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A B S T R A C T   

This work represents the first step towards the application of machine learning techniques in the prediction of 
statistical design allowables of composite laminates. Building on data generated analytically, four machine al-
gorithms (XGBoost, Random Forests, Gaussian Processes and Artificial Neural Networks) are used to predict the 
notched strength of composite laminates and their statistical distribution, associated to the uncertainty related to 
the material properties and geometrical features. This work focuses not only on the so-called Legacy Quad 
Laminates (0◦/90◦/±45◦), typically used in the design of composite aerostructures, but also on the newer 
concept of double-double (or double-angle ply) laminates. Very good representations of the design space, 
translating in low generalization relative errors of around ±10%, and very accurate representations of the dis-
tributions of notched strengths around single design points and corresponding B-basis allowables are obtained. 
All machine learning algorithms, with the exception of the Random Forests, show very good performances, with 
Gaussian Processes outperforming the others for very small number of data points while Artificial Neural Net-
works have better performance for larger training sets. This work serves as basis for the prediction of first-ply 
failure, ultimate strength and failure mode of composite specimens based on non-linear finite element simula-
tions, providing further reduction of the computational time required to virtually obtain the design allowables 
for composite laminates.   

1. Introduction 

The generation of design allowables for composite laminates is of 
utmost importance for the design and certification of the composite 
structures used in the aerospace industry. The determination of these 
design allowables, which account for the variability associated with 
curing/consolidation procedures, geometrical features and defects 
characteristic of composite structures, usually relies on extensive, 
expensive and time-consuming experimental test campaigns. With the 
increase of computational power, and the development of high-fidelity 
numerical models that accurately represent the response and failure of 
composite materials, alternatives to generate design allowables based on 

advanced finite element simulations have also been sought out to reduce 
the certification costs (Tay et al., 2005; der Meer et al., 2010; Ling et al., 
2009; Schuecker and Pettermann, 2006; Camanho et al., 2007a; Vogler 
et al., 2013; Camanho et al., 2013; Abdi et al., 2016; Zhang et al., 2017; 
Abumeri et al., 2011; Spendley, 2012). However, these solutions are still 
computationally expensive, especially if uncertainty is accounted for. 
The recent advances on machine learning techniques opens a new 
window of possibilities for the faster prediction of the structural 
response of composite materials and their optimization (Bessa et al., 
2017; Bessa and Pellegrino, 2018; Bessa et al., 2019; Bisagni and Lanzi, 
2002; Yvonnet and He, 2007), by allowing the definition of surrogate 
models that continuously and analytically describe the design space. 
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In recent years, significant effort has been made to use surrogate 
models to represent the response of composite materials and, conse-
quently, reduce the computation cost of finite element simulations (El 
Said and Hallett, 2018; Balokas et al., 2018; Yan et al., 2020). In general, 
the process relies on i) design of experiments, where the descriptors of 
the design space are defined, ii) data generation, where data to train and 
test the surrogate models is obtained, and iii) surrogate model definition 
(or machine learning application) where a model that represents the 
design space is defined. For instance, El Said and Hallett (2018) and Yan 
et al. (2020) proposed multiscale modelling approaches based on sur-
rogate models at the mesoscale: the former to predict the elastic 
response of structures with internal defects (namely wrinkles), and the 
latter to predict composite structural damage and failure. Both ap-
proaches relied on the definition of Representative Volume Elements 
(RVE) at the mesoscale, which were used to populate the design space 
and train a surrogate model. The surrogate model was then used to 
represent the composite response at the macroscale, avoiding the need 
to run RVE models in parallel with the macroscale simulation, signifi-
cantly reducing the computational cost of the models. These surrogate 
models focus on the representation of the material behaviour at the 
mesoscale level and still rely on numerical simulations at the macro-
scale. If standard tests for certification of composite materials (plain 
strength, open-hole strength, bolted strength, among others) can be 
described parametrically and accurate analytical surrogate models can 
be built on data from numerical simulations, the virtual certification of 
composite materials can be greatly simplified. This paper presents the 
first steps towards that goal. 

In this paper, a feasibility study on the application of machine 
learning techniques for predicting a design allowable, the notched 
strength of multidirectional composite laminates, is presented, with the 
main goals of presenting the challenges of applying machine learning 
techniques for composite laminates, and of evaluating the most appro-
priate algorithms for the determination of composite design allowables. 
Even though the data-driven framework is established on data derived 
from an analytical framework (Furtado et al., 2017; Vallmajó et al., 
2019), this work serves as basis and guideline to a more demanding 
challenge that includes the prediction of first-ply failure strength, ulti-
mate strength and failure mode of composite materials based on non- 
linear finite element simulations. The data-driven framework is 
defined following the procedure schematically shown in Fig. 1:  

• First, the design of experiments is performed (Section 3), where the 
input descriptors are selected following a discussion on the repre-
sentation of stacking sequence of composite laminates compatible 
with machine learning techniques;  

• Secondly, data generation is performed (Section 4) where the 
analytical framework proposed by Furtado et al. (2017) (Section 2) is 
used to populate the design space for open-hole strength following 
the descriptors defined in the design of experiments;  

• Then, the prediction of open-hole tensile strength of composite 
laminates using machine learning techniques is presented (Section 5) 
to evaluate their ability to capture the overall response of the design 
space;  

• Finally, the generation of design allowables based on machine 
learning models is explored in Section 6, to verify their ability to 
capture the variability associated with a given design point, conse-
quence of the uncertainty related to the material properties and 
geometrical descriptors. 

2. Problem definition 

2.1. Analytical framework to predict the notched strength of 
multidirectional composite laminates 

Furtado et al. (2017) proposed an analytical framework to predict 
the notched strength of multidirectional carbon-epoxy laminates based 

on a combination of three building blocks: a finite fracture mechanics 
model (Camanho et al., 2012), invariant-based approaches to estimate 
stiffness and strength (Tsai and Melo, 2014; Tsai and Melo, 2016) and an 
analytical model based on Fracture Mechanics to estimate the laminate 
fracture toughness (Camanho and Catalanotti, 2011). 

