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SUMMARY

Landslide activity in the Andes remains an ongoing natural hazard with signifi-

cant implications for regional development. Slow-moving landslides, while not

typically resulting in catastrophic outcomes, can still cause substantial damage

to critical infrastructure, including roads, buildings, crops, and hydropower dams.

In southeast Ecuador, slow-moving landslides threaten the stability and func-

tionality of the Mazar dam and reservoir. This thesis aimed to address these chal-

lenges by characterizing the slow-moving landslides in the Mazar region and de-

veloping a systematic approach to identify changes in their displacement rates,

understand their physical causes and assess the influence of hydrometeorolog-

ical forcings. Chapter 1 establishes the relevance of slow-moving landslides in

Ecuadorian society and highlights the common mechanisms observed in slopes

influenced by reservoirs. Additionally, the chapter explores several methods uti-

lized to model these mechanisms under the influence of hydrometeorological

factors.

Chapter 2 presents the characterization and hydrogeological analysis of the

Guarumales landslide, situated approximately 20 kilometers downstream of the

Mazar dam. This deep-seated landslide has been under monitoring for an ex-

tended period, providing valuable data such as displacement, rainfall, ground-

water levels, and drain flow for analysis. We examined the displacement data

spanning 18 years, revealing a consistent movement throughout the entire pe-

riod. However, the limited measurement accuracy and time resolution posed

challenges in identifying potential accelerations or decelerations in response to

hydrometeorological forcings. The groundwater and slope drainage data showed

a delayed response to rainfall events. Moreover, we constructed a conceptual

model of the landslide, highlighting the presence of giant boulders within the

colluvium, perched groundwater systems, and a relatively deep slip surface.

xi



xii SUMMARY

Chapter 3 focused on interpreting the landslides surrounding the Mazar dam

and reservoir. Given the limited availability of comprehensive in-situ data, we

turned to satellite-derived data for our analysis. Using InSAR displacement time

series, we tracked the deformation of the region with high temporal and spatial

resolution. In this chapter, we developed a systematic method to identify, quan-

tify, and inventory changes in the surface deformation rate of slowly deforming

areas at local and regional scales. The result was the creation of multitemporal

maps depicting unstable areas and an inventory of the timing of changes in their

deformation rates. To validate our method, we applied it to the Mud Creek land-

slide in the United States, where a previous study had thoroughly evaluated the

interferograms used in defining the InSAR displacement time series, yielding a

high-quality dataset. Our method successfully detected monthly accelerations

and decelerations, aligning with periods of heavy and no rainfall, respectively.

Subsequently, we applied our method to the Mazar reservoir region. While the

displacement time series in this area were of lower quality than the Mud Creek

dataset, we could still identify deforming areas displaying complex acceleration

and deceleration patterns.

Chapter 4 aimed to leverage the results obtained in chapter 3, specifically fo-

cusing on identifying the timing and frequency of changes in the displacement

rate of landslides within the Mazar reservoir area. The primary objective was to

investigate whether these changes correlated with hydrometeorological forcings

using multiple linear regression analysis. The analysis did not reveal any signif-

icant correlation between the dynamics of the landslides and the seasonal be-

havior of hydrometeorological forcings in the study area. Our findings suggested

that the available hydrometeorological variables were insufficient in amount and

level of detail to explain the behavior of slow-moving landslides in the Mazar re-

gion. Interestingly, most of the identified surficial dynamics exhibited only one

or two velocity changes over four years, independent of the seasonal variations

in hydrometeorological data. In the case of the Mazar region, some challenges

hindered our analysis. On the one hand, the lower quality InSAR displacement

time series could only show the most significant changes in displacement rate,
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while smaller (likely seasonal) changes were hidden within the noise. On the

other hand, the limited availability of in-situ data, such as groundwater and soil

moisture, did not allow a more detailed slope analysis. Local factors are crucial in

influencing the sliding mechanisms of landslides around the Mazar reservoir. A

more in-depth analysis of local slope settings and mechanisms is essential to bet-

ter comprehend the effect of hydrometeorological forcings in the area. Satellite-

derived surficial dynamics would greatly benefit from a comprehensive exami-

nation of local factors to provide a complete understanding of the slow-moving

landslide dynamics in the Mazar region.

Chapter 5 offers a synthesis of the findings in this thesis, the overall conclu-

sions of each chapter, discusses the limitations of this kind of research in the

Andes and discusses the relevance of the findings in the context of the Ecuado-

rian Andes. Our research showed notable relationships between rainfall patterns

and groundwater responses, as the Guarumales case study demonstrated. How-

ever, we encountered challenges in identifying empirical relationships between

displacement (whether derived from in-situ measurements or satellite data) and

the hydrometeorological forcings at both the local scale (Guarumales) and re-

gional scale (Mazar region). The limitations primarily stemmed from the lack

of a comprehensive dataset, hindering a detailed analysis of the slopes in the

Mazar region. This critical insight is significant in countries like Ecuador, where

hydropower development is a priority. As harnessing hydroelectric resources in-

creases, the accurate assessment and monitoring of slow-moving landslide dy-

namics become even more crucial. Improving the spatiotemporal resolution of

the in-situ monitoring systems is imperative for a better insight into slow-moving

landslide dynamics and, thus, a reliable landslide early-warning system.





RESUMEN

Los deslizamientos de tierra en los Andes siguen siendo un peligro natural con-

tinuo con importantes implicaciones para el desarrollo regional. Los desliza-

mientos de tierra de movimiento lento, si bien no suelen tener resultados catas-

tróficos, aún pueden causar daños sustanciales a infraestructura crítica, inclu-

idas carreteras, edificios, cultivos y represas hidroeléctricas. En el sureste de

Ecuador, deslizamientos de tierra de lento avance amenazan la estabilidad y fun-

cionalidad de la presa y el embalse de Mazar. Esta tesis tuvo como objetivo

abordar estos desafíos caracterizando este tipo de deslizamientos de tierra en

la región de Mazar y desarrollando un enfoque sistemático para identificar cam-

bios en su velocidad de desplazamiento, comprender sus causas físicas y evaluar

la influencia de los factores hidrometeorológicos. El Capítulo 1 establece la rele-

vancia de los deslizamientos de tierra de movimiento lento en la sociedad ecua-

toriana y destaca los mecanismos comunes observados en laderas influenciadas

por embalses. Además, el capítulo explora varios métodos utilizados para mod-

elar estos mecanismos bajo la influencia de factores hidrometeorológicos.

El Capítulo 2 presenta la caracterización y análisis hidrogeológico del desliza-

miento de Guarumales, situado aproximadamente a 20 kilómetros aguas abajo

de la presa Mazar. Este deslizamiento de tierra profundo ha estado en moni-

toreo durante un período prolongado, proporcionando datos valiosos para su

análisis como desplazamiento, precipitaciones, niveles de agua subterránea y

flujo de drenaje. Examinamos 18 años de datos de desplazamiento, revelando

un movimiento constante durante todo el período. Sin embargo, la limitada pre-

cisión de las mediciones y la resolución temporal plantearon desafíos a la hora

de identificar posibles aceleraciones o desaceleraciones en respuesta a los fac-

tores hidrometeorológicos. Los datos de aguas subterráneas y drenaje mostraron

una respuesta tardía a los eventos de lluvia. Además, construimos un modelo

xv
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conceptual del deslizamiento, destacando la presencia de rocas gigantes den-

tro del coluvión, sistemas de agua subterránea encaramados y una superficie de

deslizamiento relativamente profunda.

El Capítulo 3 se centró en la interpretación de los deslizamientos de tierra

que rodean la presa y el embalse de Mazar. Dada la disponibilidad limitada de

datos in situ, recurrimos a datos derivados de satélites para nuestro análisis. Uti-

lizando series temporales de desplazamiento InSAR, rastreamos la deformación

de la región con alta resolución temporal y espacial. En este capítulo, desarrol-

lamos un método sistemático para identificar, cuantificar e inventariar cambios

en la velocidad de deformación de la superficie de áreas que se deforman lenta-

mente a escalas local y regional. Como resultado se desarrollaron mapas mul-

titemporales que representan áreas inestables y un inventario de los cambios

en su velocidad de deformación. Para validar nuestro método, lo aplicamos al

deslizamiento de tierra de Mud Creek en los Estados Unidos, donde un estu-

dio previo había evaluado exhaustivamente los interferogramas utilizados para

definir la serie temporal de desplazamiento InSAR, generando un conjunto de

datos de alta calidad. Nuestro método detectó con éxito aceleraciones y desacel-

eraciones mensuales, alineándose con períodos de lluvia intensa y sin lluvia, re-

spectivamente. Posteriormente, aplicamos nuestro método a la región del em-

balse de Mazar. Si bien las series temporales de desplazamiento en esta área

fueron de menor calidad que el conjunto de datos de Mud Creek, aún pudimos

identificar áreas deformantes que muestran patrones complejos de aceleración

y desaceleración.

El Capítulo 4 tuvo como objetivo aprovechar los resultados obtenidos en el

capítulo 3, centrándose específicamente en identificar el momento y la frecuen-

cia de los cambios en la velocidad del desplazamiento de los deslizamientos de

tierra dentro del área del embalse de Mazar. El objetivo principal fue investigar

si estos cambios se correlacionaban con los factores hidrometeorológicos me-

diante un análisis de regresión lineal múltiple. El análisis no reveló ninguna

correlación significativa entre la dinámica de los deslizamientos y el compor-

tamiento estacional de los factores hidrometeorológicos en el área de estudio.
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Nuestros hallazgos sugirieron que las variables hidrometeorológicas disponibles

eran insuficientes en cantidad y nivel de detalle para explicar el comportamiento

de los deslizamientos de tierra de lento movimiento en la región de Mazar. Cu-

riosamente, la mayoría de las dinámicas superficiales identificadas exhibieron

sólo uno o dos cambios de velocidad durante cuatro años, independientemente

de las variaciones estacionales en los datos hidrometeorológicos. En el caso de la

región de Mazar, algunos desafíos obstaculizaron nuestro análisis. Por un lado, la

serie temporal de desplazamiento InSAR de menor calidad solo pudo mostrar los

cambios más significativos en la velocidad de desplazamiento, mientras que los

cambios más pequeños (probablemente estacionales) pudieron haber quedado

ocultos dentro de la dispersión de los datos. Por otro lado, la limitada disponi-

bilidad de datos in situ, como el agua subterránea y la humedad del suelo, no

permitió realizar un análisis más detallado. Los factores locales influyen crucial-

mente en los mecanismos de deslizamientos alrededor del embalse de Mazar.

Es esencial realizar un análisis más profundo de la configuración y los mecan-

ismos de las pendientes locales para comprender mejor el efecto de los factores

hidrometeorológicos en el área. La dinámica superficial derivada de satélites se

beneficiaría enormemente de un examen exhaustivo de los factores locales para

proporcionar una comprensión completa de la dinámica de los deslizamientos

de lento movimiento en la región de Mazar.

El Capítulo 5 ofrece una síntesis de los hallazgos de esta tesis, las conclu-

siones generales de cada capítulo, discute las limitaciones de este tipo de inves-

tigación en los Andes y discute la relevancia de los hallazgos en el contexto de los

Andes ecuatorianos. Nuestra investigación mostró relaciones notables entre los

patrones de lluvia y las respuestas del agua subterránea, como lo demostró el es-

tudio de caso de Guarumales. Sin embargo, encontramos desafíos al identificar

relaciones empíricas entre el desplazamiento (ya sea derivado de mediciones in

situ o datos satelitales) y los forzamientos hidrometeorológicos tanto a escala lo-

cal (Guarumales) como regional (región de Mazar). Las limitaciones surgieron

principalmente de la falta de un conjunto de datos completo, lo que impidió un

análisis detallado de las laderas en la región de Mazar. Esta visión crítica es signi-

ficativa en países como Ecuador, donde el desarrollo hidroeléctrico es una priori-
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dad. A medida que aumenta el aprovechamiento de los recursos hidroeléctricos,

la evaluación y el seguimiento precisos de la dinámica de los deslizamientos de

tierra de lento movimiento se vuelven aún más cruciales. Mejorar la resolución

espaciotemporal de los sistemas de monitoreo in situ es imperativo para tener

una mejor comprensión de la dinámica de los deslizamientos de movimiento

lento y, por lo tanto, un sistema confiable de alerta temprana de deslizamientos.
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INTRODUCTION

Parts of this chapter are based on:

Urgilez Vinueza, A., Robles, J., Bakker, M., Guzman, P., and Bogaard, T. (2020). Characterization
and hydrological analysis of the Guarumales deep-seated landslide in the tropical Ecuadorian An-
des. Geosciences, 10(7), 267, https://doi.org/10.3390/geosciences10070267

Urgilez Vinueza, A., Handwerger, A.L., Bakker, M., and Bogaard, T. (2022). A new method to detect
changes in displacement rates of slow-moving landslides using InSAR time series. Landslides, 19(9),
2233-2247, https://doi.org/10.1007/s10346-022-01913-8
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2 1. INTRODUCTION

Landslides are a natural hazard that occur worldwide, with consequences

ranging from economic losses to many fatalities (Guzzetti et al., 2003; Petley,

2012; Papathoma-Köhle et al., 2015; Froude and Petley, 2018). The study of land-

slides is an essential task in mountainous areas in the world, especially in under-

developed areas such as Latin America. Here, the presence of the Andes moun-

tain range, accompanied by its relatively young geological composition (Zeil,

1979), makes it a landslide-prone area (Petley, 2012; Alcántara-Ayala and Oliver-

Smith, 2014). Despite this situation, urban areas have developed around the

mountain range, and Ecuador is no exception.

One of Ecuador’s most critical infrastructure developments is the construc-

tion of dams for electricity generation as an alternative to fossil fuels. In the next

few years, Ecuador will commission 25 hydropower plants around the country

in addition to the 71 already existing projects, to generate 90% of the national

electrical demand (Mite-León and Barzola-Monteses, 2018; Barzola-Monteses

et al., 2019). While hydropower is considered an environmentally-friendly en-

ergy generation alternative, it can adversely affect the environment (Alho, 2011;

Díaz et al., 2019). Implementing hydropower plants involves the construction of

dams, which impound an extensive area. The reservoir affects the morphody-

namics processes and especially the slopes’ stability around it.

Researchers have found that in areas where a reservoir is present, fast-moving

and slow-moving landslides are likely to occur, such as reported in case of the

Three Gorges Dam in China (Jian et al., 2009; Du et al., 2013; Xu et al., 2015),

the Vajont landslide in Italy (Barla and Paronuzzi, 2013), and several cases in the

Andes (Schuster et al., 2002; Plaza et al., 2011). It is known that old landslide reac-

tivations and new landslide occurrences may be caused by water level variations

and the reservoir impoundment itself (e.g., Schuster (1979); Pinyol et al. (2012);

Guo et al. (2015). The variations of reservoir water levels and rainfall can cause

seepage-induced or buoyancy-induced periodic deformations, showing either

step-wise or constant cumulative displacement. The mechanical properties of

slip zones also play a role in reservoir-induced landslides (Tang et al., 2019).

Regional-scale investigations are carried out to reduce the effects of land-

slide hazard (Xu et al., 2017; Bogaard and Greco, 2018; Monsieurs et al., 2019;

Wang et al., 2020). The focus can be on rapid or catastrophic landslides (Xu et al.,
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2017), which refer to events that displace at high velocity and frequently cause

loss of life and infrastructure. On the other hand, the focus can be on slow-

moving landslides, which refer to slow to very slow slope movement that can

be active for a long time without causing catastrophic damage (Varnes, 1978).

However, given a precise set of circumstances, they could be prone to fail catas-

trophically (i.e., suddenly increase their velocity until failure) (e.g., Handwerger

et al. (2019b)). These types of landslides are typically investigated for mapping

purposes (Lu et al., 2012; Borrelli et al., 2018; Zhang et al., 2018), long-term mon-

itoring (Bekaert et al., 2020), and individual case studies (Tomás et al., 2016; Kang

et al., 2017; Bounab et al., 2021; Dille et al., 2021; Li et al., 2021; Jacquemart and

Tiampo, 2021).

These regional investigations can be supported using either empirically or

physically based models. Empirical models refer to data-driven models that use

a set of available environmental variables to predict landslide occurrence using

rainfall thresholds (Segoni et al., 2018; Uwihirwe et al., 2020), produce maps of

landslide hazards (e.g., Mancini et al. (2010)), among other applications. The

conditions that predispose landslides to occur are determined using statistical

analyses between site variables (e.g., soil, geology, hydrometeorology) and a list

of past landslides, their location, and type (Dai and Lee, 2002; Kirschbaum et al.,

2012). These models assume that the geological conditions over a selected region

are comparable. However, this might not be applicable everywhere. Additionally,

these models rely on the availability and completeness of landslide inventories,

and if available, they likely represent landslides that occurred in urban areas or

inhabited rural areas (Monsieurs et al., 2018).

On the other hand, physically based models consider geotechnical and hy-

drological processes using equations to model the physical behavior of the slope.

They tend to be more robust than the data-driven models, providing assessments

of rainfall-induced and earthquake-induced landslides (e.g., An et al. (2016); Cui

et al. (2022); Zhang et al. (2022, 2018)). Probabilities of slope failure are also eval-

uated using these types of models by combining hydrological models (that de-

termine the pore pressure changes in the soil due to rainfall) and slope stabil-

ity models (estimates the factor of safety on potential deformation areas) (Crosta

and Frattini, 2003; Rosso et al., 2006). These models need detailed in-situ geotech-
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nical and hydrological data to work correctly, which is often scarce and only

found in local or site-based studies and difficult to replicate at large scales. Their

performance can be limited due to the availability of data on soil properties (Valentino

et al., 2011).

Some studies combine empirical and physically based dynamic models to

forecast landslide occurrence, improve landslide susceptibility maps, and define

rainfall-induced landslide early warning thresholds (Anderson and Lloyd, 1991;

Rosso et al., 2006; Kuriakose et al., 2009; Goetz et al., 2011; Peruccacci et al., 2017).

Hydrometeorological landslide early-warning thresholds indicate the minimum

rainfall, groundwater, and any other hydrological parameters that can be con-

nected to landslide initiation at any scale (i.e., local, regional, or global) (Uwi-

hirwe et al., 2020; Ciavolella et al., 2016; Mostbauer et al., 2018). However, these

are almost exclusively developed for fast-moving landslides. Empirically-based

research on fast-moving landslides relies on the completeness of landslide in-

ventories and the availability of hydrometeorological data over the selected area.

In contrast, limited attention has been given to empirically-based research

of slow-moving landslides. In this case, there is no inventory of landslide occur-

rences since their movement is constant throughout time unless they fail catas-

trophically. Here, the displacement time series of slow-moving landslides are

evaluated against hydrometeorological variables in the area to make sense of

the slow-moving dynamics of the slopes represented by the cumulative displace-

ment time series of available monitored points.

