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ABSTRACT 

In the past decade, data-driven methodologies have gained 

increasing popularity, offering a foundation for predicting the 

remaining useful life (RUL) of engineering systems and 

structures using condition monitoring (CM) data. A 

particularly intriguing challenge lies in accurately predicting 

the RUL of systems that exhibit exceptional performance, 

whether underperforming or overperforming, owing to 

unforeseen phenomena occurring during their operational 

life. These unique systems, often referred to as outliers, pose 

a formidable challenge for RUL prediction. This research 

addresses this challenge by introducing a novel data-driven 

model, which is known as the Similarity Learning Hidden 

Semi-Markov Model (SLHSMM) and extends the 

capabilities of the Non-Homogeneous Hidden Semi-Markov 

Model (NHHSMM). The training dataset comprises strain 

data obtained from open-hole carbon–epoxy specimens 

exposed solely to fatigue loading. In contrast, the validation-

testing dataset includes strain data from two specimens 

subjected to both fatigue and in-situ impact loading, 

representing an unexpected and previously unseen event in 

the training data. The study compares RUL estimations 

generated by the SLHSMM and NHHSMM. The results 

indicate that the SLHSMM outperforms the NHHSMM, 

offering superior accuracy in predicting outliers' RUL. This 

underscores its capability to adapt to unexpected phenomena 

and seamlessly incorporate unforeseen data into prognostics. 

1. INTRODUCTION 

Engineering systems, particularly composite structures, 

typically function in dynamic environments with varying 

operational conditions, such as loads, resulting in fluctuations 

in condition monitoring (CM) data. The service life of 

composite structures is intricately linked to various factors, 

including their operational and maintenance procedures, as 

well as the often unpredictable environmental and 

operational conditions. Unexpected phenomena can arise 

during the lifetime of these structures, which were not 

accounted for during the design phase. To illustrate, consider 

the aviation industry, where events like birdstrikes, hail, or 

tool drops can occur at any point during an aircraft's service 

life. These events fall under the category of unexpected 

phenomena, potentially causing damage that wasn't foreseen 

during the design phase. The implications of such unexpected 

occurrences on the integrity of a structural component can be 

severe. As a common practice, once these events are 

recorded, aircraft operations are halted, and inspection and 

repair actions are initiated, incurring unplanned costs. In this 

scenario, a Remaining Useful Life (RUL) prediction model 

would assess the impact of the unexpected event and provide 

an updated prediction. 

 

However, the existing state-of-the-art RUL prediction 

models, whether model-based (MB) or data-driven (DD), 

may not be ideally suited for such scenarios. MB models 

struggle because they can't realistically incorporate every 

potential unexpected phenomenon into their physical laws. 

On the other hand, traditional DD models have a significant 

limitation - they are most efficient at predicting degradation 

processes when the testing data closely resemble the 

conditions in which the training data were collected. In cases 

like foreign object impacts on composite structures, the 

accuracy of RUL predictions relies heavily on whether the 

training data include relevant information about such 

impacts. Collecting comprehensive training data to cover 

every possible testing scenario is not realistic. 

 

Therefore, there's a pressing need to develop RUL models 

with real-time adaptive capabilities. These models must offer 

more accurate RUL predictions for engineering systems and 

structures that may perform exceptionally due to unforeseen 

phenomena during their service life. 

 

Several adaptive prognostic models have been proposed in 

the last 15 years. Orchard et al. (2009) employed two 

different approaches to implement outer feedback correction 

loops within particle filter algorithms. These loops integrated 

information about short-term prediction errors to enhance the 

overall performance of the prognostic framework. 

Nevertheless, certain crucial initialization parameters, such 

as the number of prediction steps (k) and the variance vector 

of the kernel noise [p q]T, needed to be predefined. These 

approaches were tested using data from a simulated fault test 

conducted on a critical component of a rotorcraft 

transmission system. The results demonstrated that the 
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incorporation of outer feedback correction loops significantly 

improved the precision and accuracy of the predicted RUL. 

