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Abstract 

Bac kgr ound: Assemb l y algorithm choice should be a deliber ate , w ell-justified decision when resear c hers create genome assemblies 
for eukaryotic organisms from third-generation sequencing technologies. While third-generation sequencing by Oxford Nanopore 
Technologies (ONT) and Pacific Biosciences (PacBio) has overcome the disadv anta ges of short read lengths specific to next-generation 

sequencing (NGS), third-generation sequencers are known to produce more error-prone reads, thereby generating a new set of chal- 
lenges for assemb l y algorithms and pipelines. However, the introduction of HiFi reads, which offer substantially reduced error rates, 
has provided a promising solution for more accurate assembly outcomes. Since the introduction of third-generation sequencing tech- 
nologies, man y tools ha ve been de v eloped that aim to take adv anta g e of the long er r eads, and r esear c hers need to c hoose the correct 
assembler for their projects. 

Results: We benchmarked state-of-the-art long-read de novo assemblers to help readers make a balanced choice for the assemb l y 
of eukaryotes. To this end, we used 12 real and 64 simulated datasets from different eukaryotic genomes, with different read length 

distributions, imitating PacBio continuous long-read (CLR), PacBio high-fidelity (HiFi), and ONT sequencing to evaluate the assemblers. 
We include 5 commonly used long-read assemblers in our benc hmark: Canu, Fly e , Miniasm, Raven, and wtdbg2 for ONT and PacBio CLR 

reads. For PacBio HiFi reads , we include 5 state-of-the-art HiFi assemb lers: HiCan u, Fl ye, Hifiasm, LJA, and MBG. Evaluation categories 
address the following metrics: reference-based metrics, assembly statistics, misassembly count, BUSCO completeness, runtime, and 

RAM usa ge. Additionall y, we inv estigated the effect of incr eased r ead length on the quality of the assemb lies and r e port that r ead 

length can, but does not al w ays, positi v el y impact assemb l y quality. 

Conclusions: Our benchmark concludes that there is no assembler that performs the best in all the evaluation cate gories. How ever, 
our results show that overall Flye is the best-performing assembler for PacBio CLR and ONT reads, both on real and simulated data. 
Meanwhile, best-performing PacBio HiFi assemblers are Hifiasm and LJA. Next, the benchmarking using longer reads shows that the 
incr eased r ead length impr ov es assemb l y quality, but the extent to whic h that can be ac hiev ed de pends on the size and complexity 
of the r efer ence genome. 

Ke yw ords: de novo assemb l y, third-generation sequencing, benchmarking, eukaryote genomes 
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Introduction 

De novo genome assembly is essential in several leading fields 
of r esearc h, including disease identification, gene identification,
and evolutionary biology [ 1–4 ]. Unlike r efer ence-based assembl y,
whic h r elies on the use of a r efer ence genome, de novo assem- 
bl y onl y uses the genomic information contained within the se- 
quenced reads. Since it is not constrained to the use of a refer- 
ence, high-quality de novo assembly is essential for studying novel 
organisms, as well as for the discovery of overlooked genomic 
featur es, suc h as gene duplication [ 5 ], in pr e viousl y assembled 

genomes. 
The introduction of third-generation sequencing (TGS) led to 

massiv e impr ov ements in de novo assembl y. The adv ent of TGS 
has addressed the main drawback of next-generation sequencing 
(NGS) platforms—namel y, the short r ead length—but has intr o- 
duced ne w c hallenges in genome assembl y, because of the higher 
err or r ates of long r eads . T he leading platforms in long-read se- 
Recei v ed: J an uar y 30, 2023. Revised: June 18, 2023. Accepted: October 31, 2023 
© The Author(s) 2023. Published by Oxford Uni v ersity Pr ess GigaScience. This is an
Attribution License ( https://cr eati v ecommons.org/licenses/by/4.0/ ), which permits 
the original work is pr operl y cited. 
uencing are Pacific Biosciences Single Molecule, Real-Time se- 
uencing (often abbr e viated as “P acBio”) and Oxford Nanopor e

ONT) sequencing [ 6 ]. 
Since the introduction of TGS platforms, many methods have 

een de v eloped that aim to take the most benefits fr om the longer
ead length and overcome the new challenges due to sequencing
rror. Recent studies have been conducted to compare long-read 

e novo assemblers. One such study was conducted by Wick and
olt [ 7 ], who focused on long-read de novo assembly of prokary-
tic genomes. Eight assemblers were tested on real and simu-
ated reads from PacBio and ONT sequencing, and evaluation 

etrics included sequence identities, circularization of contigs,
omputational resources, and accuracy. Murigneux et al. [ 8 ] per-
ormed similar experiments on the genome of Macadamia jansenii ,
lthough in this case, the focus was on compar ativ el y benc hmark-
ng Illumina sequencing and 3 long-read sequencing technologies,
n addition to the comparison of long-read assembly tools. Stud-
 Open Access article distributed under the terms of the Cr eati v e Commons 
unrestricted reuse, distribution, and reproduction in any medium, provided 
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es narro w ed do wn to just 1 type of sequencing technology include
hose of Jung et al. [ 9 ], who e v aluated assemblers on real PacBio
 eads fr om 5 plant genomes, and Chen et al. [ 10 ], who used Oxford
anopor e r eal and sim ulated r eads fr om bacterial pathogens in

heir comparison. Except for the Wick and Holt study, which pro-
ides a compr essiv e comparison on de novo assembly of prokary-
tic genomes, other studies are either comparing the assemblers
n single genome or using data from a single sequencing plat-
orm. Her e, we pr ovide a compr ehensiv e comparison on de novo
ssembly tools on the most used TGS technologies and 7 differ-
nt eukaryotic genomes, to complement the study of Wick and
olt. 
In this study, we are benchmarking these methods using 12

eal and 64 simulated datasets (see Fig. 1 ) from PacBio continuous
ong-r ead (CLR), P acBio high-fidelity (HiFi), and ONT platforms to
uide r esearc hers to c hoose the pr oper assembler for their stud-
es. Benc hmarking using sim ulated r eads allows us to accur atel y
ompare the final assembly with the ground truth, and bench-
arking using the real reads can validate the results based on

im ulated r eads . T he assembler comparison presented in this ar-
icle complements the liter atur e that has already been published,
y introducing an analysis of not just assembler performance but
lso of the effect of read length on assembly quality. Although in-
r eased r ead length is consider ed an adv anta ge , we in vestigate if
t is always a necessary adv anta ge to have for assembly perfor-

ance. To that end, the scope of the study extends to 6 model
ukaryotes that provide a performance indication for genomes of
 ariable complexity, cov ering a wide r ange of taxa on the eukary-
tic br anc h of the Tree of Life [ 11 ]. Complexity in genome assem-
ly is determined by multiple variables, the most notable of which

s the proportion of re petiti ve sequences within the genome of a
articular organism. Complexity in eukaryotic genomes is further
xacerbated by size and organization of chromosomal architec-
ur e, including telomer es and centr omer es, and the pr esence of
ircular elements such as mitochondrial and chloroplast DNA. 