The combination of the models provides an efficient framework to 
predict the laminate elastic, strength and fracture properties required to 
predict size effects in notched laminates. The model requires the 
knowledge of:  

1. Three ply-level material properties: the longitudinal Young’s 
modulus, E1, the longitudinal strength, X, and the critical energy 
release rate, G 0, or longitudinal crack resistance curve, R -curve;  

2. The stacking sequence of the laminate.  
3. Two geometrical features: the width of the specimen, W, and the 

diameter of the hole, D; 

The proposed methodology (Furtado et al., 2017) can be summarized 

Fig. 1. Schematic representation of the machine learning framework.  
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as follows (see also Fig. 2):  

1. From the longitudinal Young’s modulus of the ply, E1, the Master Ply 
concept is used to determine Tsai’s modulus (Arteiro et al., 2020), Tr, 
and estimate the ply elastic properties (Tsai and Melo, 2014; Arteiro 
et al., 2019). From Tsai’s modulus, lay-up, and using the universal 
laminate factors, the elastic properties of the laminate are obtained.  

2. From the longitudinal strength of the ply, X, and using the elastic 
properties of the laminate determined using Tsai’s modulus, a 
maximum allowable strain criterion is applied to predict the lami-
nate unnotched strength, XL.  

3. From the critical energy release rate, G
0, and using the elastic 

properties of the balanced and 0◦ sublaminates determined using 
Tsai’s modulus, an analytical model based on fracture mechanics 
(Camanho and Catalanotti, 2011) is used to predict the laminate 
fracture toughness, G L.  

4. Finally, the laminate unnotched strength, XL, and the laminate 
fracture toughness, G L, are used in the Finite Fracture Mechanics 
model (Camanho et al., 2012) to predict the notched strength (σ) of 
the laminate for any specimen configuration (W and D). 

The analytical framework is able to accurately predict the tensile 
notched strength of composite laminates as shown in references 
Camanho et al. (2012), Erçin et al. (2013), Arteiro et al. (2013), Arteiro 
et al. (2014), Vallmajó et al. (2019) and Furtado et al. (2017) where its 
predictions were compared with experimental results. The original 
analytical model (Camanho et al., 2012) was applicable for predicting 
the strength of quasi-isotropic laminates, therefore, a recently proposed 
generalization for highly orthotropic materials was used here (Cata-
lanotti et al., 2021).1 

Given its simplicity and efficiency, the analytical framework sum-
marised above is a good candidate to perform a feasibility investigation 
to appropriately define the input parameters/descriptors, to assess the 
ability of machine learning algorithms to predict the strength of com-
posite laminates, and to identify the most effective algorithms compat-
ible with structural analysis of composite laminates. 

2.2. Strategies for laminate definition 

Most of the input parameters required by the analytical framework 
can be treated as continuous and independent variables, appropriate to 
build training data to feed machine learning algorithms. However, the 
laminate stacking sequence requires a more detailed discussion. 
Considering each ply orientation of a stacking sequence an input 
parameter results in a high dimensional representation, which is 
inconvenient in machine learning applications since larger datasets are 
generally required to accurately capture the design space. 

In the following section, two strategies for the definition of laminates 
are presented: one based on lamination parameters (Tsai and Pagano, 

1968), and another based on the double-double (or double angle-ply) 
laminates recently proposed by Tsai et al. (2017) as a practical alter-
native to the conventional Legacy Quad laminates2. 

2.2.1. Conventional laminates 
The most common way to define a laminate is by its stacking 

sequence (i.e. assembly of plies with specified fibre orientation angles). 
This is a simple and convenient representation, but has a major draw-
back: the number of variables is intrinsically related to the number of 
plies. This translates in a high-dimensional laminate representation and, 
more importantly, in a representation with variable dimension. 

Lamination parameters, firstly proposed by Tsai et al. in 1968 (Tsai 
and Pagano, 1968), provide a more compact definition of the laminate: 
twelve lamination parameters and a thickness variable are sufficient to 
geometrically define any laminate, independently of the number of 
plies. However, it is important to note that these twelve lamination 
parameters are interrelated, i.e. when the values of some parameters are 
fixed, the other are constrained to a certain feasible region. Significant 
time and effort have been dedicated to efficiently define the constraints 
of the 12-dimensional convex (Grenestedt and Gudmundson, 1993) 
feasible domain of the lamination parameters, both with (Bloomfield 
et al., 2009) and without (Setoodeh et al., 2006) restrictions on the 
possible ply orientations. The in-plane, ζA

{1,2,3,4}, coupled, ζB
{1,2,3,4}, and 

out-of-plane, ζD
{1,2,3,4}, lamination parameters are calculated as: 

ζA
{1,2,3,4} =

1
h

∑N

i=1

⎧
⎪⎪⎨

⎪⎪⎩

cos(2θi)

cos(4θi)

sin(2θi)

sin(4θi)

⎫
⎪⎪⎬

⎪⎪⎭

(
zi − zi− 1

)
(1)  

ζB
{1,2,3,4} =

2
h2

∑N

i=1

⎧
⎪⎪⎨

⎪⎪⎩

cos(2θi)

cos(4θi)

sin(2θi)

sin(4θi)

⎫
⎪⎪⎬

⎪⎪⎭

(
z2

i − z2
i− 1

)
(2)  

ζD
{1,2,3,4} =

4
h3

∑N

i=1

⎧
⎪⎪⎨

⎪⎪⎩

cos(2θi)

cos(4θi)

sin(2θi)

sin(4θi)

⎫
⎪⎪⎬

⎪⎪⎭

(
z3

i − z3
i− 1

)
(3)  

where h is the thickness of the laminate, θi is the fibre orientation at 
height z ∈ [zi− 1,zi], and N is the number of plies of a laminate. The twelve 
lamination parameters fully and uniquely represent a laminate, and, 
therefore, they can be converted to stacking sequences. However, this is 
a non-trivial process, whose solution generally requires restrictions to 
the possible permitted ply orientations and the use of optimization al-
gorithms (IJsselmuiden et al., 2009; Irisarri et al., 2011; Meddaikar 
et al., 2017; Bloomfield et al., 2010) or other techniques (Todoroki and 
Sekishiro, 2007; Liu et al., 2019; Viquerat, 2020). 

