noise environments, both artificial
surface and sub-surface defects were identified by
applying probabilistic techniques (Gaussian mixture
model) to differentiate between damage-initiated
energy and background noise.51

With further increasing speed, again cyclostationary
techniques are explored for localised defects,52–54 with
studies reporting improved early detection through the
application of short-time techniques,55,56 spectral cor-
relation57 and spectral kurtosis,58 and studies reporting
improved performance in a high-noise environment by
applying self-adaptive noise cancellation,59 least mean
squares filtering60–62 or wavelet-based filtering.63–65

Additionally, machine learning techniques, such as
neural networks, have been suggested and implemented
to identify characteristic defect frequencies from spec-
trograms.66,67 Alternative to cyclostationary tech-
niques, time-of-arrival-based localisation is
demonstrated for the detection of localised defects in
static raceways,68 and the fusion of AE and vibration-
based multi-feature entropy distance is proposed for
damaged-component identification.69 In the same con-
text, the sensitivity of several AE features to various
operational conditions has been evaluated.70–75 Also a
correlation between defect size and the AE burst dura-
tion and amplitude is reported.76–79 Synonymous to
the burst duration, this correlation has been observed
for ringdown counts,80 and the time difference between
double bursts as well.64,81 Material protrusions above
the mean surface roughness were identified as the AE
source mechanism of artificially introduced defects.82

Regarding lubrication contamination, literature
typically describes experiments involving highly con-
trolled contaminated lubrication samples, which should
be classified as artificial damage. However, the pro-
cesses that generate the stress waves from the presence
of the contaminated particles may remain comparable
to the one for naturally contaminated lubrication, pro-
vided that the contaminated samples are sufficiently
representative of actual contamination. Studies have
shown that the size, weight and hardness of the particles
are correlated to the amplitude of AE signals.77,83–86

Also, the number of particles seems to correlate to the
hit-rate of the contamination initiated signals.77,83

Besides these conventional characterisation approaches,
machine learning algorithms – such as sparse dictionary
learning87 and a convolutional neural network88– have
also been applied in early-stage studies to differentiate
between contaminated and uncontaminated lubrication.

In this article, detection and identification of
degradation-induced ultrasonic signals in low-speed
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roller bearings have been experimentally investigated.
A similarity-clustering-based approach for the identifi-
cation of consistent emission sources is implemented
for detection of AE from consistent degradation modes
(e.g. crack growth). It is applied to an experimental
evaluation of naturally developing degradation in a
large-scale highly loaded low-speed roller bearing.
The section ‘Methodology’ discusses the framework
and identification approach, while the section
‘Experimental setup’ describes the test setup, instru-
mentation and experimental procedures. In the section
‘Results and discussion’, the results of a natural degra-
dation experiment are presented, and the framework
and identification approach are evaluated and dis-
cussed. Finally the section ‘Conclusions’ provides the
conclusions of this study.

Methodology

Identification of developing degradation in rolling ele-
ments may follow directly from the identification of
AE source signals. In an idealised situation, instrumen-
tation is situated close to the source of emission, that is
where damage is evolving. There, the recorded signal is
nearest in form to the original source signal, and there-
fore, the task of identifying the mechanism of
emission is most apparent. In practice, instrumentation
on the raceway can typically not be realised, and
therefore generalisation to the external surface of a
bearing – or the substructure – is necessary. This gener-
alisation is demonstrated analytically in this article.
Experimentally, the concept is applied to identify natu-
rally evolving damage in a bearing. A purpose-built
linear bearing is used in the experiment, as depicted in
Figure 1, which is designed to provide the ability to
instrument both the raceways and substructure, to
assess the identification procedure for both instrumen-
tation scenarios.

For the rolling elements of a bearing, three principal
regions may be identified for degradation-induced
sources. Figure 2 illustrates these, which are (a) subsur-
face in the raceway, (b) subsurface in the roller, and (c)
the interface of roller and raceway. Evading the chal-
lenges of instrumenting a roller, the closest instrumen-
tation could at best be situated directly on the raceway.
However, in practice instrumentation on the raceway is
often not feasible, and therefore sensors are often situ-
ated on the support structure – further away from the
source. The effect of this extra distance on the transfor-
mation on the source signal is discussed in detail for
the three identified cases. The notation is motivated by
the system proposed by Berkhout89 that was also uti-
lised by Pahlavan et al.90,91 and Scheeren et al.13

Considering a subsurface crack that is propagating
in the nose raceway, as illustrated by Figure 2(a), a
recording from a receiver on that same raceway may
be described in the frequency domain as

P̂LLðsDL, sSLÞ= D̂LŴLðsDL, sSLÞŜL + P̂N : ð1Þ

Herein, P̂LL represents the recorded response at a recei-
ver on the nose raceway (L in Figure 1) of a source sig-
nal originating from the nose raceway, D̂L the coupling
transfer function of the receiver on the nose raceway,
ŴL the propagation function of the nose raceway, ŜL

the source function on the nose raceway, and P̂N all
neglected paths, mode conversions and scattering of
the transmitted response, and the background noise.
Furthermore, sSL and sDL denote points in space where
the respective source and receiver – both on the nose
raceway – are located.

