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S U M M A R Y 

The deployment of electromagnetic (EM) induction tools while drilling is one of the standard 

routines for assisting the geosteering decision-making process. The conductivity distribution 

obtained through the inversion of the EM induction log can provide important information 

about the geological structure around the borehole. To image the 3-D geological structure in the 
subsurface, 3-D inversion of the EM induction log is required. Because the inversion process 
is mainly dependent on forward modelling, the use of a fast and accurate forward modelling 

tool is essential. In this paper, we present an improved version of the integral equation (IE) 
based modelling technique for general anisotropic media with domain decomposition pre- 
conditioning. The discretized IE after domain decomposition equals a fixed-point equation that 
is solv ed iterativ ely with either the block Gauss–Seidel or Jacobi pre-conditioning. Within each 

iteration, the inverse of the block matrix is computed using a Krylov subspace method instead of 
a direct solver. An additional reduction in computational time is obtained by using an adaptive 
relative residual stopping criterion in the iterativ e solv er. Using this domain decomposition 

scheme, numerical experiments show computation time reductions by factors of 1.97–2.84 

compared to solving the full-domain IE with a GMRES solver and a contraction IE pre- 
conditioner. Additionally, the reduction of memory requirement for covering a large area 
of the induction tool sensitivity enables acceleration with limited GPU memory. Hence, we 
conclude that the domain decomposition method is improving the efficiency of the IE method 

by reducing the computation time and memory requirement. 

Key words: Electromagnetic theory; Numerical modelling; Numerical solutions. 
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1  I N T RO D U C T I O N  

State-of-the-art tools for electromagnetic (EM) induction logging- 
w hile-drilling (LWD) enab le real-time mapping of formation 
boundaries tens of metres away from the borehole (Sinha et al. 
2022 ). These tools typically consist of multiple antenna configu- 
rations that have different sensitivities to the electrical resistivity 
distribution in the medium around the borehole. The distribution of 
the electrical properties is quantified through an inversion process 
and provides structural information and characteristics of the sur- 
rounding medium. The studies in real-time geosteering inversion 
usually employ 1-D or 2-D approximations (Pardo & Torres-Verd ́ın 
2015 ; Bakr et al. 2017 ; Puzyrev 2019 ; Noh et al. 2022 ). Ho wever , 
for imaging complex geological structures, it is important to cap- 
ture the 3-D variability of the resistivity change around the borehole 
through 3-D inversion methods (Puzyrev et al. 2019 ; Sinha et al. 
2022 ). The work of Wilson et al. ( 2019 ) shows that it is possible 
834 
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to perform 3-D inversion in real-time, ho wever , it is challenging 
due to the large computational cost required for the 3-D forward 
modelling, especially when quantification of the uncertainties in 
the inversion is required. Therefore, the study of a fast 3-D forward 
solver that accurately models induction logs remains essential for 
the development and testing of new imaging methods. 

The integral equation (IE) method is one of the most widely ap- 
plied numerical methods for the 3-D modelling of EM data (Avdeev 
2005 ; Wang et al. 2021 ) alongside the finite-difference (Newman 
& Alumbaugh 2002 ; Hou et al. 2006 ) and finite-element meth- 
ods (Puzyrev et al. 2013 ; Ren et al. 2014 ). One of the main ad- 
vantages of using the IE method is that it has the accuracy of a 
semi-analytical solution (Wang et al. 2021 ). Without introducing 
many specific approximations, the EM fields around the borehole 
are obtained by solving the linear system arising from the dis- 
cretization of the IEs. As the linear system is dense, the computa- 
tional memory and time required can be large compared to other 
ress on behalf of The Royal Astronomical Society. This is an Open Access 
s Attribution License ( https://creati vecommons.org/licenses/b y/4.0/ ), which 
 any medium, provided the original work is properly cited. 
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umerical methods (Zaslavsky et al. 2011 ; Yoon et al. 2016 ). To
vercome this challenge, the linear system can be ef ficientl y solved
sing an iterative solver based on the Krylov subspace method
n combination with the utilization of FFTs (Fast Fourier Trans-
orm) to accelerate the convolution integral operations in the lin-
ar system (Fang et al. 2006 ). A faster convergence rate can be
chie ved b y implementing the contraction IE formulation (Hursan
 Zhdanov 2002 ) which works especially well in the presence of
 high contrast or a high degree of anisotropy . Additionally , the
pplication of GPUs further decreases computation times because
PUs enable the acceleration of mathematical operations that can be

traightforw ardl y parallelized (Dyatlov et al. 2015 ; Saputera et al.
022 ). 

In the work of Zhdanov et al. ( 2006 ), the formulation of the
E method is extended by decomposing the region of interest into
everal subdomains. The field in the entire domain is obtained by
equentially solving the linear system in each subdomain and up-
ating the interaction between the subdomains iterati vel y until con-
ergence. With this formulation, it becomes feasible to conduct
arge-scale modelling of surface EM data in heterogeneous media
s the computational operation can be reduced to one subdomain
t a time. It is possible to obtain an additional reduction in com-
utational costs b y onl y considering subdomains that contain an
nomaly with respect to the background medium. This leads to a
maller number of discretization blocks required for the 3-D mod-
lling while still enabling FFT implementation (Endo et al. 2009 )
nd an improved iterative solver convergence rate (Van Dongen
t al. 2007 ). Typically, a horizontally layered model is chosen as the
ackground medium as the theory of Green’s functions for layered
-D models is very well developed (Zhdanov et al. 2006 ). Hence,
he IE method can be very efficient when the resistivity model only
eviates in some areas from the 1-D model. Ho wever , in our ap-
lication, the subsurface structure can vary in all directions. The
ubdomains containing an anomaly can be everywhere around the
M tools and it may not be possible to achieve a reduction in the
umber of discretizations by the domain decomposition. Addition-
lly, the subdomains from the decomposition can be adjacent to each
ther such that the interactions between neighbouring subdomains
re not negligible. 