 

Daroogheh et al. (2015) introduced a hybrid prognosis model 

that integrates particle filters and neural networks for gas 

turbine engines. It is worth noting that the combination of 

particle filters and neural networks is a common choice in the 

literature due to their availability in many commercial and 

open-source programming languages, coupled with their 

relatively straightforward implementation compared to other 

algorithms. The authors developed this hybrid prediction 

model by extending particle filters to forecast observations in 

the future. This forecast utilizes a neural network approach as 

a nonlinear time series prediction method. Neural networks 

are adaptively trained based on newly received data when 

discrepancies between forecasted observations from the 

network and real observations increase from one test data set 

to another. Nevertheless, this hybrid prognosis model lacks 

the provision of confidence intervals. 

 

Sbarufatti et al. (2017) introduced a model for battery 

prognostics that combines particle filters with radial basis 

function neural networks (RBFNNs). This model exhibits 

adaptive characteristics as the RBFNNs are trained online. 

Specifically, the neural network parameters are identified in 

real-time by the particle filters as new observations of the 

battery terminal voltage become available. The RBFNNs 

algorithm has shown effectiveness in delivering prognostic 

predictions across normal and aging scenarios. Prior to 

employing RBFNNs, artificial noise was introduced to the 

dataset to replicate realistic online voltage measurements, 

mirroring real-world conditions rather than controlled 

environments. Selecting suitable noise variances poses a 

challenging task, as excessively small values can impede 

effective state-space exploration, while excessively large 

values can hinder efficient state estimation. 

 

Si et al. (2017) employed a Wiener-process-based model 

coupled with a recursive filter algorithm for RUL predictions. 

A state space model continually updates drift coefficients, 

treated as random variables, and an expectation maximization 

(EM) algorithm re-estimates all unknown parameters as new 

data becomes available. The proposed model was employed 

to estimate the RUL of gyros in an inertial navigation system. 

However, Wiener models assume a linear connection 

between the degradation process of the studied system and 

the operational time, which may not always hold true. 

 

Additionally, Khan et al (2018) proposed an adaptive 

degradation prognostic model that utilizes particle filters 

alongside a neural network degradation model for predicting 

the RUL of turbofan jet engines. RUL predictions were 

generated using two different algorithms for benchmarking: 

the nominal RBFNNs with particle filters and the similarity-

based prognostics. RUL predictions from both algorithms 

exhibited volatility, but notably, the similarity-based 

approach lacked support for predicting RUL confidence 

intervals, a crucial output for algorithm robustness. 

Furthermore, the proposed prognostic model necessitates the 

initialization of the random walk step size (σa). Selecting σa 

is not straightforward, as a large value promotes rapid 

convergence but results in high fluctuations, while a small 

value yields smoother yet slower parameter estimation 

convergence. Consequently, σa selection is case-study-

dependent. 

 

Cadini et al. (2019) proposed leveraging the adaptability of 

neural networks to learn from a monitored metallic structure 

and derive real-time models for diagnostics and prognostics. 

To achieve this, neural networks were incorporated within a 

particle filtering scheme, and the network's training process 

occurred in real-time as CM data became available during the 

structure's operation. Consequently, the proposed RUL 

model could sequentially update itself using the accessible 

CM data. This model was demonstrated in simulated and real 

fatigue crack growth tests conducted on metallic aeronautical 

panels. Primary limitations of this model include the time 

required to achieve convergence to the actual RUL, which 

tends to be longer compared to similar RUL models, volatile 

RUL predictions, and divergent behavior of confidence 

intervals towards the end of life. Nevertheless, this model 

could potentially play a role in structural prognostics in the 

future as physics-based or more accurate 

empirical/phenomenological models become available. 

 

Finally, Eleftheroglou et all (2020) developed a new data-

driven model i.e. the Adaptive Non-Homogenous Hidden 

Semi Markov Model (ANHHSMM), which is an extension of 

the NHHSMM. The ANHHSMM uses diagnostic measures, 

which are estimated based on the training and testing CM 

data, and it adapts the trained degradation process parameters 

Γ of the NHHSMM. The training data set was collected from 

open-hole carbon–epoxy specimens, subjected to fatigue 

loading, while the testing data set was collected from 

specimens, subjected to fatigue and in-situ impact loading. 