De novo genome assembly evaluation remains challenging, as it
 epr esents a process that must account for variables such as the
oal of an assembly and the existence of a gr ound-truth r efer ence.
 standard e v aluation pr ocedur e was intr oduced in the liter atur e
y the 2 Assemblathon competitions [ 12 , 13 ], which outlined a se-
ection of metrics that encompasses the most r ele v ant aspects of
enome assembly, but these metrics require a reference sequence.
ost of these metrics are adopted in our benchmark. 
Consequently, this study addresses 2 main objectives. First, we

rovide a systematic comparison of state-of-the-art long-read as-
embly tools, documenting their performance in assembling real
nd sim ulated P acBio CLRs, P acBio HiFi r eads, and ONT r eads on
 diverse set of eukaryotic organisms . T he PacBio CLR and ONT
 eads gener ated fr om the genomes of Sacc harom yces cerevisiae ,
lasmodium falciparum , Caenorhabditis elegans , Arabidopsis thaliana ,
rosophila melanogaster , and Takifugu rubripes and the PacBio HiFi
 eads ar e gener ated fr om the genomes of S. cerevisiae , P. falciparum ,
. thaliana , and Drosophila ananassae. Our second objective is to in-
estigate whether increased read length has a positive effect on
v er all assembl y quality, giv en that incr easing the length of r eads
s an ongoing effort in the de v elopment of TGS platforms [ 14 ]. 

It is important to note that our objective is to evaluate the
erformance of these tools in generating a consensus assembly
ithout taking haplotypes into account. Moreover, it is crucial

o highlight that the results and conclusions drawn from this
omparison may not be dir ectl y a pplicable to meta genome as-
embl y. The unique c har acteristics and complexities associated
ith metagenomic data warrant a separate and distinct analysis,
hich is beyond the scope of this study. 

aterials and Methods 

ata 

n this study, we ar e using r eal and sim ulated data fr om v arious
rganisms to benchmark long-read de novo assembly tools. 

eference genomes 
e selected 6 r efer ence genomes fr om eukaryotic or ganisms r ep-

esented in the Interactive Tree of Life (iTOL) v6 [ 11 ] for evaluating
acBio CLR and ONT assemblers: S. cerevisiae (strain S288C), P. falci-
arum (isolate 3D7), C. elegans (strain VC2010), A. thaliana (ecotype
ol-0), D. melanogaster (strain ISO-1), and T. rubripes . Moreover, we
elected the 4 eukaryotic organisms to evaluate PacBio HiFi as-
emblers: S. cerevisiae (strain S288C), P. falciparum (isolate 3D7), A.
haliana (ecotype Col-0), and D. ananassae (strain 14024–0371.13).
ssembly accessions are included in Supplementary Table S1 . 
The r efer ence assemblies for C. elegans , D. melanogaster , and T.

ubripes included uncalled bases. In these cases, before read sim-
lation, each base N was replaced with base A, as done by Wick
nd Holt [ 7 ]. This avoids ambiguity in the r ead sim ulation pr ocess
nd consequently simplifies the e v aluation of the simulated read
ssemblies. As such, we used this modified version as a r efer ence
hen e v aluating all assemblies of sim ulated r eads fr om these 4

enomes. In the e v aluation of r eal r ead assemblies, the original
ssemblies were used as references. 

imulated reads 
he PacBio CLR and ONT simulated read sets were generated us-

ng Badread v0.2.0 [ 15 ]. To create read error and Qscore (quality
core) models in addition to the simulator’s own default models,
adr ead r equir es the following 3 parameters: a set of real reads, a
igh-quality r efer ence genome , and an alignment file , obtained by
ligning the reads to the reference genome. We used real read sets
rom the human genome to create error and Qscore models that
eflect the state of the art for PacBio CLRs and Oxford Nanopore
eads . T he simulated PacBio HiFi reads were generated using PB-
IM3. To generate reads similar to HiFi, we used the –num-pass
0 parameter and then applied ccs version 6.4.0 to generate the
onsensus reads. 

To create the models for PacBio CLR and Oxford Nanopore
eads, we used the real read sets sequenced from the human
enome and aligned to the latest high-quality human genome
 efer ence assembled by [ 16 ]: assembly T2T-CHM13v2.0, with Ref-
eq accession GCF_009914755.1. The alignment was performed
sing Minimap2 v2.24 ( RRID:SCR _ 018550 ) [ 17 ] with default pa-
ameters . T he sources for these sequencing data are outlined in
upplementary Table S2 , as well as the read identities for each
ec hnology, whic h ar e later passed as parameters for the simula-
ion stage. 