These slow-moving landslides are commonly monitored with remote sens-

ing and in-situ approaches. Remote sensing approaches include Light Detection

and Ranging (lidar) (Mackey and Roering, 2011; Pirasteh et al., 2018; Jaboyed-

off and Derron, 2020), Interferometric synthetic aperture radar (InSAR) (Strozzi

et al., 2005; Handwerger et al., 2013; Bayer et al., 2018; Dai et al., 2020), and optical

remote sensing (Bennett et al., 2016; Lacroix et al., 2020a). The in-situ approach

includes the Global Navigation Satellite System (GNSS) (Mulas et al., 2018; Notti

et al., 2020), terrestrial laser scanners (Rosser et al., 2007; Aryal et al., 2012; Booth

et al., 2018), geophysical methods (Whiteley et al., 2019b,a), accelerometers (Bag-

wari et al., 2021), slope deformation sensors (Askarinejad and Springman, 2017),

inclinometers, extensometers, and Electronic Distance Measurement (EDM) (Pet-
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ley et al., 2005; Pecoraro et al., 2019). While the highest data quality comes from

in-situ measurements, these are limited to specific locations within a single land-

slide and thus fail to capture spatial changes in regional landslide behavior. Ad-

ditionally, constant monitoring of slow-moving landslides can be challenging in

areas without sufficient resources. Satellite-based data is an alternative to in-

situ monitoring since large regions of active slow-moving landslide bodies can

be identified and monitored (Lu et al., 2012; Bianchini et al., 2018; Del Soldato

et al., 2019; van Natijne et al., 2020). They provide high spatial and temporal res-

olution datasets. This approach is preferred where in-situ monitoring is scarce

or, in extreme cases, impossible.

Slow-moving landslides research, therefore, includes identifying anomalous

points in their displacement time series (i.e., points indicating changes in the

dynamic of motion) (Raspini et al., 2018), classifying these time series (Cigna

et al., 2012; Berti et al., 2013), and identifying and classifying of ground motion

areas (Bordoni et al., 2018; Raspini et al., 2019). Some studies evaluated the slow-

moving dynamics against the seasonal behavior related to heavy rainfall, litho-

logical composition, and slope geometry, among other variables (Handwerger

et al., 2015, 2019a). These studies usually consist of long-term monitoring to

provide decision-makers with information for the landslide hazard assessment

(Raspini et al., 2019). Research on slow-moving landslides has been limited to

the United States, Europe, and certain parts of Asia Lacroix et al. (2020b), whereas

slow-moving landslides are abundant in the Andes region of South America.

1.1. RESEARCH OBJECTIVE

The main objective of this dissertation is to develop a systematic approach to

identify the onset of accelerations and decelerations, their physical causes, and

the influence of hydrometeorological factors on the landslides near the Mazar

dam and reservoir in southeast Ecuador. Specifically, we address the following

objectives:

1. To perform a hydrogeological characterization of the Guarumales land-

slide at the local scale while considering its broader implications within

the Mazar region;
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2. To develop a new methodology to identify accelerations and decelerations

of slow-moving landslides at the regional scale using InSAR displacement

time series, and apply it on the landslides in the Mazar region;

3. To analyze the detected accelerations and decelerations of the landslides

in the Mazar region and explore the influence of hydrometeorological forc-

ings on the dynamics of the landslides.

This thesis presents an evaluation of the slow-moving landslides in the Mazar

region in southeast Ecuador using data collected for over 20 years in the Guaru-

males landslide and a new method to detect changes in the normal behavior of

the slow-moving landslides around the Mazar reservoir. Then we identify the

timing and frequency of velocity changes in the Mazar reservoir area and inves-

tigate whether they are correlated with hydrometeorological forcings. We used

InSAR displacement time series to identify and inventory the time a landslide

starts to accelerate or decelerate. We then linked these changes to hydrometeo-

rological factors such as rainfall and reservoir levels. A comprehensive approach

to understanding the behavior of slow-moving landslides in Southeast Ecuador

will have positive socio-economic consequences since it can help map and mon-

itor potentially unstable areas before considering urban development. It can also

be used for better urban planning, modeling, and forecasting this hazard.

1.2. RESEARCH OUTLINE

This thesis is organized as follows:

The second chapter, following the introduction chapter, is a case study of a

landslide in the Ecuadorian Andes near the Mazar reservoir in southeast Ecuador.

It summarizes the hydrometeorological factors affecting landslide behavior over

20 years of monitoring. Results show that the current management plan keeps

the landslide relatively stable, with a constant rate of movement.

The third chapter aims to study slow-moving landslides at a regional scale

and proposes a new method to detect accelerations and decelerations of slow-

moving landslides based on InSAR displacement time series. This method was

verified in California in the United States and Mazar in Ecuador. Results show

that the method can reproduce shifts in the constant rate of movement of slow-



1.2. RESEARCH OUTLINE

1

7

moving landslides observed in the field. With this method, we were able to pro-

duce high spatial and temporal resolution data for the monitoring of a large re-

gion.

The fourth chapter applies the method developed in chapter two to the slopes

around the Mazar reservoir. It performs a multiple regression analysis between

the displacement-based data and the hydrometeorological forcings in the area

to identify the most important factors influencing the slow-moving dynamics.

The fifth chapter summarizes the findings of this research and discusses the

relevance, advantages, and disadvantages of the site-scale and regional-scale anal-

yses of the landslides threatening the functionality of the hydropower infrastruc-

tures in southeast Ecuador. The role of the hydrometeorological factors in this

specific context is also analyzed. We finally discuss the limitations and possible

alternatives for a regional follow-up assessment.
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Abstract

The high landslide risk potential along the steep hillslopes of the Eastern Andes in Ecuador

provides challenges for hazard mitigation, especially in areas with hydropower dams and

reservoirs. The objective of this study was to characterize, understand, and quantify the

mechanisms driving the motions of the Guarumales landslide. This 1.5 km2 deep-seated,

slow-moving landslide is actively moving and threatening the “Paute Integral” hydroelec-

tric complex. Building on a long time series of measurements of surface displacement, pre-

cipitation, and groundwater level fluctuations, we analyzed the role of predisposing con-

ditions and triggering factors on the stability of the landslide. We performed an analysis

of the time series of measured groundwater levels and drainage data using transfer func-

tions. The geological interpretation of the landslide was further revised based on twelve

new drillings. This demonstrated a locally complex system of colluvium deposits overly-

ing a schist bedrock, reaching up to 100 m. The measured displacement rates were nearly

constant at ~50 mm/year over the 18 years of study. However, the measurement accuracy

and time resolution were too small to identify possible acceleration or deceleration phases

in response to hydro-meteorological forcing. The groundwater and slope drainage data

showed a lagged response to rainfall. Finally, we developed a conceptual model of the

Guarumales landslide, which we hope will improve our understanding of the many other

deep-seated landslides present in the Eastern Andes.
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2.1. INTRODUCTION

Landslides are the movement of earth down the slope of a hill or mountain.

Gravity is the primary driver of this movement, but water and other factors, in-

cluding anthropogenic influences, may play a role as well (Sidle and Ochiai, 2006).

There are several classification systems that describe the characteristics of the

movement, including timing and predisposing and triggering factors (Sidle and

Ochiai, 2006; Schuster and Fleming, 1982; Hutchinson, 1988; Cruden and Varnes,

1996; Hungr et al., 2001). Apart from the morphological classifications of land-

slides, Brönnimann (2011) proposed a classification system where the hydroge-

ological ‘architecture’ and predisposing conditions for landslide occurrence are

defined by the permeability and degree of saturation of the slope layers. This ap-

proach allows researchers to assess the hydrogeological predisposing conditions

and triggering mechanisms behind specific slope instabilities, and to character-

ize different landslides under the same hydrogeological conditions.

The occurrence of landslides is affected by time-dependent factors. Effec-

tive stress in landslides is controlled by the water content within the slope and

is dynamically linked to slope deformation and progressive failure (Cotecchia

et al., 2011). In several studies, rainfall is identified as the threshold parame-

ter that determines the occurrence of landslides (e.g., Guzzetti et al. (2008)), but

other factors must be considered as well, including antecedent water content,

time-variant geotechnical parameters within the regolith, vegetation cover and

land use, and the tectonic activities around the area (e.g.,Sidle and Ochiai (2006);

Prokešová et al. (2013); Brückl et al. (2013); Bogaard and Greco (2016); Sidle and

Bogaard (2016); Belle et al. (2018)).

Deep-seated landslides require water to accumulate in the landslide body to

initiate movement (either due to rainfall or snowmelt), unless they are triggered

by a seismic event. Acceleration can vary from days to several weeks after a mete-

orological event has happened and the hydrological threshold is reached (Sidle

and Ochiai, 2006) (defined as the condition after which an acceleration of the

slope occurs), when seismicity is not the trigger. Groundwater variation can be

linked to the occurrence of deep-seated landslides, but other factors also affect

movement, including the different geological compositions of the regolith and

bedrock, and the permeability and quality of bedrock (e.g., fractures) (Bogaard



2

12
2. CHARACTERIZATION AND HYDROLOGICAL ANALYSIS OF THE GUARUMALES

DEEP-SEATED LANDSLIDE IN THE TROPICAL ECUADORIAN ANDES

and Greco, 2016).

Landslides in tropical areas have been relatively under-studied compared to

other areas (e.g., Europe, USA). Underlying factors that are essential for landslide

occurrence are permanently present in tropical mountainous areas, including

rainfall throughout the entire year (Loaiza-Usuga et al., 2018) (present in 50% of

the areas around the tropical belt, including Ecuador), tectonic activity, and ero-

sion processes that influence slope geometry and surface conditions leading to

changes in predisposing factors. Additionally, tropical areas are mainly located in

developing countries, where anthropogenic factors such as human settlements,

agriculture, change of land use, and mining are not always adequately planned

and controlled, which may become important factors to consider for landslide

occurrence (Gupta, 2011).

Located in South America, Ecuador is crossed by the Andes mountain range

and is situated in a geo-dynamically active region. The Ecuadorian Andes is

formed by elevated heights (up to ~6000 m; e.g., Chimborazo volcano). Meta-

morphosed Triassic and Jurassic plutons dominate, separated by screens of meta-

morphosed sedimentary and volcanic rocks. The most important structure is

the sub-Andean Fault (major reverse fault), and the Inter-Andean Valley with

Oligocene and Miocene ignimbrites, that obscures the western limit of meta-

morphic rocks that form the Cordillera Real (Spikings et al., 2001). The presence

of faults increases seismic risk, leading to deformation processes of the terrain

(e.g., Baize et al. (2015); Tibaldi et al. (1995)) and aiding the formative phases of

the Ecuadorian Andes (Baize et al., 2015).

Some key reported landslides in the Ecuadorian Andes (i.e., with major eco-

nomical and societal repercussions) include the rotational movements of Pac-

cha in 2004, Guasuntos in 2000, La Josefina in 1993, and debris avalanches in Las

Moras in 1985 (Argentino et al., 2007). Several detailed case studies of landslides

in the Andes showed the importance of land cover and land cover conversion,

e.g., from forest to pasture, on slope deformation in southeastern Ecuador (Guns

and Vanacker, 2013, 2014). Among the predisposing factors that influence land-

slide occurrence, the most common are lithological and hydrogeological con-

formation (Zimmermann and Elsenbeer, 2009), geomorphology (Vorpahl et al.,

2012), volcanic activity, land use and land use change (Guns and Vanacker, 2013;
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Soto et al., 2017), and anthropogenic impacts (Muenchow et al., 2012), while trig-

gering factors include rainfall and seismic activity (e.g., Schuster et al. (2002);

Moreiras (2005); Aristizábal et al. (2017)).

At the transition between the Andes and the low-lying Amazon rainforest,

landslides can be further enhanced by the construction of artificial lakes created

for hydropower production, due to an increased pore water pressure at the toe of

the slope (Schuster, 1979). Approximately 35% of Ecuador’s electricity is gener-

ated from three dams, which form the Paute Integral hydroelectric complex, over

the Paute River. Along two of those reservoirs and their vicinities, researchers

identified twenty-one deep-seated landslides (Robles and Guzmán, 2017). These

landslides pose a critical risk to the communities, the operation of the lakes, and

the surrounding infrastructure.

Guarumales is one of the twenty-one identified landslides located in the Paute

Integral hydroelectric complex and is classified as a deep-seated landslide. Vari-

ous studies have been conducted on the Guarumales landslide (e.g., Cevallos An-

drade (2010); Almeida et al. (1997); Vásconez (2000); López (1995)). However,

detailed research on the long-term hydrological factors that may affect the land-

slide dynamics was not performed prior to this study.

The objectives of this study were to characterize, understand, and quantify

the possible driving mechanisms underlying the Guarumales landslide. Special

attention was paid to predisposing conditions, such as geology/lithology, and

the relationship between the slope acceleration (if any observed), and possible

triggering factors, such as rainfall and subsequent groundwater fluctuations. A

detailed understanding of the Guarumales deep-seated, slow-moving landslide

is expected to shed light on the other landslides around the Paute Integral hydro-

electric complex, which will contribute to a better hazard and risk assessment for

the entire region.

2.2. DESCRIPTION OF THE STUDY AREA

The Guarumales landslide (2°35’ S, 78°30’ W) is a ~1.5 km2 deep-seated landslide

located in the Eastern Andes (Cordillera Real), 110 km from the city of Cuenca.

The altitude at the Paute River basin varies from ~400 to ~4600 m.a.s.l. (Vásconez,

2000). The geology of Ecuador is highly complex since the Andes have grown
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through a combination of events like compression, uplift, intrusion, crustal thick-

ening, and volcanism. In Ecuador, the boundary between accreted terranes and

S American continental crust is unclear (Pratt et al., 2005). However, some mod-

els have been proposed for the evolution of the Cordillera Real. Pratt et al. (2005)

and Spikings et al. (2001) proposed geological models in which new geological

field observations aided in adjusted interpretations of the geological evolution of

the Cordillera Real and the model of autochthonous terrain through the moun-

tain range.

Morpho-structurally, Litherland et al. (1994) established five lithotectonic di-

visions consisting of belts or informal metamorphic terrains such as Guamote,

Alao, Loja, Salado, and Zamora, separated by structural limits represented by

the regional fault systems Peltetec, Baños Front, Llangantes fault, and Cosanga

Mendez fault. Regionally, the Paute Integral hydroelectric complex is located in

the Alao terrain, formed in a middle Jurassic oceanic island arc environment. It

is assumed to be largely covered by extensive Plio-Pleistocene volcanic deposits,

which cover much of the Ecuadorian Andes. Specifically, the hydroelectric com-

plex is located within the Alao Paute Unit and El Pan Unit (as part of the Alao

terrain). The Alao Paute Unit (which is where the Guarumales landslide lies) is

made up of meta-andesites, volcanic agglomerates, tuffs, and green rocks that

have developed pelite and schist facies. The structural features present regional

lineaments and plans of foliation oriented to the NNE-SSW diving towards the

NW (Litherland et al., 1994). A detailed geological map of the region is presented

in Figure 2.1.

Locally, the Guarumales landslide is composed of two litho-stratigraphic se-

quences, as described later in this study. The altitude of the Guarumales land-

slide varies from 1300 to 1700 m.a.s.l. and the slopes range from 0° to >45°, with

an average of 20°. The vegetation is considered as lower mountain rain forest,

with (smaller) trees similar to those in the lowlands. Generally, the buttresses

and stilt roots on trees are infrequent or non-existing (Gupta, 2011; Luteyn and

Churchill, 2000). However, it is observed that, in some locations of the Guaru-

males slope, anthropogenic disturbances have changed the land cover and land

use (e.g., the construction of the electrical corporation of Ecuador (CELEC)’s head-

quarters, irrigation, and cattle grazing on the south of the slope). Other locations
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Figure 2.1: Geological map of the Paute Integral hydroelectric complex

in the Ecuadorian Andes show similar anthropogenic disturbances (e.g., Molina

et al. (2015); Jokisch and Lair (2002)).

The mean annual rainfall is around 3000 mm/year measured at the Guaru-

males station from 2013 to 2018, with a standard deviation of ~200 mm/y. The

Amazonian regime influences rainfall. The wettest season is from April to Au-

gust, with 52% of the rainfall occurring during five months, and the somewhat

drier season is between September and March, with 48% of the rainfall spread

over seven months.

The Guarumales landslide endangers one of the most important hydropower

plants of Ecuador: the Molino hydropower plant of the Paute Integral hydroelec-

tric complex with an installed capacity of 1100 MW. The administrative facili-

ties of Molino are located on the Guarumales landslide, where an average of 250

people live. Most of them are employees of CELEC EP (Electrical corporation

of Ecuador public company). Instrumentation and essential infrastructure are

located on the landslide (Figure 2.2).
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Figure 2.2: Location of the 21 landslides around Mazar and Molino hydropower facilities,
including the Guarumales landslide

2.3. METHODOLOGY AND DATA AVAILABILITY

For this study, three geological cross sections were made in Guarumales: A-A’,

B-B’, and C’-C. These were constructed from data collected during the drilling

campaigns carried out from 2016–2018 and corroborated by historical data be-

fore 2016. Two of the stratigraphic columns used to construct these profiles can

be seen in Figure 2.3. A stratigraphic correlation was used to construct the local

stratigraphic sections.

Data for the surface displacement were from 2001 to 2018 and were collected

monthly using total stations with 6 and 5 s of precision from 2010 to 2015, and

since 2015, respectively, from a fixed reference point located on the opposite

slope (2°34’ S, 78°30’ W). As a result, the spatial coordinates (x, y, z) of 26 fixed

points located on the Guarumales landslide were obtained and labeled as in-

dicated in Table 2.1. The cumulative horizontal displacement per observation

point was determined to evaluate the slope displacement. We determined the

accuracy of the measurements by comparing the residuals (using the total least
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Figure 2.3: Stratigraphic columns for boreholes PPG-1 (a) and PPG-2 (b)

squares method (Golub and Van Loan, 1980)) between the geodetical measure-

ments and the azimuth of movement (for horizontal displacement), to the an-

nual horizontal displacement.

A meteorological station was located south of the landslide (2°34’ S, 78°29’

W), where rainfall and evaporation data were collected daily from 2013 to 2018.

Missing rainfall data were substituted by using the climatological mean of the

day of the missing data, with an error of 4 mm per day (Guerrero, 2018), while

the evaporation was calculated using the Penman–Monteith equation directly

by the sensor using temperature, solar radiation, among other variables.

Groundwater level data were collected manually at 11 piezometers twice per
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month for the period of 2013 to 2018. For this study, 11 piezometers were evalu-

ated (see Table 2.1 for the labels and depth information).

Horizontal drains were drilled and installed in the landslide in 1994, in order

to reduce the groundwater recharge in the slope (Ramon, 1997). In this study,

the analyses were carried out using data from 2013 to 2018. Out of these, 29 were

operational and formed four groups over the landslide, as indicated in Table 2.1.

The drain discharges were measured daily, weekly, and monthly using a gradu-

ated container. Their length varied from ~30 m to ~150 m.

We analyzed how the groundwater levels and drain discharges were affected

by rainfall and reference evaporation (Bakker and Schaars, 2019) using trans-

fer function noise (TFN) modeling as implemented in the Python package Pas-

tas (Collenteur et al., 2019). In general, TFN modeling was used to identify the

different stresses (or forcings) that cause the input time series (e.g., head val-

ues) to fluctuate or respond. Impulse response functions were estimated to ex-

plain a time series (piezometric level and discharge from drains) based on one or

more forcings (rainfall and evaporation) (Collenteur et al., 2019). Outliers in the

groundwater data were identified and removed using the approach of Peterson

et al. (2018) before the analysis.