For the problem at hand, only two lamination parameters need to be 
considered, ζA

{1,2}, because:  

1. The analytical framework previously described deals with in-plane 
loading only, and considers that the laminate is homogenized (not 
necessarily symmetric), i.e. the bending-extension coupling matrix 
B ≈ 0; in other words, it is only capable of distinguishing lay-ups and 
not stacking sequences. Since laminate organization is not accounted 
for, the laminates can be fully described by the in-plane lamination 
parameters, ζA

{1,2,3,4}. 

1 To compute the notched strength using the finite fracture mechanics model 
proposed in Ref. Camanho et al. (2012), the stress intensity factor for a plate 
with a central circular hole of radius R and two symmetric cracks emanating 
from the hole edge needs to be calculated. However, an analytical expression 
for the stress intensity factor of this configuration only exists for quasi-isotropic 
laminates (Newman Jr., 1983). The recent generalization mentioned and used 
in this work stems from a numerical study to determine the stress intensity 
factor of cracks emanating from circular and elliptical holes in orthotropic 
plates. The approach is based on the original work from Suo et al. (1991) and a 
semi-analytical expression for the correction factor, ϕ = K I̅̅̅

R
√

σ∞, was used to take 
into account the effects of orthotropy. 

2 Legacy Quad laminates refers to laminates composed of 0◦, 90◦ and ±45◦

plies, with a minimum of 10% of each orientation, symmetric at the mid-plane 
and balanced (same number of 45◦ and − 45◦ plies). These lamination thumb 
rules have been used to limit the complexity of composites design. 
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2. Only balanced laminates can be considered Camanho and Cata-
lanotti, 2011; Furtado et al., 2017, therefore ζA

{3,4} = 0. 

As shown in Fig. 3, this definition based on the lamination parame-
ters ζA

{1,2} results in a non-rectangular (i.e. ζA
{1,2} are not fully indepen-

dent) representation of the normalized stiffness. This will be further 
commented in Section 3. 

2.2.2. Double-double laminates 
An alternative to the Legacy Quad laminates, where plies with 

orientation of 0◦,90◦ and ±45◦ are used, was recently proposed by Tsai 
et al. (2017): the Double-Double (DD) laminates. These laminates are 
composed of plies of two orientations and are defined as [±ϕ/± ψ ]n or 
[+ϕ/+ ψ/ − ϕ/ − ψ ]n, where n is the number of repetitions. This bi- 
angle approach to laminate design results in stronger laminates with 
higher resistance to micro-cracking and delamination and in other ad-
vantages such as faster layup, simpler design and easier tapering 
through single ply drops (Tsai et al., 2017; Shrivastava et al., 2020). 

DD-sublaminate lay-ups can be fully described by two parameters, ϕ 
and ψ , which can vary continuously from 0◦ to 90◦. This provides a 
smaller design space, which, in one hand, reduces the design flexibility 
attributed to composite materials, but, on the other hand, allows for a 

more efficient and otherwise nonviable stacking sequence optimization. 
As shown in Fig. 4, this definition based on the ply orientations, ϕ 

and ψ , results in a continuous and injective representation of the 
normalized stiffness (Tsai et al., 2017). Furthermore, the normalized 
stiffness is diagonal symmetric, a characteristic that will be further 
commented on and taken advantage of in Section 3. 

2.3. Definition of dimensionless parameters 

As described in Section 2.1, the notched strength of an open-hole 
specimen, σ, can be fully described as: 

σ = f1(E1, XT , G 0, D, W/D, lay-up) (4)  

where E1, XT and G 0 are material descriptors, D and W/D are geometric 
descriptors and the lay-up can be described by: 

lay-up = f2(α, β) (5)  

where α = ζA
1 and β = ζA

2 for a Quad laminate and α = ϕ and β = ψ for a 
DD laminate (Section 2.2), comprising a total of seven input parameters. 
The number of input parameters can be reduced using the Buckingham’s 
Π theorem (Buckingham, 1914) that states that, if there is a physical 
relation involving N physical variables, then the relation can be re- 
written as a relation of (N − K) dimensionless products where K is the 

Fig. 2. Schematic representation of the proposed combined framework to predict size effects from the minimum number of properties determined at the ply level.  

Fig. 3. Normalized stiffness as a function of ζA
{1,2} (valid for 0◦/±45◦/90◦

Legacy Quad laminates). Fig. 4. Normalized stiffness of DD laminates as a function of ϕ and ψ.  
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number of fundamental dimensions required to describe the physical 
variables. Following the Buckingham Π theorem, the number of di-
mensions can be reduced to four dimensions, using the following 
dimensionless parameters: 

σ
XT

= f
(

G 0E1

DX2
T
, W

/

D, α, β
)

(6) 

This provides a more compact description of the problem at hand, 
which is convenient in machine learning applications since high 
dimensional spaces generally require larger datasets to provide accurate 
surrogate models. 

Note that the design of experiments (presented in Section 3) is per-
formed in the original 7D space (Eq. 4), which is then converted to the 
dimensionless 4D space (Eq. 6), which is in turn used to train and test the 
machine learning models. Although other strategies could have been 
defined, this strategy stems from the fact that the relation between the 
4D and 7D space is not necessarily injective. For example, it is possible 
that two specimens with the same geometry (W/D) but made from two 
different materials have the same 4D parameters and therefore the same 
notched strength. For this reason, it was more convenient to define the 
design space in the 7D space, guaranteeing that each variable is well 
populated in its defined bounds and then convert them to the 4D space 
before the training step. 

3. Design of experiments 

The design of experiments was performed using the implementation 
of Sobol sequence (Sobol, 2001; Saltelli, 2002; Saltelli et al., 2010) in the 
SALib Python library (Herman and Usher, 2017): a low discrepancy 
quasi-random sequence designed to explore the space in a more uniform 
manner than random sampling3. 

Sampling schemes (Sobol, 2001; Saltelli, 2002; Saltelli et al., 2010; 
McKay et al., 1979) were designed considering continuous variables 
with fixed bounds (i.e. no variable dependency is allowed). This attri-
bute is compatible with the material property (E1 , XT , G 0) and geo-
metric (D, W/D) input parameters. However, the laminate descriptors 
require a more careful analysis: on one hand, when considering con-
ventional laminates, it is clear that the lamination parameters (ζA

1 , ζA
2 ) 

are not independent (represented by the non-rectangular region in 
Fig. 3) and depending on the hypothesis initially considered (maximum 
number of plies, ply angles allowed, etc.), yield discrete combinations of 
values. On the other hand, when considering DD laminates, and even 
though ϕ and ψ are independent variables, advantage can be taken of the 
fact that the stiffness is diagonal symmetric as shown in Fig. 4. 