To study the effect of read length on genome assembly, we
im ulated r eads that imitate P acBio CLR, P acBio HiFi, and Oxford
anopore sequencing, with 4 different read length distributions,
sing Badread for PacBio CLR and Oxford Nanopore sequencing
hile using PBSIM3 for PacBio HiFi. The first read simulation rep-
 esents the curr ent state of the 3 long-r ead tec hnologies . T he
ther 3 simulations reflect data points in between technology-
pecific values and ultra-long reads, data points of a similar length
s ultr a-long-r eads, and longer than ultr a-long r eads. We need to
efine the mean and standard deviation of the read length dis-

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad100#supplementary-data
https://scicrunch.org/resolver/https://scicrunch.org/resolver/RRID:SCR_018550
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad100#supplementary-data
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Figur e 1: T he benchmarking pipeline . For PacBio CLR and ONT (right panel), first we select 6 r epr esentativ e eukaryotes from the Tree of Life [ 11 ] and 
use Badread’s error and Qscore model generation feature [ 15 ] to create 2 models of PacBio CLR and ONT long sequencing technologies . T his is input to 
the read simulation stage, where we simulate reads from all genomes, with 4 different read length distributions. We then perform assembly of 
simulated and real reads, using 5 long-read assemblers. For PacBio HiFi (left panel), first we select 4 re presentati ve eukaryotes and use PBSIM3 to 
simulate HiFi reads . T hese reads are then assembled using 5 state-of-the-art HiFi assemblers. Lastly, we evaluate all PacBio HiFi, PacBio CLR, and ONT 

assemblies based on se v er al criteria. 
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tributions for these simulations . T he values for the mean and 

standard deviation of these distributions were selected as follows.
First, we calculated the read length distributions of the real read 

sets in Supplementary Table S2 and simulated an initial itera- 
tion of reads using these tec hnology-specific v alues. For c hoos- 
ing these values for the other 3 iterations, we analyzed a set of 
Oxford Nanopore ultra-long reads used in the latest assembly of 
the human genome [16]. We selected GridION run SRR12564452,
available as sequence data in BioProject PRJNA559484, with a 
mean read length of approximately 35.7 kilobase pairs (kbp) and 

a standard deviation of 42.5 kbp. A summary of the Badread 

and PBSIM3 commands used in our simulation can be found in 

Supplementary Tables S3 and S4 . 
A full ov ervie w of the mean and standard de viation of all 4 

read length distributions is given in Table 1 . Note that, for each 

of the technologies, the standard deviation for the last 3 distri- 
butions was derived from the mean, using the ratio between the 
mean and standard deviation reflected by the technology-specific 
values . Hence , for the last 3 iterations, the mean read length is 
consistent across sequencing technologies, but the standard de- 
viation varies. 

Consequentl y, we r an the simulations for each reference 
genome. As described above, we used our own models for each 

technology and passed them to the simulator as the –error_model 
nd –qscore_model. The read identities per technology were set to
he values included in Supplementary Table S3 . Across all simu-
ations, we chose a cov er a ge depth of 30 ×. Canu’s documentation
 18 ] specifies a minimum coverage of 20–25 × for HiFi data and 20 ×
or other types of data, while Flye’s guidelines [ 19 ] indicate a min-
m um cov er a ge of 30 ×. As ther e is no minim um r ecommended
ov er a ge indicated for the other assemblers we used in our bench-
ark, we simulated reads following the stricter guideline among 

hese two, that is, 30 × cov er a ge. 

eal reads 
n support of our e v aluation on sim ulated r eads, we also
erformed a benchmark on real read assemblies from Ox- 
ord Nanopore and PacBio reads sequenced from the reference 
enomes . T hese r eads wer e sampled to a ppr oximatel y 30 × cov er-
ge , to a void introducing potentially confounding variables when
omparing assemblies of real and simulated datasets . T he data
ources for all real sets are included in Supplementary Table S5 .
lease note that the PacBio CLR data from C. elegans were gener-
ted using the older RSII technology. These reads’ inherent char-
cteristics of the RSII system, such as shorter average reads and
 higher error rate, might have influenced the assembly results. 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad100#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad100#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad100#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad100#supplementary-data
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Table 1: The mean and standard deviation describing the read length distributions used in our simulations. Note that read length 

increases with each iteration, and the distribution parameters are different for each technology. 

Read length distribution parameters (kbp), per technology 

PacBio CLR PacBio HiFi Oxford Nanopore 

Mean SD Mean SD Mean SD 

Iter a tion 1 (technology-specific values) 15.7 14.4 20.7 2.5 12.1 17.1 
Iter a tion 2 25 22.5 25 3 25 35 
Iter a tion 3 (imitate ultra-long reads) 35 31.5 35 4.2 35 49 
Iter a tion 4 75 67.5 75 9 75 105 
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ssemblies 

or the PacBio CLR and ONT reads, we included the following 5
ong-read de novo assemblers: Canu v2.2 ( RRID:SCR _ 015880 ) [ 18 ],
lye v2.9 ( RRID:SCR _ 017016 ) [ 19 ], Wtdbg2 (also known as Redbean)
2.5 ( RRID:SCR _ 017225 ) [ 20 ], Raven v1.7.0 ( RRID:SCR _ 001937 ) [ 21 ],
nd Miniasm v0.3_r179 ( RRID:SCR _ 024114 ) [ 22 ]. For the PacBio
iFi reads, we included HiCanu v2.2 [ 23 ], Flye v2.9, Hifiasm 0.19.5-

587 [ 24 ], LJA v 0.2 [ 25 ], and MBG v 1.0.14 [ 26 ]. We used the most
 ecent r eleases of the assemblers at the time we started this study.

The assemblies were performed with default values for most
arameters. Canu and Wtdbg2 require the estimated genome size
s a parameter, and we set the following values: S. cerevisiae = 12
egabase pairs (Mbp), P. falciparum = 23 Mbp, A. thaliana = 135
bp, D. melanogaster = 139 Mbp, C. elegans = 103 Mbp, T. rubripes
 384 Mbp, and D. ananassae = 217 Mbp. All commands used in

he assembly pipelines are available in Supplementary Table S6 .
e note that further polishing of assemblies using high-fidelity

hort reads, although common in practice [ 27–29 ], is omitted in
his study, as the focus is exclusiv el y on assembler performance
n long-read data and not polishing tools. 