The ANHHSMM provided better predictions in comparison 

to the NHHSMM for all the cases, demonstrating its 

capability to adapt to unexpected phenomena and integrate 

unforeseen data into the prognostics course. However, the 

suggested model was able to adapt only part of the training 

parameters i.e. the degradation process parameters when the 

observation process parameters were predefined.  

 

Based on the conducted literature review, there is clearly a 

need to further develop models with real-time adapting 

capabilities so as to be able to predict more accurately the 

RUL of engineering systems and structures that either 

underperform or outperform due to unexpected phenomena 

that might occur during the service life. These adaptive 

models have to be data-driven in the case of composite 

structures because the incomplete knowledge about the 

physics behind the evolution and interaction of composites’ 
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damage mechanisms and the unrealistic involvement of any 

physical law, that is able to describe all the possible 

unexpected phenomena, make a MB model not a visible 

option. 

 

The contribution made in this paper is to propose a new RUL 

probabilistic model, the Similarity Learning Hidden Semi 

Markov Model (SLHSMM) which is an extension of the 

NHHSMM. The remainder of this paper is organized as 

follows: the SLHSMM is described in section 2, the case 

study analysis is presented in section 3 and finally, the paper 

is concluded in section 4. 

2. METHODOLOGY 

Approaches grounded in stochastic filtering (Orchard & 

Vachtsevanos, 2009), multi-stage degradation modeling 

(Rabiner, 1989), and covariate hazard modeling (Lu & Liu, 

2014) represent common methodologies that can consider the 

variability in component lifetimes (Si, Zhang & Hu, 2017). 

Given that the accumulation of damage in composite 

structures exhibits stochastic correlation with Condition 

Monitoring (CM) data, multi-stage degradation models, 

particularly Markov models (MMs), emerge as the preferred 

approach for estimating the RUL of composite structures. 

MMs have been in use since the 1980s (Bogdanoff & Kozin, 

1985). However, a key limitation of MMs lies in the 

Markovian assumption, which posits that future degradation 

states are independent of past degradation states, a condition 

not universally valid in engineering systems. 

 

Recognizing this drawback, Hidden Semi-Markov Models 

(HMMs) were introduced by Rabiner (1989). HMMs feature 

a multi-state structure wherein each state remains hidden and 

is linked to the damage accumulation phenomenon through a 

set of parameters referred to as observation process 

parameters (B). However, a notable disadvantage in this case 

is the assumption of an exponential sojourn time distribution 

for each hidden state, a premise not consistently valid. 

Hidden Semi-Markov Models (HSMMs) address this issue 

by allowing for the unconstrained selection of sojourn time 

distributions (Peng & Dong, 2011). 

 

Both HMMs and HSMMs share a limitation in terms of state 

transition, which remains independent of the age of the 

engineering system or the time spent in the current hidden 

state. To account for this limitation, Moghaddass and Zuo 

(2014) extended the HSMM approach by developing the 

Non-Homogeneous Hidden Semi-Markov Model 

(NHHSMM). In this model, the degradation process, 

described through the Γ parameters, depends on the current 

hidden state, the time spent in the current hidden state, and 

the overall age of the studied system. 

 

However, a common limitation across all these models, 

including MMs, HMMs, HSMMs, and NHHSMMs, is the 

absence of adaptation capabilities for the estimated model 

parameters θ={Γ,Β} while the engineering system, such as a 

composite structure, is in operation. To address this 

adaptation issue, Eleftheroglou et al. (2020) introduced the 

Adaptive NHHSMM (ANHHSMM), which, as previously 

mentioned, was capable of providing accurate predictions for 

outlier cases. Nonetheless, the proposed model could adapt 

only the degradation process parameters (Γ) without allowing 

for any adaptation of the observation process parameters (Β). 

 

In this respect, the objective of this study is to develop a novel 

adaptive version of the NHHSMM, termed the Similarity 

Learning HSMM (SLHSMM). This model will possess the 

capability to adapt not only the degradation process 

parameters (Γ) but also the observation process parameters 

(Β). 