The electrical conductivity was measured at 18 points once per week since

2018, using a multi-parameter water quality meter (Horiba U-50 series). We sam-

pled 10 points from surface water bodies and 8 representative points from drains

(1–3 per group of drains), as indicated in Table 2.1. Boxplot diagrams were used

to assess the electrical conductivity. These were compared to each other and to

the typical values found in the literature to determine likely water sources.

The Brönnimann classification system (Brönnimann, 2011) was used to pro-

vide a conceptual assessment of the possible hydrogeological mechanisms in-

fluencing mass movement. This system uses the permeability contrast between

slope layers (high and low permeable) and the degree of saturation of the layers

(unsaturated, saturated, and confined). Figure 2.4 shows all possible combina-

tions of these two parameters. The interpretations that come from analyzing the

rainfall, groundwater variations, and drain discharge were linked to the geology

and the spatial distribution of the measured surface displacement of the site.

An overview of the available instrumentation and locations is shown in Fig-



2.3. METHODOLOGY AND DATA AVAILABILITY

2

19

Table 2.1: Instrumentation in the Guarumales landslide used in this study

Monitoring Points Quantity Labels

Surface displacement 26
T4, T18, PEG3, PI3, PI5, PI6, PI9, PI10, PI11,
PI12, S1, S2, S3, T9, T10, T11, T12, T13, T14,
T8, T16, PI7, T17, T19, T20, and PI2.

Piezometric levels
(with the depth of
the borehole)

11

PP4A (43 m deep), PP4B (43 m deep), PEG3
(47 m deep), PI11 1 (44 m deep), PP2A
(77.5 m deep), PP2B (77.5 m deep), PI4 1
(30 m deep), PI3 1 (41 m deep), PI10 1
(40 m deep), PI2 1 (50 m deep),
and PP3A (∼50 m deep).

Horizontal drains 29

Group 1 (5 drains: 1.1, 1.2, 1.3, 1.4, and 1.7),
Group 2 (15 drains: 2.0, 2.1, 2.2, 2.3, 2.4,
2.5, 2.6, 2.10, 2.11, 2.12, 2.14, 2.15, 2.16,
2.17, and 2.18), Group 4 (6 drains: 4.1, 4.2,
4.3, 4.4, 4.5, and 4.6), and Group 6
(3 drains: 6.1, 6.2, and 6.3).

Horizontal drains depth

1.1: 47 m, 1.2: 46 m, 1.3: 53 m, 1.4: 30 m,
1.7: 50 m, 2.0, 2.1: 23 m, 2.2: 29 m, 2.3: 37 m,
2.4: 25 m, 2.5: 21 m, 2.6: 18 m, 2.10: 33 m,
2.11: 12 m, 2.12: 21 m, 2.14: 34 m, 2.15: 27 m,
2.16: 43 m, 2.17: 34 m, 2.18, 4.1: 20 m, 4.2: 19 m,
4.3: 13 m, 4.4: 18 m, 4.5: 16 m, 4.6: 34 m,
6.1: 26 m, 6.2: 28 m, 6.3: 27 m.

Electrical conductivity 18

From surface water bodies (10 locations: CA-1,
CA-3, CA-4, CA-5, CA-11, CA-12, CA-14,
CA-15, CA-16, and CA-17) and from drains
(8 locations: 1.4, 2.0, 2.5, 2.17, 2.18, 4.2, 4.5,
and 6.1)
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Figure 2.4: Hydrogeological classification for landslides, from Brönnimann (Brönnimann, 2011).
Reproduced with permission from Laurent Tacher, Thesis: Effect of groundwater on landslide

triggering; published by EPFL, 2011

ure 2.5.
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Figure 2.5: Instruments available in Guarumales and their location

2.4. RESULTS

2.4.1. GEOLOGY

The Guarumales landslide contained two main litho-stratigraphic units:

Unit 1—Bedrock: Undifferentiated metamorphic rock of Paleozoic–Mesozoic

age, with intercalations of sericitic, chloritic, graphitic, and metavolcanic schists

(shale). This lies below a slip surface composed of grey clay, containing angular

clasts to sub-angles of chloritic, sericitic and graphitic schists.

Unit 2—Colluvium: Overlying the slip surface, a thick (20 to 100 m) heteroge-

neous colluvium layer, consisting mainly of large chloritic, sericitic and graphitic

shale clasts in a clayey silt to silty sand matrix. Furthermore, in the close vicinity

of the Paute river, unsorted (sub-) rounded alluvial deposits were present (see

Figure 2.6).
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Figure 2.6: (a) Geological map of the Guarumales landslide, where two litho-stratigraphic units
were identified. Unit 1: Bedrock, Unit 2: Colluvium, (b) Profile A-A’ indicating the presence of
the bedrock, clayey slip surface (that is located ~100 m deep), and a colluvium layer formed by
shale blocks and silty sandy lenses. An igneous block was also found through the colluvium layer.
Groundwater was present at two levels; one shallow presence that mainly originated in the sandy
silt lens and another deeper (30 to 50 m deep) in the colluvium body. Profiles B-B’ and C’-C are
presented in Figure 2.7 and Figure 2.8.

Figure 2.7: Stratigraphic profile B-B’

Several drilling campaigns were carried out from 2016 to 2018, and these

were corroborated by data from before 2016. In addition to a deep, continuous

groundwater level, a shallow groundwater level was found during the 2016–2018

drilling campaign in boreholes PP2 and PP4, suggesting that a perched ground-

water level existed in a lens of sandy silt matrix, which seemed to link to small

surface water streams present on the Guarumales slope (see Figure 2.6). Within

the colluvium layer of profile A-A’, a large igneous block was found, possibly asso-

ciated with the granodioritic body of Amaluza (pluton of the Eocene age) (Lither-

land et al., 1994). This unit is present along the Paute river, in the lower part of

the basin.
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Figure 2.8: Stratigraphic profile C’-C

2.4.2. SURFACE DYNAMICS

Survey campaigns in Guarumales take place once per month, but there are in-

terruptions due to weather conditions resulting in an average of eight measure-

ments per year with a minimum of three measurements per year at the 26 geode-

tical observation points. There are two zones with distinct movement. Zone 1

(red dashed line in Figure 2.5) is located in the lower part of the landslide (N-W)

and represents the fastest movement with horizontal velocities that can go up to

210 mm/year. Zone 2 (yellow) represents the rest of the slope where the hori-

zontal velocities typically range from 30 to 60 mm/year and up to 150 mm/year

(Figure 2.9a). The cumulative yearly horizontal displacement is plotted in Fig-

ure 2.9b.

Figure 2.9: The horizontal displacement velocity of 26 geodetical observation points in Guaru-
males for 18 years, indicating Zone 1 (red, higher velocity) and Zone 2 (yellow, lower velocity. (a)
Boxplots, (b) Cumulative horizontal displacement
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The overall direction of the movement in all 26 points was northwest, with an

azimuth that varied from 250 to 330 degrees (see Figure 2.2). The direction and

magnitude of the velocity vectors of all individual observation points along the

horizontal plane are presented in Table 2.2 and Table 2.3.
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The annual horizontal velocity of all 26 observation points is presented for

each year in Figure 2.10a. On average, the velocity was around 50 mm/year,

which mostly corresponded to the behavior of zone 2. The higher displacement

rates (expressed here as outliers) corresponded to observation points in zone 1

with velocities up to 200 mm/year in some years. In 2013, the velocities ranged

from 0 to 150 mm/year with no anomalies that corresponded to Zone 1. In Fig-

ure 2.10b, a plan view of the evolution of the horizontal movement over 18 years

is shown for PI3. It is clear that in 2013, there was a dramatic shift in the dis-

placement; however, the effect vanished after one or two years, as the movement

returned to a northwest direction.

Figure 2.10: (a) Boxplots of the average annual horizontal displacement velocity of 26 geodetical
observation points for 18 years. (b) Plan view of the evolution of the horizontal movement from
2001 to 2018, with the respective trendline for observation point PI3

The residuals between the observed locations and the trendline (i.e., the az-

imuth of movement for the horizontal coordinates), as in Figure 2.10b for PI3,

were calculated. These results were compared to the average horizontal dis-

placement per year to obtain the normalized residuals. This revealed that the

residuals for zones 1 and 2 were ~1.7 and ~3.5 (up to six) times the average yearly

displacement, respectively. To determine a reliable displacement and velocity,

it was necessary to average at least 2–3 years of data to overcome the residuals.

This can be seen in Figure 2.11 and Figure 2.12.
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Figure 2.11: Residuals compared to the horizontal annual average displacement for the 26
geodetical observation points

2.4.3. HYDRO-METEOROLOGICAL ANALYSIS

The hydro-meteorological data are summarized in Figure 2.13. The mean annual

rainfall was around 2937 mm per year. The years 2015 and 2013 were the wettest

and driest years, with 3144 mm and 2607 mm of rainfall, respectively. The mean

monthly rainfall ranged from 237 mm/month to 470 mm/month (Figure 2.13a).

The wet season occurred from March to July. During the dry season, the lowest

recorded monthly rainfall was 25 mm/month. The rainfall and discharge from

the drains increased during the wet season (Figure 2.13a,c), while the evapora-

tion increased during the drier season (Figure 2.13b). A time lag was always ob-

served between the groundwater level rise (here for PP4A, depth: 43 m) and the

rainfall.
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Figure 2.12: Plan view of the residuals compared to the annual average displacement in
Guarumales

We analyzed the response of the groundwater levels to rainfall and evapo-

ration. We applied transfer function noise modeling with response functions

using the Python package Pastas (Bakker and Schaars, 2019; Collenteur et al.,

2019). First, we attempted to analyze the measured groundwater levels using

rainfall and reference evaporation as stresses (forcings). The results of the analy-

sis showed that evaporation did not have a significant effect on groundwater lev-

els, and the estimated parameters had high uncertainty. Next, the groundwater

levels were analyzed with rainfall as the only stress causing groundwater fluctu-

ations. The results were almost identical regarding Coefficient of Determination

R2, and the parameters were estimated with much less uncertainty.

All 11 piezometers were analyzed, and three of them (PP2A, PP3A, and PP4A)

showed a R2 higher than 0.65, indicating that measured groundwater levels in

these piezometers could be analyzed reasonably well using rainfall as the only

stress. The resulting response functions for these three piezometers are shown

in Figure 2.16.
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Figure 2.13: Time series of the (a) monthly rainfall, (b) monthly reference evaporation, (c) to-
tal discharge from 29 drains, and (d) piezometric level from the piezometer PP4A for the period
2013–2018. The shaded area indicates the rainy season. Time series plots for the ten remaining
piezometers and the individual 29 drains are shown in Figure 2.14 and Figure 2.15.

The impulse response represents the response of the groundwater level to

an instantaneous recharge event of 1 mm/day (Figure 2.16a, dashed lines). The

response time is defined here as the time when the impulse response reaches a

peak, which represents the time lag between the rainfall event and the maximum

groundwater response. The optimal value of the response time was estimated to-

gether with a 95% confidence interval. The peak response in PP2A was ~0.005 m,

and the response time (time lag of the peak) was ~16–31 days. The peak response

in PP3A was 0.008 m after ~1–12 days, and the peak response in PP4A was ~0.01

m after ~5–13 days.
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Figure 2.14: Time series plot of 11 groundwater observation points. Of the 11 piezometers, only 3
had meaningful results in the time series analysis. Out of the 11, 10 showed significant
fluctuations; however, those could not be linked via the (simple) time series analysis to
meteorological forcing. However, the fluctuations were in the same order of magnitude.

The step response represents the level to which the head rises in response

to a continuous recharge of 1 mm/day (Figure 2.16b). The time it takes for the

response to reach its plateau is called the memory of the system. Inversely, the

memory of the system represents the time it takes for the effect of an impulse of

rain to vanish. The optimal value of the memory was estimated together with a

95% confidence interval. In PP2A, the step response leveled off at ~0.35 m, and

the memory was ~71–147 days. In PP3A, the step response leveled off at ~0.5 m

after ~59–221 days, and in PP4A, the step response leveled off at ~0.35 m after

~41–76 days.

The same procedure was applied to the 29 drains located on the slope, and

we attempted to analyze the measured discharge using time series analysis and

rainfall as the stress. Discharge from individual drains was difficult to analyze,

likely due to the relatively low discharge rates of the individual drains. Next, we

attempted to analyze the cumulative discharge of each group of drains (groups

1, 2, 4, and 6 in Figure 2.5). The analysis for groups 2 and 4 resulted in a R2 value

larger than 0.65, indicating that cumulative drain discharge could be analyzed

reasonably well using rainfall as the only stress. The impulse response functions

for the drain discharge are shown in Figure 2.16a (continuous lines). Not surpris-
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Figure 2.15: Time series plot of 29 monitored drains

ingly, the drain response was faster than the groundwater response. A response

of 0.5 L/min and a response time of ~2–5 days was obtained for Group 2 (DG2),

while a response of 0.25 L/min and a response time of ~1–4 days was obtained

for Group 4 (DG4).

The electrical conductivity was tested in 18 locations across the slope and is

shown in Figure 2.17. Values from the samples collected from the surface water

bodies and drains were similar, ranging from ~20 µs/cm2 to ~90− 100 µs/cm2

(see Figure 2.5). These values are typical for rainfall water. The variation of the

electrical conductivity values was larger in the surface water bodies than in the

drains.
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Figure 2.16: The impulse responses (a) for piezometers PP2A, PP3A, and PP4A, and drain groups 2
(DG2) and 4 (DG4); and the step responses (b) for piezometers PP2A, PP3A and PP4A

Figure 2.17: The electrical conductivity for 18 observation points in the slope for the period
July–December/2018

2.5. A HYDROGEOLOGICAL CONCEPTUAL MODEL OF GUARU-

MALES SLOPE

Guarumales is a deep-seated landslide in a local complex geological setting. Here,

we use the Brönnimann classification system to interpret the hydrogeological

characteristics of the slow-moving landslide (Figure 2.4). Based on all observa-

tions, we simplified the landslide in a two-layer slope composed of a relatively

permeable and mainly unsaturated colluvium layer and a low permeable, satu-

rated bedrock layer with a 1–3 m thick weak layer acting as slip surface between

the colluvium and the bedrock. Furthermore, we observed a delayed but distinct
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correlation between the rainwater input and groundwater response of the un-

confined aquifer in the slope. The heterogeneous nature of the colluvium and

bedrock layers, highly fractured and weathered in some locations while intact in

others, added complexity, including local perched water tables. Lastly, we found

that the drains in the slope did not tap into the deeper groundwater system but

drained the perched areas of the otherwise unsaturated top layer. This places the

Guarumales slope in hydrogeological class B1 (see Figure 2.4), mainly influenced

by local infiltration and percolation processes, free-draining into the Paute river

at the toe of the slope, and with limited influence from the deep regional ground-

water flow (Figure 2.18).

Figure 2.18: Conceptual model of the Guarumales landslide. There is a deep permanent ground-
water level that varies around the slip surface, with scattered perched groundwater systems in silty
sandy lenses underlaid by low permeable blocks. The Guarumales slope is an unconfined system,
which means there is no pressurized water and very limited upward flow of water. There are 29 hor-
izontal drains, which do not reach the deep groundwater systems but drain small perched water
bodies in the slope, which are fed by rainfall, as also evidenced by the very low electrical conduc-
tivity of the drained water

In terms of comparing the displacement to hydro-meteorological factors, we

concluded from the data shown in Figure 5b that no seasonal signal in the dis-

placement could be determined due to the coarse time resolution and measure-

ment error, which means that no relation could be established between the rain-

fall and displacement at this stage.
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2.6. DISCUSSION

In this study, we analyzed the role of predisposing conditions and triggering fac-

tors on the stability of the Guarumales landslide. Eighteen years of displacement

measurements showed that the yearly surface displacement rates were constant

over time. While rainfall was shown to strongly influence the unconfined ground-

water system with a ~1–31 days response time, no monthly variations in the hor-

izontal displacement rates were observed with our displacement data. There

were some areas where secondary shallow landslides and debris flow happened

on top of the deep-seated, slow-moving landslide, and these were intensified

during high-intensity rainfall, blocking small streams and roads in Guarumales

(Vásconez, 2000). These movements occurred on a short time scale and could

not be detected by the current monitoring system. Therefore, it was not possible

to link this behavior to the proposed triggering factors.

The slow-moving behavior of the Guarumales landslide and its spatial dis-

tribution showed a constant annual deformation rate over 18 years, based on

(bi-) monthly surveys. This was also reported by others (ECUAELECTRICIDAD,

2000a,b; Robles, 2000; CELEC-EP, 2011; Villacis and Robles, 2015; Robles et al.,

2016). However, the limited subsurface information did not allow for detailed

geological or geotechnical interpretation of the spatially distributed character of

the Guarumales landslide. The deformation patterns did not link with the mea-

sured groundwater levels. The different compositions of the lithology and the

depths of the slip surface (30 to >90 m) may influence the movement patterns of

the slope. Therefore, geophysical monitoring in Guarumales could be a useful

tool to identify subsurface structures.

Two additional limitations were identified with the 18 years of geodetical

data. First, the limited temporal resolution of, on average, eight measurements

per year, was insufficient to identify small accelerations and decelerations of

surface displacement following the groundwater response to rainfall, if present.

This is especially important as our analyses showed that groundwater fluctua-

tions were correlated with rainfall with a response time of the maximum head

after rainfall of ~1 to 31 days, and an increased head that lasted ~40 to 220 days.

Second, the geodetical accuracy (1–5 cm) was low compared to the measured

displacement (1 to 10 cm/year), which complicated the interpretation of the re-
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sults. For most of the landslide, multi-annual displacement was required to as-

sess the displacement magnitude and direction, which made it impossible to link

the displacement to potential driving processes such as specific rainfall periods.

To unravel the transient behavior of the Guarumales landslide, we need higher

frequency and more accurate displacement measurements, which may be ob-

tained with real-time kinematic global positioning systems (RTK-dGNSS).

In 2013, a shift in the direction of movement was found in all surface moni-

toring points in Guarumales. What influenced this directional shift is not clear.

The cause could be related to a displacement of the fixed reference point on the

other side of the valley from where the geodetical measurements were taken. Al-

ternatively, it could be related to high seismic activity in the study area where the

number of seismic events (115), with a magnitude above 4 Mb (body-wave mag-

nitude), was higher in 2013 than in other years (Córdova et al., 2014). The addi-

tional lateral forces would have weakened the soil by reducing its shear strength.

Additionally, an alteration of the drainage system at the toe of the landslide through

the reinforcement of an existing retaining wall was conducted in 2013, which

may have resulted in a temporary direction shift of the overall movement. The

excess of water that built up at the toe of the slope was unable to drain properly,

and this groundwater accumulation, which was evidenced in the springs found

at the toe of the slope, decreased the stability of the slope. After the modification

of the retaining walls, water may have found a new way to drain towards the river,

resulting in a normalization of the movement to the north-west direction.