That same source signal will also be transmitted over
the interfaces, through the roller, into the opposing
raceway. If in transmission it retains sufficient energy
to surpass the ultrasonic background noise, and to be
detectable by a receiver on that opposing raceway, the
recorded signal may be described by

P̂ULðsDU , sSL,FÞ= D̂U ŴU ðsDU ,GURÞT̂RU ðFÞŴRðGUR,GLRÞ
T̂LRðFÞŴLðGLR, sSLÞŜL + P̂N :

ð2Þ

Herein, P̂UL represents the recorded response at a recei-
ver on the support raceway (U in Figure 1) of a source
signal originating from the nose raceway, D̂U the cou-
pling transfer function of the receiver on the support
raceway, ŴR, and ŴU the propagation functions of the
respective roller, and support raceway, and T̂LR, and
T̂RU the transmission functions for the interfaces
between the nose raceway and roller, and between the
roller and support raceway, respectively. Note that for
the transmission function the order of the subscripted
domains implies directionality. Furthermore, the addi-
tional point in space sDU indicates the location of a
receiver on the support raceway, while GLR, and GUR

denote the boundaries that describe the interface
between the nose raceway and roller, and support race-
way and roller, respectively. Finally, F denotes the
external force applied through the bearing.

The propagation and transmission captured in
Equations (1) and (2) describe cases where instrumen-
tation may be realised close to the expected source
location. If this is not the case, sensors might be situ-
ated further away, and as in this case, possibly on a
substructure. Herein, a recorded signal on the
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substructure of the nose ring essentially represents an
extension of Equation (1), and may be characterised by

P̂BLðsDB, sSL,FÞ= D̂BŴBðsDB,GLBÞT̂LBðFÞŴLðGLB, sSLÞ
ŜL + P̂N :

ð3Þ

Herein, P̂BL represents the recorded response at a recei-
ver on the nose substructure (B in Figure 1) of a source
signal originating from the nose raceway, D̂B the cou-
pling transfer function of the receiver on the nose sub-
structure, ŴB the propagation function of the nose
substructure and T̂LB the transmission function for the
interface between the nose raceway and nose substruc-
ture. Furthermore, additional point in space sDB indi-
cates the location of a receiver on the nose
substructure, while GLB denotes the boundary that

describes the interface between the nose raceway and
nose substructure.

Similarly, a recording on the substructure of the
support ring essentially represents an extension of
Equation (2), and this signal may be characterised by

P̂ALðsDA, sSL,FÞ= D̂AŴAðsDA,GUAÞT̂UAðFÞ
ŴU ðGUA,GURÞT̂RU ðFÞŴRðGUR,GLRÞT̂LRðFÞ
ŴLðGLR, sSLÞŜL + P̂N :

ð4Þ

Herein, P̂AL represents the recorded response at a recei-
ver on the support substructure (A in Figure 1) of a
source signal originating from the nose raceway, D̂A the
coupling transfer function of the receiver on the sup-
port substructure, ŴA the propagation function of the
support substructure and T̂UA the transmission function
for the interface between the support raceway and

(a)

(b)

Figure 1. Illustrations of test setup (to scale, top section), showing (a) a cross-section of the bearing with component identifiers
and (b) a front view of the bearing without the cover plate. Indicated components are the roller (R), the nose raceway (L), the
support raceway (U), the nose substructure (B), the support substructure (A) and the sensor arrays (D). Dimensions used in this
research are given in Table 1.
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support substructure. Furthermore, additional point in
space sDA indicates the location of a receiver on the sup-
port substructure, while GUA denotes the boundary that
describes the interface between the support raceway
and support substructure.

When comparing the signals on both raceways, it
may be noted the relative difference between these sig-
nals is primarily the result of transmission through the
roller, as long as the propagation functions for the race-
ways may be considered similar (ŴL’ŴU ). The same
holds for the relative difference between the signals
recorded on the substructures. The similarity of trans-
mission into the substructure (T̂LB’T̂UA) results from
geometrical similarity of the interface. Furthermore,
propagation in the substructure is characterised by
bulk waves, as for mid- to high-frequency signals the
wavelength is relatively short in comparison to the
dimensions of the nose and support substructures.
Therefore, assuming that the reflections do not signifi-
cantly interfere with the primary wave path, and
excluding low-frequency signals, propagation in the
substructures could be considered similar (ŴB’ŴA).

Under these assumptions, it is expected that the rela-
tive difference in the energy retained by the signal when
comparing Equations (1) and (2) is in the same order as
the loss for Equations (3) and (4), and for both this dif-
ference is primarily characterised by the transmission
through the roller. This specific pattern may be used to
identify the raceway as the origin of a source signal.

Alternatively, a sub-surface crack may be propagat-
ing in the roller, as depicted in Figure 2(b). For this
source mechanism, the detected signals at the same four
sensor locations may be described as

P̂LRðsDL, sSR,FÞ= D̂LŴLðsDL,GLRÞT̂RLðFÞŴRðGLR, sSRÞ
ŜR + P̂N ,

ð5Þ

P̂URðsDU ,FÞ = D̂U ŴU ðsDU ,GURÞT̂RU ðFÞ
ŴRðGUR, sSRÞŜR + P̂N ,

ð6Þ

P̂BRðsDB, sSR,FÞ= D̂BŴBðsDB,GLBÞT̂LBðFÞŴLðGLB,GLRÞ
T̂RLðFÞŴRðGLR, sSRÞŜR + P̂N ,

ð7Þ

and

P̂ARðsDA, sSR,FÞ= D̂AŴAðsDA,GUAÞT̂UAðFÞŴU ðGUA,GURÞ
T̂RU ðFÞŴRðGUR, sSRÞŜR + P̂N :

ð8Þ

Herein, P̂LR, P̂UR, P̂BR and P̂AR represent the recorded
responses at receivers on the components identified by
their first subscripts in Figure 1 of a source function on
the roller, denoted by ŜR. Note T̂RL represents the
reverse directional form of T̂LR. Furthermore sSR indi-
cates the location of the source signal.