2.1. Similarity Learning HSMM  

The SLHSMM consists of a bi-dimensional stochastic 

process. The first process forms a finite Semi Markov chain, 

which is not directly observed, and the second process, 

conditioned on the first one, forms a sequence of independent 

random CM data variables. In order to describe the 

aforementioned bi-dimensional stochastic process the 

model’s parameters θ={Γ,Β} have to be estimated via the 

available CM data. Γ parameters characterize the transition 

rate distribution between the hidden states (degradation 

process), while Β parameters deal with the correlation 

between the hidden states and CM data (observation process). 

This correlation is represented in a nonparametric and 

discrete form via a matrix called emission matrix.  

The parameter estimation process consists of the 

initialization and training procedure. The purpose of the 

initialization procedure is to identify a set of parameters ζ, 

with high computational efficiency, which will associate the 

damage accumulation phenomenon and the available CM 

data. The initialization procedure is obtained by defining; the 

number of possible discrete degradation states (N), the 

transition diagram which defines the connectivity between 

the states and the allowed transitions (Ω), the transition rate’s 

statistical function (λ), the CM data of K training observation 

sequences y(k), and the discrete CM indicator space 

(Z={z1,z2,…,zV}). The reader can refer to Eleftheroglou and 

Loutas (2016) for a more detailed description. 

With regards to the training procedure, parameters θ={Γ,Β} 

are obtained via a novel similarity learning maximum 

likelihood estimation (SL-MLE) method. The similarity 

relationship between the testing and training degradation 

histories is dynamic and represented by a nonparametric 

discrete distribution referred to as the similarity learning 

vector (SLV). The SLV is time-dependent and has K 

elements, where the kth element of this vector quantifies the 

similarity of the testing degradation history and kth training 

degradation history up to time T (wT
(k)). For similarity 
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quantification, different methods can be used e.g. cosine 

similarity, Euclidean distance, Manhattan distance etc. In this 

study, the Euclidean distance method is utilized in terms of 

simplicity. To that end, the Euclidean SLV is obtained via Eq. 

(1). 

𝑤𝑇
(𝑘) = 

∑ | 𝑥𝑖 − 𝑦𝑖
(𝑘)| 𝑇

𝑖=1

∑ ∑ | 𝑥𝑖 − 𝑦𝑖
(𝑘)| 𝑇

𝑖=1
𝐾
𝑘=1

 
 

(1) 

where K is the available training degradation histories, xi the 

testing CM data at the time step i, yi
(k) the training CM data 

of the kth degradation history at the time step i. 

The proposed SL-MLE utilization leads to maximize the 

likelihood function L(θ,y(1:K)), where y(k) is the kth 

degradation history, K is the number of available degradation 

histories, θ={Γ,Β} and w(k) is the kth SLV element at a 

predefined time step T.  

L(𝛉, 𝐲(𝟏:𝐊), 𝑇) =∏𝑤𝑇
(𝑘) ∗  Pr(𝐲(𝐤)|𝛉, 𝜻)

L′=log(L)
⇒      

K

k=1

            

𝐿′(𝜽,𝒚(𝟏:𝑲), 𝑇) =∑ 𝑙𝑜𝑔(𝑤𝑇
(𝑘) ∗ 𝑃𝑟(𝒚(𝒌)|𝜽, 𝜻))

𝐾

𝑘=1

⇒           

𝛉∗ = argmax
𝛉
(∑log (𝑤𝑇

(𝑘) ∗ Pr(𝐲(𝐤)|𝛉, 𝛇))

K

k=1

) 

      

(2) 

setting initial values for Γ, Β, defining the time step T and 

solving the aforementioned optimization problem, the 

parameter estimation process is obtained.  

It is worth mentioning that in the case of a noninformative 

and static SLV function, i.e. wT
(k)= 1/K for every possible T 

and k, the SL-HSMM is identical to the NHHSMM.  

2.2. Diagnostics 

Finding a monotonic degradation measure, which at least 

reflects qualitatively the damage accumulation has always 

been an interesting and challenging topic in real-time CM 

applications (Shen et al., 2012). In addition, finding such a 

monotonic measure will be critical in terms of defining the 

parameter T. To that end, a reasonable measure to monitor 

the overall health status of a composite structure is the 

diagnostic measure Most Likely State (MLS) (Moghaddass 

& Zuo, 2014), which can be determined via Eq. (3). 