The domain decomposition method can lead to an efficient way
f solving the linear system of the IE method (Jakobsen & Tveit
018 ; Wang et al. 2017 ). In the work of Jakobsen & Tveit ( 2018 ),
he domain decomposition method is used to ef ficientl y compute
he T -matrix for the inversion of controlled source EM data. It is
lso shown that the domain decomposition method opens up the
ossibility to compute the T -matrix in parallel. 

In this paper, we demonstrate that the formulation of an IE
ith domain decomposition (IE-DD) can be interpreted as a pre-

onditioned linear system, offering a computational advantage. We
llustrate that the IE-DD method can be represented as a fixed-point
quation, which is iterati vel y solved using block Gauss–Seidel or
acobi pre-conditioners (Saad 2003 ). In particular, we will use a
rylov subspace method to invert the block matrices that are present

n the formulation. Instead of expressing the decomposition formu-
ation in terms of the contrast source in each subdomain as described
n Zhdanov et al. ( 2006 ) and Endo et al. ( 2009 ), we present the do-
ain decomposition formulation in terms of the electric field in

ach sub-domain and a different perspective on the derivation of the
E-DD formulation. Additionally, we propose the use of an inexact
terativ e solv er when solving the IE linear system for each subdo-

ain where the target tolerance is adapted based on the full-domain

esidual. d  
The outline of this paper is described as follows. In Section 2
alled theory, we give an overview of the theory and implemen-
ation of the conventional IE method and the IE-DD. In Section 3
alled numerical results and discussion, we present three numeri-
al examples to show the performance of the IE-DD method and
iscuss the computational aspect of our implementation. First, we
how an example with isolated subdomains to verify if the domain
ecomposition formulation will produce the same numerical results
s the conventional full-domain formulation. Also, we show differ-
nt IE-DD schemes and compare the performance of these schemes
ith each other and the full-domain IE as a reference. In the second

xample, we show a numerical experiment with a simple anisotropic
aulted medium to demonstrate the benefit of using IE-DD in the
ase of connected subdomains. In the last example, we simulate a
ogging scenario across a large complex 3-D model. Fur ther more,
e showcase the ability of the domain decomposition method to

educe the memory requirement for dealing with a large number of
rid blocks in the last example. This feature lets us cover more por-
ion of the subsurface receivers while keeping a fine grid size, which
ay not be straightforward to implement in our currently available

omputer without the domain decomposition method. In Section 4 ,
e provide a compact e v aluation of the IE-DD implementation in

his study and also some possible improvements for future research.
his paper contains appendices with more in-depth details of the

E-DD deri v ation and implementation. We also include the compar-
son of our conventional IE code and existing code as a benchmark
f our work in Appendix B . 

 T H E O RY  

.1 T he integ ral equation method for 3-D induction logs 
odelling 

axwell’s equations for heterogeneous media (Wannamaker & Zh-
anov 2002 ) are the basic theory for modelling the induction tools’
esponse within the frequency domain: 

 × s E 

( r ) = iωμH 

( r ) + J H ( r ) , (1) 

 × H 

( r ) = ̂  σ ( r ) E 

( r ) , (2) 

here E 

( r ) and H 

( r ) are the total electric and magnetic fields,
especti vel y, at location r , J H ( r ) denotes the magnetic source
erm, ω is the angular frequency, μ is the magnetic permeabil-
ty, ̂  σ ( r ) = σ ( r ) − iω ε ( r ) is the complex electric conductivity, ε 
s the dielectric permittivity and i = 

√ −1 . We assume that the
agnetic permeability is constant and it is set equal to the mag-

etic permeability of the vacuum μ0 . Additionally, the imaginary
art of the complex conductivity can be ignored in the diffusion
egime, which is a typical assumption for the operating conditions
f induction tools. 

The total electric and magnetic fields can be formulated using
he following IEs (Fang et al. 2006 ) 

E 

( r ) = E 

(0) ( r ) + 

∫ 
�

G 

E ( r , r ′ ) � σ ( r ′ ) E 

( r ′ ) dV ( r ′ ) , (3) 

H 

( r ) = H 

(0) ( r ) + 

∫ 
�

G 

H ( r , r ′ ) � σ ( r ′ ) E 

( r ′ ) dV ( r ′ ) , (4) 

here the � indicates the domain of integration where anomalies
n the conductivity relative to the homogeneneous isotropic back-
round conductivity σ 0 are present. The integral terms in eqs ( 3 ) and
 4 ) represent the scattered electric and magnetic fields, respecti vel y,
ue to the presence of these anomalies. The (0) superscripts indicate
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0