Apparent for this source is the shift towards a more
symmetrical set of equations, in comparison to those
for the source in the raceway. Regarding the transfor-
mations that make up the primary transmission path,
Equations (5) and (6), and Equations (7) and (8) show
semblance. The geometry contains a similar symmetry
in dimensioning, as depicted to scale in Figure 1. This
symmetry in primary transmission paths is expected to
provide a basis for identifying degradation in rollers.

Lastly, for a source on the interface between the
roller and raceway, as illustrated in Figure 2(c), that
may be due to contamination of the lubricant, the
recorded signals may be described as

P̂LIðsDL, sSI ,FÞ= D̂LŴLðsDL, sSIÞT̂ILðFÞŜI + P̂N , ð9Þ

P̂UIðsDU , sSI ,FÞ= D̂U ŴU ðsDU ,GURÞT̂RU ðFÞ
ŴRðGUR, sSIÞT̂IRðFÞŜI + P̂N ,

ð10Þ

(a) (b) (c)

Figure 2. Three alternative source configurations with primary transfer paths, showing (a) a subsurface source in the raceway,
(b) a subsurface source in the roller and (c) a source on the interface between roller and raceway.
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P̂BIðsDB, sSI ,FÞ= D̂BŴBðsDB,GLBÞT̂LBðFÞŴLðGLB, sSIÞ
T̂ILðFÞŜI + P̂N ,

ð11Þ

and

P̂AIðsDA, sSI ,FÞ= D̂AŴAðsDA,GUAÞT̂UAðFÞ
ŴU ðGUA,GURÞT̂RUðFÞŴRðGUR, sSIÞT̂IRðFÞŜI + P̂N :

ð12Þ

Herein, P̂LI , P̂UI , P̂BI and P̂AI represent the recorded
responses at receivers on the components identified by
their first subscripts in Figure 1 of a source function,
denoted by ŜI , on the interface between the roller and
nose raceway. Note T̂IL and T̂IR represent the transmis-
sion functions for the interface source to the respective
nose raceway and roller. Furthermore sSI indicates the
location of the source signal.

The resulting set of equations is characterised as
being in between the sets with the source signal in the
roller or raceway, with the difference being how it
incorporates transmission through the roller.

These three systems of equation show that from a
combination of recordings from two sensors, of which
one on the nose ring and one on the support ring, the
component where the source signal originates from
may be identified.

Clustering

To identify mechanisms that consistently emit elastic
stress waves, such as crack growth, consistency in the
source signals must be sought for. Implementation of
this procedure is based on clustering signals by cross-
correlation, which is defined in the time domain as

ðsiHsjÞðtÞ[
ð‘
�‘

s�i ðtÞsjðt � tÞdt: ð13Þ

wherein ðsiHsjÞðtÞ represents the cross-correlation of
generic source signals siðtÞ and sjðt � tÞ for a specific
time shift t. Note that s� denotes the complex conju-
gate of s.

The similarity index may be obtained by taking the
normalised absolute maximum of the cross-correlation,
that is

§i, j = max
ðsiHsjÞðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðsiHsiÞð0ÞðsjHsjÞð0Þ
p
�����

�����
 !

: ð14Þ

Herein, §i, j denotes the similarity between source sig-
nals siðtÞ and sjðtÞ. Note that the denominator of the
fraction is composed of the product of the autocorrela-
tions of the individual signals evaluated at t = 0, and
that the autocorrelation at zero time shift is essentially
the energy of the signal. The latter may also be
expressed as

ðsHsÞð0Þ=

ð‘
�‘

sðtÞj j2dt: ð15Þ

The result of Equation (14) is a similarity value that is
contained within the closed interval ½0, 1�, where the
extreme values represent the cases of exactly identical
or polar opposite signals (§i, j = 1), or no similarity at
all (§i, j = 0).

In line with Equations (1)–(12), the procedure for
cross-correlation may also be expressed in the fre-
quency domain as

F ðsiHsjÞðtÞ
� �

= ŜiŜ
�
j , ð16Þ

with F½� � �� denoting the Fourier transform.
This cross-correlation is determined based on the

emitted source signals, whereas in monitoring, the
recorded response at locations other than the source is
obtained. The source signal is the deconvolution from
the recorded response, and may be represented as

Ŝ = Ẑ�1ðsD, sS ,FÞP̂ðsD, sS ,FÞ: ð17Þ

wherein Ẑ denotes the consolidation of all propagation,
transmission and coupling transfer functions on the
primary path from generic source location sS to generic
receiver location sD, and Ẑ�1 indicates its inverse. For
a consistent source location, variation in transfer path
Ẑ can be assumed negligible for consecutive source sig-
nal emissions.

Using this, the cross-correlation of source signals
may also be expressed as

ŜiŜ
�
j = Ẑ�1

i P̂i Ẑ�1
j P̂j

� ��
= Ẑ�1

i ðẐ�1
j Þ
�
P̂iP̂

�
j : ð18Þ

Here the distributive property in convolution of the
complex conjugate and the associative and commuta-
tive properties of the convolution allow for reorganisa-
tion of the cross-correlation into the convolution of the
individual cross-correlations of the inverse transfer
paths and the recorded responses.