We added a long-read polishing step for Miniasm and Wtdbg2,
s their assembly pipelines do not include long-read based polish-
ng. Following Raven’s default pipeline, which performs 2 rounds
f Racon polishing [ 30 ], we used 2 rounds of Racon polishing on
tdbg2 and Miniasm. We note that for Miniasm, we used Minipol-

sh [ 7 ], which simplifies Racon polishing by applying it in 2 it-
rations on the Graphical Fragment Assembly files produced by
he assembler. For both Miniasm and Wtdbg2, the alignments re-
uired for polishing were generated with Minimap v2.24. 

v alua tion 

e e v aluated the assemblies in 3 differ ent categories of metrics.
he COMPASS anal ysis compar es the assemblies with their corre-
ponding r efer ence genome and provides insight into their sim-
larities . T he assembly statistics provide some basic knowledge
bout the contiguity and misassemblies. Finally, the BUSCO as-
essment investigates the presence of essential genes in the as-
emblies . T hese 3 categories of metrics, next to each other, can
rovide a complete ov ervie w of the assembly’s quality. 

orrectness analysis 
or eac h assembl y, we r an the COMPASS script to measure the
ov er a ge, v alidity, m ultiplicity, and parsimon y, to assess the qual-
ty of the assemblies, as defined in Assemblathon 2 [ 13 ]. These

etrics describe se v er al c har acteristics that wer e deemed impor-
ant for comparing de novo assembly tools, and they were com-
uted using 3 types of data: (i) the r efer ence sequence, (ii) the
ssembled scaffolds, and (iii) the alignments (sequences from
he assembled scaffolds that were aligned to the r efer ence se-
uences). Definitions and formulas for the metrics are reported
n Supplementary Table S7 . 

Mor eov er, we use QUAST v5.2.0 ( RRID:SCR _ 001228 ) [ 31 ] to cal-
ulate the number of misassemblies. QUAST identifies misassem-
lies based on the definition outlined by [ 32 ]. The total number
f misassemblies is the sum of all relocations , in versions , and
ranslocations. Considering 2 adjacent flanking sequences, if they
oth align to the same c hr omosome, but 1 kbp a wa y from each
ther, or ov erla pping for mor e than 1 kbp, this is counted as a r e-
ocation. If these flanking sequences, aligned to the same c hr omo-
ome, are on opposite strands, the misassembly is considered an
nv ersion. Lastl y, tr anslocations describe e v ents in whic h 2 flank-
ng sequences align to different chromosomes. 

ontiguity assessment 
e use QUAST v5.2.0 [ 31 ] to measure the auNGA of an assem-

ly. T he auNGA metric , standing for the area under the NGAx [ 12 ]
urve, is a measure of assembly contiguity. By calculating the area
eneath this pr ofile, whic h integr ates the aligned sequence fr a g-
ent or contig lengths at various percentage thresholds, it pro-

ides a more thorough understanding of the contiguity of the as-
embl y compar ed to single-v alue metrics. A lar ger auNGA v alue
ndicates better contiguity in the genome assembly. 

ompleteness assessment 
USCO v5.4.2 ( RRID:SCR _ 015008 ) assessment [ 33 , 34 ] is per-
ormed to e v aluate the completeness of the essential genes
n the assemblies . T his quantifies the number of single-copy,
uplicated, fr a gmented, and missing orthologs in an assem-
led genome. From the number of orthologs specific to each
ataset, B USCO identifies how man y orthologs ar e pr esent

n the assembly (either as single copy or duplicated), how
an y ar e fr a gmented, and how man y ar e missing. We r an

hese e v aluations with a differ ent OrthoDB linea ge dataset
or eac h genome: S. cerevisiae —sacc har omycetes, P. f alciparum—
lasmodium, A. thaliana—brassicales, D. melanogaster —diptera, C.
legans —nematoda, T. rubripes —ctinopterygii, and D. ananassae —
iptera. 

esults and Discussion 

verview of the benchmarking pipeline 

igure 1 shows an ov ervie w of the benchmarking pipeline. For the
acBio CLR and Oxford Nanopore reads, we begin with the selec-
ion of 6 r epr esentativ e eukaryotes from the iTOL [ 11 ]: S. cerevisiae ,
. falciparum , A. thaliana , D. melanogaster , C. elegans , and T. rubripes .

e also use 3 read sets from the latest human assembly project
 16 ] to generate Badread error and Qscore models [ 15 ] for PacBio
LRs and Oxford Nanopore reads (see Supplementary Table S2 ).

https://scicrunch.org/resolver/https://scicrunch.org/resolver/RRID:SCR_015880
https://scicrunch.org/resolver/https://scicrunch.org/resolver/RRID:SCR_017016
https://scicrunch.org/resolver/https://scicrunch.org/resolver/RRID:SCR_017225
https://scicrunch.org/resolver/https://scicrunch.org/resolver/RRID:SCR_001937
https://scicrunch.org/resolver/https://scicrunch.org/resolver/RRID:SCR_024114
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad100#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad100#supplementary-data
https://scicrunch.org/resolver/https://scicrunch.org/resolver/RRID:SCR_001228
https://scicrunch.org/resolver/https://scicrunch.org/resolver/RRID:SCR_015008
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad100#supplementary-data
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The r efer ence sequences and models become input to the Badread 

sim ulation sta ge. For eac h genome, we sim ulate r eads with 4 dif- 
fer ent r ead length distributions and 2 sequencing tec hnologies 
(see Table 1 ), amounting to a total of 8 simulated read sets per 
r efer ence genome . T hese reads , as well as r eal r ead sets, ar e as-
sembled with 5 assembly tools: Canu, Flye, Miniasm, Raven, and 

Wtdbg2. 
For the PacBio HiFi reads, we begin with the reference genome 

of the 4 selected eukaryote species: S. cerevisiae , P. falciparum , A.
thaliana , and D. ananassae . Then we use PBSIM3 and CCS to gener- 
ate PacBio HiFi reads. Similar to the previous setup, for each ref- 
erence genome, we simulate reads with 4 different read length 

distributions . T he sim ulated r eads along with r eal r eads for eac h 

of the 4 r efer ence genomes ar e assembled with 5 assembly tools: 
HiCanu, Flye, Hifiasm, LJA, and MBG. 