1
M

2

Tx

Figure 1. Schematic of the domain decomposition. The black arrows indi- 
cate the field coming from the transmitter Tx to the subdomains �j . The 
double-headed green arrows indicate the scatterers’ interaction between the 
subdomains. The transmitter can also be located in the anomalous domain. 
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the fields defined for the background medium which are referred 
to as the background fields. We choose a homogeneous isotropic 
background medium for simplicity and efficiency when calculating 
Green’s tensor (Fang et al. 2006 ), and we assume that the tool is not 
al wa ys surrounded by a horizontally layered medium. The tensor 
� σ ( r ) = σ ( r ) − σ0 I , denotes the conductivity contrast between 
the actual anisotropic and the background medium, and with I the 
identity tensor. The electric Green’s tensor G 

E ( r, r ′ ) and its rela- 
tion to the magnetic Green’s tensor G 

H ( r, r ′ ) for a homogenous 
isotropic medium are (Fang et al. 2006 ) 

G 

E ( r , r ′ ) = 

(
iωμ0 I + 

∇∇ 

σ0 

)
g ( r , r ′ ) , (5) 

G 

H ( r , r ′ ) = 

( iωμ0 ) 
−1 ∇ × G 

E , (6) 

g ( r , r ′ ) = 

e 
ik 0 

∣∣∣r −r ′ 
∣∣∣

4 π | r − r ′ | , (7) 

where g ( r , r ′ ) is the scalar Green’s function and k 0 = 

√ 

iωμ0 σ0 . 
To calculate the total magnetic fields, the total electric fields need to 
be obtained first by solving eq. ( 3 ). Afterward, the calculation of the 
total magnetic fields is a straightforward addition of the background 
magnetic fields and the integral term as shown in eq. ( 4 ). Therefore, 
the main computational challenge of the IE method is to solve 
integral eq. ( 3 ), which is classified as a Fredholm IE of the second 
kind (Fang et al. 2006 ). 

2.2 Numerical implementation of the integral 
equation method 

A numerical solution of the volume integral in eq. ( 3 ) can be ob- 
tained using the method of moments (Gibson 2021 ). The subsurface 
model around the induction tool is discretized into a set of cubic 
grid blocks with centroids r j and volume of � v , where j indicates 
the j th grid block. The discretization of eq. ( 3 ) leads to a linear 
system of equations that can be expressed in operator form as 

( I − G � σ ) E = E 

(0) , (8) 

where G is the operator that represents the discrete convolution 
integral of the electric Green’s tensor G 

E ( r , r ′ ) with the contrast 
source � σ E in eq. ( 3 ). For discretization with cubic grid blocks, the 
Green’s function in eq. ( 5 ) can be discretized by separating the non- 
singular part of the Green’s function and dealing with the singularity 
by integrating the Green’s function of a grid block over a spherical 
domain with an equi v alent volume (Gao et al. 2005 ; Jakobsen & 

Tveit 2018 ). The linear system in eq. ( 8 ) can be ef ficientl y solved 
using a Krylov subspace method because it does not require the 
matrix of the linear system to be formed explicitly. The desired 
accuracy of the iterative method is quantified by the relative residual 
ε which is calculated as 

ε = 

∥∥E 

(0) − ( I − G � σ ) E 

∥∥∥∥E 

(0) 
∥∥ , (9) 

where ‖ · ‖ is the L 2 -norm. In this study, we use the generalized 
minimum residual or GMRES (Saad & Schultz 1986 ) as the linear 
system solver. 

Green’s tensor operator exhibits a convolution structure in each 
of the tensor components. This property enables the use of FFT to 
convolve a Green’s tensor component G 

E 
pq and a component of the 

contrast source ( � σ E 

) q ef ficientl y (Fang et al. 2006 ). The p and q 
indices indicate the component of Green’s tensor and the contrast 
source vector with p and q = x , y , z . At each step of the iterative
solver, the convolution integral can be ef ficientl y calculated by 

G pq ( � σ E 

) q = F 

−1 
(
F 

[
G 

E 
pq 

]�F 

[
( � σ E 

) q 
])

, (10) 

where F is the FFT operator and � denotes elementwise multipli- 
cation. This operation reduces the convolution computation com- 
plexity from O( N 

2 ) to O( N log 2 N ) with N the number of grid blocks. 
It should be noted that the FFT convolution requires uniform grid 
discretization. Although there exist several studies that employ FFT 

convolution on non-uniform grid settings (Nie et al. 2013 ; Kamm & 

Pedersen 2014 ; Chen et al. 2021 ), we keep a unifor m g rid discretiza- 
tion in this paper and the usage of non-unifor m g rid discretization 
with domain decomposition is subject to future study . Additionally , 
the size of the discretized contrast source � σ E needs to be padded 
by zeros such that the padded � σ E has twice the original number of 
points in all directions to avoid the periodicity in the FFT convolu- 
tion result. The FFT of Green’s tensor can be pre-calculated before 
calling the iterative solvers to save computational time during the 
iterative process. 