The 2016–2018 drillings revealed that the slip surface of the Guarumales land-

slide was situated between 30 m and >90 m below the ground surface. This is

deeper than was reported previously (Vásconez, 2000; Charpentier, 1996; Vas-

conez and Vasconez, 2001) based on the analysis of inclinometer data from eight

inclinometers located in the landslide, in the periods of 1994–1996, 1994–1998,

and 2000–2001, respectively. Recent explorations revealed that large blocks (~20

m in diameter), abundantly present in the colluvium layer, were mistakenly con-

sidered as bedrock. This misunderstanding led to relatively shallow drillings, and

inclinometers were installed with their lowest point fixed in the moving block in-

stead of in the stable bedrock, which compromised the inclinometer results.

The observed groundwater level fluctuations of ~0.6 m to ~4 m at Guaru-
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males were small compared to the depth of the slip surface (~30 m to >90 m).

With a groundwater depth of 30 m, a 1 m groundwater level rise equals a rel-

ative increase in pore pressure of 1%, which has a limited effect on the overall

slope movement. Hydrologically, a 1-m groundwater level rise is equivalent to

10–100 mm of groundwater recharge (assuming an effective porosity of 1–10%).

This was the order of magnitude of groundwater recharge in deep-seated land-

slides observed by others (Prokešová et al., 2013; Malet et al., 2003; Vallet et al.,

2015). This behavior was observed during the six years of groundwater monitor-

ing when the landslide movement did not change its annual displacement rate.

We analyzed groundwater heads at three observation points, with rainfall as

a driving force. The response time for PP3A and PP4A was shorter than for PP2A,

while the memory of the system for all three wells was similar, where PP4A had

a slightly shorter memory. It was not possible to analyze the measured heads

with a time series analysis at all observation points. One reason may be that the

applied approach was linear, which may be insufficient for deep groundwater

levels, where non-linear effects may be important (Collenteur et al., 2019).

Groundwater observations could not be analyzed with time series analysis in

eight of the eleven piezometers. Time series analysis was carried out using rain-

fall as the only driving force and approximating the system as linear (i.e., twice

the rainfall results in twice the rise in head). This approach was not adequate

when the response to rainfall was non-linear in, for example, fractured and fis-

sured rock formations. Some of the measured heads showed unexpected jumps,

which could not be explained physically and were likely related to instrument

handling issues (PEG3, PP2B). Other measured heads showed only very small

variations over the entire measurement period (PI10, PP4B), which may indicate

the possible presence of clogged screens (Hencher, 2010) or that the piezome-

ter was screened in a layer of very low permeability. These responses come from

boreholes that were meant to host inclinometers, but they were adapted to pro-

vide piezometric level measurements. As the installation was not optimal, this

could have resulted in limited connection to the groundwater body (perched or

deep), and the readings will have a larger uncertainty (due to the inconsistencies

in the installation of pipes or screens within the borehole). Instead, they were

considered as indicative for possible follow-up installation of piezometers, not
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for detailed groundwater monitoring.

An interesting aspect is the limited functioning of the 29 horizontal drains. In

1998, the drains produced only 20% of the water initially discharged in 1994 (Vás-

conez, 2000); this is ~12% of the annual rainfall, compared to an initial yield of

~56% of the annual rainfall. Since the groundwater heads started to be collected

sometime after the installation of the drains, the effect of drainage could not be

detected in the groundwater observations. Nevertheless, time series analysis re-

vealed that if the drains were not 12% of the total annual rainfall, the groundwa-

ter recharge would increase by ~1 mm/day. The additional recharge would cause

a rise in the groundwater level of up to ~0.5 m in wells PP2A, PP3A, and PP4A.

This was concluded from Figure 2.16b, where the step response due to a con-

stant recharge of 1 mm/day resulted in a groundwater level rise of ~0.3 to ~0.5

m. The drains did not reach the deep groundwater systems but drained small

perched water bodies within the soil fed by rainfall. This was confirmed by the

electrical conductivity results at the drains, which were similar to the electrical

conductivity values of rainfall.

The Brönnimann classification system allowed us to simplify the Guarumales

landslide to a two-layer system, separated by a slip surface (~30 to >90 m deep).

This helped with interpreting the conceptual model where the bottom layer (schist

bedrock) was permanently saturated, and the colluvium layer was unsaturated.

The permeability of the slope was heterogeneous. Highly weathered material

and relatively intact material were found in the slope during the drilling cam-

paigns in both the bedrock and colluvium. We found perched groundwater in

the slope, as well as deep/permanent groundwater. Infiltration from rainfall and

a regional groundwater system were their main sources

2.7. CONCLUSION

The objective of this study was to characterize, understand, and quantify the

mechanisms interfering with the stability of the Guarumales landslide. Special

attention was paid to the role of predisposing conditions and possible triggering

factors, such as rainfall and groundwater fluctuations. We showed that the move-

ment of the landslide was continuous on an annual timescale, both in the di-

rection and horizontal displacement rate, and there were no significant changes
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over the last 18 years. Faster movement was found at the toe of the slope where

clayey silt lenses, silty sand lenses, and springs were common. A detailed re-

sponse of the displacement rate to pore pressure changes, if any, could not be

determined as the surface displacement records were not detailed enough.

A conceptual model was developed for the Guarumales landslide. Shallow

perched groundwater levels were located in clayey silt and silty sand lenses, which

were part of the permeable and mainly unsaturated colluvium layer. The collu-

vium layer contained blocks of highly fractured shales, overlying a largely sat-

urated unconfined bedrock layer. This agreed with the heterogeneous nature of

the slope, which included both highly fractured material and intact material. The

unconfined groundwater system is responded with a ~1 to 31 day response time

to rainfall forcing on the piezometers PP3A, PP4A, and PP2A, at depths of ~30,

~40, and ~47 m, respectively. The pore water fluctuations were too small to have

a significant effect on the landslide movement. The existing drainage did not

reach the deep groundwater system. The system only drained small perched wa-

ter bodies fed by rainfall, as evidenced by the quick response of drain discharge

to rainfall, and the low values of electrical conductivity of the drained water.

Future work should be aimed at investigating whether pore water fluctua-

tions in the Guarumales landslide have a significant effect on fluctuations in

the landslide movement. This would require the collection of displacement and

groundwater level data with higher spatio-temporal accuracy and resolution by

using remote sensing or real-time kinematic global positioning systems (RTK-

dGNSS) acquisitions.





3
A NEW METHOD TO DETECT

CHANGES IN DISPLACEMENT RATES

OF SLOW-MOVING LANDSLIDES

USING INSAR TIME SERIES

This chapter is based on: Urgilez Vinueza, A., Handwerger, A.L., Bakker, M. et al. A new method
to detect changes in displacement rates of slow-moving landslides using InSAR time series. Land-
slides 19, 2233–2247 (2022). https://doi.org/10.1007/s10346-022-01913-8

41



3

42
3. A NEW METHOD TO DETECT CHANGES IN DISPLACEMENT RATES OF

SLOW-MOVING LANDSLIDES USING INSAR TIME SERIES

Abstract

Slow-moving landslides move downslope at velocities that range from mm year−1 to m

year−1. Such deformations can be measured using satellite-based synthetic aperture radar

interferometry (InSAR). We developed a new method to systematically detect and quantify

accelerations and decelerations of slowly deforming areas using InSAR displacement time

series. The displacement time series are filtered using an outlier detector and subsequently

piecewise linear functions are fitted to identify changes in the displacement rate (i.e., ac-

celerations or decelerations). Grouped accelerations and decelerations are inventoried as

indicators of potential unstable areas. We tested and refined our new method using a high

quality dataset from the Mud Creek landslide, California, USA. Our method detects accel-

erations and decelerations that coincide with those previously detected by manual exam-

ination. Second, we tested our method in the region around the Mazar dam and reservoir

in Southeast Ecuador, where the time series data were of considerably lower quality. We

detected accelerations and decelerations occurring during the entire study period near and

upslope of the reservoir. Application of our method results in a wealth of information on

the dynamics of the surface displacement of hillslopes and provides an objective way to

identify changes in displacement rates. The displacement rates, their spatial variation,

and the timing of accelerations and decelerations can be used to study the physical be-

havior of a slow-moving slope or for regional hazard assessment by linking the timing of

changes in displacement rates to landslide causal and triggering factors.
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3.1. INTRODUCTION

In chapter 2, we characterized and performed a hydrological analysis of the deep-

seated, slow-moving Guarumales landslide. This case study revealed the com-

plexity of the hydrogeological processes in Guarumales and the limitations of

the in-situ monitoring of slope deformations. Considering these results in the

analysis of the slow-moving landslides in the Mazar region is imperative.

Both in-situ and remote sensing approaches can be used to monitor slow-

moving landslides. In-situ approaches include the Global Navigation Satellite

System (GNSS) (Mulas et al., 2018; Notti et al., 2020), terrestrial laser scanners

(Rosser et al., 2007; Aryal et al., 2012; Booth et al., 2018; Huang et al., 2019), incli-

nometers (Lollino et al., 2018) and extensometers (Klimeš, 2018). Remote sens-

ing approaches include Light Detection and Ranging (lidar) (Mackey and Roer-

ing, 2011; Pirasteh et al., 2018; Jaboyedoff and Derron, 2020), interferometric syn-

thetic aperture radar (InSAR) (Strozzi et al., 2005; Handwerger et al., 2013; Bayer

et al., 2018; Dai et al., 2020), and optical remote sensing (Bennett et al., 2016;

Lacroix et al., 2020a). While the highest data quality comes from in-situ measure-

ments, these are limited to single locations within a landslide, can be challenging

to install and maintain (especially in remote regions), and as a result, fail to cap-

ture large-scale spatial and temporal changes in landslide behavior. Therefore,

satellite-based data present advantages when identifying and monitoring large

regions of active slow-moving landslides (Lu et al., 2012; Bianchini et al., 2018;

Del Soldato et al., 2019; van Natijne et al., 2020).

Satellite-based InSAR data have been used to monitor slow-moving land-

slides for several decades. Long-term monitoring provides the opportunity to

use cumulative displacement time series to detect changes in the motion of a

landslide (Cigna et al., 2012; Berti et al., 2013; Raspini et al., 2018) or to detect

landslides over broad areas (Bordoni et al., 2018). To better understand landslide

processes, these prior studies have focused on displacement time series evalua-

tion in comparison to external triggering factors such as rainfall. The approach

proposed in this chapter similarly focuses on long-term kinematic changes and,

in addition, expands on prior work by incorporating the spatial variation and

timing of such changes at a regional scale. This is a step forward for the regional

evaluation of landslides, in particular, more broadly constraining landslide dy-



3

44
3. A NEW METHOD TO DETECT CHANGES IN DISPLACEMENT RATES OF

SLOW-MOVING LANDSLIDES USING INSAR TIME SERIES

namics, physical behaviors, and trigger responses.

This chapter presents a method to detect, quantify, and inventory changes

in the surface displacement rate of slowly deforming areas, such as landslides,

across regional scales. Our method uses InSAR displacement time series to iden-

tify slowly deforming areas and detect the moment that a deforming area begins

to accelerate or decelerate. All identified accelerations and decelerations are an-

alyzed and inventoried to determine the timing and location of changes in the

displacement rate of potential unstable areas. We first test and refine our new

approach as a proof of concept at the well-studied and analyzed Mud Creek land-

slide on the Big Sur coast, California, USA. Then, we apply our method to a regu-

lar, unscreened data set along a reservoir upstream of the Mazar Dam, Ecuador.

3.2. INSAR METHODS

3.2.1. INSAR PROCESSING FOR BIG SUR, CALIFORNIA

For the California case study, we examined published InSAR time series from

Handwerger et al. (2019b). This time series was made using data acquired by

the Copernicus Sentinel-1 A/B (S1) satellites. These data are freely available and

are provided by the European Space Agency (Desnos et al., 2014). The S1 satel-

lites operate with a C-band (5.6 cm) radar wavelength and acquire data with a

minimum acquisition interval of 6 days at a given location. Data are collected

in ascending (flying north and looking east) and descending (flying south and

looking west) flight geometries.

Handwerger et al. (2019b) processed data from descending track 42 between

March 2015 and May 2017 and applied corrections to their InSAR data by using

a scalable deformation model to reduce and correct unwrapping errors. They

also manually removed poor quality interferograms before performing the time

series inversion. These two steps were important for creating a high quality In-

SAR dataset that was used to reveal complex landslide motions. Yet this type of

data correction is time consuming and challenging and is therefore infeasible for

regional investigations that may consist of tens to hundreds of landslides and

hundreds or thousands of interferograms. For the full InSAR processing details

and analyses, please see Handwerger et al. (2019b).
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3.2.2. INSAR PROCESSING FOR SOUTHEAST ECUADOR

To identify and monitor active landslides near the Mazar Dam, Ecuador, we con-

structed differential interferograms from InSAR data collected by S1 satellites.

We processed the S1 data acquired in the Interferometric Wide (IW) swath mode,

which has a 250 km wide swath and a pixel spacing size of ~2.3 m in the looking

(i.e., range) direction and ~15.6 m in the along-flight (i.e., azimuth) direction. We

processed 966 interferograms using the Jet Propulsion Laboratory (JPL) InSAR

Scientific Computing Environment (ISCE) software package (Rosen et al., 2012).

Our processing strategy was to construct interferogram pairs with two nearest

neighbors. We processed 495 interferograms on ascending track 18 (T18A) and

471 interferograms on descending track 142 (T142D). All of the interferogram

pairs used in this study are listed in Online Resources (ESM) 1 and 2 (Urgilez Vin-

ueza et al., 2022). To geocode the data and remove topographic phase contribu-

tions, we incorporated a ~30 m DEM from the Shuttle Radar Topography Mission

(SRTM) into our processing (Farr et al., 2007). To reduce noise, we multi-looked

the interferograms by taking 9 looks in the range direction and 2 looks in the

along-flight direction and applied a standard power spectral filter with a value

of 0.5 (Goldstein and Werner, 1998). Finally, we quantified the time-dependent

behavior of active landslides by constructing time series with the open-access

Miami InSAR time-series software in Python (MintPy) (Yunjun et al., 2019). More

specifically, we used the Small Baseline Subset (SBAS) technique (Berardino et al.,

2002) weighted by the inverse of phase covariance (Tough et al., 1995; Guarnieri

and Tebaldini, 2008; Yunjun et al., 2019). We applied a coherence threshold mask

and dropped noisy pixels with a coherence of less than 0.4. We also corrected

for tropospheric delay using ERA5 data from the European Center for Medium-

Range Weather Forecasts (ECMWF) (Jolivet et al., 2011, 2014). To reduce long-

wavelength noise, we selected a local stable reference point near the active land-

slides. The additional InSAR processing steps (i.e., unwrapping error corrections)

performed by Handwerger et al. (2019b) for the case of the Mud Creek landslide

were not implemented for the Ecuador case study because our goal was to de-

velop and test a InSAR processing strategy that does not require individual cor-

rections such that it can be applied to regional landslide detection and monitor-

ing. The final result is a time series of cumulative displacements measured along
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the satellite line-of-sight (LOS) for each pixel.

3.3. METHODOLOGY FOR THE DETECTION OF ACCELERATIONS

AND DECELERATIONS

We developed a method to identify and quantify changes in the displacement

rate over time of slowly deforming areas by evaluating the InSAR cumulative de-

formation time series of each pixel in our study areas. We assume that the de-

forming areas identified with InSAR are slope movement, but they could also

be related to deforming structures in the area. Ultimately, we do not expect In-

SAR signals based on anything else than surface displacement. Our method con-

sists of four steps (Figure 3.1). First, we select pixels in the area of interest that

show a significant movement (subsection 3.3.1). Second, we perform outlier de-

tection on the time series of each selected pixel (subsection 3.3.2). Third, we

fit a piecewise-linear function model to each selected cumulative displacement

time series to identify accelerations and decelerations (subsection 3.3.3). Fourth,

we perform a spatial analysis on the detected accelerations and decelerations by

identifying neighboring pixels with similar accelerations and decelerations (sub-

section 3.3.4). Our final result is a monthly inventory of the change points in the

displacement time series corresponding to accelerations and decelerations. This

information can be used to identify and monitor active slow-moving landslides

and other localized ground deformations.

3.3.1. PIXEL SELECTION

The pixel selection is performed by analyzing the InSAR data in the area of inter-

est. To identify the areas that most likely represent slope movement, we define

our selection criterion based on the magnitude of the movement of pixels. We

select pixels that exhibit the largest magnitude of displacement, above a speci-

fied percentile, for further analysis. It is recommended that the selected thresh-

old percentile includes the largest displacement magnitude pixels without in-

cluding noisy pixels (i.e., isolated pixels that are not likely representing slope

movement). A lower threshold may include such isolated pixels, while a larger

threshold would avoid noisy pixels, but it would also exclude pixels that belong
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Figure 3.1: Flow chart showing the workflow of the method and the relationship among the steps
involved

to potential deforming areas. A preliminary inspection of the data results in a

balanced threshold selection. The selected pixels for the case studies in Califor-

nia and Ecuador are presented in subsection 3.4.1 and subsection 3.5.1.

3.3.2. OUTLIER DETECTION

The cumulative displacement time series from the InSAR data may contain out-

liers, and we use the Hampel method (Pearson, 2005, 2011) to identify them. The

Hampel method uses a sliding window that scans the data and identifies an out-

lier when a data point differs from the median in the sliding window by a speci-

fied number of standard deviations. The sliding window is the window size (W)

on each side of the evaluated point, so the total sliding window size is 2W + 1. The

value of the window size is based on the temporal sampling of the InSAR data.

Datasets with a lower temporal sampling require a smaller window size to avoid
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including more than one season in the sliding window. A higher temporal sam-

pling allows a larger window size. A lower number of standard deviations results

in a stricter filter and in the identification of more outliers, while a higher number

of standard deviations results in a coarser filter and fewer outliers. All identified

outliers are removed from the time series. Outlier detection is applied to the case

studies in California and Ecuador in subsection 3.4.2 and subsection 3.5.2.

3.3.3. MODEL FITTING, EVALUATION, AND SELECTION

After the outliers are identified and removed, a piecewise linear function is fit-

ted to each cumulative displacement time series. A piecewise linear function

consists of a number of straight segments where the slope of each segment rep-

resents a period of movement at a constant velocity. The specific time at which

the slope (i.e., velocity) of the linear segment changes is called a breakpoint, and

these breakpoints represent the timing of a change in velocity resulting from an

acceleration or deceleration. We apply the PWLF Python package (Jekel and Ven-

ter, 2019), which was developed to fit continuous piecewise linear functions, pro-

vided that the number of breakpoints is specified.

We fit multiple piecewise linear function models to each time series. Each

model has m breakpoints, where m ranges from 1 to the maximum number of

breakpoints. Model m has 2m+2 parameters: m breakpoints, m+1 slopes, and an

intercept. The maximum number of breakpoints may be set based on the time

span of the dataset and the expected maximum number of accelerations and de-

celerations in a given time frame. For example, in regions where landslides have

documented seasonal velocity changes related to wet and dry seasons, we expect

two breakpoints (1 acceleration and 1 deceleration) per year (e.g., Handwerger

et al. (2019b); Bayer et al. (2018)).