MLS(t|𝑥1:t, 𝛉
∗ , 𝜻)=argmax

i
 Pr(Qt = i|x1:t, 𝛉

∗ , 𝜻) (3) 

This measure maximizes the probability 

Pr(Qt = i|x1:t, 𝛉
∗ , 𝜻) of being at the hidden state i at the time 

point t given the testing CM data up to time t (x1:t).  

Utilizing the MLS diagnostic measure, the similarity learning 

timestep T can be defined as the transition timestep from the 

damage state N-2 to N-1, where N is the failure state. 

Following the aforementioned definition of T a 

representative amount of data will be available in order to 

calculate the SLV vector. However, the number of 

degradation states (N) should ideally be relatively small (N < 

10) to allow sufficient time for decision-making and 

maintenance actions, while also providing enough data for 

the adaptation task. 

2.3. Prognostics 

Prognostic measures can be defined based on the θ* 

parameters and the testing CM data (x). In other words, 

conditional to the testing CM data and the complete similarity 

learning model θ*, prognostics tries to estimate the 

probability of being in degradation states 1,…, N-1 at specific 

time points in the future i.e. the conditional reliability 

function. Conditional reliability function, 

R (t|x1:tp , L > tp, 𝛉
∗ , 𝜻) = Pr (L > t|𝑥1:tp , L > tp, 𝛉

∗ , 𝜻) , 

represents the probability that the studied structure continues 

to operate after a time t, less than life-time L (L>t), further 

than the current time tp given that the structure has not failed 

yet (L>tp), the testing CM data x1:tp and the complete model 

θ*, ζ.  

In this study, the mean and confidence intervals of RUL are 

proposed as prognostic measures. These measures were 

calculated via the cumulative distribution function (CDF) of 

RUL (Moghaddass & Zuo, 2014). The CDF of RUL is 

defined at any time point via the conditional reliability 

according to the following equation: 

   Pr (RULtp ≤ t|𝑥1:tp , 𝛉
∗, 𝜻) = 1 − R(t + tp│x1:tp , 𝛉

∗ , 𝛇)   (4) 

3. CASE-STUDY 

To illustrate the adaptability and effectiveness of the 

proposed model, open-hole carbon/epoxy specimens were 

subjected to in-situ impact and constant amplitude fatigue 

loading until failure occurred. The training dataset comprises 

strain CM data collected from specimens exposed 

exclusively to fatigue loading. In contrast, the testing dataset 

comprises CM data gathered from specimens that 

experienced both fatigue and in-situ impact loading. It's 

essential to note that the introduction of impact loading was 

limited to the testing phase, with the specific aim of 

influencing fatigue life and generating outlier cases. In this 

context, the in-situ impact can be characterized as an 

unforeseen event and an unexpected phenomenon in relation 

to the training data. The primary objective of this case study 

is to validate that the SLHSMM exhibits enhanced accuracy 

in predicting RUL compared to the NHHSMM, particularly 

when the testing composite specimens deviate significantly 

from the norm, either as left or right outliers. 
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3.1. Experimental campaign 

The experimental set-up consists of a 100 kN MTS fatigue 

controller and bench machine, an impact canon, and two 

cameras for digital image correlation measurements i.e. strain 

data, Figure 1. A laminate with [0/45/90/-45]2s lay-up and 

average thickness of 2.28mm was manufactured using the 

autoclave process. Ten specimens, with the following 

geometrical details; dimensions [400mm x 45mm] and a 

central hole of 10mm diameter, were tested at 90% of the 

static tensile strength (S=36 kN) with R=0.1 and f=10 Hz. 

The in-situ impact occurred at the hole, as this location 

experiences the highest stresses, aiming to maximize the 

effect of impact on the damage accumulation process. The 

selected energy was E=6 J (impact velocity 20 m/sec) for all 

the cases and it can be categorized as high-speed low energy 

impact. Furthermore, during the impact, the specimens were 

under tension equal to the mean fatigue load (16 kN). The 

time of impact was limited to the period between the start of 

the fatigue test and until damage could be observed by visual 

inspection.  