The strategies used to conform the sampling schemes to the laminate 
descriptors are presented herein. 

3.1. Laminate descriptors for conventional laminates 

Sampling has to be performed in the lamination parameters space, 
however, the analytical framework presented in Section 2 requires the 
lay-up as an input parameter to compute the notched strength. For this 
reason, there is the need to solve the inverse problem, i.e. obtain the 
stacking sequence from the lamination parameters. This is a non-trivial 
problem, that generally involves time-consuming optimization algo-
rithms (IJsselmuiden et al., 2009; Irisarri et al., 2011; Meddaikar et al., 

2017; Bloomfield et al., 2010) and can only be performed in an 
acceptable time frame if restrictions are imposed, such as a fixed number 
of plies, discrete values of allowed angles, among others. To avoid the in 
situ computation of the inverse problem, a database that relates all the 
possible ζA

1 /ζA
2 combinations to a corresponding lay-up was created. The 

following laminate restrictions were imposed:  

1. Only ply orientations of 0◦, +45◦, − 45◦ and 90◦ are considered 
(Legacy Quad laminates);  

2. The number of plies of each orientation range from 0 to 32;  
3. All laminates are balanced. 

Since laminate organization (i.e. stacking sequence) is not accounted 
for in the model, and only balanced laminates can be considered (the 
number of +45◦, − 45◦ plies is equal), this yields 323 − 1 = 32767 
laminate permutations (27133 unique orientation-percentage combi-
nations), which configures a database with acceptable size, that can be 
efficiently accessed to convert lamination parameters to a corresponding 
lay-up. Note that for less restrictive constraints (more angles considered, 
larger number of plies, non-balanced laminates, etc.), this will yield a 
database too large to be accessed efficiently. 

Sobol sampling assumes the variables to be continuous and inde-
pendent from one another. As shown in Fig. 5, where all the 27133 
possible pairs of ζA

1 /ζA
2 points are plotted in grey, this is not verified in 

the present case. For this reason, the distance of all the Sobol generated 
points (in red) to the closest allowed point is calculated. The Sobol 
generated point is either discarded, in case the computed distance is 
higher than a given threshold value, or approximated to the closest 
allowed point (in blue). If the defined threshold distance is too high, all 
points will be approximated to the closest allowed point, leading to a 
densely populated region at the allowed ζA

1 /ζA
2 boundary (in this case, 

the triangle boundary shown in Fig. 5). If the threshold distance is too 
low, most points will be discarded. A sensitivity analysis was made to 
analyse the effect of the selected threshold distance on the performance 
of the trained models and no significant dependency was found (the 
analysis is not shown here for the sake of conciseness). The authors 
considered that a threshold distance of 0.1, that would guarantee that all 
points inside the boundary would be included and most points outside 
the boundary would be discarded, was appropriate as a criterion for 
discarding generated points. This is a simple and efficient strategy to 
select the Sobol sequence sampling points that conform with the con-
straints of the problem. A more complex sampling method that respects 
the restrictions imposed to the laminate descriptors could be potentially 
also be envisioned. 

Fig. 5. Sobol sampling modification for Legacy Quad laminates.  

3 Other sampling strategies, namely, Saltelli’s extension of Sobol sequence 
(Saltelli, 2002; Saltelli et al., 2010), Latin hypercube sampling (McKay et al., 
1979) and random sampling were tested in this work. However, no significant 
dependency was found between model performance and the sampling strategy 
used, i.e., models trained on training sets created using the different sampling 
methodologies resulted in very similar performances. Therefore, for the sake of 
conciseness, only the database generated using Sobol sampling is presented 
here. 
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3.2. Laminate descriptors for DD laminates 

For the DD laminates, sampling is performed in the ply orientation 
space, which is continuous and composed of independent variables. The 
two angles are then simply organized to form a laminate: [±ϕ/ ±ψ]. 
Since laminate organization is not accounted for by the analytical 
framework, the number of repetitions n does not need to be considered 
as the percentage of layers in each direction is independent of the 
number of repetitions. Moreover, the DD laminates are balanced lami-
nates by definition, and therefore, no further restrictions are required. 

However, as shown in Fig. 4, the stiffness is diagonal symmetric with 
respect to ϕ and ψ because the angles are interchangeable. Although this 
is not required, advantage can be taken of the fact that the stiffness is 
diagonal symmetric to obtain a more densely packed distribution in the 
region of interest. As shown in Fig. 6, a ϕ/ψ Sobol generated point for 
which ψ > ϕ is converted into a ψ/ϕ point. 

4. Computational analyses 

In the previous section, the design of experiments, where the input 
variables, their bounds and strategies to populate the design space are 
defined, was described. Here, the analysis, where the output variable 
(the notched strength) is computed for the defined input data (material, 
geometric and laminate descriptors), is described. In this work, the 
output considered is the open-hole strength of a laminate as determined 
using the analytical framework described in Section 2. 

For conventional laminates, for each input data point, xi =

[E1, XT, G 0, D, W/D, ζA
1 , ζA

2 ]i:  

1. the laminate parameters, ζA
1 and ζA

2 , are converted in a lay-up by 
accessing the database that configures all the possible ζA

1/ζA
2 ↔ lay-up 

combinations.  
2. The notched strength, σ, is computed.  
3. The original 7D parameters are converted to the 4D design space: 

x*
i = [G 0E1

DX2
T
, W/D, ζA

1 , ζA
2 ]i.  

4. The normalized notched strength, σ/XT, is computed. 

For the DD laminates, for each input data point, xi =

[E1, XT, G 0, D, W/D, ϕ, ψ ]i:  

1. The laminate descriptors, ϕ and ψ, are organized in a lay-up: [±ϕ/ 
±ψ]  

2. The notched strength, σ, is computed.  
3. The original 7D parameters are converted to the 4D design space: 

x*
i = [G 0E1

DX2
T
, W/D, ϕ, ψ ]i.  