The InSAR displacement time series indicate deformation in the LOS direc-

tion and can be positive or negative (depending on the direction of motion rela-

tive to the satellite look direction). In order to simplify the analysis, we converted

the negative LOS values to positive LOS values since our objective is to detect

changes in the time series. Yet, the piecewise linear fit may return sections with

negative slopes that correspond to motion with a LOS direction that is opposite a

landslide’s downslope motion. For landslides, we assume they are always moving
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in the same downslope direction within the period of study and there is no obvi-

ous physical explanation as to how the sign of the LOS can switch from positive to

negative (or vice versa) during a short sliding period. Therefore, we assume neg-

ative slopes are a result of inversion or unwrapping errors and remove linear fits

with negative slopes unless it is the first or last segment. In this latter case, slopes

with LOS opposite of the downslope direction are likely an artifact of a limited

number of data points when breakpoints occur near the beginning or end of the

time series.

Next, each estimated breakpoint is evaluated using two criteria: the uncer-

tainty of the breakpoint, referred to as the breakpoint criterion, and the esti-

mated confidence intervals of the slopes of the segments on the two sides of

each breakpoint, referred to as the slope criterion. The breakpoint criterion is as-

sessed by evaluating the standard error of the estimated timing of the breakpoint.

The standard error of the estimated breakpoint must be lower than a predefined

threshold, which is set based on the temporal sampling of the InSAR data. The

slope criterion considers the confidence intervals of the slopes of two consecu-

tive segments in a model. We estimated the 95% confidence interval of a partic-

ular slope as ±1.96 times the standard error of the estimated slope. A change in

slope is considered significant when the confidence intervals of two consecutive

slopes do not overlap.

All models that meet the breakpoint and slope criteria are further evaluated

using the Akaike Information Criterion (AIC) to determine the optimal number

of breakpoints. The AIC criterion is used to assess the overall fit of a model and

penalizes for the number of estimated parameters, which prevents overfitting

(Burnham and Anderson, 2004). The AIC is computed as:

AIC = n ×
[

ln
SSR

n

]
+2k (3.1)

where SSR is the sum of squared residuals, n is the number of data points, and

k is the number of parameters (Burnham and Anderson, 2004). A smaller AIC

indicates a better model fit. The model with the optimal number of breakpoints

has the lowest AIC. Model fitting, evaluation, and selection is applied to the case

studies in California and Ecuador in subsection 3.4.3 and subsection 3.5.3.
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3.3.4. SPATIAL ANALYSIS: DETECTION OF ACCELERATIONS AND DECELERA-

TIONS

After the breakpoints (i.e., points of acceleration/deceleration) are identified, a

monthly spatial analysis is performed. Because of the uncertainty in the esti-

mated timing of a breakpoint, a breakpoint is partly counted in the month of

the estimated timing and partly in the months before and after. The distribution

across the three months is based on the estimated standard error of the break-

point as follows. A breakpoint is assigned to the middle of a month, and the prob-

ability that it occurs in that month is estimated using a Normal distribution with

the estimated standard error as the standard deviation. The remaining prob-

ability (i.e., the probability that the breakpoint doesn’t occur on the estimated

month) is distributed equally over the months before and after. As a result, the

number of accelerations or decelerations in a month is not an integer, and the

total number of accelerations and decelerations sums to the total number of de-

tected breakpoints.

Finally, a spatial analysis is performed to identify neighboring pixels exhibit-

ing similar time series behaviors. We used the Python implementation of the

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm

(Ester et al., 1996; Schubert et al., 2017) to identify pixels that belong to clusters

with similar behavior (accelerations or decelerations). The algorithm uses two

parameters: the maximum distance between pixels in a cluster and the mini-

mum number of pixels in a cluster (Boeing, 2018). These two parameters are set

based on the InSAR data density. More details in subsection 3.4.4 and subsec-

tion 3.5.4.

Our final product is an inventory of the timing of the changes in the displace-

ment rate of pixels within a cluster of pixels that show similar behavior. The in-

ventory is accompanied by multitemporal maps of grouped pixels corresponding

to areas with similar behavioral patterns, likely representing slope movement.

Note that in this chapter, we focus on identifying and quantifying the accelera-

tions and decelerations that we find within pixels that are part of a cluster per

month. The grouped pixels are indicators of deforming areas.
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3.4. CASE STUDY 1: MUD CREEK LANDSLIDE

We tested and refined our method to detect the timing of accelerations and de-

celerations from the InSAR time series on data of the Mud Creek landslide. Mud

Creek was a landslide that moved slowly for at least eight years (likely much

longer) before accelerating rapidly and failing catastrophically on 20 May 2017

(Warrick et al., 2019; Handwerger et al., 2019b; Jacquemart and Tiampo, 2021).

This landslide had a pre-catastrophic failure area of approximately 0.23 km2 (Handw-

erger et al., 2019b) and a mean slope angle of 38 degrees (Warrick et al., 2019).

The landslide’s bedrock geology is composed of the Franciscan melange rock,

which is characterized by a clayey granular matrix with highly sheared sand-

stone, siltstone, meta-sandstone, shale, serpentinite, and blueschist (McLAUGH-

LIN et al., 1982; McLaughlin et al., 2000). The average precipitation is around

1000 mm/y and occurs primarily between October and May. The Mud Creek

landslide experienced extreme drought and extreme rainfall during our study pe-

riod. A historic drought lasted from 2012-2016, while 2017 was one of the wettest

years on record. Previous work by Handwerger et al. (2019b) and Jacquemart and

Tiampo (2021) used InSAR time series to detect changes in landslide motion and

found that seasonal rainfall drives these changes. This landslide was selected

as a proof of concept for our new method due to its high quality time series (as

described in subsection 3.2.1) and its documented seasonal behavior. We exam-

ined the period of slow landslide motion captured by the S1 InSAR time series

between 2015 and 2017.

3.4.1. PIXEL SELECTION, CASE 1

For the Mud Creek landslide, we selected the 2% of pixels with the largest (abso-

lute) displacement (147.4 mm), resulting in 1124 of 93590 pixels. This 2% thresh-

old selected pixels that are part of the deforming area (Figure 3.2). In the case

of Mud Creek, a higher percentile (>2%) would include pixels that may represent

noise, not real displacement. A lower percentile (<2%) would leave out impor-

tant pixels that may be part of an unstable area. A preliminary evaluation of the

pixels is advised to select the threshold that captures most pixels within moving

areas without noisy pixels. All selected pixels are entirely within the boundaries

of the pre-catastrophic polygon mapped by Handwerger et al. (2019b).
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Figure 3.2: Selected pixels showing InSAR cumulative displacement in Mud Creek between 2015-
2017. The pink polygon shows the pre-catastrophic collapse polygon from Handwerger et al.
(2019b). The green box indicates a representative area of 60 x 60 m used by Handwerger et al.
(2019b) to derive landslide velocities

3.4.2. OUTLIER DETECTION, CASE 1

We used the Hampel method to identify outliers as described in subsection 3.3.2

with a sliding window size of 7 data points (representing ~84 days) and 2 as the

number of standard deviations. Very few outliers were detected and removed

from this high quality data set. In total, 335 outliers were found and removed

from 244 time series (0.47% of all data points), with a maximum of 4 outliers in

one time series. In Figure 3.3, we show some examples of the application of the

outlier filter to the displacement time series of the Mud Creek landslide.
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Figure 3.3: Examples of displacement time series and the identified outliers for pixels P639 (3 out-
liers) and P938 (1 outlier) in (a) and (b) and the fitted breakpoints of pixels P639 (3 breakpoints)
and P938 (1 breakpoint) in (c) and (d) in the Mud Creek landslide. Pink points are the initial and
final data points of the time series and are not considered breakpoints

3.4.3. MODEL FITTING, EVALUATION, AND SELECTION, CASE 1

We identified the number of breakpoints in each filtered time series using the

method described in subsection 3.3.3. We used a threshold standard error value

of 30 days for the breakpoint criterion. The maximum number of breakpoints

in a time series is set to four because the displacement time series are available

for one year and nine months, where we can observe two rainy seasons (October

to May each year). Based on the typical landslide behavior in coastal California

(e.g., Handwerger et al. (2019b,a)), we expect at most two accelerations and two

decelerations. 1120 out of the 1124 time series were fitted successfully. We iden-

tified 2967 breakpoints in total: 121 time series (i.e., pixels) with 1 breakpoint,

315 time series with 2 breakpoints, 520 time series with 3 breakpoints, and 164

time series with 4 breakpoints (see Figure 3.4a).
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3.4.4. SPATIAL ANALYSIS: DETECTION OF ACCELERATIONS AND DECELERA-

TIONS, CASE 1

We detected the timing of accelerations and decelerations of the fitted time se-

ries, as described in subsection 3.3.4. We determined the location of the pixels of

the 1120 fitted time series, and we used the DBSCAN algorithm to identify and se-

lect pixels within a cluster, using 12 m as the maximum distance between pixels

and 4 pixels as the minimum number of pixels that form a cluster. The maximum

distance between pixels is the space between the edges of 2 pixels and is set to 12

m, which is the spacing of the digital elevation model that was used to geocode

the interferograms (Handwerger et al., 2019b). We then compiled an inventory of

the total number of accelerations and decelerations detected from pixels within

a cluster per month. For Mud Creek, the number of breakpoints after cluster-

ing remains the same. All pixels are part of a cluster during the studied period.

In Figure 3.4a, the results show that there are two clear periods of an increased

number of accelerations (from November 2015 to March 2016 and from Octo-

ber 2016 to April 2017) and one period of an increased number of decelerations

(from May 2016 to September 2016).

We compared our breakpoint detection inventory to the local precipitation

patterns known to have controlled the behavior of Mud Creek. We found very

little activity between July and October 2015 (i.e., there are no accelerations and

only a few decelerations). This period is at the end of the dry season of a his-

toric drought period. The landslide behavior changed when the 2015-2016 rainy

season began, and we detected many acceleration breakpoints between October

2015 and February 2016. Figure 3.4b shows that a large portion of the landslide

was accelerating in February 2016 (rainy season). This period of acceleration

was followed by a period of deceleration during the 2016 dry season. Figure 3.4c

shows the spatial distribution of deceleration points within the landslide in June

2016. Comparison with the November 2016 map shows spatial differences in the

timing of accelerations and decelerations within the landslide.

The landslide then started to accelerate again shortly after the onset of sea-

sonal rainfall in the wet season of 2016-2017. We found that the largest number of

accelerations recorded in a month occurred earlier (two months after the onset

of the rainy season) and was higher than the previous 2015-2016 wet season (Fig-
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ure 3.4a). This change in behavior was presumably driven by the large changes in

rainfall that occurred during the study period and our findings agree with the de-

tailed analysis presented by Handwerger et al. (2019b). We found that almost all

pixels within the landslide are accelerating in November 2016 (Figure 3.4d). Ac-

celerations occurred during the entire wet season until the catastrophic failure

in May 2017.

Figure 3.4: Inventory of monthly accelerations and decelerations for the Mud Creek landslide (a)
and the location of the pixels showing accelerations and decelerations and the pre-fail polygon
on February 2016 (b), June 2016 (c), November 2016 (d) and March 2017 (e). The color bar on
the side of (b), (c), (d), and (e) indicate the probability of occurrence of acceleration (in blue) or
deceleration (in red) shown in the map. A 100% probability of acceleration is indicated by 1 in
blue, while a 100% probability of deceleration is indicated by 1 in red

We also compared our inventory of accelerations and decelerations to the ve-

locity time series of Handwerger et al. (2019b) for 36 pixels within an area of 60 x
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60 m in the landslide (Figure 3.2). The timing of accelerations and decelerations

found with our method match those found by Handwerger et al. (2019b). Accel-

erations detected with our method correspond to periods of increasing veloci-

ties, while decelerations were detected during the period of decreasing velocities

(see Figure 3.5). We observe that 32 out of 36 pixels accelerated from Decem-

ber 2016 to March 2017, 31 out of 36 pixels decelerated from May 2016 to August

2016, and 35 out of 36 pixels accelerated again from October 2016 to January

2017. Only 2 pixels decelerated in this last period.

Figure 3.5: Velocity time series of Mud Creek landslide for the water years of 2016 (black dots) and
2017 (yellow dots) for a representative area (averaged over 60 x 60 m, shown in Figure 2) (modified
from Handwerger et al. (2019b)). Blue and red bars represent our detected number of accelera-
tions and decelerations, respectively. April 2016 and September 2016 show no accelerations and
decelerations because there are no clustered responses at those times

3.5. CASE STUDY 2: MAZAR REGION

Our second study site is the region surrounding the Mazar hydroelectric power

plant and its reservoir in southeast Ecuador (Figure 3.6). Here, a major hydro-

electric complex extends from the Andes to the Amazonian region. The area is

known to have several deep-seated landslides (e.g., Nicole (2015); Urgilez Vin-

ueza et al. (2020)). Around the reservoir, seventeen slow-moving landslides have

been identified by CELEC. CELEC identified the unstable areas during the con-

struction of the Mazar dam and has been monitoring them because they are

a threat to sustainable hydropower generation. The lithology of the landslide

area is composed of two geological units: Alao Paute and El Pan, characterized
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by metamorphic rocks, overlain by colluvium deposits ranging from 2 to 28 m

(Nicole, 2015). The precipitation in the area is around 3000 mm/year and occurs

primarily between April and August.

3.5.1. PIXEL SELECTION, CASE 2

For the Mazar region, we selected an area of 211 km2 around the reservoir to

examine the InSAR displacement time series from October 2016 to August 2020.

Our pixel selection resulted in 3230 pixels with an absolute displacement value

above the 98th percentile (99.9 mm). 28% of the selected pixels fall within the

boundaries of the ground-based landslide inventory carried out by CELEC, while

72% fall outside the boundaries of the identified unstable areas.

Figure 3.6: Location of the Mazar landslides, the Mazar dam, and the selected pixels around the
Mazar reservoir. In addition, we show the 2% pixels with the largest cumulative displacement over
four years over an area of 211 km2 around the reservoir
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3.5.2. OUTLIER DETECTION, CASE 2

We used the Hampel method as described in subsection 3.3.2 with a sliding win-

dow size of 7 data points and 2 as the number of standard deviations. Factors

such as the vegetated soil cover and atmospheric disturbances resulted in noisy

displacement time series. Additionally, and contrary to the case of the Mud Creek

landslide, prior quality control of the data was not conducted for the Mazar land-

slides. One of the main objectives of our new detection method is to process

large quantities of data at a regional spatial scale and in a relatively fast and semi-

automated manner. In total, 25860 outliers were found in 2268 time series, each

time series with 1 to 24 outliers. 4.7% of the data points were identified as out-

liers and removed from the time series. In Figure 3.7, we show two examples of

the application of the outlier filter to the displacement time series of the pixels in

the Mazar region.

Figure 3.7: Examples of displacement time series and the identified outliers for pixels P18 (11 out-
liers) and P1410 (12 outliers) in (a) and (b) and the fitted breakpoints of P18 (3 breakpoints) and
P1410 (4 breakpoints) in (c) and (d) in the Mazar region. Pink points are the initial and final data
points of the time series and are not considered breakpoints
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3.5.3. MODEL FITTING, EVALUATION, AND SELECTION, CASE 2

We identified the breakpoints in each time series using a threshold standard error

value of 30 days for the breakpoint criterion. In the case of the Mazar region, we

set the maximum number of breakpoints to eight due to the expected number of

accelerations and decelerations that can occur over three years and six months

under the influence of the rainy season (April-August). Our method was able to

fit 2273 out of the 3230 time series successfully. We identified 3397 breakpoints

in total: 1155 time series with 1 breakpoint, 725 time series with 2 breakpoints,

237 time series with 3 breakpoints, 107 time series with 4 breakpoints, 41 time

series with 5 breakpoints, and 8 time series with 6 breakpoints. Two example fits

are shown in Figure 3.7c, d.

3.5.4. DETECTION OF ACCELERATIONS AND DECELERATIONS IN A CLUSTER,

CASE 2

We performed the spatial analysis using the pixels of the 2273 fitted time series

per month, using 30 m (i.e., DEM pixel spacing) as the maximum distance be-

tween pixels and 4 pixels as the minimum number of pixels that create a clus-

ter. In the case of the Mazar region, the number of breakpoints after clustering

diminished. There are 2793 of 3397 breakpoints in total: 561 time series with

1 breakpoint, 566 time series with 2 breakpoints, 186 time series with 3 break-

points, 90 time series with 4 breakpoints, 34 time series with 5 breakpoints, and

2 time series with 6 breakpoints. In Figure 3.8, we present a spatio-temporal in-

ventory of the number of detected acceleration and deceleration points within a

cluster and the location of the corresponding pixels for four periods. Figure 3.8a

and b show a seasonal and yearly distribution of the monthly number of accel-

erations and decelerations, respectively. Figure 3.8a shows that the number of

decelerations is higher than the number of accelerations in the first months of

the year. There is a modest increase in the number of accelerations and a modest

decrease in the number of decelerations once the wet season starts. However, we

observe that by the end of the wet season and after, both accelerations and decel-

erations occur. Figure 3.8b indicates that the number of accelerations increases

throughout the study period while the number of decelerations decreases. In

2020, the number of accelerations was higher than the number of decelerations.
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Figure 3.8c-f show the location of pixels with a mild to high probability of occur-

rence of accelerations and decelerations.

By examining the spatial variability of accelerations and decelerations over

the area around the Mazar reservoir, we find that most of the activity occurs on

the south side of the reservoir, where two reservoir tributaries meet. Some ac-

tivity is observed near the dam, on the north side, and the central-east side of

the reservoir. Our inventory reveals that accelerations and decelerations occur

throughout the year and are sparse around the reservoir. These are concentrated

in specific locations at the end of the study period. This variability of accelera-

tions and decelerations occurs within and between groups of pixels.
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Figure 3.8: Spatio-temporal inventory of accelerations and decelerations for the Mazar region.
(a) and (b) Indicate seasonal and yearly distribution of monthly accelerations and decelerations,
respectively. The location of the pixels showing accelerations and decelerations for four periods
are shown in panels (c), (d), (e), and (f). Panels (c) and (e) are during the rainy season of 2018 and
2019, respectively, with an average of 704 mm of rainfall over 5 months. Panels (d) and (f) occur
during the dry season of 2018 and 2019, respectively, with an average of 557 mm of rainfall over 7
months. The color bars on the side of (c), (d), (e), and (f) indicate the probability of occurrence
of the acceleration (in blue) or deceleration (in red) shown on the map. A 100% probability of
acceleration is indicated by 1 in blue, while a 100% probability of deceleration is indicated by 1 in
red. The black polygon shows the outline of the Mazar reservoir.
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3.6. DISCUSSION

In this chapter, we developed a systematic method to detect, quantify, and in-

ventory changes in the surface deformation rate of slowly deforming areas at a

local and regional scale to investigate their temporal and spatial dynamics. Slow-

moving landslides have been studied prior to this work using satellite data to

identify ground motion areas and shifts in the displacement time series (Cigna

et al., 2012; Berti et al., 2013; Raspini et al., 2019). Our method differs from previ-

ous work in that our InSAR detection analysis provides an objective way to con-

struct multitemporal maps of unstable areas and an inventory of the timing of

changes in the deformation rate of unstable areas.