Next, the resulting assemblies are evaluated using COMPASS, 
QUAST, and BUSCO, and based on the reported metrics, we distin- 
guish 6 main e v aluation categories: sequence identity, repeat col- 
la pse, r ate of valid sequences, contiguity, misassembly count, and 

gene identification. The selected COMPASS metrics are the cov- 
er a ge, m ultiplicity, and v alidity of an assembl y, whic h pr ovide in- 
sight on sequence identity, repeat collapse, and the rate of valid se- 
quences, r espectiv el y. In this r egard, an ideal assembl y has cov er- 
a ge, m ultiplicity, and v alidity close to 1. This suggests that a large 
fraction of the reference genome is assembled, repeats are gen- 
er all y colla psed instead of r eplicated, and most sequences in the 
assembl y ar e v alidated by the r efer ence . Among others , QUAST 

reports the number of misassemblies and the auNG of an assem- 
bly. A high auNG value indicates high contiguity. In order to as- 
sess contiguity across genomes of different sizes, we report the 
ratio between the assembly’s auNG and the N50 of the r efer ences.
Lastly, gene identification is quantified in terms of the percentage 
of complete BUSCOs in an assembly. 

The search for an optimal assembler for PacBio 

CLR and ONT reads is influenced by read 

sequencing technology, genome complexity, and 

research goal 
To select an assembler that is most v ersatile acr oss eukaryotic 
taxa, we sim ulate P acBio CLRs and Oxford Nanopor e r eads fr om 

the genomes of 6 eukaryotes, assemble these reads, and evaluate 
the assemblers in the 6 main categories mentioned in the pr e vious 
section. The results for each evaluation category are normalized 

in the range given by the worst and best v alues encounter ed in 

the e v aluation of all assemblies of r eads with default length. This 
highlights differences between assemblers, as well as between 

genomes and sequencing technologies. 
The results of the benchmark on the PacBio CLR and ONT 

read sets with default lengths—namely, those belonging to the 
first iteration (see Table 1 )—are illustrated in Fig. 2 . A full re- 
port of the e v aluation metrics in this figure is included in the 
Supplementary Tables S8 –S24 , under “Iteration 1.” We note that no 
assembler unanimousl y r anks first in all categories, acr oss differ- 
ent sequencing technologies and eukaryotic genomes, although 

our findings highlight some of their strengths and thus their po- 
tential for various research aims . T he runtime and memory usage 
of the assembly tools on all of the simulated datasets are reported 

in Supplementary Tables S25 –S30 , since this can also be a decid- 
ing factor next to the quality of the assembly for the r esearc hers 
to choose the suitable assembler for their purpose. We note that 
all assemblies were run on our local High-Performance Comput- 
ing Cluster, and the runtime and RAM usage may have been af- 
ected by the heterogeneity of the shared computing environment 
n which the assembly jobs executed. 

While working with PacBio CLR and ONT reads, Miniasm,
av en, and Wtdbg2 ar e all well-r ounded c hoices for the simpler
. cerevisiae , P. falciparum , and C. elegans genomes, with a balanced
r ade-off between assembl y quality and computational r esources.
or PacBio HiFi reads , Ra ven is generally qualitatively outper-
ormed by other assemblers like Canu, Flye, and Miniasm, likely
s a consequence of the fact that its pipeline is not customized
or all long-read sequencing technology. Nonetheless, if computa- 
ional r esources ar e a concern, Rav en is a mor e suitable c hoice,
ince Miniasm and Wtdbg2 do not scale well for larger genomes. 

We can single out Flye as the most robust assembler for PacBio
LR and ONT r eads acr oss all 6 organisms, although for larger
enomes such as T. rubripes , Canu is a better tool. Both produce as-
emblies with high sequence identity and validity, as well as good
ene pr ediction, but Fl ye assemblies gener all y r ank first when we
ompute the av er a ge scor e acr oss all 6 metrics. For Canu, we no-
ice more variation in assembly quality across different genomes,
articularl y for P. f alciparum and A. thaliana , while Flye maintains
ore consistent results . Nonetheless , on the T. rubripes genome,

anu assemblies have higher sequence identity and contiguity, as 
ell as more accurate gene identification. 

v alua tion of PacBio CLR and ONT real read 

ssemblies supports our rankings on simulated 

ead assemblies 

o determine assembler performance on r eal P acBio CLR and ONT
eads and validate the rankings of the simulated read assemblies,
e assemble se v er al r eal r ead sets fr om the 6 r efer ence eukary-
tes ( Supplementary Table S5 ). Supplementary Figs. S1 –S12 pro-
ide a visual r epr esentation of the read length distribution for all
f the r eal r ead sets . T he e v aluation r esults on the r eal r ead as-
emblies, summarized in Fig. 3 , indicate that assemblers that per-
orm well on simulated reads perform similarly well in assembling
he sets of real reads . T he full report of metrics on the real read
ssemblies is included in Supplementary Table S31 . We conclude
hat, ov er all, the assembler r ankings r emain consistent. This il-
ustr ates that benc hmarking using sim ulated data is similar to
 eal r ead sets. For r efer ence-based metrics, we used the r efer ence
enomes given in Supplementary Table S1. 

Notabl y, r efer ence-based metrics in the e v aluation of real read
ssemblies r el y on comparisons with an assembly and not the
enome from which the reads were initially sequenced. In con-
rast to the evaluation of simulated read assemblies, the exis-
ence of a ground-truth reference is not available in this case, but
 efer ence-based metrics ar e included for the sake of consistency
ith the simulated read evaluation. 
In the e v aluation of r eal r ead assemblies of PacBio CLR and ONT

 eads, Fl ye r anks first for nearly all datasets, with the exception
f the T. rubripes and C. elegans PacBio reads, for which Raven per-
orms better ov er all. Ho w e v er, e v en in C. elegans , Fl ye performance
s close to the best values in all metrics other than contiguity. As
xpected, ov er all assembler performance decreases for reference- 
ased metrics like sequence identity, repeat collapse, and va- 
idity, but sur prisingl y the misassembl y count is consider abl y
o w er. 

earching for the best HiFi assembler based on 

imulated and real datasets 

imilarly, in order to identify the best-performing HiFi assembler 
or diverse eukaryotic taxa, we first gener ate sim ulated P acBio

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad100#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad100#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad100#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad100#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad100#supplementary-data
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Figur e 2: T he performance of the 5 assemblers on the r ead sets with default r ead lengths, fr om iter ation 1 (see Table 1 ), gener ated fr om 6 eukaryotic 
genomes. Six e v aluation categories ar e r eported for eac h assembler, and the r esults ar e normalized among all assemblies included in the figur e. 
Ranges for each metric are reported as the best and worst values computed for these assemblies . T he best-performing assembler is highlighted and 
has a black outline. 
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iFi reads from the genomes of 4 different eukaryotes . T hese
im ulated r eads ar e then assembled, and the performance of
ach assembler is evaluated based on the 6 primary categories
utlined in the pr e vious section. For compar ativ e clarity, the re-
ults for each evaluation category are normalized within the
ange established by the lowest and highest values observed
cr oss all assembl y e v aluations of r eads of default length. This
ethod emphasizes both the variations among different assem-

lers, as well as the discr epancies acr oss genomes and sequencing
echnologies. 

