

Corrigendum to "Halapricum hydrolyticum sp. nov., a beta-1,3-glucan utilizing haloarchaeon from hypersaline lakes" [Syst. Appl. Microbiol. 46(6) (2023) 126471](S0723202023000309)(10.1016/j.syapm.2023.126421)

Sorokin, Dimitry Y.; Elcheninov, Alexander G.; Merkel, Alexander Y.; Bale, Nicole J.; Sininghe-Damste, Jaap; Kublanov, Ilya V.

10.1016/j.syapm.2023.126475

Publication date 2023

Document Version Final published version

Published in

Systematic and Applied Microbiology

Citation (APA)
Sorokin, D. Y., Elcheninov, A. G., Merkel, A. Y., Bale, N. J., Sininghe-Damste, J., & Kublanov, I. V. (2023).
Corrigendum to "Halapricum hydrolyticum sp. nov., a beta-1,3-glucan utilizing haloarchaeon from hypersaline lakes" [Syst. Appl. Microbiol. 46(6) (2023) 126471](S0723202023000309)(10.1016/j.syapm.2023.126421). *Systematic and Applied Microbiology*, 47(1), Article 126475. https://doi.org/10.1016/j.syapm.2023.126475

To cite this publication, please use the final published version (if applicable). Please check the document version above.

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

ARTICLE IN PRESS

Systematic and Applied Microbiology xxx (xxxx) xxx

Contents lists available at ScienceDirect

Systematic and Applied Microbiology

journal homepage: www.elsevier.com/locate/syapm

Corrigendum

Corrigendum to "*Halapricum hydrolyticum* sp. nov., a beta-1,3-glucan utilizing haloarchaeon from hypersaline lakes" [Syst. Appl. Microbiol. 46 (6) (2023) 126471]

Dimitry Y. Sorokin ^{a,b,*}, Alexander G. Elcheninov ^a, Alexander Y. Merkel ^a, Nicole J. Bale ^c, Jaap Sininghe-Damste ^c, Ilya V. Kublanov ^a

The authors regret that there is a mistake in the strain collection number: instead of UQ 51487 it should be UQM 51487 in the protologue

Table 3 of their paper. The corrected protologue Table is presented below.

https://doi.org/10.1016/j.syapm.2023.126475

Available online 30 November 2023

0723-2020/© 2023 The Author(s). Published by Elsevier GmbH. All rights reserved.

^a Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia

^b Department of Biotechnology, Delft University of Technology, Delft, The Netherlands

^c NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Texel, The Netherlands

DOI of original article: https://doi.org/10.1016/j.syapm.2023.126421.

^{*} Corresponding author at: Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia. E-mail addresses: d.sorokin@tudelft.nl, soroc@inmi.ru (D.Y. Sorokin).

Table 3
Halapricum hydrolyticum: protologue.