Due to the nature of the InSAR data, the time series we used for the analysis

often contained outliers. These outliers are usually related to specific data acqui-

sitions in the time series and impede the fitting of the piecewise linear functions.

For the Mud Creek landslide, there were very few outliers because analyses of

a single landslide allow for more in-depth quality control measures. For Mazar,

there were many outliers because we did not carefully inspect individual inter-

ferograms or perform unwrapping error corrections. This was intentional as one

of our main goals is to develop a method to analyze large quantities of regional

slope deformation data where it is infeasible to inspect and/or make corrections

to thousands of interferograms. Therefore, we opted for the Hampel method as a

filter routine to identify and remove the outliers while, at the same time, avoiding

the exclusion of important data.

The optimization of the Hampel parameters was carried out considering the

temporal sampling of the InSAR data. Smaller window sizes will not detect short-

term outliers, while larger window sizes fail to identify outliers within a small

portion of the window due to a higher median value. In our case, we used a win-

dow size of seven data points, representing a period of ~90 days, and the number

of standard deviations was set to two. Moreover, we found that using a standard

deviation smaller than 2 tends to over-smooth the time series while using a stan-

dard deviation over 3 did not identify all outliers.

We evaluated the uncertainty of the timing of the breakpoints using the break-

point criterion and decided on a threshold standard error value of 30 days. A

smaller threshold value leads to a stricter algorithm so few breakpoints are ac-
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cepted. On the contrary, a higher threshold value allows more breakpoints to be

identified, but then the time frame when accelerations and decelerations occur

becomes too large and becomes meaningless with respect to slow-moving land-

slide dynamics. Any threshold that yields a time frame larger than the duration

of a (wet) season will not give useful information about the temporal dynamics

of the slow-moving slopes. Therefore, we used a threshold standard error of 30

days and a monthly temporal resolution.

We selected our pixels considering the 98th percentile of the absolute cumu-

lative displacement of the InSAR data. Some of the selected pixels that comply

with this condition were isolated and did not have an immediate neighboring

pixel showing significant displacement. We assumed that isolated pixels do not

correspond to landslides. Several studies have shown that clusters of pixels with

relatively high LOS displacement can be used to identify active landslides (e.g.,

Bekaert et al. (2020)). Therefore, we selected pixels that belong to a cluster that

showed activity (acceleration or deceleration) in the same month. We followed

this approach to achieve spatial consistency and temporal persistency (pixels

with a significant change in displacement rate) (Raspini et al., 2018).

Our method identified breakpoints that show clear changes in deformation

velocity that can be related to seasonal rainfall. In the Mud Creek landslide, ac-

celerations occur during the rainy season, while decelerations occur during the

dry season, as has been shown by hundreds of landslides in coastal California

(Handwerger et al., 2019a). Previous work on the Mud Creek landslide showed

that the slope dynamics are directly related to large changes in seasonal rainfall

(Warrick et al., 2019; Handwerger et al., 2019b; Jacquemart and Tiampo, 2021).

Our change detection approach captured the seasonal kinematics of Mud Creek

and allowed us to explore spatial trends and accelerations and decelerations by

fully utilizing the rich information provided by InSAR. During the period between

Feb-May 2017, the landslide was likely moving faster than InSAR can detect, as

the landslide approached catastrophic collapse. This causes phase bias, an addi-

tional unwrapping challenge that obscures the true deformation rate and is not

possible to correct manually. However, it is encouraging that our method de-

tected the overall change in the signal of the data, dominated by accelerations,

and did not capture the small apparent deceleration in the months before failure



3

64
3. A NEW METHOD TO DETECT CHANGES IN DISPLACEMENT RATES OF

SLOW-MOVING LANDSLIDES USING INSAR TIME SERIES

(Figure 3.5).

For the Mazar region, we observed more complex behavior resulting from

analyses of numerous large and spatially variable deforming areas. We found

that the accelerations and decelerations occurred during the entire study period

and were distributed around the reservoir. In Figure 3.8 a and b, we showed that

both accelerations and decelerations occurred during the entire period and that

in 2020 the number of accelerations was higher than the number of decelera-

tions. The high number of unstable areas that were identified using our method

may have caused this somewhat less predictable behavior, which can be related

to lagged responses of deep-seated landslides in the area, as well as to the creep

behavior of more surficial landslides. Local factors such as slope, distance to

the reservoir, specific land use, irrigation, and local geomorphology, among oth-

ers, may influence these different behaviors and the occurrence of accelerations

and decelerations at different times. This behavior is also captured at Mud Creek,

where even a single landslide can show spatial variation in the timing of accelera-

tions and decelerations. The overall behavior of the Mazar region is complex and

needs further in-depth analysis, such as a hydro-meteorological and geotechni-

cal analysis of the larger Mazar region, which is out of the scope of this paper and

is part of our next follow-up study.

3.7. CONCLUSIONS

We developed an objective and systematic method for detecting accelerations

and decelerations of slowly deforming areas from InSAR data. Our method con-

sists of InSAR time series analyses corresponding to the selected pixels (with the

highest cumulative displacement). These time series are filtered, and break-

points are detected using piecewise linear functions fitted to the time series.

These breakpoints represent the times when the displacement rate changes sig-

nificantly. We analyzed the spatial distribution of the successfully modeled pixels

and inventoried the accelerations and decelerations that showed similar spatial

behavior.

We tested our method on the high-quality InSAR dataset of the Mud Creek

landslide in California. Our method successfully detected the timing of acceler-

ations and decelerations at Mud Creek that were driven by changes in seasonal
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rainfall. Next, we investigated a landslide-prone area impacting a hydropower

area in southeast Ecuador. Although the time series data were of significantly

lower quality (compared to Mud Creek), we identified deforming areas with com-

plex acceleration and deceleration patterns within and between groups of pixels

that did not always coincide with wet and dry seasons.

We conclude that our method can identify changes in the ground surface dis-

placement rate of deforming areas that can be used to examine this behavior and

inventory these changes in an objective and straightforward manner. The abil-

ity to determine the temporal and spatial variation of velocity changes is a step

forward in the large-scale interpretation of the physical behavior of slow-moving

deforming areas. Ultimately, our inventory of accelerations and decelerations

can be used to shed light on the dynamics of slow-moving landslides at both

sub-landslide and regional scales with high spatial and temporal resolution.
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Abstract

The tropical Ecuadorian Andes is characterized by the presence of slow-moving landslides

that have been identified and monitored for many years, becoming increasingly impor-

tant since the impoundment of the Mazar reservoir in 2010, in southeast Ecuador. In the

previous chapter, we leveraged satellite-derived displacement time series and developed

a method to determine changes in the displacement rate of slow-moving landslides, and

we applied it to the slopes around the Mazar dam and reservoir. In this chapter, we aim

to identify and model the timing and frequency of velocity changes of pixels and to inves-

tigate whether they are correlated with hydrometeorological forcings. We built 85 mod-

els using multiple regression analysis and we found that the multiple regression models

show a modest R2 (maximum 0.44). We found that the regional behavior of slow-moving

landslides could not be correlated to the hydrometeorological factors of the area, suggest-

ing that hydrology alone is insufficient to explain the behavior of slow-moving landslides

in the region, as most clusters exhibit little to no seasonal dynamics (one or two velocity

changes) over four years. The quality of the InSAR data and the effect of local in-situ fac-

tors such as local geology, morphology, and anthropogenic activity might be influencing

the regional landslide dynamics to the local and regional scale.
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4.1. INTRODUCTION

Slow-moving landslides are characterized by their slow velocity, being in the or-

der of millimeters to centimeters per year. These landslides are constantly mon-

itored, especially in areas where they pose a potential threat. They can remain

active for a long time and sometimes become catastrophic (Hendron Jr and Pat-

ton, 1985; Intrieri et al., 2018; Handwerger et al., 2019b).

While slow-moving landslides are primarily studied in the United States, Eu-

rope, and some parts of Asia (Lacroix et al., 2020b), research in the tropical Andes

is limited due to a lack of in-situ data, with most studies focusing on case stud-

ies (e.g., Zerathe et al. (2016); Soto et al. (2017); Urgilez Vinueza et al. (2020). To

overcome this challenge, researchers have used other sources of data, such as

satellite-derived displacement, to observe and analyze superficial slow deforma-

tions on unstable slopes (e.g., Bordoni et al. (2018); Raspini et al. (2018); ?. These

analyses enable the characterization of slow-moving patterns on a large scale

and a regional evaluation of the overall state of unstable slopes.

Furthermore, most of these studies use hydrometeorological forcings, with

rainfall being the primary driver of accelerated movement (e.g., Iverson (2000);

Tofani et al. (2006); Matsuura et al. (2008); Zerathe et al. (2016); Soto et al. (2017);

Handwerger et al. (2019b). However, hydrometeorological data are not always

available (either due to temporal or spatial constraints), especially in remote ar-

eas. Researchers have resorted to using satellite-derived data to estimate rainfall

and other hydrological proxies (e.g., Uwihirwe et al. (2020)).

In chapter 3, we proposed a methodology to detect changes in the displace-

ment rate of slow-moving landslides using InSAR-derived displacement data. We

applied that methodology to the slopes around the Mazar reservoir in southeast

Ecuador and identified specific locations where accelerations and decelerations

occurred over the four years of analysis. The objective of this chapter is to iden-

tify the timing and frequency of velocity changes in the Mazar reservoir area and

to investigate whether they are correlated with hydrometeorological forcings.

Here we use multiple regression analysis to investigate the relationship be-

tween accelerated movement, hydrology, and meteorology in the area. We used

the results from chapter 3, hydrometeorological data provided by governmental

institutions, and data from satellite sources as input data for the multiple regres-
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Table 4.1: Inventory of observed slow-moving landslides around the Mazar reservoir provided by
CELEC-EP. The numbers correspond to the landslides in Figure 1

Number Name Area (ha) Type of movement
1 Chalacay ~9 Creep, toe erosion
2 Cruzpamba ~30 Translational, creep
3 Ermita ~20 Creep, toe erosion
4 Guachapala ~190 –
5 Las Juntas ~89 Translational, creep
6 Llamacon ~90 Creep
7 Naste ~61 Rotational, creep
8 Osomache Norte ~20 Creep, toe erosion
9 Osomache Sur ~30 Creep, toe erosion

10 Osoyacu ~380 Translational, creep
11-12 Palmas – Santa Rosa ~155 Translational, creep

13 Santa Rita ~15 –
14 Toctehuayco ~40 –
15 Tomebamba ~180 Translational, creep
16 Tuban ~18 –

sion analysis. The multiple regression results help to determine if the hydrome-

teorological variables have a significant influence on the displacement dynam-

ics.

4.2. DESCRIPTION OF THE STUDY AREA

The area under study is located in southeast Ecuador and sits within the Cordillera

Real, as part of the Andes mountain range. The Hidropaute hydroelectric com-

plex is located here and produces almost one-third of the country’s total energy

using three hydropower plants. The Mazar dam is one of them. Sixteen land-

slides have been identified along the Mazar reservoir and monitored for several

years since its impoundment in 2010 (Figure 4.1). Table 4.1 shows the landslide

inventory, their areas, and identified types of movement.

The study region is located in the transition between the Andes mountain

range and the Amazon rainforest. Geologically, the landslides are located within

the Alao Paute Unit and El Pan Unit (as part of the Alao terrain), which are char-

acterized by metamorphic rocks (shale and phyllites), meta-andesites, volcanic
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Figure 4.1: Location and geological map of the Mazar landslides

agglomerates, tuffs, and green rocks that have developed pelite and schist facies

(Nicole, 2015; Urgilez Vinueza et al., 2020) (Figure 4.1). The mean annual rain-

fall is around 1290 mm/year, measured at the Mazar meteorological station from

2013 to 2020, with a standard deviation of ~230 mm/y. The rainfall is influenced

by the Amazonian regime. The wettest season is from April to August, and the

somewhat drier season is between November and March. The slopes range from

0° to > 45°, with a median of 20°. The vegetation in the area is considered a lower

mountain rainforest, with land used for the construction of small towns, agricul-

ture, and cattle grazing. Small, shallow soil slides are relatively abundant (see

Figure 4.2) and have altered the landscape, especially in steep areas with a slope

> 45°.

4.3. DATA SOURCES

4.3.1. DISPLACEMENT DATA

Since 2012, in-situ geodetical data of some of the landslides have been collected

by Electrical Corporation of Ecuador (CELEC-EP) personnel every 30 days (Ta-

ble 4.1). The surveys use total stations and fixed reference points. This informa-

tion generates a time series of cumulative displacement per observation point.
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Figure 4.2: Examples of slopes around the Mazar lake, with visible alterations on the toe of the
slope and signs of creep deformation.

In this study, we select 13 out of 14 available in-situ observation points from the

Chalacay landslide for further analysis (CH1 to CH14). CH11 is discarded from

the analysis because its time series did not match the temporal resolution of the

current study. Even though the remaining landslides have in-situ displacement

time series, most were incomplete or did not match the temporal resolution of

the current study. In the previous chapter, we compiled the inventory of acceler-

ations and decelerations in the study area for 2016-2020 from InSAR data. These

accelerations and decelerations were linked to a specific location represented by

a pixel that belonged to a cluster of pixels. Combining pixels into a cluster of

pixels ensured spatial consistency. The timing of the accelerations and decelera-

tions, as well as their locations, were used here.

4.3.2. HYDROMETEOROLOGICAL DATA

Hydrometeorological data were obtained from different sources. For rainfall,

data were provided by the Municipal Public Company of Telecommunications,

Water, Sewerage, and Sanitation of Cuenca (ETAPA-EP) and CELEC-EP. However,

the datasets were incomplete for the studied period (2016-2020). Therefore, we

explored two options: look for nearby stations and perform intra-station inter-

polation and satellite-derived rainfall products. Appendix A details this analysis,

where ultimately, we used rainfall from the Mazar station infilled with rainfall

from a meteorological station located 20 km downstream.

Reference evapotranspiration was used to derive effective rainfall in the area.

It was calculated using the Mazar meteorological station data using the Python

package PyEt-a (Vremec and Collenteur, 2021). The Mazar meteorological sta-
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tion measures temperature, relative humidity, wind velocity, and short-wave ra-

diation data to calculate reference evapotranspiration. The PyEt-a package offers

several methods for calculating reference evapotranspiration depending on the

input data availability. In this case, we used the FAO guidelines for crop evapo-

transpiration that uses the Penmann-Monteith equation (Allen et al., 1998).

CELEC-EP provided water levels of the reservoir and discharge data from

the Mazar dam. Given that the temporal resolution of the displacement data

is monthly, the hydrometeorological data were resampled to match the temporal

resolution of the displacement data.

Daily soil moisture data was provided by Planet, formerly VanderSat (VdS)

(https://vandersat.com/data/soil-moisture/, last access: 5 April 2023). We pro-

cessed over 2000 raster files containing volumetric near-surface soil moisture for

the upper 5 cm of soil, with a spatial resolution of 100 m x 100 m. We calculated

the soil moisture averaged over the area and resampled it to a monthly time step.

4.4. METHODOLOGY

4.4.1. DISPLACEMENT ANALYSIS

The first step was to verify the satellite displacement data using in-situ defor-

mation time series in the Chalacay landslide. The Chalacay landslide was se-

lected for this evaluation because of its clear displacement and the presence of

13 in-situ displacement monitoring points. This way, we verify that the in-situ

and satellite-derived data show a similar deformation pattern. In the Chalacay

landslide, we projected the LOS displacement time series to the slope direction.

The projection was made using the methodology specified in Handwerger et al.

(2019b), where the geometry of the radar instrument and the downslope direc-

tion are accounted for through a vector transformation.

The next step was to derive a time series of normalized velocities per pixel

in the Mazar area. To do this, we used the timing of the changes in the veloc-

ity of each pixel. We found that, in the Mazar area, there were pixels with one

to a maximum of four changes in velocity. Therefore, at most, five different ve-

locities existed in a particular time series. Note that we are, at this stage, mainly

interested in relative velocities and the occurrence of accelerations and decel-
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erations. Therefore, each measured LOS velocity was normalized relative to the

average LOS velocity at that location. We classified normalized velocities above

one as high and below one as low.

Moreover, each cluster of pixels was manually evaluated to determine whether

the velocity time series of the individual pixels were consistent. Then, a single

‘master’ time series of normalized velocities per cluster was obtained by taking

the median velocity of all individual time series. Subsequently, we constructed a

heat map showing normalized velocities per cluster per month to observe trends

of relatively high and low velocities in time. Lastly, we constructed a time series

of the percentage of clusters with high velocities per month.

4.4.2. HYDROMETEOROLOGICAL VARIABLES

In addition to monthly rainfall, effective rainfall, reservoir water levels, and soil

moisture, we derived other hydrometeorological variables that might be related

to slow-moving dynamics in the region, such as antecedent precipitation Index

(API) as a proxy of soil moisture and the number of high-intensity rain events

in the basin. We also used the exponential moving average (PE M A) of rainfall to

explore the long-term rainfall signal in the area.

The antecedent precipitation index (API) was used as a proxy for soil mois-

ture accumulation. It is based on rainfall that has occurred in the preceding days,

acting as a measure of catchment wetness. The API in a particular day was cal-

culated as the rain of that day plus the rain of a predefined number of days prior,

influenced by a decay factor k.

APIt =
T∑

n=0
knPt−n (4.1)

where Pt is the daily precipitation [mm d−1] on day t, k is the decay factor, and T

is the predefined number of days prior to day t considered for the calculation of

API. The value of API was taken on the last day of the month to derive monthly

data. In this case, the exponential moving average (PE M A) was used to identify

long-term trends in the rainfall data. PE M A was calculated using rain from that

day plus PE M A from the previous time step, both affected by a smoothing factor.
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PE M A0 = P0 (4.2)

PE M At =αPt + (1−α)PE M At−1 ; t > 0 (4.3)

where P is the rainfall observation at time t, PE M At is the exponential moving av-

erage at time t, and α is the smoothing factor. The PE M A at the first timestep is

the rainfall on that day. The smoothing factor varies between 0 and 1, represent-

ing the weight given to the most recent period.

Finally, we defined the number of high-intensity rain events in the area in

a month using daily rainfall. We defined an event as the accumulation of rain

from successive days, with at most one gap day without rainfall. In a determined

month, a high-intensity event was defined as being in the top 75th percentile of

rain events.

Ultimately, seven hydrometeorological variables (i.e., rainfall, effective rain-

fall, reservoir water levels, API, PE M A , soil moisture, and the number of high-

intensity events) were tested against the slow-moving dynamics of the landslides

around the Mazar reservoir.