The convergence of the Krylov solver can be improved using the 
pre-conditioning introduced in the contraction IE method (Hursan 
& Zhdanov 2002 ). In the contraction IE method, eq. ( 8 ) is pre- 
conditioned by multiplying both sides of the equation with 

√ 

Reσ0 

and solving for the scaled electric field ( aE ) instead of the electric 
field E which results in the following: √ 

Reσ0 ( I − G � σ ) a −1 ( a E 

) = 

√ 

Reσ0 E 

0 , (11) 

where 

a = 

2 Reσ0 I + � σ ( i) (
2 
√ 

Reσ0 

) . (12) 

2.3 Domain decomposition 

The domain decomposition method attempts to solve the problem 

for the entire from solutions of the different subdomains (Saad 
2003 ). In our case, the spatial domain � is decomposed into M non- 
overlapping rectangular subdomains �j , hence 

� = 

M ⋃ 

j= 1 
� j , (13) 

see Fig. 1 . Adapting the domain decomposition formulation de- 
scribed in Endo et al. ( 2009 ), the convolution integral term or the 
scattered electric field term in eq. ( 3 ) can be expressed as a sum of 
scattered electric fields from each of the subdomains. Subsequently, 

art/ggad454_f1.eps
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q. ( 3 ) can be written as 

E 

( r ) = E 

(0) ( r ) + 

M ∑ 

j= 1 

∫ 
� j 

G 

E ( r , r ′ ) � σ ( r ′ ) E 

( r ′ ) dV 

( r ′ ) , (14) 

here �j indicates the subdomains with the conductivity anomaly.
rom eq. ( 14 ), we obtain the following set of IEs e v aluated in each
ubdomain: 

E 

( i) = E 

( i, 0) + 

M ∑ 

j= 1 
G 

( i j) � σ ( j) E 

( j) , i = 1 , 2 , . . . , M. (15) 

he terms E 

( i, 0) , E 

( i) and � σ ( i) are the background electric field,
otal electric field and the conductivity contrast defined at the sub-
omain �i , respecti vel y. The terms G 

( i j) � σ ( j) E 

( j) in eq. ( 15 ) are the
iscrete representations of the convolution integral in eq. ( 14 ) which
enote the scattered electric fields in the subdomain �i due to the
ontrast source in the subdomain �j . It can be seen in eq. ( 15 ) that
he region without a conductivity anomaly does not contribute to the
um and hence can be omitted from the discretization when calcu-
ating the electric field. By collecting the scattered field terms into
he left-hand side of the equations, the linear system of equations in
q. ( 15 ) can be expressed with a block-matrix representation, viz. 

A ̃

 E = ̃

 E 

(0) 
, (16) 

here A is the block matrix of the re-arranged linear system ac-
ording to the domain decomposition 

A = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

I −G 

(11) � σ (1) −G 

(12) � σ (2) . . . −G 

(1 M) � σ ( M) 

−G 

(21) � σ (1) I −G 

(22) � σ (2) . . . −G 

(2 M) � σ ( M) 

. . . 
. . . 

. . . 
. . . 

−G 

( M1) � σ (1) −G 

( M2) � σ (2) . . . I −G 

( M M ) � σ ( M) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, (17) 

here ˜ E and ˜ E 

(0) 
are the block vectors containing the total and

ackground electric fields in different subdomains, respectively.
hese terms are defined as 

˜ E = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

E 

(1) 

E 

(2) 

. . . 
E 

( M) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, ˜ E 

(0) = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

E 

(1 , 0) 

E 

(2 , 0) 

. . . 
E 

( M, 0) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

. (18) 

ach block in the matrix A indicates interaction terms between the
ubdomains. The diagonal terms 

(
I −G 

( i i ) � σ ( i) 
)

in eq. ( 17 ) can
e interpreted as the intradomain interaction within a subdomain,
hile the off-diagonal terms −G 

( i j) � σ ( j) represent the interdomain
nteraction terms. Since the subdomains are rectangular, the con-
olution integrals with Green’s tensor in the intra- and interdomain
nteraction terms can still be calculated using the FFT. 

To solve the re-arranged linear system of equation with domain
ecomposition in eq. ( 16 ), the matrix A is pre-conditioned by split-
ing the matrix into a strictly lower triangular ( L 

) , strictly upper
riangular ( U 

) and diagonal ( D ) part (Barrett et al. 1994 ; Saad
003 ): 

A = 

( L + U + D 

) , (19) 
here the matrices L , U and D are defined by 

L = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

0 0 . . . 0 
−G 

(21) � σ (1) 0 . . . 0 
. . . 

. . . 
. . . 

. . . 
−G 

( M1) � σ (1) −G 

( M2) � σ (2) . . . 0 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, 

U = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

0 −G 

(12) � σ (2) . . . −G 

(1 M) � σ ( M) 

0 0 . . . −G 

(2 M) � σ ( M) 

. . . 
. . . 

. . . 
. . . 

0 0 . . . 0 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, 

and 

D = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

I −G 

(11) � σ (1) 0 . . . 0 
0 I −G 

(22) � σ (2) . . . 0 
. . . 

. . . 
. . . 