The results from simulated PacBio HiFi read sets with default
engths—namely, those belonging to the first iteration (see Ta-
le 1 )—are illustrated in Fig. 4 . Next to that, the results of real HiFi
eads of the same species are presented in Fig. 4 . We note that Hifi-
sm and LJA outperformed other assemblers and performed well
n all datasets . T he assembl y r esults gener ated by the MBG assem-
ler demonstrated notably low sequence identity when compared
o the r efer ence genome. 

onger reads lead to more contiguous 

ssemblies of large genomes but do not al w ays 

mpro ve assembl y quality 

o investigate the effect of increased read length on assembly
uality, we simulate Oxford Nanopore, as well as PacBio CLR and
iFi reads with different read length distributions (Table 1 ). These
 eads ar e sim ulated fr om the genomes of S. cerevisiae , P. falci-
arum , C. elegans , A. thaliana , D. melanogaster , and T. rubripes for
acBio CLR and ONT reads, as well as S. cerevisiae , P. falciparum ,
. thaliana, and D. ananassae for P acBio HiFi r eads. We assemble
acBio CLR and ONT reads with Canu, Flye, wtdbg2, Raven, and
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Figur e 3: T he performance of the 5 assemblers on the r eal P acBio CLR and ONT r eads (see Supplementary Table S5 ), sequenced fr om 6 eukaryotic 
genomes. As in Fig. 2 , 6 e v aluation categories are reported for each assembler, and the results are normalized among all assemblies included in the 
figure. Ranges for each metric are reported as the best and worst values computed for these assemblies . T he best-performing assembler is highlighted 
and has a black outline. 
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miniasm and assemble PacBio HiFi reads with HiCanu, Flye, Hifi- 
asm, LJ A, and MBG . We e v aluate assembl y quality based on 6 e v al- 
uation categories (see Ov ervie w of the benchmarking pipeline). It 
is worth mentioning that Canu’s PacBio CLR and ONT reads iter- 
ation 4 (the longest reads) assemblies of A. thaliana and T. rubripes 
did not finish within reasonable time and are excluded from the 
e v aluation. 

Figure 5 shows a summary of the assemblers’ performance on 

all sim ulated r ead sets, highlighting c hanges in performance for 
eac h r ead length distribution. All 6 e v aluation metrics ar e nor- 
malized given the maximum and minimum metric values per 
genome, per sequencing technology, and combined to obtain an 

av er a ge scor e. For P acBio CLR and ONT read sets , we then a v- 
er a ge the 2 resulted scores. Finally, we report a rate between 1 
and 10 for each assembler, per read length distribution for PacBio 
LR and ONT read sets, and a separate score for PacBio HiFi read
ets . T he results on all computed metrics are fully described in
upplementary Tables S8 –S24 . 

The results imply that there is a correlation between the size
nd complexity of the r efer ence genome and the extent of the im-
r ov ement in assembl y quality that can be ac hie v ed by incr easing
he length of the reads. While we observe no trend in assembly
uality impr ov ement on the assemblies of smaller genomes, the
esults on the T. rubripes assemblies are more conclusively in fa-
or of the longer reads . For instance , on the shorter and simpler
. cerevisiae and P. f alciparum genomes, identification of r e petiti ve
nd complex regions is not aided by increased read length, likely
s these r egions ar e alr eady spanned by the r eads with default
engths. Ho w e v er, the benc hmark r esults suggest that mor e com-
lex and re petiti ve regions within the A. thaliana , D. melanogaster ,

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad100#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad100#supplementary-data
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Figur e 4: T he performance of the 5 assemblers on the r eal P acBio HiFi r ead sets and sim ulated P acBio HiFi r ead sets with default r ead lengths, fr om 

iteration 1 (see Table 1 ), generated from 4 eukaryotic genomes. Six evaluation categories are reported for each assembler, and the results are 
normalized among all assemblies included in the figure. Ranges for each metric are reported as the best and worst values computed for these 
assemblies . T he best-performing assembler is highlighted and has a black outline. 
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nd, most notably , T . rubripes genomes ar e better ca ptur ed by
onger reads. 

As recorded in Supplementary Tables S22 and S23 , for larger
enomes, longer reads generally lead to significantly higher as-
embly contiguity and a lo w er misassembly count. The latter
mplies that the resulting assemblies are more faithful to the ref-
rences, although this is not necessarily supported by other met-
ics. We cannot report any compelling improvements in sequence
dentity , multiplicity , validity , and gene identification. 

onclusion 

n fulfillment of the first objective of this study, we conclude that
lye is the highest-performing assembler when considering the
v ervie w of all e v aluation categories in this benc hmark, whic h
nclude the sequence identity, r epeat colla pse, r ate of v alid se-
uences, contiguity, misassembly count, and gene identification.
ankings ar e mostl y consistent for all 3 sequencing platforms in-
luded in the study: P acBio CLR, P acBio HiFi, and ONT. Ho w e v er,
o assembler ranks first in all e v aluation categories, suggesting
hat the choice of assembler is often a trade-off between certain
dv anta ges and disadv anta ges . T her efor e , we ha v e corr obor ated
he conclusion of Wick and Holt [ 7 ], who benchmarked long-read
ssemblers on prokaryotes, for eukaryotic organisms, and recom-
end that these benchmarking parameters are considered in re-

ation to the desired outcome of an assembly experiment. 
Additionally, the tests performed on real reads validate our

ankings of simulated read assemblies . Flye , the assembler that
cor ed consistentl y well in most e v aluation categories for assem-
lies of simulated reads in PacBio CLR and ONT datasets, also
anks first when evaluated on several sets of real reads sequenced
n long-read platforms. 