4.4.3. EVALUATION OF DISPLACEMENT DATA AGAINST HYDROMETEOROLOG-

ICAL VARIABLES

Normalized velocities were evaluated against the hydrometeorological variables

through correlations and multiple regression analyses. The idea was to deter-

mine whether the hydrometeorological variables were correlated with the slow-

moving dynamics of the landslides under study. A single time series was ob-

tained with the percentage of clusters that move with above-average velocity

each month. A correlation analysis was performed between this time series against

all seven hydrometeorological factors. Then, a multiple regression analysis was

performed using non-correlated variables. This was determined by observing

the correlations between the hydrometeorological variables. A high correlation

between two or more of these variables meant they did not participate in a mul-

tiple regression model together.
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4.5. RESULTS

4.5.1. DISPLACEMENT ANALYSIS

As described in the methodology section, a comparison was made between 13

in-situ displacement time series from the Chalacay landslide and the satellite-

derived displacement time series from 28 pixels within the landslide. We classi-

fied the in-situ and satellite-based points based on their cumulated value into

four categories: low, mid-low, mid-high, and high velocities. The location of

these points and the class to which they belong are shown in Figure 4.3. It shows

that the in-situ and satellite-based monitoring points were mainly located on the

north side of the landslide area. The fastest-moving points were located close to

each other on the northern sector of the landslide, while the surrounding points

showed mid-high and mid-low velocities for both in-situ and satellite monitoring

points. The low-velocity points were located on the outer part of this cluster for

both in-situ and satellite-based monitoring points and on another location on

the south of the landslide for satellite-based monitoring points. The results show

that the satellite-based observations were closely related to the in-situ monitor-

ing points. A direct comparison between the in-situ and satellite-based cumula-

tive displacement time series per category can be seen in Figure 4.4.
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Figure 4.3: Chalacay landslide and its in-situ and satellite-based monitoring points. The legend
shows the class to which each monitoring point (triangle) and pixel (square) belong to, based on
the cumulative displacement value

Figure 4.5 shows the cumulative displacement boxplots from the in-situ ob-

servations (a) and the projected cumulative displacement from satellite obser-

vations, (b). In both panels of Figure 4.5, 3 (in-situ) and 4 (satellite) observation

points have a cumulative displacement above average. This is also detected in

Figure 4.3, where high-velocity cumulative displacements were located on the

northern part of the landslide.
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Figure 4.4: Cumulative displacement time series of the in-situ monitoring points in the Chalacay
landslide (right) and the InSAR cumulative displacement time series of the pixels within the Cha-
lacay landslide (left). The colors indicate the class to which they belong based on their cumulative
displacement value, as indicated in Figure 4.3

Over the Mazar area, 71 clusters of pixels were detected. Out of the 71 clus-

ters, 32 have one change in velocity, 28 have two changes in velocity, 8 have three
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Figure 4.5: Cumulative displacement of 13 in-situ monitoring points (a) and 32 satellite-based
pixels (b) in Chalacay as boxplots

changes in velocity, and 4 have four changes in velocity (Figure 4.6). The clusters

with one and two changes in velocity were located relatively far from the reser-

voir, up on the slopes, with exceptions near the dam and on the right tributary

to the main reservoir body. The four clusters with four changes in velocity were

located on the toe of the slope, and the eight clusters with three changes were

spread around the area, mainly far from the reservoir.

In order to visualize the evolution of the 71 clusters’ velocities over time, we

used a heatmap of monthly normalized velocities (Figure 4.7a). A value above

1 (orange, purple) indicates a cluster moving faster than the average, while a

value below 1 (orange, yellow) indicates a cluster moving slower than the average.

Overall, two-thirds of clusters were moving at high velocities at the beginning of

the period. This number decreased over 12 months until 02-2018, which was
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Figure 4.6: Location of the detected clusters on the slopes of the Mazar area

when most clusters moved with low velocities for three months. From 07-2018

to 01-2019, the number of clusters increased again, reaching up to one-third of

them moving fast. After 01-2019, this number decreased again over nine months

until 10-2019 and increased after 10-2019. Most of the clusters in this last period

moved slowly.

Since most of the clusters have one or two changes in velocity, we also an-

alyzed, per month, the normalized velocities of the 71 clusters categorized by

the number of changes in velocity. This overview revealed that most of the high

velocities observed at the beginning of the period were related to the clusters

with only one change in velocity (Figure 4.7b). Almost half of the identified clus-

ters moved fast for the first months until a deceleration occurred. Then the 32

clusters moved with a constant low velocity until the end of the period. In Fig-

ure 4.7c, we observe that most of the clusters with two changes in velocity moved

with average and high velocities during the entire period. High velocities were

mainly observed during 06-2018 and 09-2019. Figure 4.7e shows a similar be-

haviour, with its three clusters having high velocities during 06-2018 and 06-
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2019, and also during 06-2017 and 06-2018. Clusters with three changes in veloc-

ities showed average and high velocities from the beginning until 06-2018, where

the number of clusters moving fast decreased. After 10-2019, the number of clus-

ters moving fast increased again (Figure 4.7d).
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Figure 4.7: Heatmap of normalized velocities of (a) 71 clusters identified on the landslides around
the Mazar reservoir, (b) 32 clusters with one change in velocity, (c) 28 clusters with two changes
in velocity, (d) 8 clusters with three changes in velocity, and (e) 3 clusters with four changes in
velocity. The color bar indicates the value of normalized velocity relative to the average per cluster
per month
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For the multiple regression analysis, we extracted, per month, the percentage

of clusters moving with above-average velocities. This time series was used as the

dependent variable for the multiple regression analysis.

4.5.2. HYDROMETEOROLOGICAL ANALYSIS

We used seven hydrometeorological variables to perform the multiple regression

analysis. We used in-situ rainfall from the Mazar station, effective rainfall, reser-

voir levels, and satellite-derived soil moisture. Using the in-situ rainfall, we cal-

culated API, PE M A , and the number of high-intensity events in the basin (see

subsection 4.3.2). For the API, we used antecedent precipitation of 7 days, 10

days, and 30 days. For the PE M A , we used a smoothing factor of 0.1 as it gives

more weight to the antecedent PE M A , as shown in Equation 4.3. There are, in

total, nine independent hydrometeorological variables. The results are shown in

Figure 4.8 and Figure 4.9.
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Figure 4.8: Monthly precipitation (a), monthly evapotranspiration (b), and number of
high-intensity rainfall events per month (c)

4.5.3. EVALUATION OF DISPLACEMENT DATA AGAINST HYDROMETEOROLOG-

ICAL VARIABLES

In the multiple regression analysis, the displacement data, as a time series of

the percentage of clusters moving fast, is the dependent variable, while the nine

hydrometeorological variables are the independent variables. Before the multi-

ple regression analysis took place, we performed a correlation analysis between

all independent variables to guarantee that these variables were not correlated.

Correlated independent variables were not used in the same multiple-regression

model.

Figure 4.10 shows that the independent input variables derived from rainfall

were highly correlated. Effective rainfall, API 7 days, API 10 days, and API 30 days
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Figure 4.9: Monthly reservoir levels (a), API 7 days (b), API 10 days (c), API 30 days (d), PE M A (e),
and Soil moisture (f)

have a Pearson correlation coefficient higher than 0.6 with rainfall and among

each other. The correlations between the dependent and independent variables

are weak, 0.3 being the highest between PE M A and displacement.

Considering these results, 85 multiple regression models were evaluated. We

modeled the number of the fastest-moving clusters per month, using all 71 clus-

ters together. We also used the 71 clusters split into the classified groups of clus-

ters depending on the number of changes in velocity they have (i.e., 32 clusters

with one change in velocity, 28 clusters with two changes in velocity, and 8 clus-

ters with three changes in velocity). Consequently, we constructed the 85 mod-

els four times. We did not construct the models using the group of clusters with

four changes in velocity since it was composed only of 3 clusters. Each model

had four R2, each representing the model’s goodness of fit per cluster group.

Then, we selected the maximum R2 per model and identified to which group

they belong (i.e., group of clusters with one, two, or three changes in velocity
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Figure 4.10: Correlations between hydrometeorological and relative velocity data

or all 71 clusters). In Figure 4.11, we showed the distribution of the maximum

R2 per model and cluster group and classified them per number of variables in

the model. In general, the multiple regression models show a modest R2 (coef-

ficient of determination), which indicates that they do not fit the distribution of

the number of fast-moving clusters per month. We observed that models with

two and three changes in velocity had the lowest R2, reaching up to 0.25. Models

with one change in velocity had the highest R2 and performed better with more

variables. The highest R2 was 0.44 in a model with five variables belonging to

the cluster group with one change in velocity. The model has reservoir levels, ef-

fective rainfall, PE M A , soil moisture, and the number of high-intensity events as

independent variables.
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Figure 4.11: Maximum coefficients of determination R2 of all 85 models, classified according to
their number of variables and the group of pixels to which they belong

4.6. DISCUSSION

In our analysis, we compared the InSAR displacement data set to in-situ dis-

placement recorded in the Chalacay landslide. Our findings revealed that the

InSAR-derived and the in-situ cumulative displacements were coherent and of

the same order of magnitude (Figure 4.5). Additionally, the location of the fastest

InSAR-derived pixels coincided with the location of the in-situ monitoring points

with a higher cumulative displacement rate from 2016 to 2020. This result indi-

cates that both products provide a consistent view of the displacement in the

area. Miele et al. (2021) also showed that InSAR data could accurately monitor

slope deformations in south Ecuador, close to the Mazar reservoir.

Rainfall data in the study area was scarce. There was only one in-situ mon-

itoring station at the Mazar dam, which had a significant gap in its time series.

This situation led to sourcing rainfall data from satellites. However, satellite rain-

fall estimations in the Ecuadorian tropical Andes are often biased or erroneous

due to various climatic drivers that result in varied spatiotemporal precipitation

patterns (Chavez and Takahashi, 2017; Manz et al., 2017; Erazo et al., 2018). Ad-

ditionally, the use of these products is often restricted due to the short length of

satellite records. Studies have attempted to produce high-resolution precipita-

tion datasets in Ecuador and Peru (e.g., Fernandez-Palomino et al. (2022)); how-

ever, they found that it is still challenging to reproduce rainfall patterns, espe-
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cially in specific areas of the Ecuadorian Andes. Considering these limitations,

we decided to infill in-situ rainfall from the Mazar station with in-situ rainfall

from the Guarumales meteorological station, located ~20 km downstream of the

Mazar dam, and use it as a hydrometeorological forcing for the analysis.

We used a multiple regression analysis to construct 85 models using all hy-

drometeorological and geodetical variables. Unfortunately, none of these mod-

els could reproduce the displacement time series observed in the area. The high-

est coefficient of determination (R2) was 0.44 between the velocities of the group

of clusters with only one change in velocity per month and the following vari-

ables: effective rainfall, reservoir levels, PE M A , soil moisture, and the number of

high-intensity events. In this case, PE M A is the variable with the most significant

influence on the model. As we observed in Figure 4.9e, PE M A’s values decreased

during the period in which we observed a significant decrease in the number of

fast-moving clusters (Figure 4.7b). Still, a low R2 indicates that the model does

not represent the dependent variable.

Most of the observed clusters (60 out of 71) had one or two changes in velocity

over the four years of analysis and were distributed over the entire area. This be-

havior could not be linked to the seasonal hydrometeorological changes consid-

ered in this study. In the previous chapter, we took specific considerations when

defining the InSAR time series to inventory changes in velocity, which could be

hindering the capability of the method we used. For instance, we considered

a standard methodology to generate InSAR time series without additional pro-

cessing steps (i.e., without a manual inspection and removal of poor quality in-

terferograms that have low coherence) since our goal was to determine if this

generic product could be applied for regional landslide monitoring. Neverthe-

less, without additional InSAR processing, the generic displacement time series

might only show the most significant changes in velocity, while the smaller, likely

seasonal changes might be hidden within the noise in the time series. Cohen-

Waeber et al. (2018) showed that by applying independent and principal compo-

nent analysis to the InSAR displacement time series, spatial and temporal dis-

placement patterns were revealed and were related to seasonal pore-pressure

changes.

In this analysis, we constructed a normalized velocity time series per clus-
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ter of pixels for all pixels. We did it so each cluster represents an area that is

consistently moving and to reduce the amount of data in the multiple regression

models, i.e., we derived 71 time series (for the 71 clusters) from the 3230 time

series (from the 3230 pixels). The normalized time series of each cluster was ob-

tained by calculating the median velocity of all time series within that cluster.

Even though this approach represents the overall velocity of that cluster quite

well, the timing of the change in velocity of each pixel within a cluster was not

always consistent (e.g., 11 out of 32 clusters with one change in velocity had the

timing of this change within 6 months or less, the rest of clusters had a timing

of change in velocity greater than 6 months, and up to ~2 years). This situa-

tion is common in clusters with one and two changes in velocity. Clusters with

a varying time in velocity change might lead to uncertainties within the multiple

regression models.

Slow-moving landslides have been studied at local and regional scales. Most

of the studies at the local scale have been able to relate the acceleration patterns

to seasonal hydrometeorological changes (e.g., Herrera et al. (2013)) and in-situ

disturbances such as road deformations (e.g., Nappo et al. (2019)). Similarly, in

chapter 3, we showed that the accelerations and decelerations in the Mud Creek

landslide were related to seasonal rainfall. At the regional scale, however, more

factors are at play, and while some have found seasonal accelerations and decel-

erations driven by rainfall (e.g., Zhang et al. (2018)), anthropogenic activities and

specific local conditions may cause different velocity patterns within the same

landslide body or among the same landslide complex (Herrera et al., 2013).

The landslides around the Mazar reservoir have individual sliding mecha-

nisms (see Table 4.1) and have local geological, geomorphological, and hydroge-

ological settings. The varying timing of velocity changes observed over the area

(Figure 4.6) might be related to the individual dynamics of the landslides. These

landslides might respond independently to rainfall, reservoir level changes, and

groundwater storage. For instance, Kang et al. (2021) indicated that the sliding

mechanisms of the landslides along the Highway 50 corridor were closely related

to pore-water pressures to which each landslide was linked. The effect of the

pore-water pressure on a landslide depended on the depth of the sliding sur-

face, precipitation, and hydrogeological factors such as hydraulic conductivity
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and diffusivity (Hu et al., 2019; Xu et al., 2019). Therefore, landslides in the same

region but with heterogeneous local settings respond differently to hydrometeo-

rological forcings, such as precipitation (Hu et al., 2018; Zhao et al., 2018).

4.7. CONCLUSION

The objective of this chapter was to identify and model the timing and frequency

of velocity changes of clusters of pixels and to investigate whether they are corre-

lated with hydrometeorological forcings. We used InSAR-derived displacement

data to investigate the sliding mechanisms of landslides on the slopes around the

Mazar reservoir. Much of the research on slow-moving landslides has identified

hydrometeorological and in-situ forcings as the main driving mechanisms for

initiating or reactivating accelerations and decelerations of slow-moving land-

slides. In this chapter, we leveraged the InSAR-derived dynamics of the slope

deformations and evaluated the possible relationship to available hydromete-

orological information in the area. We performed multiple regression models

using the variables above and found that the regional behavior of slow-moving

landslides could not be correlated to the hydrometeorological factors of the area.

Our analysis suggests that hydrology alone is insufficient to explain the be-

havior of slow-moving landslides in the region, as most clusters exhibit little to

no seasonal dynamics (one or two velocity changes) over four years. This can

be due to the lack of in-situ information, such as groundwater and soil mois-

ture, which would allow for a more comprehensive analysis of all the factors that

can affect the displacements. Additionally, the fact that most of the clusters have

one or two changes in velocity over four years of analysis may indicate that small

changes in velocity were hidden within the noise of the generic InSAR displace-

ment time series. Even though we were able to find temporally and spatially con-

sistent clusters of pixels, most of them showed heterogeneous timing of changes

in velocity, which brings uncertainty to the multiple regression models.

A regional analysis of this kind is challenging to perform in the presence of

heterogenous landslide mechanisms, where slopes seem to respond differently

to the same regional inputs. Therefore, in order to evaluate the effect of hy-

drometeorological forcings in the area, a detailed analysis of local slope settings

and mechanisms must be coupled with the surficial dynamics observed using
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our method. In conclusion, our findings suggest that more in-depth research is

needed to understand better the complex processes contributing to landslides in

the Mazar region. This study provides a foundation for future investigations.
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The Andes mountain range is a relatively young geological formation. As such,

it is prone to instabilities due to tectonic activity, or high precipitation amounts

(especially in the northern Andes), among other factors. This is no exception in

Ecuador, as the Andes traverse the country’s continental region, dividing it into

three distinct geomorphological areas. Precipitation levels vary across Ecuador,

ranging from ~700 mm to ~2000 mm per year in the southern coast and high-

lands and from ~2000 mm to ~3000 mm per year in the northern coast and the

Amazon region of Ecuador.

Our study area is in southeast Ecuador, a transitional zone between the An-

des and the Amazon rainforest. This region is characterized by slow-moving

landslides that have been identified and monitored for many years. These land-

slides gained increased significance following the construction of the Mazar dam

and subsequent impoundment of the Mazar reservoir in 2010. The interaction

between the geological dynamics of the Andes and the unique environmental

conditions in this region has contributed to the development and persistence

of these slow-moving landslides, making them a focal point of investigation and

concern.

The main objective of this dissertation was to develop a systematic approach

to identify the onset of accelerations and decelerations, their physical causes,

and the influence of hydrometeorological factors on the landslides near the Mazar

reservoir in southeast Ecuador. Specifically, we addressed the following objec-

tives:

1. To perform a hydrogeological characterization of the Guarumales land-

slide at the local scale while considering its broader implications within

the Mazar region;

2. To develop a new methodology to identify accelerations and decelerations

of slow-moving landslides at the regional scale using InSAR displacement

time series, and apply it on the landslides around the Mazar reservoir;

3. To analyze the detected accelerations and decelerations of the landslides

in the Mazar region and explore the influence of hydrometeorological forc-

ings on the dynamics of the landslides.
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These three specific objectives will be discussed in section 5.1, section 5.2,

and section 5.3. Section 5.4, section 5.5, and section 5.6 offer a broader overview

of the findings of this thesis and the associated limitations and future work.

5.1. GUARUMALES CASE STUDY

First, we proposed a hydrogeological characterization of the Guarumales land-

slide, located approximately 20 kilometers downstream from the Mazar dam and

subjected to extensive monitoring. This investigation aimed to comprehend the

specific dynamics of a landslide at a local scale while considering its broader im-

plications within the Mazar region.

A comprehensive dataset was readily available to facilitate the characteri-

zation of the Guarumales landslide. This dataset encompassed a remarkable

eighteen-year collection of in-situ displacement data from 2001 to 2018 and rain-

fall and groundwater level data spanning from 2013 to 2018. The displacement

data analysis revealed consistent surface movement rates while highlighting rain-

fall’s profound influence on the groundwater system. However, due to the limited

detail in the displacement data records, it was not feasible to ascertain a direct

correlation between the displacement rates and changes in the pore water pres-

sure. Nevertheless, our investigation uncovered an essential aspect of the Guaru-

males landslide’s slow-moving behavior: the horizontal drains installed across

the slope area drain 12% of the total annual rainfall. This excess of water would

cause a rise in the groundwater level of up to ~0.5 m, adding to the driving forces

of the landslide. This shows commendable management practices employed by

CELEC-EP in effectively mitigating the adverse effects associated with the varia-

tions on the movement of the Guarumales landslide.