. . . 
0 0 . . . I −G 

( M M ) � σ ( M) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, 

(20) 

especti vel y. By substituting the matrix splitting in eq. ( 19 ) into
q. ( 16 ) and some simple algebra, we obtain 

˜ E = 

( D + L 

) −1 
[ ˜ E 

(0) −U ̃

 E 

] 
, (21) 

hich can be solved by choosing an initial guess of ̃  E and iterati vel y
alculating the following 

˜ E 

k+ 1 = 

( D + L 

) −1 
[ ˜ E 

(0) −U ̃

 E 

k 
] 
, (22) 

ith k the iteration number. The iteration described in eq. ( 22 )
orresponds to the block Gauss–Seidel iterative method (Barrett
t al. 1994 ; Saad 2003 ). The matrix ( D + L 

) has a lower triangular
orm where the inverse can be obtained using forward substitu-
ion (Venkateshan & Sw aminathan 2014 ). The forw ard substitution
rocess to compute eq. ( 22 ) is outlined in Appendix A . With the for-
ard substitution, the total electric field update in each subdomain

ccording to eq. ( 22 ) can be expressed in the simple form as 

E 

( i) ,k+ 1 = 

(
I − G 

( i i ) � σ ( i) 
)−1 

⎡ 

⎣ E 

( i, 0) + 

i−1 ∑ 

j= 1 
G 

( i j) � σ ( j) E 

( j) ,k+ 1 

+ 

M ∑ 

j= i+ 1 
G 

( i j) � σ ( j) E 

( j) ,k 

⎤ 

⎦ , (23) 

here i = 1,2, . . . , M denotes the number of inner iterations where
he IE is solved for one subdomain and the number k denotes the
umber of the total domain sweeps where the electric field is updated
or the entire domain. The inverse operation of the block intrado-
ain term in eq. ( 23 ) is not calculated using the direct solver, but

nstead by using a Krylov subspace method to solve the following
inear system of equations within each subdomain: 

(
I − G 

( i i ) � σ ( i) 
)

E 

( i) ,k+ 1 = E 

( i, 0) + 

i−1 ∑ 

j= 1 
G 

( i j) � σ ( j) E 

( j) ,k+ 1 

+ 

M ∑ 

j= i+ 1 
G 

( i j) � σ ( j) E 

( j) ,k . (24) 

The domain sweep is carried out until the relative residual on the
hole domain reaches a desired threshold. The resulting operation
f solving eq. ( 24 ) iterati vel y is equi v alent to the formulation de-
cribed in Zhdanov et al. ( 2006 ) and Endo et al. ( 2009 ). Ho wever ,
n our deri v ation, we can see the link between the original formula-
ion to a block-pre-conditioned iterative method, which is the block
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Algorithm 1. IE method with domain decomposition pre-conditioning. 

set : εt = threshold value, M = number of subdomains, 
initialize : E 

0 : = E 

(0) , k : = 1 

ε = 

∥∥∥E 

(0) −( I −G � σ ) E 

k−1 
∥∥∥∥∥∥E 

(0) 
∥∥∥

while ε > εt 

for i = 1: M 

if Gauss–Seidel pre-conditioning 
b = E 

( i, 0) + 

∑ i−1 
j= 1 G 

( i j) � σ ( j) E 

( j) ,k+ 1 + 

∑ M 

j= i+ 1 G 

( i j) � σ ( j) E 

( j) ,k 

else if Jacobi pre-conditioning 
b = E 

( i, 0) + 

∑ M 

j= 1 G 

( i j) � σ ( j) E 

( j) ,k 

end if 
set : initial guess = E 

( i) ,k , threshold = ε/10 
E 

( i) ,k+ 1 = GMRES 
[

A = 

(
I − G 

( i i ) � σ ( i) 
)
, b , initial guess , threshold 

]
end for 
k = k + 1 

end while 
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Gauss–Seidel iterative method in this case. The convergence of the 
Gauss–Seidel iterative method depends on the diagonal dominance 
of the linear system matrix (Saad 2003 ). In this case, if the sum 

of the interdomain terms’ norm is small compared to the norm of 
the intradomain terms in eq. ( 24 ), then this scheme is guaranteed 
to converge. Since the magnitude of Green’s tensor elements de- 
pends on the distance between subdomains, the interaction terms 
are small when the subdomains are isolated from each other. When a 
subdomain has small contrasts, the interaction is one-sided from the 
subdomain with high contrast. Additionally, the domain order may 
affect the convergence rate of the Gauss–Seidel iterative method 
(Barrett et al. 1994 ) because the ordering of the subdomains de- 
termines the matrix ( D + L 

) , which controls the convergence rate. 
These properties should be considered when designing the domain 
decomposition settings. 

Instead of the Gauss–Seidel iterative method, one can also choose 
the Jacobi iterative method by taking only the diagonal part of the 
matrix A as the pre-conditioner of the fixed-point equation instead of 
its lower triangular part. The fixed-point equation that corresponds 
to the Jacobi iterative method can be written as 

˜ E 

k+ 1 = D 

−1 
[ ˜ E 

(0) − ( L + U 

) ̃  E 

k 
] 
, (25) 

which leads to the following linear system of equations to be solved 
in each subdomain: 

(
I − G 

( i i ) � σ ( i) 
)

E 

( i) ,k+ 1 = E 

( i, 0) + 

M ∑ 

j= 1 
G 

( i j) � σ ( j) E 

( j) ,k . (26) 

Since the right-hand side of eq. ( 26 ) only depends on the solutions at 
the k th iteration, the Jacobi iterative method is more straightforward 
to be implemented in parallel computing environments (Barrett et al. 
1994 ). In this case, the linear system of equations at each subdomain 
can be solved with the Krylov solver in parallel and the interaction 
terms are updated after the Krylov solver computations are done 
for all subdomains. The main drawback is that the Gauss–Seidel 
method generally has better convergence properties than the Jacobi 
method (Barrett et al. 1994 ). 