In our analysis, we found that when processing HiFi reads,
oth LJA and Hifiasm assemblers sho w ed better performance
han other options. While LJA and Hifiasm may not always have
een the absolute best, their high performance was a constant,

rr espectiv e of the dataset. This was not dataset specific but was
onsistentl y observ ed in both sim ulated and r eal datasets . T his
nderscores their efficiency and accuracy in assembling genomic
equences using HiFi reads. 

Regarding our second objectiv e, whic h is addr essing the effect
f increased read length on assembly quality, the benchmarking
f assemblers on read sets with different read length distributions
uggests that longer reads have the potential to impr ov e assem-
ly quality. Ho w ever, this depends on the size and complexity of
he genome that is being reconstructed. We found that impr ov e-

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad100#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad100#supplementary-data
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Figur e 5: T he left panel shows the performance of the 5 assemblers on all sim ulated P acBio CLR and ONT r ead sets, with 4 differ ent r ead length 
distributions (as pr e viousl y described in Table 1 ). A score of 1–10 is reported for each assembler. We did not divide the auNGA with the N50 of the 
r efer ence genomes for this figure . T he results are normalized for each genome, per sequencing technology. For PacBio CLR and ONT, an average score 
for each read length distribution is first computed and then these 2 scores are averaged to obtain an overall score per read length distribution. For the 
A. thaliana and T. rubripes ONT iteration 4, the Canu assembly was not completed. Ther efor e, the iter ation 4 bar in the plot r epr esents onl y the P acBio 
CLR assemblies. Similarly, the right panel shows the performance of the 5 HiFi assemblers on all sim ulated P acBio HiFi r ead sets with 4 differ ent r ead 
length distributions. 
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ments in contiguity were most significant among all metrics, as 
also supported by the conclusion of [ 8 ], who showed that using 
third-gener ation sequencing consider abl y impr ov es contiguity in 

assembling a plant genome ( M. jansenii ). Ho w e v er, we did not find 

significant impr ov ements in other aspects of assembl y quality,
such as sequence identity or gene identification. 

This study focused on comparison of different sequencing 
technologies and assemblers on a specific cov er a ge le v el of 30 ×,
whic h pr ovided insights into the performance of different as- 
semblers. Ho w e v er, it is important to recognize that assemblers 
ma y beha v e differ entl y at lo w er or higher cov er a ge le v els, and
project planners need guidance in selecting the right cov er a ge 
for their goals and budget. Unfortunately, studying the effect of 
iffer ent cov er a ges on assembl y performance is not part of this
tudy. 

The field of genomics is continuously evolving, and advance- 
ents in sequencing technologies can significantly influence as- 

embly outcomes. While our study focuses on benchmarking 
ong-read de novo assembly tools for eukaryotic genomes, the 
 a pid pr ogr ess in sequencing tec hnologies intr oduces complexi-
ies and challenges in comparing different data types , chemistries ,
nd versions of the tools. In an ideal situation, it would be im-
ortant to consider all the various factors, including different 
 hemistries, sequencing de vices, and base callers when e v alu-
ting assemblies. Ho w e v er, due to the limitations of av ailable
ata and resour ces, w e focused primarily on analyzing the im-
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act of specific chemistry and related factors in this study. We
ecognize that this represents one of the limitations of our
 esearc h. 

The generations of HiFi reads have witnessed substantial ad-
ancements in both read length and accuracy. In earlier ver-
ions, HiFi reads typically had read lengths ranging from around
0 to 15 kilobases (kb) with high accuracy rates of 99.9% or
reater. Ho w ever, with subsequent generations, there has been a
ignificant increase in read lengths . T he latest versions of HiFi
eads now offer read lengths exceeding 20 kb, with some reach-
ng up to 30 kb or more, while still maintaining high accuracy
 ates abov e 99.9%. These longer and highl y accur ate HiFi r eads
r ovide r esearc hers with mor e contiguous and reliable genomic
equences , enabling impro ved de novo assembly and enhanc-
ng various genomic analyses. An interesting innovation worth

entioning, while not included in this study, is the intro-
uction of Oxford Nanopore’s Duplex reads . T his cutting-edge
echnology holds the potential to enhance sequencing accu-
 acy e v en further, making it a worthwhile subject for future
n vestigations . 

dditional Files 

upplementary Fig. S1. Read length distribution of real A. thaliana
NT reads. 
upplementary Fig. S2. Read length distribution of real A. thaliana
acBio HiFi reads. 
upplementary Fig. S3. Read length distribution of real C. elegans
NT reads. 
upplementary Fig. S4. Read length distribution of real C. elegans
acBio CLR reads. 
upplementary Fig. S5. Read length distribution of real D. ananas-
ae PacBio CLR reads. 
upplementary Fig. S6. Read length distribution of real D.
elanogaster ONT reads. 
upplementary Fig. S7. Read length distribution of real D.
elanogaster PacBio CLR reads. 
upplementary Fig. S8. Read length distribution of real P. falci-
arum ONT reads. 
upplementary Fig. S9. Read length distribution of real P. falci-
arum PacBio HiFi reads. 
upplementary Fig. S10. Read length distribution of real S. cere-
isiae ONT reads. 
upplementary Fig. S11. Read length distribution of real S. cere-
isiae PacBio HiFi reads. 
upplementary Fig. S12. Read length distribution of real T.
ubripes PacBio CLR reads. 
upplementary Fig. S13. Read length distribution of real human
acBio CLR reads. 
upplementary Fig. S14. Read length distribution of real human
NT reads. 
upplementary Table S1. Assembly accession numbers for all 7
 efer ence genomes used in the experiments. 
upplementary Table S2. Long read sets from the human genome
sed to gener ate Badr ead err or and QScor e models for P acBio CLR
nd ONT. Where needed, we downsampled reads to 3 gigabase
airs (Gbp), which meets the simulator’s requirements for at least
 Gbp of real sequence data. Read identities were calculated as
escribed by Wick [ 15 ], who used the definition of BLAST identity.
he sequence data were aligned to reference GCF_009914755.1
 16 ], with Minimap v2.24 [ 17 ]. 
upplementary Table S3. Badr ead par ameters used in the sim ula-
ion of PacBio CLR and ONT reads. In total, using Badread, we sim-
lated 48 read sets, accounting for 6 genomes (Supplementary Ta-
le S1), 2 sequencing technologies, and 4 read length distributions
er technology (Table 1 ). Aside from read length, these parameters
ere k e pt consistent for eac h tec hnology acr oss all sim ulations.
ll other parameters not included in this table were k e pt as the
imulator’s defaults. Please note that the pacbio_human2019 and
nt_human2019 models were generated in this study (see Supple-
entary Table S2). 