The conceptual model of the Guarumales landslide provided valuable in-

sights into the intricate hydrogeological characteristics of this landslide within

the broader context of the Mazar region. The presence of perched groundwater

systems, giant boulders within the colluvium system, and fractures and cracks in

the slope collectively contributed to the complexities encountered while analyz-

ing the Guarumales landslide. The limited spatial distribution of the in-situ mon-

itoring points further restricted the interpretation of landslide behavior. Since

2020, according to communications with CELEC-EP, an early-warning system
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primarily based on rainfall patterns has been developed for the Guarumales land-

slide in response to fast-moving landslides, particularly near the small streams

within Guarumales. This system is a precautionary measure to enhance pre-

paredness and response to potential fast-moving landslide events, such as debris

flows.

In conclusion, we were able to perform a hydrogeological characterization

of the Guarumales landslide. We identified the main geological features and the

hydrological responses of groundwater to rainfall. However, we were not able

to identify a clear relationship between the landslide movement and the driv-

ing mechanisms underlying the Guarumales landslide. Given the limitations

encountered in the case study of the Guarumales landslide and the absence of

comprehensive in-situ information relating to the slopes surrounding the Mazar

reservoir, we developed a new method to investigate the dynamics of the Mazar

region.

5.2. DEVELOPMENT OF A METHOD TO DETECT ACCELERATIONS

AND DECELERATIONS FROM INSAR DISPLACEMENT TIME

SERIES

Chapter 3 centred on the comprehensive examination of the Mazar region en-

compassing the vicinity of the Mazar reservoir. We used InSAR-derived displace-

ment time series over the Mazar region and developed a systematic method to

detect, quantify, and inventory changes in the surface deformation rate of slowly

deforming areas. We identified the fastest-moving InSAR pixels and analyzed the

time series associated with those pixels. The outcome was a comprehensive in-

ventory of the occurrences of accelerations and decelerations derived from the

InSAR displacement time series. Considering the temporal resolution limitations

imposed by the satellite’s orbit time, typically 6 to 12 days, we opted for a monthly

timescale for our analysis.

Furthermore, our analysis considered the presence of uncertainties associ-

ated with the timing of detected accelerations and decelerations. We set a maxi-

mum permissible uncertainty of 30 days. An uncertainty threshold greater than

30 days results in the identification of more accelerations and decelerations, but
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such an extended time frame would make the analysis less meaningful in cap-

turing the temporal dynamics of the slow-moving slopes. Any threshold longer

than the duration of a (wet) season does not give useful information about the

temporal dynamics of the slow-moving slopes.

We tested our method in the Mudcreek landslide in the United States. We

used the InSAR displacement time series from a previous study, which had un-

dergone a rigorous evaluation process, resulting in a high-quality dataset. Our

analysis successfully identified monthly accelerations and decelerations that cor-

responded to periods of intense rainfall and drought, respectively. The results

demonstrated the method’s capability to detect and quantify the temporal dy-

namics of the landslide accurately.

After this successful test, we applied the method to the Mazar region. In this

case, the quality of the time series data was considerably lower compared to the

Mudcreek landslide dataset. Despite this limitation, our analysis identified de-

forming areas with complex acceleration and deceleration patterns within and

between groups of pixels. Somewhat surprisingly, the identified variations did

not consistently align with the wet and dry seasons, indicating the presence of

additional factors influencing the deformations within the Mazar region.

Overall, we developed a new method to detect surface accelerations and de-

celerations at the regional scale and used it on the slopes near and around the

Mazar reservoir. We leveraged the temporal and spatial variation of velocity changes

of slow-moving deforming areas to interpret their dynamics at the large scale. Ul-

timately, we used our inventory of surface displacement rate changes to investi-

gate the dynamics of slow-moving landslides at both sub-landslide and regional

scales with high spatial and temporal resolution.

5.3. ANALYSIS OF THE DETECTED ACCELERATIONS AND DECEL-

ERATIONS IN THE MAZAR REGION

In chapter 4, we used the surface displacement rate changes results (chapter 3)

to identify the timing and frequency of velocity changes of the landslides in the

Mazar reservoir area and to investigate whether they were correlated with hy-

drometeorological forcings from October 2016 to July 2020 through multiple lin-
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ear regression analysis. Our analysis revealed the presence of distinct clusters

of pixels exhibiting varying surface displacement dynamics across the Mazar re-

gion. These dynamics were characterized by a different number of velocity changes,

ranging from one to four, observed within the identified clusters. Despite our ef-

forts, we were not able to find a significant correlation between the landslide dy-

namics and the seasonal behavior of hydrometeorological forcings in the study

area. In hindsight, this was probably not a huge surprise as most of the clusters

of pixels exhibited only one or two changes in velocity over the four years of data

analysis, irrespective of the seasonal variations in hydrometeorological forcings.

The velocity changes of the identified clusters over the Mazar area were de-

rived from the InSAR-based displacement time series generated in chapter 3.

These time series were created using a standard methodology without any exten-

sive investigation of the individual interferograms used in their generation. The

primary objective was to determine whether the approach developed on chap-

ter 3 enabled a reasonable interpretation of the slow-moving dynamics at the

regional scale. It is concluded that the standard methodology employed in gen-

erating the displacement time series has limitations. The methodology identifies

the most significant velocity changes, which potentially misses smaller (likely

seasonal) changes that may be hidden in the noise present in the time series.

Given the identified variations in dynamics across the Mazar area and the

limited availability of hydrometeorological data, it became evident that hydrol-

ogy alone cannot adequately explain the behavior of the slow-moving landslides

in the region. The absence of essential in-situ information, such as groundwa-

ter and soil moisture measurements, coupled with the potential influence of an-

thropogenic disturbances, prevented a more comprehensive analysis of all the

factors possibly influencing the sliding mechanisms. It became apparent that

slopes within the same region responded differently to the same regional inputs,

suggesting the effect of local site-specific factors. A full analysis of the surficial

dynamics identified with our methodology requires knowledge of local slope set-

tings and mechanisms. Such an analysis may enable a more accurate evaluation

of the effect of hydrometeorological forcings in the area.

In conclusion, we analyzed the resulting inventory of accelerations and de-

celerations from chapter 3 and evaluated the effect (if any) of the hydrometeoro-
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logical forcings in the area. However, we were not able to establish a correlation

between them due to the limited availability of in-situ data, as well as the limited

quality of the InSAR displacement time series.

5.4. LIMITATIONS OF SLOW-MOVING LANDSLIDES RESEARCH IN

THE CONTEXT OF THE ANDES MOUNTAIN RANGE

Our study highlighted the limited availability of information in the Ecuadorian

Andes when analyzing slow-moving landslides as natural hazards. While we were

able to establish connections between rainfall patterns and groundwater responses,

such as in the Guarumales case study, we encountered challenges in identify-

ing empirical relationships between displacement (whether derived from in-situ

measurements or satellite data) and the hydrometeorological forcings at both

the local scale (Guarumales) and regional scale (Mazar region). One major lim-

itation was the lack of sufficient detail in the displacement time series to repre-

sent the slopes’ dynamics accurately. In the case of the Guarumales study, the

spatio-temporal resolution of the in-situ monitoring points was inadequate to

capture the slow-moving seasonal dynamics of the slope. Similarly, while pro-

viding extensive spatio-temporal data for the Mazar region, the satellite-based

displacement time series likely focused on capturing the most significant veloc-

ity changes. As a result, most clusters of pixels exhibited only one or two velocity

changes over the four-year analysis period.

Another significant limitation was the availability of in-situ hydrometeoro-

logical data, particularly at the regional scale. Although daily reservoir water

level data were accessible throughout our study period, obtaining comprehen-

sive in-situ rainfall data posed challenges. In-situ rainfall data was only available

for one station at the Mazar dam, for which we had to do an intrastation interpo-

lation due to the data gaps in the time series. We utilized satellite data and mod-

els to derive additional hydrometeorological variables to supplement the limited

in-situ data. Satellite data allowed us to estimate soil moisture levels, providing

valuable insights into the moisture content of the slopes. Furthermore, we em-

ployed models to estimate evapotranspiration, which enabled a more compre-

hensive analysis of the hillslope water balance and its impact on the dynamics
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of slow-moving landslides. It is important to acknowledge that these alterna-

tive data sources and modeling approaches introduced certain limitations and

uncertainties. Satellite-based measurements and model outputs are subject to

inherent inaccuracies and approximations, which must be carefully considered

when interpreting and using the derived datasets.

The limitations identified in this study are closely tied to the broader data

availability constraints observed in the Andes region. It is worth noting that

many worldwide studies rely on satellite-derived data, such as InSAR-derived

displacement data, to monitor slow-moving landslides (Bordoni et al., 2018; Berti

et al., 2013; Raspini et al., 2019). However, most of these studies have been con-

ducted in the global north, encompassing regions like the United States, Europe,

and Asia (Lacroix et al., 2020b). Consequently, the calibration of these satellite

products is predominantly based on these locations. As a result, obtaining accu-

rate satellite acquisitions for the global south, including underdeveloped areas,

poses significant data acquisition and validation challenges. This was evident in

our study regarding the InSAR displacement data acquired and processed for the

Mazar region, as discussed in chapter 3. Similarly, Appendix A revealed notable

dissimilarities between the satellite-derived and in-situ recorded rainfall data for

the Mazar region.

Throughout this thesis, a recurring limitation has been the limited availabil-

ity of in-situ data within the area of interest. Even though in-situ data has been

collected for several years, their frequency and accuracy were too coarse for de-

tailed analysis of the hydromechanical mechanisms of the Mazar deformations.

The available data collected for the Guarumales case study proved insufficient

in capturing the detailed dynamics of the slopes. Furthermore, the absence of

comprehensive in-situ data in the Mazar region compelled us to rely on satellite-

derived displacement data for the regional analysis. The overall quality of the

processed displacement data, combined with the limited number of available

meteorological stations and the lack of in-situ hydrological data, impeded our

ability to establish a clear correlation between slope displacement in the Mazar

region and the hydrometeorological forcings influencing the area. It is important

to highlight the need to improve the spatio-temporal resolution of the local mon-

itoring systems to capture the velocity variations of the slowly deforming areas of
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the Mazar region.

5.5. SLOW-MOVING LANDSLIDES IN THE ECUADORIAN ANDES

The current management practices implemented by CELEC-EP in the Mazar re-

gion involve on-site monitoring of the identified landslides in the vicinity of the

Mazar dam and reservoir, as well as a focus on understanding the geological

characteristics of these landslides. The monitoring has been carried out using

a Total Station, measuring every two weeks at specific locations within the lo-

cally identified landslides. However, due to unforeseen circumstances such as

bad weather, instrument failure, or human errors, these monitoring campaigns

are not always carried out. This leads to having coarse in-situ data, both spa-

tially and temporally. Our research showed that this coarse in-situ data is insuf-

ficient to perform a detailed analysis of the slow-moving dynamics of the slopes

in the Mazar region. For a better insight in these dynamics, and thus, a reliable

landslide early-warning system, it is imperative to improve the spatio-temporal

resolution of the in-situ monitoring systems. Some alternatives to improve the

in-situ monitoring systems are the use of Terrestrial Laser Scanning, or detailed

LIDAR data over the area of interest.

In line with these efforts, our work complemented these field-based activi-

ties by identifying additional areas undergoing deformation that had not been

identified previously. This approach facilitates collaboration between in-situ ob-

servations and monitoring and the satellite-derived identification of potentially

unstable areas. At the local scale, our research successfully identified the effec-

tiveness of the current management plans, particularly in preventing the accu-

mulation of groundwater that could lead to catastrophic consequences.

If studies on landslide hazard assessment increasingly focus on less econom-

ically developed countries, valuable information regarding landslide monitoring

can be obtained in these areas, which often face a higher vulnerability to the

impacts of this natural hazard (Lacroix et al., 2020b). In Ecuador, construct-

ing hydropower dams has become a priority within the country’s energy sector

development plans (Mite-León and Barzola-Monteses, 2018; Barzola-Monteses

et al., 2019). However, we have observed a significant gap in data availability and

the extent of research conducted on landslide hazards in the Ecuadorian Andes.
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Given the growing emphasis on hydropower development, it is crucial to pri-

oritize landslide hazard assessments in these areas to prevent potentially catas-

trophic consequences. The combination of infrastructure development, such as

dams, and the presence of landslide-prone regions highlights the importance of

understanding and effectively managing the associated risks.

Over the first half of 2023, many landslides have impacted Ecuador. Some

examples include the slow-moving landslides in southern Ecuador, i.e., Santa

Isabel, Tarqui, Cañar, and Alausí. The catastrophic failure of the slow-moving

landslide in Alausí on March 26, 2023, resulting in the displacement of three mil-

lion cubic meters of material over 24 hectares, has had devastating consequences

(Flores et al., 2023). The loss of 65 lives and the remaining ten missing individuals

further emphasize the event’s severity. Reports indicate that cracks had already

started to appear in December 2022, and by March 15, 2023, the area was on yel-

low alert. Although monitoring was reportedly in place, it could not anticipate

the occurrence of the catastrophic failure in March.

5.6. FUTURE WORK

By studying and calibrating satellite-derived products more frequently in the global

south, specifically in regions prone to landslides, such as Ecuador, it becomes

possible to apply methodologies similar to the one described in this thesis. This

can lead to more accurate monitoring of slow-moving landslides and enable the

modeling of acceleration patterns before catastrophic failures occur. Addressing

data availability and calibration limitations in these regions is crucial to advance

our understanding of slow-moving landslide dynamics, improve hazard assess-

ment, and develop more effective mitigation strategies.

Through comprehensive research and enhanced monitoring techniques, we

can strive to minimize the future loss of life and property associated with land-

slides. It is essential to prioritize investments in monitoring infrastructure, data

collection, and research initiatives to mitigate the risks posed by these natural

hazards and enhance the resilience of communities living in landslide-prone ar-

eas.
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Our research correlates the inventory of landslide velocity changes and po-

tential hydrometeorological drivers in the Mazar area. Rainfall is one of the hy-

drometeorological factors to be studied; however, only one in-situ meteorolog-

ical station with rainfall information is available in the area. The Mazar station

has data starting from 03-2013; however, around 40% of the data is missing or

has measurement errors (Figure A.1).

Figure A.1: Daily rainfall from the in-situ Mazar station

This situation raised concerns about the meteorological station’s functional-

ity and the rainfall data’s applicability in this paper. Hence, we explored two op-

tions: The first option was to evaluate the quality of the rainfall data in the Mazar

station using the double-mass curve analysis using a nearby station. We used the

Guarumales station, located twenty kilometers downstream of the Mazar dam.

This reliable meteorological station records data from 03-2013 and is used as

a reference station for said analysis. Figure A.2 shows inconsistencies between

these two stations. We plotted a scatter plot between the cumulative rainfall from

both stations, and we found specific periods where the Mazar station might not

be functioning correctly, as also observed in Figure A.1, where the data does not

seem to follow the usual trends in 2014 and after 2020. There are missing data

from the Mazar station, as also observed in Figure A.1 during 2018. Even though

these inconsistencies are found in the double-mass curve, we can also observe

that the rest of the period seems well correlated.

Therefore, we used scatter plots of daily and monthly rainfall, as shown in
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Figure A.2: Double-mass curve between the Guarumales and Mazar meteorological stations

Figure A.3, to perform an intra-station interpolation between these two meteo-

rological stations. It is observed that the stations are well correlated, with a Pear-

son r of 0.6 for monthly rainfall (Figure A.2). Therefore, it was decided to infill

the missing data and the data with possible measurement errors from the Mazar

station using Equation A.1. from the linear regression between the two data sets.

Figure A.3: Scatter plot between the Guarumales and Mazar meteorological stations in a daily
(left) and monthly (right) timescale

Pmazar =
0, if Pg uar umales = 0

0.4599×Pg uar umales +4.7581, otherwise
(A.1)

In Equation A.1, Pmazar is the rainfall of the Mazar station, and Pg uar umales

is the rainfall from the Guarumales station. Applying this equation, daily and
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monthly rainfall in the Mazar station results as shown in Figure A.4.

a)

b)

Figure A.4: Daily (a) and monthly (b) rainfall in the Mazar station with infilled data using the
Guarumales station

The second option was to use satellite rainfall products over the area. The

idea was to explore these products as an alternative to the current in-situ mete-

orological station. In this case, satellite rainfall was calculated as an area average

over the study area (Figure A.5.). The advantage of this option is the continuous

dataset and the larger spatial footprint provided by the satellite products.

We considered two types of satellite-derived data for this evaluation: reanaly-

sis precipitation data using ERA5 (spatial resolution: 0.1◦ x 0.1◦) (Hersbach et al.,

2020), which has been shown to outperform other reanalysis precipitation data

and perform well in the Amazon river basin, and global merged precipitation

products such as CHIRPS (spatial resolution: 0.05◦ x 0.05◦) (Funk et al., 2015)

and MSWEP (spatial resolution: 0.1◦ x 0.1◦) (Beck et al., 2017, 2019). Gauge-

based datasets were incorporated into satellite and reanalysis information in the

global merged precipitation products. Additionally, two other satellite-derived

precipitation products were considered: the Tropical Rainfall Measuring Mission
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Figure A.5: Location of the Mazar meteorological station and pixels considered in the area for the
satellite rainfall, with a spatial resolution of 0.1◦

(TRMM) Multisatellite Precipitation Analysis (spatial resolution: 0.25◦ x 0.25◦)

(Huffman et al., 2007) and the Global Precipitation Measurement (GPM) Inte-

grated Multisatellite Retrievals (spatial resolution: 0.1◦ x 0.1◦) (Huffman et al.,

2019). These data were compared to the in-situ data in the Mazar station (Fig-

ure A.6). It is observed that ERA5 rainfall overestimates and its temporal pat-

tern does not match the in-situ rainfall pattern. The latter also happens with all

satellite-based products, where the temporal patterns of the in-situ rainfall are

not replicated. The satellite product that seems to be more related to the in-situ

product is MSWEP, with a Pearson r of 0.49. All correlation coefficients can be

observed in Table A.1.

The rest of the satellite products show a weak correlation, with Pearson r be-

low 0.4. MSWEP in Figure A.6 seems to follow the rainfall patterns of the in-situ

rainfall; however, there are temporal patterns that do not match what is observed

in the field. It is essential to capture these patterns to evaluate them further with

the displacements observed in the area, which is the main objective of chapter 4.

In the Ecuadorian tropical Andes, satellite rainfall estimations are often bi-
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Figure A.6: Comparison between in-situ rainfall in the Mazar station and the five satellite-derived
rainfall time series over the Mazar area

Table A.1: Pearson r between the satellite rainfall products and the in-situ rainfall from the Mazar
station

Satellite product Pearson r
ERA5 -0.10

MSWEP 0.49
CHIRPS 0.22
TRMM 0.35
GPM 0.12

ased or erroneous due to various climatic drivers that result in varied spatiotem-

poral precipitation patterns (Chavez and Takahashi, 2017; Manz et al., 2017; Er-

azo et al., 2018). Additionally, the use of these products is often restricted due

to the short length of satellite records. Studies have attempted to produce high-

resolution precipitation datasets in Ecuador and Peru (e.g., Fernandez-Palomino

et al. (2022)); however, they found that it is still challenging to reproduce rainfall

patterns, especially in parts of the Ecuadorian Andes. Considering these limita-

tions, it was decided to use the infilled in-situ rainfall for further analyses in this

chapter. Monthly rainfall (Figure A.4) is used further in the chapter to compare it

to the inventoried velocity changes over the Mazar area.
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