To further improve the computation speed, we propose to use 
a Krylov solver with adaptive target residual when solving the IE 

linear system of a subdomain. The main idea is that the relative 
residual of the Krylov solver in a subdomain only needs to be 
an order of magnitude less than the full-domain relative residual 
to achieve the convergence of the Gauss–Seidel or Jacobi iteration. 
Inaccurate approximate solutions from the Krylov solver are accept- 
able at the beginning of the iteration and the relative residual target 
of the Krylov solver is lowered as the full-domain relative solver 
is decreasing during the Gauss–Seidel or Jacobi iterative method. 
Additionally, the initial guess for the Krylov solver in the current 
outer iterative process is updated from the result of the previous 
outer iteration. Detailed implementation of this strategy is shown in 
Algorithm 1 . 

Although we did not use the contraction IE form in the deri v a- 
tion, the contraction IE pre-conditioning can be applied when solv- 
ing the linear system of equations in each subdomain. This can 
result in further reduction of computation time pre-conditioning 
by improving the convergence rate of the Krylov solver in each 
subdomain (Endo et al. 2009 ; Zhdanov et al. 2006 ). Depending 
on the choice of Gauss–Seidel or Jacobi iteration, the contraction 
IE pre-conditioning can be applied when solving eq. ( 24 ) or ( 26 ). 
3  N U M E R I C A L  R E S U LT S  A N D  

D I S C U S S I O N  

In this section, we present three numerical cases to demonstrate the 
ef fecti veness of the domain decomposition pre-conditioning of the 
IE method. The first case is a model with two anomalous subdo- 
mains separated by an isotropic medium with conductivity equal 
to the background conductivity. In the second case, we present a 
model where the anomalous isotropic conductivity is surrounded 
by an anisotropic medium. Lastly, we simulate a logging scenario 
across a faulted sand formation surrounded by anisotropic shale lay- 
ers. We use the IE formulation with contraction IE pre-conditioning 
as described in Section 2 in the GMRES solver for both full-domain 
IE and IE-DD method, which we refer to as full-domain CIE and 
CIE-DD, respecti vel y. In all cases, we use the restarted GMRES 

method with 10 restart iterations. All numerical experiments pre- 
sented in this paper are performed on a laptop with an AMD Ryzen 
7 4800H processor and NVIDIA GeForce RTX 3060 Laptop GPU 

using MATLAB with GPU support enabled. We have compared 
our full-domain IE code with existing 1-D semi-analytical solution 
(Shahriari et al. 2018 ) and 3-D finite-volume method (Hou et al. 
2006 ). This comparison is shown in Appendix B and our results 
show a good agreement with less than one per cent average abso- 
lute difference. 

3.1 Isolated subdomains on isotropic medium example 

We consider two isolated anomalous subdomains embedded in an 
isotropic medium background as shown in Fig. 2 . The background 
conductivity σ 0 is equal to 0.1 S m 

−1 and the conductivity in the 
anomalous subdomain is equal to 0.01 S m 

−1 . A transmitter with 
a 24 kHz frequency is located at the origin ( x = 0, y = 0, z = 0)
and is oriented in the x -direction. The whole domain is discretized 
into 120 × 120 × 120 cubic grid blocks with a unifor m g rid size 
of 0.25 × 0.25 × 0.25 m 

3 . The two anomalous subdomains are set 
to have an equal size of 30 × 30 × 5 m 

3 with the subdomain in the 
ne gativ e z -axis as the subdomain 1. The distance between the closest 
edges of the two subdomains is 10 m which is approximately equal 
to the skin depth of the background medium given the transmitter 
frequency. 
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Figure 2. (a) xz -plane view of the model at y = 0 m. (b) xy - and xz -slice of the model in 3-D view. 
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Figure 3. Full-domain relative residual during the Gauss–Seidel and Jacobi 
iteration of the CIE-DD schemes. The solid and dashed lines indicate the 
schemes with fixed and adaptive GMRES tolerance, respectively. 
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We set the full-domain relative residual to εf = 10 -6 for both
he full-domain CIE and CIE-DD iteration stopping criterion. Be-
ause the medium without contrast does not contribute to the scat-
ering field, we refer to the full-domain relative residuals as the
elati ve residual e v aluated within the anomalous subdomains in
oth cases. Additionally, the subdomains without the conductiv-
ty anomalies are excluded from the discretization in the CIE-
D iterations. This results in one-third of the total number of
rid blocks of the full-domain IE being discretized in the CIE-DD
terations. 

We present four different schemes of CIE-DD to calculate the
lectric field of the model, which are CIE-DD-GS-F, CIE-DD-GS-
, CIE-DD-J-F and CIE-DD-J-A. The letters GS and J refer to the
IE-DD with Gauss–Seidel and Jacobi iteration, respecti vel y. The

etter F denotes the CIE-DD with a fixed GMRES solver relative
esidual stopping criterion equal to 10 −6 in every outer iteration.

hereas the letter A denotes the implementation of adaptive GM-
ES solv er relativ e residual stopping criterion. In the adaptive rela-

ive residual scheme, the relative residual stopping criterion is set to
e one order of magnitude lower than the relative residual calculated
n the domain of interest or the full-domain relative residual of the
urrent outer iteration divided by ten. 