upplementary Table S4. Commands and parameters used for
im ulating P acBio HiFi r eads using PBSIM3. 
upplementary Table S5. Accession for the sequencing data used

n our benchmark of real read assemblies. To match our simu-
ated reads , we ha ve further downsampled these read sets to 30 ×
ov er a ge. Due to the low cov er a ge of the T. rubripes PacBio and D.
elanogaster ISO-1 Oxford Nanopore datasets, we combined mul-

iple datasets and sampled reads to a coverage of approximately
0 ×. 
upplementary Table S6. Assembly commands for all assem-
lers . T he $genome_size in the assembly commands below was
et as follows: S. cerevisiae = 12 Mbp, P. falciparum = 23 Mbp, A.
haliana = 130 Mbp, D. melanogaster = 139 Mbp, C. elegans = 103 Mbp,
. rubripes = 384 Mbp, and D. ananassae = 217 Mbp. The $threads
arameter was set to 8 for S. cerevisiae and P. falciparum ; 16 for A.
haliana , C. elegans , D. melanogaster , and D. ananassae ; and 20 for T.
ubripes . 
upplementary Table S7. Definitions and formulas for the COM-
ASS metrics defined in Assemblathon 2 [ 13 ]. We define C, V, M, P
s the cov er a ge, v alidity, m ultiplicity, and parsimon y of an assem-
l y, r espectiv el y. We also denote L CI as the total length of the cov-
r a ge islands, L A as the total length of the alignments between the
 efer ence and the assembly, L R as the total length of the r efer ence,
nd L S as the total length of the assembly (sum of the scaffold
engths). 
upplementary Table S8. Ev aluation r esults for the S. cerevisiae
xford Nanopore simulated read assemblies. 
upplementary Table S9. Ev aluation r esults for the S. cerevisiae
acBio CLR simulated read assemblies. 
upplementary Table S10. Ev aluation r esults for the S. cerevisiae
acBio HiFi simulated read assemblies. 
upplementary Table S11. Ev aluation r esults for the P. f alciparum
xford Nanopore simulated read assemblies. 
upplementary Table S12. Ev aluation r esults for the P. f alciparum
acBio CLR simulated read assemblies. 
upplementary Table S13. Ev aluation r esults for the P. f alciparum
acBio HiFi simulated read assemblies. 
upplementary Table S14. Ev aluation r esults for the C. elegans
xford Nanopore simulated read assemblies. 
upplementary Table S15. Ev aluation r esults for the C. elegans
acBio CLR simulated read assemblies. 
upplementary Table S16. Ev aluation r esults for the A. thaliana
xford Nanopore simulated read assemblies. 
upplementary Table S17. Ev aluation r esults for the A. thaliana
acBio CLR simulated read assemblies. 
upplementary Table S18. Ev aluation r esults for the A. thaliana
acBio Hifi simulated read assemblies. 
upplementary Table S19. Ev aluation r esults for the D.
elanogaster Oxford Nanopore simulated read assemblies. 
upplementary Table S20 : Ev aluation r esults for the D.
elanogaster PacBio CLR simulated read assemblies. 
upplementary Table S21. Ev aluation r esults for the D. ananassae
acBio HiFi simulated read assemblies. 
upplementary Table S22. Ev aluation r esults for the T. rubripe s
xford Nanopore simulated read assemblies. 
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Supplementary Table S23. Ev aluation r esults for the T. rubripes 
PacBio CLR simulated read assemblies. 
Supplementary Table S24. Ev aluation r esults for the PacBio HiFi 
r eal r ead assemblies. 
Supplementary Table S25. Runtime (minutes) and memory us- 
age (GB) for all S. cerevisiae ONT and PacBio CLR simulated read 

assemblies. 
Supplementary Table S26. Runtime (minutes) and memory us- 
age (GB) for all P. falciparum ONT and PacBio CLR simulated read 

assemblies. 
Supplementary Table S27. Runtime (minutes) and memory usage 
(GB) for all C. elegans ONT and PacBio CLR sim ulated r ead assem- 
blies. 
Supplementary Table S28. Runtime (minutes) and memory us- 
age (GB) for all A. thaliana ONT and PacBio CLR simulated read 

assemblies. 
Supplementary Table S29. Runtime (minutes) and memory usage 
(GB) for all D. melanogaster ONT and PacBio CLR simulated read 

assemblies. 
Supplementary Table S30. Runtime (minutes) and memory usage 
(GB) for all T. rubripes ONT and PacBio CLR sim ulated r ead assem- 
blies. 
Supplementary Table S31. Ev aluation r esults for all r eal r ead as- 
semblies. 

Da ta Av ailability 

All additional supporting data ar e av ailable in the GigaScience 
repository, GigaDB [ 35 ]. 

Availability of Supporting Source Code and 

Requirements 

Our e v aluations wer e pr oduced with QUAST v5.0.2 [ 31 ], B USCO 

v5.4.2 [ 33 , 34 ], and COMPASS [ 13 ]. We also provide the scripts we 
used in GitHub: 

Project name: Long-read assembly benchmark 
Pr oject homepa ge: https:// github.com/ AbeelLab/ long-read- 
assembl y-benc hmark 
Operating system(s): Platform independent 
Pr ogr amming langua ge: Python and Shell 
License: GNU General Public License v3.0 

Abbreviations 

BLAST: Basic Local Alignment Search Tool; BUSCO: Bench- 
marking Universal Single-Copy Orthologs; CLR: continuous 
long read; Gbp: gigabase pair; HiFi: high-fidelity; iTOL: Inter- 
activ e Tr ee of Life; kb: kilobases; kbp: kilobase pair; Mbp: 
megabase pair; NGS: next-generation sequencing; ONT: Ox- 
ford Nanopor e; P acBio: P acific Biosciences; TGS: third-gener ation 

sequencing. 
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