Also considering associativity with scalar multiplica-
tion, and Plancherel’s theorem on the equivalence of
the integral of a function’s squared modulus in the time
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domain and frequency domain, the normalisation may
be expressed by

ŜiŜ
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The similarity is defined as the absolute maximum of
the normalised cross-correlation in the time domain.
Therefore, the inverse Fourier transform is used to
return to the time domain. Herein, the convolution
theorem allows for the separation of the Ẑ and P̂ terms
in separate inverse transformations, as

F�1
ŜiŜ
�
jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ ‘

�‘
Ŝi
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with � denoting the convolution operator.
Under the assumption of near-identical transfer

paths (Ẑ�1
i ’Ẑ�1

j ), causality imposes that the argument
of the maximum cross/auto-correlation (i.e. the time
shift) of the inverse transfer paths is the same as the
argument of the maximum cross-correlation of the
source signals and as the argument of the maximum
cross-correlation of the recorded signals. Since only the
maximum is of concern for the similarity index, the
cross-correlation of the transfer paths may be omitted
from the equation, as the maximum of its normalised
cross-correlation is equal to one, due to it being an
auto-correlation in case of near-identical transfer paths.
Then the similarity index may be expressed as
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From the similarity between signals, the dissimilarity
may be defined as

di, j = 1� §i, j: ð22Þ

This dissimilarity di, j represents the virtual distance in
the clustering algorithm.

To identify structure in signal (dis)similarity, a par-
ticularly suitable approach is agglomerative hierarchi-
cal clustering (AHC), of which implementations by
Van Steen et al.92 and Huijer et al.93 are illustrative.
This bottom-up approach links signals by increasing
dissimilarity, to generate a dendrogram that shows the
connectivity of all elements of the dataset. From the
dendrogram, clusters may be obtained – amongst other
procedures – by cutting the branches at a certain dis-
similarity threshold.

A downside of AHC – and many other clustering
approaches – is the requirement to have all of the data
known at the beginning of the procedure, hindering
online implementation. Also the requirement to know
the distances between all data points makes it less suitable
for large datasets. Alternative sequential, or incremental,
algorithms have been proposed, for which the general
procedure is to compare each new signal to the already
formed clusters, and to assign said signal to either one of
those clusters or assign it as a new cluster.94–97

A basic sequential clustering algorithm is implemen-
ted that is particularly aimed at clustering highly simi-
lar signals. The following procedure is adopted: In
order of detection, each signal is first compared to all
already identified clusters – in case there are none yet,
this step is omitted. If the dissimilarity between the
evaluated waveform and any existing cluster is lower
than a predetermined threshold, the waveforms gets
associated with the cluster of lowest dissimilarity. If no
cluster of sufficiently low dissimilarity is identified, a
second comparison to the sample of other non-
clustered waveforms takes place. If in this second com-
parison a sufficiently low dissimilarity is observed, the
waveforms with the lowest similarity will together form
a new cluster. If in no comparison the dissimilarity
threshold is met, the evaluated waveform gets assigned
to the sample of non-clustered waveforms. This proce-
dure is graphically illustrated in Figure 3.

To reduce the computational burden, only a limited
sample of waveforms is compared for each cluster and
for the non-clustered waveforms. In case of the latter, a
moving window is utilised that only considers the last
250 signals that were assigned non-clustered. The rea-
soning being that more recent signals are more likely to
meaningfully correlate to each other. The same reason-
ing has also been used to implement a procedure that
declares clusters as dormant after 250 consecutive
unsuccessful comparisons, to eliminate needless
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comparisons to a significant portion of insignificant
clusters composed of only a few hits. Clusters larger
than 50 hits are excluded from the dormancy check.
For each cluster, a sample of up to nine waveforms is
selected. To suitably represent the cluster as a whole,
the sample contains some of the very first, some of the
very last and some arbitrary signals from the cluster.
Due to the use of a low dissimilarity threshold, the high
similarity within the cluster assures any selection from
the cluster represents the cluster as a whole.

For the comparison of waveforms to clusters, a
weighted average dissimilarity measure is used.
Weighing is applied to increase the importance of
newer additions to the cluster, and decrease the impor-
tance of the original waveforms. This improves the
resilience of the clustering approach to slight and gra-
dual changes in the clustered signals, which may occur
due to the influence that the degrading geometry might
have on the transmission of the source signal. To deter-
mine the weighted average, the approach uses

dc
j =

PN
i = 1 widi, jPN

i = 1 wi

, ð23Þ

wherein dc
j indicates the average dissimilarity between

waveform pj and cluster c, and wi the weight factor
associated with waveform pi. The summation is

performed over N waveforms pi, that are elements of
cluster c.

Experimental setup

A test setup that is representative of a segment of a
large-scale slew or turret bearing has been utilised. It
consists of a double linear bearing, which, under verti-
cal load applied through the support rings, allows for
cyclic horizontal movement of the nose ring. The illus-
trations in Figure 1 show the top half of the designed
setup. The bottom half is an exact vertically mirrored
copy of the top half, with both halves separated by a
fibre-reinforced composite panel for improved ultraso-
nic isolation. A picture of the setup with a three-roller
configuration prior to the application of grease is
shown in Figure 4. Note that the same setup has also
been used in Scheeren and Pahlavan14 for different
experiments on low-speed roller bearings.

The raceways, rollers and cages are all modular
components. The experiment described in this article
uses in each half of the setup two raceways with a
thickness of 32.5 mm made out of Hardox 600, two
rollers with diameter of 69 mm made out of 100Cr6
through hardened bearing steel and a cage made out of
CuSn12C tin bronze. Out of the notable permanent
components, the nose and support substructures are all

Figure 3. Overview of clustering procedure.
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made out of S355J2 structural steel. The main dimen-
sions of the setup, as indicated in Figure 1, are given in
Table 1.

Instrumentation

Ultrasonic signals generated over the course of the nat-
ural degradation test have been recorded in the fre-
quency range of 40–580 kHz. To achieve this, the setup
has been instrumented on eight locations with three
types of commercial piezoelectric AE transducers. An
overview of the locations and sensor types of all mea-
surement channels is given in Table 2.