4. The normalized notched strength, σ/XT , is computed. 

Since the framework is based on an analytical model, the computa-
tion of a notched strength is not time-consuming, and therefore, not a 
limiting factor. For reference, the notched strength of 1000 data points 
takes 8 s to be computed in a standard laptop. For more computationally 
expensive problems, e.g. based on finite element simulations, the 
amount of information available (or that can be generated) is more 
limited. Therefore, the goal here is to obtain good approximations of the 
design space with the least amount of data possible and to show how the 
available number of data points affect performance of the models. 

5. Prediction of open-hole tensile strength of composite 
laminates using machine learning 

At this point, a database of well distributed points has been gener-
ated and is available to train and test machine learning algorithms. As 
schematically shown in Fig. 1, in data-rich situations, a given machine 
learning algorithm, with fixed hyperparameters (parameters that are not 
optimized during the learning process) is trained using a training set. 
The trained model is then used to predict the output of the test set points 
in order to estimate the generalization error of the model. For small 
number of data points, the randomness associated with the training set 
used is higher and several repetitions of the evaluation procedure must 
be performed to obtain a more reliable estimate of the generalization 
error (or, alternatively, more robust evaluation procedures, such as k- 
fold cross validation Raschka, 2018a, can be used). It is not trivial to 
quantify how much data is sufficient, since it depends on several factors, 
such as the complexity of the problem and the models being fitted to the 
data (Hastie et al., 2013). Further considerations must be taken into 
account when several machine learning algorithms and hyperparameter 
combinations are tested. This will be further commented on in Section 
5.2. 

Gaussian Processes (Krige, 1951), Artificial Neural Networks (Rose-
nblatt, 1958) and two tree-ensemble algorithms (Random Forests 
(Breiman, 2001) and XGBoost (Chen et al., 2016) are considered here. 
The two tree-ensemble algorithms have a fast learning process, do not 
require data standardization, have easily tunable hyperparameters and 
have been reported to be very powerful algorithms when dealing with 
structured data (Chollet, 2017; Hamidieh, 2018). Furthermore, they 
have been extensively applied by winning teams in Kaggle competitions 
(Hamidieh, 2018; Chen et al., 2016), and have been successfully applied 
in the materials science realm, e.g. for predicting the critical tempera-
ture of superconductors (Hamidieh, 2018; Stanev et al., 2018). Artificial 
Neural Networks are very powerful and extremely scalable, being able to 
deal with large datasets, but are harder to tune properly, e.g. require 
adequate hyperparameter tuning to provide good predictions. Gaussian 
Processes are also very powerful, particularly for regression problems, 
provided adequate kernel selection (Rasmussen and Williams, 2006; 
Duvenaud, 2014) is performed, but are poorly scalable. Recently, 
Gaussian Processes and Artificial Neural Networks have been exten-
sively used in e.g. the design of materials (Bessa et al., 2017; Bessa et al., 
2019) and structures (Bessa and Pellegrino, 2018). 

The implementations of Random Forests and Gaussian Processes in 
scikit-learn (Pedregosa et al., 2011), the implementation of XGBoost in 
xgboost (Chen et al., 2016) and the implementation of Artificial Neural 
Networks in keras (Chollet et al., 2015) open-source software libraries 
were used throughout in this work. All the algorithms are summarized 
hereafter. 

5.1. Machine learning algorithms 

A Random Forest (Breiman, 2001) is a tree-ensemble technique that 
combines multiple weak learners (decision trees), each trained with a 
subset of the training set (this strategy, called bootstrap aggregation or 
bagging, improves the stability and accuracy of the trained model), and Fig. 6. Sobol sampling modification for DD laminates.  
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averages their output in an attempt to produce a strong learner. 
XGBoost, although also a tree-ensemble technique, is based on gradient 
boosting concept (Friedman, 2001), i.e. the weak learners are trained 
sequentially in order to predict the error residuals of previous learners. A 
relevant feature of these tree-based algorithms is that they provide 
feature importances, i.e. they quantify the importance of each parameter 
for the output prediction. 

Gaussian Processes are a Bayesian machine learning method (thus, 
allow the incorporation of prior knowledge in the learning process) that 
perform very well for small datasets. In Gaussian Processes each output 
value is treated as a random variable that follows a Gaussian distribution 
(Gørtler et al., 2018). The joint distribution of all the output values is 
also Gaussian (a multivariate Gaussian) and is defined by a mean vector 
(usually assumed to be zero) and a covariance matrix (Gørtler et al., 
2018). The learning process consists in finding the optimal kernel pa-
rameters (each component of the covariance matrix is computed based 
on a kernel function) through maximization of the log-marginal- 
likelihood (Pedregosa et al., 2011). Being a probabilistic method, this 
regressor predicts not only a mean output value, but also its variance. 

An Artificial Neural Network is a deep learning method consisting on 
several layers of nodes that perform a (non-linear) operation on their 
inputs. In the first layer, there are as many neurons as input features and 
no operation is performed (i.e. the output of these neurons is simply the 
values of the input features). The last layer contains as many neurons as 
output variables and its outputs are the model predictions. All the other 
layers are called hidden layers and are intended for learning increasingly 
meaningful representations of the input data (Chollet, 2017). The 
learning process consists in learning the weights and biases of each neuron 
and is usually performed through backpropagation (Rumelhart et al., 
1986), i.e. the prediction error is propagated backwards in the network. 

5.2. Model selection and assessment 

In machine learning, a hyperparameter is a parameter whose value 
controls the learning process. The hyperparameters must ensure that the 
machine learning model is flexible enough to adapt to the intricacies of 
the problem (to avoid underfitting), but not too flexible to over-adapt to 
the training set (to avoid overfitting). Table 2 shows the possible values 
established for each hyperparameter (if not mentioned, the defaults of 
the respective library implementations are used). Due to its simplicity, 
grid search, a brute-force technique that consists in searching through a 
manually specified subset of the hyperparameter space of a learning 
algorithm, is used to optimize the hyperparameters. More automatic 
approaches, such as Bayesian optimization of the machine learning al-
gorithms (Snoek et al., 2012), could also be used to tune the hyper-
parameters of the ML algorithms. 