 

Figure 1. Experimental set-up. 

Table 1 presents the lifetime of the training and testing 

specimens and when the impact occurred. Specimens 9-10 

are the testing specimens for which the impact occurred at 

8200 and 2200 sec of their fatigue life respectively. The 

testing data consists of two outliers, one left (specimen 9) and 

one right (specimen 10).  

The digital image correlation (DIC) technique is used for full-

field strain measurements and the following procedure was 

adopted so as to extract the strain measurements; every 500 

cycles the fatigue test was interrupted, the load was set 

automatically within one second at σmin and then the load 

ramped to σmax within a second and two images were 

acquired. After that the fatigue test continued for the next 500 

cycles, see Figure 2. In case of the in-situ impact, the safety 

aluminum cylinder covered the specimens’ monitoring area 

so DIC images could not be acquired during the impact but 

only afterwards. 

 

Figure 3 presents the training and testing axial strain 

degradation histories. The monitoring area has been defined 

based on the analytical model of Lekhnitskii et al. (1963), 

which calculates the effect of a notch on the stress/strain 

distribution.  

 

Specimens Impact time (sec) Lifetime (sec) 

1 - 81000 

2 - 57500 

3 - 60000 

4 - 49000 

5 - 68000 

6 - 76000 

7 - 95500 

8 - 107000 

9 8200 38000 

10 2200 130500 
 

Table 1. Lifetime and impact times of training and testing 

specimens. 

 
Figure 2. DIC data acquisition strategy. 

 

 

Figure 3. Axial strain degradation histories. 

3.2. Similarity Learning HSMM 

Initially, the procedure of damage accumulation in composite 

structures under fatigue loading (Specimen01-Specimen08) 

is modelled via the NHHSMM and θ*={B*,Γ*} parameters 

were determined via the SL-MLE procedure Eq. (2), defining 

the SLV vector as wT
(k)= 1/K where k  [1,K]. The selected 

number of degradation states is four (N=4) since based on 
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Reifsnider and Talug (1980) the damage accumulation 

process of composite structures can be efficiently 

approximated as a four-state process. In Table 2 the estimated 

B* parameters are presented and in Figure 4 the black-shade 

lines depict the NHHSMM estimated Γ* parameters 

(Moghaddass & Zuo, 2014). 
 

 

 

 

 

 

 

 

 

 
 

Table 2. NHHSMM (B*) and SLHSMM (BSL
*) emission 

matrixes. 

 

Figure 4. Sojourn time Weibull distributions utilizing the Γ* 

and ΓSL
** parameters. 

 

The MLS diagnostic measure was calculated utilizing the 

estimated θ* parameters and the online testing CM data. 

Figure 5 presents the estimations of the MLS measure as 

calculated from Eq. (3) at each time point during the 

operation time of Specimen09 and Specimen10. 

Based on the MLS estimations the similarity learning 

timestep T was defined for each testing specimen, i.e. 

TSpecimen09=17000 sec and TSpecimen10=97500 sec, and the 

Euclidean SLV was obtained via Eq. (1). In Figure 6 the SLV 

nonparametric discrete distributions for each testing 

specimen are presented. 

Based on Figure 6 and Table 1 the testing Specimen09 has a 

higher similarity with the training Specimen04, the training 

set’s left outlier, and the testing Specimen10 is 100% similar 

to the training Specimen08, the training set’s right outlier. 

These similarity-learning outcomes are the desired ones since 

they reflect that Specimen09 is a left outlier and Specimen10 

is a right outlier. 

  

Figure 5. MLS diagnostic measure of testing specimens. 

 

 

Figure 6. Similarity Learning Distribution of testing 

specimens. 

 

Utilizing the testing CM data and SLV vectors the SLHSMM 

can be defined and dynamically adapt the parameters θ*={B*, 

Γ*} to θSL
*={BSL

*, ΓSL
*}, following the SL-MLE procedure 

Eq. (2). In Table 2 and Figure 4 the outcomes of the 

SLHSMM are presented. 