The eight measurement locations are split between
the two mirrored test chambers. The isolation in the
middle of the nose ring allows for these to be consid-
ered acoustically independent from one another.
Within the sphere of influence of each chamber, the
measurement locations can be identified by a combina-
tion of two binary groups. Each array is situated either
on the raceway or on the substructure, and that com-
ponent is part of either the nose ring or the support
ring. The illustrations in Figure 1 are representative of
the measurement locations for the top chamber, while
for the bottom chamber the locations are vertically
mirrored.

The eight measurement locations all represent
arrays of three sensors – each of which sensitive to a
specific part of the considered frequency range. Low
frequencies are covered by a 60 kHz resonant R6a,
mid frequencies by a 150 kHz resonant R15a and high
frequencies by a broadband WSa– all manufactured
by Physical Acoustics Corporation (Princeton, NJ,
USA). All of the sensors are amplified by external
AEP5H pre-amplifiers set to a gain of 40 dB, before
being connected to a 24-channel AMSY-6 AE

measurement system fitted with ASIP-2/A signal pro-
cessing cards – both manufactured by Vallen Systeme
(Wolfratshausen, Germany). Digital band-pass filters
are applied for each sensor type individually to sepa-
rate low-, mid- and high-frequency content. For the
low-frequency measurement channels, a band-pass fil-
ter from 40 to 100 kHz is set, for the mid-frequency
95–180 kHz and for the high-frequency 180–580 kHz.

Whenever a 50 dB threshold was crossed, a transient
recording of 812 ms sampled at 5 MHz and the extracted
feature data are stored. The transient data contains a
200 ms pre-trigger recording to capture the onset of the
detected signal prior to crossing the threshold.

Experimental procedure

An arrangement of two rollers is subjected to a vertical
load of 1215 kN, while a horizontal stroke of 70 mm
is cycled through every 12 s for a linear speed of
about 0.012 m/s. The test is expected to continue for
230,000 cycles (approximately 770 h). During the
test, the setup is lubricated daily with Interflon LS1/2
heavy duty grease. To compensate for slipping, the
rollers and cages in the setup are repositioned when-
ever they have travelled more than 45 mm from the
centred position.

Over the course of the test six inspections are per-
formed at (i) ;51,000 cycles, (ii) ;138,000 cycles, (iii)
;166,000 cycles, (iv) ;196,000 cycles, (v) ;211,000
cycles and (vi) ;225,000 cycles (end of test).
Inspections primarily constituted visual observation,
additionally wear depth (for roller and raceway) and
roundness (for roller) were measured.

Filtering

In pre-processing, two additional procedures for filter-
ing are implemented. These are a signal-to-noise ratio
(SNR) filter and a position filter.

Noisy signals are less likely to be clustered when a
low dissimilarity threshold is set. Therefore, to remove

Figure 4. Picture of experimental setup with cover plates
removed.

Table 1. Main dimensions of test setup.

Parameter Dimension [mm]

dR 69
hA 187
hB 79.5
lA 495
lB 795
wA 350
wB 358
wR 69

Reference for dimensions is made to Figure 1.
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these noisy signals, an SNR-based filter is implemented.
This filter compares the peak amplitude in a 100 ms
window before detection to the peak amplitude of the
signal. A minimum SNR of 10 (20 dB) is imposed.

To mitigate for signals generated by collisions
related to the small gaps between components while
cycling, and in particular when reversing the direction,
a position-based filter is implemented. This filter sepa-
rates all signals that occur within 2.5% of the start or
the end of the horizontal stroke.

Results and discussion

A total of approximately 225,000 cycles were per-
formed under a load of 1215 kN. After the test, severe
wear of the raceways in both the top and bottom cham-
ber was observed. This wear is primarily present in the
form of increased surface roughness and grooving,
while additionally some slight pitting is observed. Both
top and bottom chambers (Figure 4 for reference) gen-
erally show a similar severity of wear; however, in each
chamber, the lower raceway was worn significantly
more than the upper raceway. The rollers generally
show wear that is comparable in severity to the upper
raceways. Five additional inspections have been per-
formed over the course of the experiment, these obser-
vations will be discussed in parallel to the hit-rate
observed over the course of the experiment.

An extensive number of ultrasonic signals have been
recorded during the experiment. Some damages were
also incurred by the sensor system. These damages were
primarily sustained in the bottom chamber, where the
mid-frequency and broadband sensor were broken off
the raceway.

In extension and retraction, the valve system of the
horizontal cylinder emits a continuous low-frequency
noise, that could be detected by the low-frequency
receiver on the support substructure of the bottom half
of the setup. The recorded signals for this receiver show
a continuous consistent alternation between 6 s of
increased noise, and a short period of reduced noise.
These patterns have been used to identify the move-
ment of the nose ring, and subsequently filter for 2.5%
of the nominal stroke in time. About 98.5% of the
cycles could be detected using this procedure. In fur-
ther processing, the valve-initiated signals are rejected
by the SNR filter.

Limiting the analysis to the top chamber, a total of
approximately 2,300,000 AE signals have been detected
that pass through the SNR and start-stop filters. The
ultrasonic activity, represented in form of hit-rate per
cycle (i.e. extension and retraction of the horizontal
cylinder), is shown in Figure 5, of which the middle two
graphs display the channels on the raceways, and the
outer graphs display the channels on the substructure.
Note that channel 14 detected no signals (that are not
removed by the filters) over the course of the experi-
ment. An arbitrary selection of three waveforms from
each of the measurement channels on the top chamber
of the setup is depicted in Figure 6.