Parameter	Species: Halapricum hydrolyticum sp. nov.
Species name	hydrolyticum
Genus name	Halapricum
Species status	sp. nov.
Etymology	hyd.ro.ly'ti.cum Gr. neut. n. hydor, water; Gr. adj.
	lytikos, dissolving, splitting; N.L. neut. adj. hydrolyticum, polymer dissolving
Description of the new	The cells are nonmotile coccoids 1-2 μm producing red
taxon	pigments. The cells lyze in distilled water. The core
	membrane diether lipids are dominatedby C ₂₀ -C ₂₀ DGE
	(archaeol) and C_{20} - C_{25} DGE (extended archaeol) with 0-
	3 double bonds. The polar lipid head groups include
	phosphatidylglycerolphosphate methyl ester (PGP-Me)
	as a major component and less abundant phosphatidylglycerol (PG). The dominant respiratory
	quinone is MK-8:8 with the MK-8:7 second in abundance
	and a minor fraction of MK7:7. It is a saccharolytic and
	facultatively anaerobic heterotroph. Capable of
	anaerobic growth either by sugar fermentation or by
	anaerobic nitrate/nitrite respiration with H ₂ as the
	electron donor presumably to the level of N ₂ O. Do not
	grow by anaerobic respiration with sulfur compounds as acceptors. Represents first example of haloarchaea
	capable of utilizing insoluble beta-1,3-glucans (curdlan
	and pachyman) for growth. Also can grow with soluble
	beta-1,3/1,6-glucan laminarin, beta-fructan inulin and
	alpha-glucans starch and glycogen. The spectrum of
	utilized sugars include hexoses glucose, fructose,
	raffinose, trehalose, maltose, sucrose, melezitose and melibiose. Ammonium, but not nitrate or urea, serves as
	the N-source. Oxidase is weakly positive, catalase is
	negative. Maximum growth temperature is 48°C. It is a
	low Mg-demanding, extreme halophile, with a range of
	NaCl for growth from 2.5 to 5 M (optimum at 4 M) and a
	neutrophile, with a pH range for growth from 6.8 to 7.8
	(optimum at 7.5). The G+C content of the DNA is 63.0-63.1 % (two genomes). Habitat - hypersaline salt lakes.
	The type strain (HArc-curdl5-1 ^T =DSM 114193 ^T =UQM
	41587 ^T) was isolated from sediments of hypersaline salt
	lakes in Kulunda Steppe (Altai, Russia). The species also
	includes a second, closely related strain HArc-curdl7.
Authors	Dimitry Y. Sorokin, Alexander G. Elcheninov, Alexander
	Y. Merkel, Michel Koenen, Nicole J. Bale and Ilya V. Kublanov
Title	Halapricum hydrolyticum sp. nov., a beta-1,3-glucan
Title	utilizing haloarchaeon from hypersaline lakes
Journal	Systematic and Applied Microbiology
Corresponding author	Dimitry Y. Sorokin
E-mail of corresponding	soroc@inmi.ru; d.sorokin@tudelft
author	
Designation of the type strain	HArc-curdl5-1
Strain collection numbers	DSM 114193; UQM 41587
outum concention numbers	
16S rRNA gene accession	Genomic locus tags for HArc-curdl5-1 ^T : OB916 11930;
16S rRNA gene accession numbers	Genomic locus tags for HArc-curdl5-1 ^T : OB916_11930; OB916_16655
numbers Genome assembly accession numbers	OB916_16655
numbers Genome assembly accession numbers Genome status	OB916_16655 GCA_025517535; GCA_025517565 Drafts
numbers Genome assembly accession numbers Genome status G+C, %	OB916_16655 GCA_025517535; GCA_025517565 Drafts 63.0-63.1 (genomes of 2 strains)
numbers Genome assembly accession numbers Genome status G+C, % Country of origin	OB916_16655 GCA_025517535; GCA_025517565 Drafts 63.0-63.1 (genomes of 2 strains) Russian Federation
numbers Genome assembly accession numbers Genome status G+C, % Country of origin Region of origin	OB916_16655 GCA_025517535; GCA_025517565 Drafts 63.0-63.1 (genomes of 2 strains) Russian Federation Altai region
numbers Genome assembly accession numbers Genome status G+C, % Country of origin	OB916_16655 GCA_025517535; GCA_025517565 Drafts 63.0-63.1 (genomes of 2 strains) Russian Federation
numbers Genome assembly accession numbers Genome status G+C, % Country of origin Region of origin Date of isolation Source of isolation Sampling dates	OB916_16655 GCA_025517535; GCA_025517565 Drafts 63.0-63.1 (genomes of 2 strains) Russian Federation Altai region 2015-11-15 Surface sediments from hypersaline salt lakes 2015-08-05
numbers Genome assembly accession numbers Genome status G+C, % Country of origin Region of origin Date of isolation Source of isolation Sampling dates Geographic location	OB916_16655 GCA_025517535; GCA_025517565 Drafts 63.0-63.1 (genomes of 2 strains) Russian Federation Altai region 2015-11-15 Surface sediments from hypersaline salt lakes 2015-08-05 south-western Siberia, Kulunda Steppe
numbers Genome assembly accession numbers Genome status G+C, % Country of origin Region of origin Date of isolation Source of isolation Sampling dates Geographic location Latitude	OB916_16655 GCA_025517535; GCA_025517565 Drafts 63.0-63.1 (genomes of 2 strains) Russian Federation Altai region 2015-11-15 Surface sediments from hypersaline salt lakes 2015-08-05 south-western Siberia, Kulunda Steppe 51°39' N; 49°10' N; 48°14' N
numbers Genome assembly accession numbers Genome status G+C, % Country of origin Region of origin Date of isolation Source of isolation Sampling dates Geographic location Latitude Longtitude	OB916_16655 GCA_025517535; GCA_025517565 Drafts 63.0-63.1 (genomes of 2 strains) Russian Federation Altai region 2015-11-15 Surface sediments from hypersaline salt lakes 2015-08-05 south-western Siberia, Kulunda Steppe 51°39' N; 49°10' N; 48°14' N 79°48' E; 46°39' E; 46°35' E
numbers Genome assembly accession numbers Genome status G+C, % Country of origin Region of origin Date of isolation Source of isolation Sampling dates Geographic location Latitude Longtitude Depth	OB916_16655 GCA_025517535; GCA_025517565 Drafts 63.0-63.1 (genomes of 2 strains) Russian Federation Altai region 2015-11-15 Surface sediments from hypersaline salt lakes 2015-08-05 south-western Siberia, Kulunda Steppe 51°39' N; 49°10' N; 48°14' N 79°48' E; 46°39' E; 46°35' E 0.05 m
numbers Genome assembly accession numbers Genome status G+C, % Country of origin Region of origin Date of isolation Source of isolation Sampling dates Geographic location Latitude Longtitude Depth Temperature of the	OB916_16655 GCA_025517535; GCA_025517565 Drafts 63.0-63.1 (genomes of 2 strains) Russian Federation Altai region 2015-11-15 Surface sediments from hypersaline salt lakes 2015-08-05 south-western Siberia, Kulunda Steppe 51°39' N; 49°10' N; 48°14' N 79°48' E; 46°39' E; 46°35' E
numbers Genome assembly accession numbers Genome status G+C, % Country of origin Region of origin Date of isolation Source of isolation Sampling dates Geographic location Latitude Longtitude Depth	OB916_16655 GCA_025517535; GCA_025517565 Drafts 63.0-63.1 (genomes of 2 strains) Russian Federation Altai region 2015-11-15 Surface sediments from hypersaline salt lakes 2015-08-05 south-western Siberia, Kulunda Steppe 51°39' N; 49°10' N; 48°14' N 79°48' E; 46°39' E; 46°35' E 0.05 m
numbers Genome assembly accession numbers Genome status G+C, % Country of origin Region of origin Date of isolation Source of isolation Sampling dates Geographic location Latitude Longtitude Depth Temperature of the sample pH of the sample Salinity of the sample	OB916_16655 GCA_025517535; GCA_025517565 Drafts 63.0-63.1 (genomes of 2 strains) Russian Federation Altai region 2015-11-15 Surface sediments from hypersaline salt lakes 2015-08-05 south-western Siberia, Kulunda Steppe 51°39' N; 49°10' N; 48°14' N 79°48' E; 46°39' E; 46°35' E 0.05 m 20°C
numbers Genome assembly accession numbers Genome status G+C, % Country of origin Region of origin Date of isolation Source of isolation Sampling dates Geographic location Latitude Longtitude Depth Temperature of the sample pH of the sample	OB916_16655 GCA_025517535; GCA_025517565 Drafts 63.0-63.1 (genomes of 2 strains) Russian Federation Altai region 2015-11-15 Surface sediments from hypersaline salt lakes 2015-08-05 south-western Siberia, Kulunda Steppe 51°39' N; 49°10' N; 48°14' N 79°48' E; 46°39' E; 46°35' E 0.05 m 20° C 7.5-8.0