The full-domain relative residuals presented in Fig. 3 shows the
onvergence behaviour of all the CIE-DD schemes. It can be seen
hat all the schemes are converged to the desired tolerance level. In
eneral, the relative residuals are decreasing at almost a constant
ate in all schemes, which are indicated by almost linear slopes
n the plot with a logarithmic scale. These rates are higher in the
chemes with Gauss–Seidel iterations compared to the ones with
acobi iterations. Comparing different GMRES solver tolerance
chemes, these convergence rates are higher in the schemes with
xed GMRES solv er tolerance. Howev er, it can be observed that

here are decreases in the convergence rate in the last iteration which
s not the case with the adaptive tolerance schemes. 

The full-domain relative residual behaviours indicate that the
onvergence rates of the CIE-DD schemes are related to the ratio
etween the full-domain relative residual and the GMRES solver
olerance in the current outer iteration. In the schemes with fixed
MRES solver tolerance of 10 −6 , the ratios decrease as the full-
omain relative residual approaches 10 −6 . This may explain the
ignificant changes of the line slopes at the last iteration of the
chemes with fixed tolerance in Fig. 3 . Whereas in the adaptive
olerance scheme, this ratio is approximately constant in each outer
teration which reflects the almost constant line slopes in the full-
omain relative residual plot. 

Fig. 4 displays the total number of GMRES iterations taken to
each the target residual within each of the outer iteration corre-
ponding to the Gauss–Seidel and Jacobi iteration. The schemes
ith fixed GMRES solver tolerance show a decreasing trend of the

otal number of GMRES iterations with the number of outer itera-
ions. This indicates that the changes in the electric fields due to the
nteraction terms become smaller as the initial guess for the GM-
ES solver is updated in each of the outer iterations. On the other
and, these numbers are generally increasing in the schemes with
daptiv e GMRES solv er tolerance which is related to the increas-
ng difficulty of reaching lower tolerance in each outer iteration. It
an be observed that the total GMRES iterations in subdomains 1
nd 2 are equal in the Jacobi schemes due to the symmetry of the
ubdomains. 

Table 1 summarizes the computational cost comparison between
he full-domain CIE and CIE-DD with different schemes. All the
IE-DD schemes converge below the desired tolerance within six
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Figure 4. Total number of GMRES solver iterations within each outer iteration corresponding to the Gauss–Seidel (left-hand column) or Jacobi (right-hand 
column) iterations. The plots in the top and bottom rows contain the schemes with fixed and adaptive GMRES solver tolerance, respecti vel y. 

Table 1. Computational cost of IE with different schemes on the isolated 
domain case. 

Total 
GMRES Total outer 

Schemes Target εs iterations iterations Time (s) 

Full-domain CIE 10 −6 75 – 12.42 
CIE-DD-GS-F 10 −6 246 4 8.73 
CIE-DD-J-F 10 −6 336 6 11.86 
CIE-DD-GS-A εf /10 170 6 6.29 
CIE-DD-J-A εf /10 164 6 6.19 

Note. εs and εf are the relative residual of the sub- and full domains, respec- 
ti vel y. 
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the CIE-DD schemes are more than the full-domain CIE, but the 
computation time is faster than the full-domain CIE. This is because 
the GMRES iterations in CIE-DD work on a smaller domain with 
the number of blocks equal to one-sixth of the full-domain grid 
blocks in each domain. 

Based on the computation time, the schemes with domain de- 
composition method with adaptive GMRES solver tolerance are 
faster compared to their fixed tolerance counterparts. The CIE- 
DD-GS-A schemes show faster computation time compared to the 
CIE-DD-GS-F schemes because there are fewer GMRES iterations. 
Therefore, specifying the adaptive relative residual for the Krylov 
solver in the CIE-DD improves the computation time of the origi- 
nal CIE-DD formulation with the cost of going through more outer 
iterations. Compared to the full-domain CIE, the computation time 
using CIE-DD-GS-A and CIE-DD-J-A schemes are faster by ap- 
proximately factors of 1.97 and 2, respectively. The CIE-DD-J-A 

is slightly faster compared to the CIE-DD-GS-A in this example 
because it takes slightly fewer number GMRES iterations. 
Fig. 5 shows the total magnetic field comparison between the 
results calculated using full-domain CIE, CIE-DD-GS-A and CIE- 
DD-J-A. Qualitati vel y, there are no dif ferences observed because 
both methods show similar numerical results within less than 
0.01 per cent average normalized magnitude difference. Therefore, 
the CIE-DD method will give the same result within the same rela- 
tive residual level as the full-domain CIE. 

3.2 Simple faulted anisotropic medium example 

Fig. 6 shows an xz -plane view of a faulted resistive isotropic medium 

with a conductivity of 0.005 S m 

−1 surrounded by an anisotropic 
medium with v ertical transv erse isotropy. The conductivity tensor 
of the anisotropic medium consists of the conductivity in the hor- 
izontal and vertical directions with the value of σ h = 0.2 S m 

−1 

and σ v = 0.1 S m 

−1 , respecti vel y. The conducti vity of the media 
does not vary in the y -direction. For the background medium, we 
choose a homogenous isotropic medium with a conductivity of σ 0 

= 0.1 S m 

−1 . A transmitter with a 24 kHz frequency is located at 
the origin and is oriented in the x -direction. The whole domain is 
discretized into 120 × 120 × 120 grid blocks with a grid size of 
0.25 × 0.25 × 0.25 m 

3 . Because the whole domain contains con- 
ductivity anomalies with respect to the background conductivity, 
there is no reduction in discretization in the CIE-DD method. We 
set the full-domain relative residual to εf = 10 −6 as the stopping 
criterion for the full-domain CIE and CIE-DD. 