Considering Figure 5, it seems that from around
70,000 cycles the activity on the raceways increases,
possibly related to some form of more significant degra-
dation. A comparable trend can also be observed in the
substructure channels. Later on, another significant rise
in activity is observed at around 170,000 cycles.

These crude observations in the hit-rates are com-
plemented by intrusive inspections. At 51,000 cycles,

Table 2. Overview of measurement channels.

Specification Nose raceway Support raceway Nose substructure Support substructure

Low frequency: 40–100 kHz Top: Channel 20 Top: Channel 19 Top: Channel 14 Top: Channel 13
Bottom: Channel 2 Bottom: Channel 1 Bottom: Channel 8 Bottom: Channel 7

Mid frequency: 95–180 kHz Top: Channel 22 Top: Channel 21 Top: Channel 16 Top: Channel 15
Bottom: Channel 4 Bottom: Channel 3 Bottom: Channel 10 Bottom: Channel 9

High frequency: 180–580 kHz Top: Channel 24 Top: Channel 23 Top: Channel 18 Top: Channel 17
Bottom: Channel 6 Bottom: Channel 5 Bottom: Channel 12 Bottom: Channel 11

Graphical representation of
measurement location
(indicated by hatching pattern)
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the first inspection suggested no significant damage
and only slight contamination of the grease was pres-
ent. For the second inspection at 138,000 cycles – after
the first significant increase in hit-rate – wear particles
were observed throughout the setup, and the raceways
showed excessive wear at the contact area. These obser-
vations together with the detected ultrasonic activity
suggest that the onset of this wear took place at around
70,000 cycles.

During the third inspection at 165,800 cycles, an
increase in the surface roughness of the raceways was
observed. Shortly after this observation, AE activity
peaked with hit-rates reaching up to 5 detected signals
per cycle. Just before the next inspection at 196,300
cycles, activity peaked yet again, with hit-rates again
reaching up to 5 hits per cycle. During this inspection,
light pitting was observed on the rollers, and the
roughness had increased further for both rollers and
raceways. For the fifth inspection, around 211,000
cycles, further development of the wear was reported.
And the final inspection, at the end of the 225,000
cycles, reported no significant changes compared to the
fifth inspection. Several pictures of the resulting degra-
dation of the nose raceway at the end of the experi-
ment are included in Figure 7.

Overall, it can be concluded that the biggest
changes in the observed damage during the inspec-
tions match the significance of ultrasonic activity that
has been detected. Notable though is that the
reported contamination does not seem to cause exces-
sive AE activity.

To identify possible patterns in the ultrasonic activ-
ity, the clustering procedures described in the section
‘Methodology’ have been implemented in in-house
code developed for MATLAB R2022a. For each of the
measurement channels, the 100 largest clusters have
been evaluated, and based on common trends among
different channels, two structures of significant clusters
have been identified. These structures of clusters are
shown in Figures 8 and 10, and seem to be related to
the significant increase in activity that is observed in
Figure 5 at around 170,000 cycles and 190,000 cycles.

The largest structure of clusters is the one that was
encountered between 170,000 cycles and 180,000
cycles, as shown in Figure 8. An arbitrary selection of
three illustrative waveforms from each of the measure-
ment channels comprising this structure of clusters is
depicted in Figure 9. The structure is composed of
about 77,000 AE hits that are detected by 11 of the 12
sensors present on that half of the setup. The average

Figure 5. Ultrasonic activity in the top chamber separated in graphs per location: support substructure (top), support raceway
(upper middle), nose raceway (lower middle) and nose substructure (bottom).
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similarity of each waveform to its respective cluster is
0.93, highlighting the concept of consistent signal
generation and propagation. The most noticeable aver-
aged activity reaches up to 2 hits per cycle in the mid-
frequency range. Comparing this to the hit-rates shown
in Figure 5 suggests that the clusters in the structure
make up about half of the activity for the hit-rate peak
between 170,000 cycles and 180,000 cycles. The rest of the
activity is likely to be attributed to less consistent degrada-
tion mechanisms, such as wear and contamination.

For some of the measurement channels, the struc-
ture is split between multiple clusters. Notable

examples – that are also elucidated in Figure 9– are the
selected clusters for channels 19 and 20. In Figure 8,
the amplitude trends of the individual hits composing
these clusters clearly match the overarching trend;
however, in Figure 9, the waveforms are shown to con-
tain some minor differences – in particular near the
onset – which have likely resulted in a close-miss for
the clustering approach. Eventual fine-tuning of the
dissimilarity threshold could alleviate this occurrence;
however, for the purpose of this study, this is omitted.

In general, the primary structure of clusters seems to
comprise two trends. There is a clear line of highly

Figure 6. Overview of an arbitrary selection of waveforms recorded on the top chamber.

372 Structural Health Monitoring 23(1)



similar hits with amplitudes near equal to the neigh-
bouring hits. This trend seems to be present for a dura-
tion of 7,500 cycles, and is detected and clustered for

nearly all of the measurement channels. The second
trend shows a more cloudy behaviour, with greater var-
iance in the detected peak amplitudes, though wave-
forms remain highly similar. Overall, amplitudes for
the second trend seem less pronounced, and therefore
it is detected and clustered to a lesser extend in compar-
ison to the first trend. The second trend is present for a
duration of 5,000 cycles, with the onset just before
175,000 cycles.