The choice of the best hyperparameters for a given algorithm must be 
performed without access to the test set (Cawley and Talbot, 2010; 
Varma and Simon, 2006), i.e. the hyperparameter selection must be 
viewed as an integral part of the learning process (Cawley and Talbot, 
2010). This means the obtained generalization error estimate encom-
passes both the fitted model and the hyperparameter selection strategy. 
The absence of the test data from the hyperparameter selection pro-
cedure ensures no data leakage and, therefore, an unbiased generaliza-
tion error estimation (Cawley and Talbot, 2010). In this work, K-fold 
cross-validation (Raschka, 2018b), a validation technique that consists in 
splitting the data into equal-sized k sets, training a model using k − 1 sets 
and computing the error estimate using the missing set (and repeat k 
times), was used. This strategy ensures lower variance estimates, but is 
computationally intensive. K-fold cross-validation with k = 5 was used 
for model selection. After the selection of the best hyperparameters, the 
model was retrained using the full training set and a generalization error 
estimate was computed using the test set. 

5.3. Learning curves 

The easiest way to improve the performance of an algorithm is to 
collect more data (although there is normally a plateau, i.e. after a given 
number of training points the performance does not improve signifi-
cantly anymore). Nevertheless, gathering data is usually expensive and, 
since this work intends to serve as a feasibility study, it is relevant to 
understand how the size of the dataset affects the performance of the 
model. In order to study such influence, learning curves for Legacy Quad 
and DD laminates are presented in Figs. 7 and 8, respectively. The root 
mean squared error (RMSE) is chosen as error metric. 

For each algorithm and number of points presented in the learning 
curves, the model selection and assessment procedures described in 

Table 1 
Material property, geometric and laminate descriptors and their bounds.   

Legacy Quad Double-Double 

Material Property E1 ∈ [150, 200] GPa  E1 ∈ [150, 200] GPa  
XT ∈ [2000,2500] MPa  XT ∈ [2000,2500] MPa  
G 0 ∈ [150, 250] N/mm  G 0 ∈ [150, 250] N/mm   

Geometric D ∈ [1,12] mm  D ∈ [1,12] mm  
W/D ∈ [3,8] W/D ∈ [3,8]

Layup ζA
1 ∈ [ − 1,1] ϕ ∈ [0,90]◦

ζA
2 ∈ [ − 1,1] ψ ∈ [0,90]◦

Table 2 
Grid search hyperparameter values for each algorithm.  

Algorithm Hyperparameter Search values DD Quad 

XGBoost n_estimators 100, 500, 1000 1000 1000  
max_depth 4, 10 4 10  
learning_rate 0.01, 0.1, 0.2 0.1 0.01  
subsample 0.5, 1 0.5 0.5  
colsample_bytree 0.5, 1 1 1  

Random Forest n_estimators 100, 500, 1000, 5000 5000 1000 
max_depth 1, 7, 20 20 20  
min_sample_leaf 1, 5 1 1  
max_features auto, sqrt auto auto  

Artificial Neural Network hidden layer 1 8, 16, 64 64 64 
hidden layer 2 8, 16 8 16 
hidden layer 3 8 8 8  

Gaussian Processes Matern kernel (ν)  1/2, 3/2, 5/2 5/2 3/2 
RBF kernel – – –  
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Section 5.2 were followed. In order to make the results for different 
algorithms and number of training points comparable, it was assured all 
the models were trained using the same points and increasingly larger 
subsets of the training set and the test set was kept constant. 

As shown in Figs. 7 and 8, good overall predictions can be obtained 
with a reduced number of training points. However, the curves have not 
yet converged: using a higher number of training points will still 
translate in a reduction of the generalization error. Moreover, Gaussian 
processes were able to achieve the best performances for very small 
number of data points, whereas artificial neural networks outperformed 
all the algorithms for increasing number of data points (Bessa et al., 
2017; Neal, 2012; Williams, 1998). Regarding the tree-ensemble 
methods, XGBoost demonstrated to be a highly competitive algorithm, 

whereas random forests have not achieved satisfactory performances. 

5.4. Representations of the design space 

Based on the previous results, 1000 training points are considered to 
be sufficient to accurately capture the overall trend of the design space. 
This number of data points is also considered to be reasonable for the 
application of the present framework to more expensive and accurate 
methodologies for open-hole strength prediction (or related problems). 
Therefore, several models were trained for this number of training 
points following the model selection procedure presented in Section 5.2. 
Afterwards, about 10000 new points were collected and the predictions 
of the models compared with the ground truth. As shown in Figs. 9 and 
10, the obtained relative errors are highly concentrated between the 
±10% range. 

In the remainder of this section, representations of the design space 
are shown to assess the ability of the trained models to capture the in-
tricacies of the open-hole strength function as well as its continuity. 
Here, a sensitivity analysis, where a single parameter is varied ranging 
from its allowed minimum and maximum, while the remaining six are 
kept constant, is performed. The results are shown for Legacy Quad and 
DD laminates in Fig. 11a and b, respectively. 

From Fig. 11, it can be concluded that, in fact, all four algorithms are 
capable of fitting the analytical model with very good accuracy. How-
ever, as expected, and given its discontinuous nature, the tree-based 
models provide a less smooth response. The Gaussian Processes and 
Artificial Neural Networks provide the smoother prediction curves due 
to their continuous nature as well as leading to the lower prediction 
errors and are, therefore, more appropriate to address the present 
problem. 

6. Generation of B-basis allowables using machine learning 

In this section, the generation of design allowables, the B-basis al-
lowables (Handbook, 2002), based on machine learning models is 
explored. The goal is to verify if the machine learning models are able to 
capture, not only the overall 7D design space, but also the variability 
associated with a given design point, consequence of the uncertainty 
related to the material properties and geometrical descriptors. 

By taking the variability of the input parameters (material and 
geometrical) into account, the uncertainty of the input parameters can 
be propagated to the notched strength, i.e. a statistical distribution of the 
notched strength can be obtained, which can then be used to compute 
the statistical design allowables, namely the B-basis allowable. The B- 
basis allowable is the standard design allowable used in the aeronautical 
industry for fail safe structures (Handbook, 2002; Spendley, 2012). It is 
defined as the 95% lower confidence bound on the tenth percentile of a 

Fig. 9. Legacy Quad laminates: distribution of the relative error for ntrain=1000 
for different algorithms. 