Table 3 (continued)

Parameter	Species: Halapricum hydrolyticum sp. nov.
Source of isolation of non-type strains	Same as for the type strain
Growth medium,	4 M total NaCl, pH 7; incubation – 35-37°C; shaker 150 $$
incubation conditions Conditions of	rpm Deep freezing in 15% glycerol (v/v)
preservation Crom stein	Nogativo
Gram stain	Negative Coccoids
Cell shape Cell size	1-2 μm in diameter
Motility	Nonmotile
Sporulation	None
Colony morphology	Red, convex, smooth, up to 2 mm
Temperature range for growth	Nd
Lowest temperature for growth	Nd
Highest temperature for growth	45
Optimal temperature for growth	35-40
Lowest pH for growth	6.8
Highest pH for growth	7.8
Optimum pH for growth	7.5
pH category	Neutrophilic
Lowest NaCl concentration for growth	2.5 M
Highest NaCl concentration for growth	5.0 M
Optimum salt concentration for growth	4.0 M
Other salts important for growth	KCl (5 mM); MaSO ₄ (1-5 mM)
Salinity category	Extremely halophilic
Relation to oxygen	Facultative anaerobe
O ₂ conditions for strain testing	Fully aerobic
Carbon source used (class)	Carbohydrates
Specific compounds	beta-1,3-glucans curdlan and pachyman
Nitrogen source	Ammonium
Terminal electron acceptor	O ₂ , NO ₃ and NO ₂
Energy metabolism Phospholipids	Chemoorganotrophic Core membrane lipids are C_{20} - C_{20} DGE (archaeol) and C_{20} - C_{25} DGE (extended archaeol). Polar head groups are phosphatidylglycerophosphate methylester (PGP-Me) and phosphatidylglycerol (PG)
Respiratory lipoquinones	MK-8:8 (major); MK-8:7 and MK7:7 (minor)
Glycolipids and sulfolipids	Absent
Habitat Extraordinary feautures	Hypersaline lakes Utilization of insoluble beta-1,3-glucans for growth