Focussing on the highly consistent line-shaped
trend, the source of the signals and thus the location of
the degradation can be derived. The basis for this deri-
vation is the systems of transformations described in
Equations (1) through (12). Taking the mid-frequency
graph as an example, the greatest amplitudes are
detected on the nose raceway (channel 22, cluster 4367)
at around 90 dB. On the opposing raceway (channel
21, clusters 1663 and 1674), an amplitude of about 65-
70 dB is detected. The difference between these loca-
tions is a drop in amplitude of 20–25 dB, that matches
the results obtained in earlier work on the relative drop
in amplitude for a signal propagating from one race-
way to another through a roller.13 Similarly, the differ-
ences between the raceway and substructure channels
are shown to be in the order of 5–10 dB. These num-
bers are slightly better than predicted in the earlier
work for a single interface transmission; however, it
must be noted those experiments assumed a line

Figure 7. Pictures of post-experiment inspection of nose
raceway, showing (a) overall wear pattern comprising increased
surface roughness (discoloration), pitting and grooving,
(b) close-up of grooving and surface deterioration at the lower
edge in (a) and (c) close-up of grooving and surface
deterioration at the upper edge in (a).

Figure 8. Primary structure of selected clusters from low- (top), mid- (middle) and high-frequency (bottom) measurement
channels.
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contact, whereas the interface between raceway and
substructure is a surface.

Comparable differences in amplitudes can also be
observed in the low- and high-frequency graphs in
Figure 8; however, the roller transmission for the low
frequencies seems a bit stronger, at about 20 dB ampli-
tude loss. While the high frequencies show a slightly
weaker transmission, at about 30 dB amplitude loss.

Regarding the cloud-like trend observed around
175,000 cycles, it must first be stated that these are the
same clusters that comprise the line-shaped trend. This
is most obvious when looking at the cluster for channel

22 (cluster 4367 in the middle graph of Figure 8), which
contains both the line-shaped trend with the greatest
amplitudes among the line-shaped trends, and the
cloud-shaped trend with generally the greater ampli-
tudes among the cloud-shaped trends. These being in
the same cluster indicates that these seemingly separate
trends share highly consistent waveforms, with the only
significant difference between them being the consis-
tency of the amplitude. The signals in the line-shaped
trend show a minimal and gradual variation in the
amplitudes, indicating that the emission mechanism con-
sistently releases similar amounts of energy into the

Figure 9. Overview of an arbitrary selection of waveforms associated with the primary structure of clusters.
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material with each hit. Contrasting to this is the cloud-
shaped trend, where the variation in amplitude between
the signals indicates a varying amount of energy released
into the material for each hit.

Concluding, all of the identified clusters in the larg-
est structure of clusters seem to indicate that degrada-
tion is developing in the nose raceway of the top
chamber. This degradation is mostly of a highly consis-
tent nature, which might indicate some form of crack
propagation.

The secondary structure of clusters, shown in Figure
10, is encountered between 184,400 cycles and 186,400
cycles. An arbitrary selection of three illustrative wave-
forms from each of the measurement channels compris-
ing this structure of clusters is depicted in Figure 11.
The structure is composed of about 13,500 AE hits that
are detected by 9 of the 12 sensors. The average simi-
larity of each waveform to its respective cluster is 0.94.
The most noticeable averaged activity reaches just
upwards of 1 hit per cycle. Comparing this to the hit-
rates shown in Figure 5, the clusters in the structure
make up about a quarter of the activity during its dura-
tion of some 2000 cycles. As was the case with the other
structure of clusters, residual activity is likely related to
mechanisms emitting less consistent waves.

The individual clusters, that have been selected to
compose this structure, all show a clear trend of hits
with a consistently increasing and subsequently
decreasing amplitude. Using the reasoning introduced

earlier regarding interfaces and transmission losses, it
is expected that the secondary structure of clusters
comprises signals that were generated in the nose race-
way, as was the case with the primary structure of clus-
ters. These observations, the similar trend in emission
behaviour and the same source component, imply that
the degradation responsible for both structures of clus-
ters might be of similar character. Seemingly contra-
dicting is the notion that the separate clustering of the
individual hits in both structures of clusters is the result
of dissimilarity between the clusters within the struc-
tures. However, progressive failure of the rolling ele-
ments alters transfer paths and transmission surfaces,
and as such deviation of the long-term similarity is
expected with increasing damage, while the short-term
similarity is retained. Note that separation of larger
clusters into several smaller ones may obfuscate the
identification of particular types of degradation and is
to be further investigated in the future research regard-
ing long-term tracking of particular clusters.

Manual identification of structures in the obtained
clusters, as performed prior, is a laborious process,
that is also subject to misinterpretation. To circum-
vent these issues, common techniques for structuring
multi-channel AE data, such as event-building, may
be implemented. A basic implementation of this com-
bined event and cluster-based filtering is presented in
Figure 12. Therein, the global cumulative hit count is
shown for all hits that meet the criteria of being

Figure 10. Secondary structure of selected clusters from low- (top), mid- (middle) and high-frequency (bottom) measurement channels.
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associated with (i) a cluster containing at least 100
elements and (ii) an event that has been detected by
all of the sensor types and on at least two of the mea-
surement locations individually.

Figure 12 shows four graphs, each representing the
three sensor types on a particular measurement loca-
tion. The visual similarity in the trends is obvious, indi-
cating that most commonly the identified clusters are
detectable on all measurement locations. Note that the
prescribed association in the event-building procedure
does partly impose this similarity in the trends; how-
ever, this is limited to a fraction of the measurement

channels. The overall similarity in the trends indicates
the feasibility of condition monitoring on the basis of
propagated signals.