Fig. 10. DD laminates: distribution of the relative error for ntrain=1000 for 
different algorithms. 

Fig. 7. Legacy Quad laminates: RMSE as a function of the size of the training 
set, ntrain, for different algorithms. 

Fig. 8. DD laminates: RMSE as a function of the size of the training set, ntrain, 
for different algorithms. 

C. Furtado et al.                                                                                                                                                                                                                                 



International Journal of Solids and Structures 233 (2021) 111095

9

specified population of measurements. It is a conservative allowable that 
ensures with 95% confidence that 90% of the population will have a 
given property, e.g. strength, higher than the B-basis allowable. 
Vallmajó et al. (2019) described two methodologies to obtain the B- 
basis: the CMH-17 approach and a Monte Carlo based approach. The 
first, is the methodology proposed by the Composite Materials Hand-
book (Handbook, 2002) and is generally employed for small pop-
ulations, such as the ones typically obtained experimentally. The 
second, is a computerized mathematical technique that allows, by 
repeated, nearly infinite, random sampling of the input parameters, 
obtaining the distribution of the population of results. Here, given the 
efficiency of both the baseline analytical model and of the trained ma-
chine learning models, the Monte Carlo based approach is used, as 
described below4: 

1. 10000 input material (E1, XL, G 0) and geometrical (D and W) pa-
rameters are generated following a given statistical distribution 
(normal and uniform distributions, respectively). The lay-up was 
considered to be fixed, i.e. no laminate rotation/misalignment dur-
ing the cutting procedure was considered. The baseline analytical 
model allows accounting for lay-up variability, however the machine 

learning models do not, since any rotation of the laminate (or any 
single ply) will yield invalid lay-ups.  

2. The distribution of the notched strength is obtained by calculating 
the notched strength (using the analytical model described in Section 
2 and the trained machine learning models described in Section 5).  

3. The 10th percentile of the distribution of the notched strengths is 
obtained and approximated to the B-basis allowable (10th percentile 
≈ B-basis Vallmajó et al., 2019). 

In a representative example, which allows the comparison of the 
distribution of the notched strengths, B-basis values and mean values 
obtained using the baseline analytical model and the trained machine 
learning models is shown below. An IM7/8552 [90/0/ − 45/45]3s quasi- 
isotropic lay-up and a [45/− 45/20/− 20] DD lay-up, and specimens 
with hole diameter-to-width ratios of 3 < W/D < 8 and hole diameters 
of 2, 4, 6, 8 and 10 mm were considered (Camanho et al., 2007b; 
Vallmajó et al., 2019). The material parameters were considered to 

Fig. 11. Sensitivity analysis for a) Legacy Quad and b) DD laminates obtained using the four proposed machine learning models (ntrain=1000). A single parameter is 
varied ranging from its allowed minimum and maximum, while the remaining are kept constant at E1 = 175 GPa, XT = 2250 MPa, G 0 

= 200 N/mm, D = 6 mm, 
W/D = 5, ζA

1 = 0, ζA
1 = 0 (for QUAD laminates) and ϕ = 60◦,ψ = 0◦ (for DD laminates). Note that in the last subfigure, a plateau appears for ψ value above 60◦. As the 

value of ϕ is fixed at 60◦, these laminates are very ”soft”, and present a matrix dominated failure for which the current analytical model predicts very 
similar behaviours. 

Table 3 
Properties of the IM7/8552 material system (Camanho et al., 2007b) and vari-
ability of the geometric parameters.   

E1 [GPa]  XT [GPa]  G 0 [N/mm]  

Mean 171.42 2323.47 206.75 
Standard deviation 2.38 127.45 23.64   

D [mm] W [mm]  
Mean D W  
Tolerance ±2%  ±2%    

4 This process should be repeated N times to obtain the distribution of the 
10th percentiles, allowing the calculation of the 5% percentile of the 10th 
distribution, i.e. the B-basis allowable. However, as shown in Ref. Vallmajó 
et al. (2019), sample size larger than 10000 are representative of the whole 
population, and therefore, the 10th percentile can be directly approximated to 
the B-basis allowable, as the variability is minimal. 
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follow a normal distribution with means and standard deviation shown 
in Table 3 and the geometrical descriptors were considered to follow an 
uniform distribution with a tolerance of ±2%, related to tolerances 
allowed during specimen cutting. 

The distributions of the notched strength, B-basis and mean value 
provided by the analytical model and the trained machine learning 
models are presented in Figs. 12 and 13 for a specimen with D = 6 mm 
and W = 36 mm and the Empirical Cumulative Distribution Function 
(ECDF) for all the geometries considered (D = 2–6 mm and W = 12–60 
mm) is shown in Figs. 14 and 15, for the Legacy Quad and DD laminate, 
respectively. 

As shown in Figs. 12–15, for both the Legacy Quad and DD lay-up, 
the XGBoost, Artificial Neural Networks and Gaussian Processes 
models provide very accurate strength distributions compared to those 

obtained using the analytical model, allowing an accurate determination 
of design allowables related to material and geometrical variability. It 
should be noted that for a different number of training samples, some ML 
algorithms may lead to more accurate distributions than others. Even 
though no clear distinction between the accuracy of the models on the 
determination of B-basis allowables was found, the Gaussian Processes 
model has the advantage of having a continuous nature and a fast 
training process, in contrast to the XGBoost and Artificial Neural 
Network models, respectively. The Gaussian Processes models having i) 
a fast learning process, ii) less hyperparameters to optimize, iii) having 
provided a continuous accurate representation of the design space, iv) 
the lowest relative error and v) good B-basis allowable predictions, and 
vi) being more powerful model for small training sets, were considered 
the most interesting and convenient Machine Learning models for this 

Fig. 12. Legacy Quad: distribution of the notched strengths, B-basis (dashed 
lines) and mean value (full lines) provided by the analytical model and the 
trained machine learning models (IM7/8552 [90/0/ − 45/45]3s, D = 6 mm and 
W = 36 mm). 