As Table 2 depicts the difference between the NHHSMM 

emission matrix (B*) and the SLHSMM emission matrix 

(BSL
*) is negligible as was expected since the emission matrix 

does not depend on time. The emission matrix correlates CM 

data and hidden states. Furthermore, the CM data range 

remains the same since the last observation, as already 

mentioned, should be unique dictating a common failure 

threshold in the training and testing data set.  

Based on Figure 4 the Similarity-Learning Weibull pdfs of 

Specimen09 and Specimen10 are shifted to the left and right 

side accordingly as was desired since Specimen09 is a left 

outlier and Specimen10 is a right outlier. 
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3.3. Remaining Useful Life Estimations  

Following the aforementioned similarity-learning 

framework, two four-state (N=4) models, allowing soft and 

hard state transitions, were developed and θ*, θSL
*={ θ*

SL-

Specimen09, θ*
SL-Specimen10} parameters were estimated according 

to the training and testing CM data. Through Eq. (4), the 

conditional RUL CDF is calculated from the similarity 

learning timestep T, i.e. TSpecimen09=17000 sec and 

TSpecimen10=97500 sec, till the end of life. The mean RUL and 

the 2.5% and 97.5% percentiles that define a 95% confidence 

intervals are also highlighted. Figures 7 and 8 present the 

prognostic results of the SLHSMM and the NHHSMM for 

Specimen09 and Specimen10 accordingly. 

 
Figure 7. RUL estimations of Specimen09 (left outlier). 

 

 

Figure 8. RUL estimations of Specimen10 (right outlier). 

 

Based on Figures 7 and 8 the SLHSMM provides better 

outlier prognostics since the mean SLHSMM RUL 

estimations are able to approach more satisfactorily the real 

RUL estimations than the NHHSMM. Additionally, the 

confidence intervals of the SLHSMM contain the real RUL 

curve during the whole lifetime of Specimen10 and their 

distance is shorter than the classic model in terms of 

Specimen09. 

4. CONCLUSIONS 

In this study, a new similarity learning probabilistic data-

driven methodology was developed. The aim was to enhance 

the accuracy of predictions, especially in cases of outlier 

behaviors not encountered in the training data. The model's 

performance was evaluated by predicting the RUL of open-

hole carbon/epoxy specimens subjected to constant 

amplitude fatigue loading until failure, while in-situ impact 

events were introduced to demonstrate unexpected 

phenomena. The DIC technique was employed so as to 

collect strain CM data. 

For training, eight observation degradations were utilized, 

with the training specimens solely subjected to fatigue 

loading. For testing the proposed adaptive methodology, two 

degradation histories were used. These observations were 

obtained from two different specimens exposed to both 

fatigue and in-situ impact, creating both left and right outlier 

cases compared to the training histories. 

The results clearly demonstrate that the SLHSMM provides 

more accurate prognostics compared to the state-of-the-art 

NHHSMM. These findings suggest that adapting the 

NHHSMM's parameters using the similarity learning vector, 

as demonstrated in this work, has the potential to significantly 

improve the RUL predictions.  

However, it's essential to acknowledge a key limitation: the 

dependency between the Similarity Learning Vector (SLV) 

and the outliers present in the training set. Nevertheless, this 

dependency has a relatively minor impact on RUL 

predictions, enabling the model to effectively handle outlier 

cases. Another area for improvement is the selection of the 

similarity learning timestep T, which has currently been 

defined manually based on diagnostics. Future work aims to 

automate this selection process by continuously calculating 

the similarity between the testing system and the training 

systems, eliminating the need for manual definition and 

enhancing the model's adaptability. 

Furthermore, enhancing the similarity calculation method is 

crucial. While the Euclidean distance method for quantifying 

similarity has been employed, this point-by-point 

formulation may not fully capture the complexities of 

damage evolution processes. Future research will explore 

extending this formulation to a vector-to-vector approach to 

provide a more comprehensive understanding of the 

degradation process. 

Lastly, although the SLHSMM was tested in the context of 

composite materials, its high flexibility suggests potential 

applications in various engineering prognostic challenges. 
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