The trends in all four graphs of Figure 12 show the
major rises in the cluster-event filtered cumulative hit
count to be occurring between the first (I1) and second
(I2) inspection, and between the third (I3) and fourth
(I4) inspection. The monitoring results from both of
periods comply with the observations of increased
wear. Considering the structures of clusters shown in
Figures 8 and 10, the two separately identifiable
increases in hit count between I3 and I4 are associated

Figure 11. Overview of an arbitrary selection of waveforms associated with the secondary structure of clusters.
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with the structures presented in those respective fig-
ures. However, the continuation of the later of these
increases till around 190,000 cycles indicates that a part
of these clusters have gone unnoticed in the manual
identification. The same limitation should be extended
to the rise in hit count between I1 and I2, of which
none of the underlying structures was identified in the
manual evaluation. Therefore, this implementation
demonstrates the effectiveness of combined clustering
and event-building in isolating potentially significant
AE activity.

The presented methodology in this article has been
supplemented with a complete and extensive data sam-
ple covering the entire degradation process of the rolling
elements. If fewer data are available, the reliability of
the identification approach may be reduced. In future
research, the minimum required data sample from
which to reliably infer bearing condition is to be investi-
gated. Furthermore, the reported experiments repre-
sented a moderately noisy environment. It is recognised
that higher-noise environments might exist in practical
situations subject to harsh working conditions and thus
may require more elaborate noise countering measures.
In future work, application of the proposed

methodology on representative installations and possi-
ble associated challenges in the field will be investigated.

Conclusions

A methodology for identifying degradation in low-
speed roller bearings based on similarity of AE source
signals and a sequential clustering algorithm based on
cross-correlation of recorded AE signals is proposed.
The possibility of utilising propagated and transmitted
signals instead of source signals is discussed and formu-
lated analytically. To verify the methodology, a natural
degradation test has been executed in a representative
scale on a purpose-built linear bearing segment mod-
elled after the support bearing of an FPSO turret. Over
the course of 225,000 cycles, AEs have been recorded
at four locations both on the rolling elements and on
the supporting structure by sensor arrays comprising
of three AE transducers, each sensitive to a particular
part of the covered 40–580 kHz frequency range. The
recorded signals have been filtered and clustered, to
identify consistent trends and structures that may indi-
cate developing degradation. Analysis of the clustered
signals shows an increase in similar emissions around

Figure 12. Cumulative hit count in the top chamber filtered for (i) the detectability of the event in both at least three frequency
ranges and at least two measurement locations and (ii) the association with a cluster comprising at least 100 elements. The dashed
vertical lines (I1–I5) indicate the five performed inspections.
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70,000 cycles that is likely indicative of an increase in
the degradation rate. This increased wear develop-
ment is supported by visual inspections of the rolling
elements. Additionally, around 175,000 cycles, two
highly consistent structures of clusters have been
observed to originate from the nose raceway, which
may be indicative of the development of a localised
defect in that raceway. These results suggests that (i)
clustering based on cross-correlation may be used to
identify consistency in AE source mechanisms, (ii)
combined clustering and event-building provides an
effective method for isolating significant AE activity,
(iii) for sufficiently low speed, propagation and trans-
mission of AE signals throughout the rolling ele-
ments, interfaces and substructure is governed by
(quasi-)static attenuation, and (iv) relative differences
between clusters identified for different sensor loca-
tions may be used to identify the component the
source signal originates from.
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Appendix

Nomenclature

D̂A coupling transfer function of receiver on
support substructure

D̂B coupling transfer function of receiver on
nose substructure

D̂L coupling transfer function of receiver on
nose raceway

D̂U coupling transfer function of receiver on
support raceway

F force applied through bearing
P̂ recorded response (generic representation)
p recorded waveform (generic

representation)
P̂AI recorded response on support

substructure from roller–raceway
interface source

P̂AL recorded response on support
substructure from nose raceway source

P̂AR recorded response on support
substructure from roller source

P̂BI recorded response on nose substructure
from roller–raceway interface source

P̂BL recorded response on nose substructure
from nose raceway source

P̂BR recorded response on nose substructure
from roller source

P̂LI recorded response on nose raceway from
roller–raceway interface source

P̂LL recorded response on nose raceway from
nose raceway source

P̂LR recorded response on nose raceway from
roller source

P̂N neglected paths, mode conversions,
scattering and background noise

P̂UI recorded response on support raceway
from roller–raceway interface source

P̂UL recorded response on support raceway
from nose raceway source

P̂UR recorded response on support raceway
from roller source

Ŝ source function (generic representation)
ŜI source function on roller–raceway

interface
ŜL source function on nose raceway
ŜR source function on roller
s source signal (generic representation)
sD location of receiver (generic

representation)
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sDA location of support substructure receiver
sDB location of nose substructure receiver
sDL location of nose raceway receiver
sDU location of support raceway receiver
sS location of source (generic representation)
sSI location of source at interface
sSL location of source at nose raceway
sSR location of source at roller
T̂IL interface transmission function for

interface source to nose raceway
T̂IR interface transmission function for

interface source to roller
T̂LB interface transmission function between

nose raceway and nose substructure
T̂LR interface transmission function between

nose raceway and roller
T̂RL interface transmission function between

roller and nose raceway
T̂RU interface transmission function between

roller and support raceway
T̂UA interface transmission function between

support raceway and support substructure
t time

wi dissimilarity weight factor for signal i
ŴA propagation function of support

substructure
ŴB propagation function of nose substructure
ŴL propagation function of nose raceway
ŴR propagation function of roller
ŴU propagation function of support raceway
Ẑ consolidated propagation, transmission

and coupling function (generic
representation)

di, j dissimilarity between signals i and j
dc

j dissimilarity between signal j and cluster c
GLB interface boundary between nose raceway

and nose substructure
GLR interface boundary between nose raceway

and roller
GUA interface boundary between support

raceway and support substructure
GUR interface boundary between support

raceway and roller
§i, j similarity between signals i and j
t time shift
v frequency
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