Fig. 13. Double-Double: distribution of the notched strengths, B-basis (dashed 
lines) and mean value (full lines) provided by the analytical model and the 
trained machine learning models (IM7/8552 DD [45/− 45/20/− 20] laminate, 
D = 6 mm and W = 36 mm). 
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type of analysis. Particularly the fact that Gaussian Process models 
provide better performances for smaller training sets can be an 
extremely important characteristic when training models based on nu-
merical data (e.g. from finite element simulations), whose generation is 
much more time-consuming. 

To further test the Gaussian processes models, a design chart, where 
the diameter-to-width ratio, D/W, is varied between the bounds (1/8 
and 1/3) for three hole diameters (D = 2, 4, 10 mm) was generated 
(Figs. 16 and 17). The mean and B-basis values for each geometry are 
presented. The Gaussian processes models provide very accurate pre-
dictions of both the mean values and B-basis and correctly capture the 
effect of varying the hole diameter as well as the diameter-to-width ratio 
(D/W). 

Note that the curves diverge slightly near the boundaries (for D/W =

1/8 and D/W = 1/3). This can be explained by the fact that when 
variability is considered, the generated input parameters can be outside 
of the training space (see bounds used to train the machine learning 
models in Table 1). This causes some loss in accuracy in the machine 
learning algorithms, as they are known to be very powerful as interpo-
lation tools, i.e. working inside the bounds in which they were estab-
lished, and very ineffective when extrapolating outside the bounds of the 
design space used for training. This drawback can be circumvented by 
increasing the design space and retraining the models, which would be 
trivial using the analytical model, but may otherwise be impossible 
when dealing with more computationally expensive models or experi-
mental data. This further highlights the need to accurately define the 
design space used to train the machine learning models and the limi-
tations of such techniques. 

Fig. 14. Legacy Quad: ECDF obtained using the analytical model and the 
trained machine learning models (IM7/8552 [90/0/ − 45/45]3s, D = 2–10 mm 
and W = 12–60 mm). 

Fig. 15. Double-Double: ECDF obtained using the analytical model and the 
trained machine learning models (IM7/8552 DD [45/− 45/20/− 20] laminate, 
D = 2–10 mm and W = 12–60 mm). 
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The analysis presented above, where the ability of the trained ma-
chine learning algorithms to capture the variability associated with a 
given design point, consequence of the uncertainty related to the ma-
terial properties and geometrical descriptors, provides a more clear 
rationale for model selection. The Gaussian processes algorithm used 
here provides the more interesting formulation for this particular 
problem, given the low generalization error obtained for a low number 
of training points (which provides a general overview of the models 
performance in the whole design space), their continuous nature (that 
provide a more accurate representation of the design space) and their 
ability to capture the distribution of notched strengths and B-basis 
allowable. 

7. Conclusions 

This work represents the first step towards the application of ma-
chine learning techniques in the prediction of design allowables of 
composite laminates. First, a discussion on the representation of stack-
ing sequence of composite laminates, based on lamination parameters 
(for conventional laminates) and on ply angles (for double angle-ply 
laminates), compatible with machine learning techniques, is pre-
sented. The design space of conventional laminates was limited to the 
Legacy Quad laminates, where only 0/90/±45◦ plies are considered. 
This definition is generally compatible with industry requirements, 
however, the present framework should potentially be expanded for 

more complex laminates by considering more ply orientations than the 
baseline 0/90/±45◦. The use of two angles that vary continuously (ϕ 
and ψ ∈ [0,90]) as laminate descriptors of the double angle-ply lami-
nates provides a more comprehensive description of the design space. 

Then, the ability of machine learning algorithms to estimate the 
notched strength of composite laminates based on material, geometric 
and laminate descriptors is evaluated. To select the most appropriate ML 
algorithm for the problem at hand, different algorithms (Random For-
ests, XGBoost, Artificial Neural Networks and Gaussian Processes) were 
trained on the same datasets. From those analyses, Gaussian Processes 
were able to achieve the best performances for very small number of 
data points, whereas Artificial Neural Networks outperformed all the 
algorithms for increasing number of data points. The continuous nature 
of these methods provided a more accurate representation of the design 
space. Even though the tree-ensemble methods have the disadvantage of 
predicting highly discontinuous responses, XGBoost still proved to be a 
reliable method. 

To further explore the potential and understand the limitations of the 
trained ML algorithms, the generation of design allowables based on 
machine learning models is explored to verify their ability to capture not 
only the overall response of the design space, but also the variability 
associated with a given design point (consequence of the uncertainty 
related to the material properties and geometrical descriptors). The 
models were shown to accurately represent the statistical distribution of 
open-hole strength, thus giving good estimation for the B-value design 
allowable. The Gaussian Processes models proved to be the most reliable 
and convenient Machine Learning models for this type of analysis, 
considering their i) continuous and accurate representation of the design 
space, ii) low relative errors of the predictions iii) good B-basis allowable 
predictions, iv) fast learning process, v) low number of hyperparameters 
to optimize and vi) better performance for small sized training sets. 

While the data-driven framework proposed here is established on 
data derived from an analytical model, this work serves as the basis to 
tackle a more demanding future challenge: the prediction of first-ply 
failure strength, ultimate strength and failure mode of composite ma-
terials based on non-linear finite element simulations. This process will 
comprise a similar sampling, computational analysis and machine 
learning methodologies to those presented in this work. The envisioned 
framework is intended to be compatible with more complex test con-
figurations, including in-plane loadings (open-hole tension/compres-
sion, plain strength, bolt bearing) and out-of-plane loadings (pull- 
through and low-velocity impact), providing further reduction of the 
computational time required to virtually obtain the design allowables 
for composite laminates. 
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Fig. 16. Design chart for diameter-to-width ratio, 1/8< D/W <1/3 and hole 
diameters D = 2,4,10 mm for an IM7/8552 [90/0/ − 45/45]3s Legacy Quad 
laminate obtained using the analytical framework and the Gaussian Pro-
cesses model. 

Fig. 17. Design chart for diameter-to-width ratio, 1/8< D/W <1/3 and hole 
diameters D = 2,4,10 mm for an IM7/8552 [45/− 45/20/− 20] DD laminate 
obtained using the analytical framework and the Gaussian Processes model. 
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