The full domain is decomposed into three rectangular subdo- 
mains of equal size as illustrated in Fig. 6 . Each subdomain is 
discretized into 120 × 120 × 40 grid blocks with a grid size of 
0.25 × 0.25 × 0.25 m 

3 . With this decomposition, the faulted re- 
sistive layer is located only in subdomain 1, while the other two 
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Figure 5. xz -plane slice of total magnetic fields at y = 0 m. A transmitter oriented in the x -direction is located at x = 0 m, y = 0 m and z = 0 m. From top to 
bottom row: full-domain CIE, CIE-DD-GS-A and CIE-DD-J-A. The real and imaginary parts of the magnetic fields are on the left- and right-hand columns, 
respecti vel y. 
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Figure 6. (a) xz -plane view of a faulted resistive layer surrounded by an anisotropic medium at y = 0 m and the domain decomposition setting. (b) 3-D view 

with the anisotropic layers removed. A transmitter oriented to the x -direction is located at x = 0 m, y = 0 m and z = 0 m. 

s  

w  

s  

r  

m  

w  

s
 

v  

f  

c  

c  

J  

w
 

a  

n  

t  

c  

i  

t  

a  

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/236/2/834/7440026 by TU

 D
elft Library user on 21 D

ecem
ber 2023
ubdomains contain only the anisotropic medium. In this example,
e present the results of using the CIE-DD-GS-A and CIE-DD-J-A

chemes. In both schemes, we set GMRES solver stopping crite-
ion equals the maximum between εf /10 and 10 −6 . With this slight
odification, we minimize the number of GMRES iterations taken
hen the full-domain residual in the outer iteration is close to its

topping criterion. 
Full-domain relative residuals presented in Fig. 7 show the con-

ergence of both CIE-DD-GS-A and CIE-DD-Jacobi schemes. The
ull-domain relative residuals with both schemes are al wa ys de-
reasing with outer iteration to the desired tolerance. In general, the
onvergence rate of the CIE-DD-GS-A is faster than the CIE-DD-
-A. The CIE-DD-GS-A converges within seven outer iterations,
hile the CIE-DD-J-A converges within 10 outer iterations. 
The computational cost comparison between the full-domain CIE

nd CIE-DD schemes is shown in Table 2 . In this case, the total
umber of GMRES iterations for the CIE-DD is similar value to
he total number of iterations for the full-domain CIE. Because the
omputational cost of a GMRES iteration in the CIE-DD method
s cheaper, this results in the computation time reduction for both
he CIE-DD-GS-A and CIE-DD-Jac-A schemes of approximately
 factor of 2.84 compared to the full-domain CIE. We have tested
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Figure 7. The convergence rate comparison between the CIE-DD-GS-A 

and CIE-DD-J-A schemes for the anisotropic medium example. 

Table 2. Comparison of computational cost and resulting relative residual 
of different IE schemes on the anisotropic medium example. 

Total 
GMRES Total outer 

Schemes iterations iterations Time (s) εf 

Full-domain CIE 18600 – 3053.87 9.99 × 10 −7 

CIE-DD-GS-A 18163 7 1075.50 9.97 × 10 −7 

CIE-DD-J-A 18329 10 1083.09 9.96 × 10 −7 
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the CIE-DD-GS-A with different subdomain order and the effect of 
changing the order is not significant to be included in this paper. 

Fig. 8 displays the distribution of total number of GMRES it- 
erations in each subdomain for every outer iteration using CIE- 
DD-GS-A and CIE-DD-J-A schemes. In both cases, subdomain 1, 
which contains the faulted resistive layer, takes the largest num- 
ber of GMRES iterations. The total number of GMRES iterations 
in subdomain 1 increases up to 4770 while it is only below 10 in 
the other two subdomains. This indicates different condition num- 
bers in each subdomain which can be related to the conductivity 
contrast in the domain (Singer et al. 2003 ; Zaslavsky et al. 2011 ; 
Yavich & Zhdanov 2016 ). Yavich & Zhdanov ( 2016 ) established 
that the condition number is bounded by the maximum conductiv- 
ity contrast between the actual and background conductivity. The 
maximum ratio of actual to background conductivity is a factor of 
10 in the subdomain 1, while it is a factor of two in the other subdo- 
mains. Based on these factors, subdomain 1 has the highest contrast 
compared to the other subdomains. 

This example highlights the usage of the domain decomposition 
method for isolating the domain with the highest condition number 
and reducing the computation time. By isolating the subdomain 
with the highest contrast, we can exclude the calculation in the 
subdomain with less contrast and focus the computational resource 
on iterating in this domain. 

3.3 Logging simulation across a complex formation 

We simulated induction logs across the faulted anisotropic forma- 
tion with an 85 ◦ drilling angle as illustrated in Fig. 9 (a). This forma- 
tion consists of anisotropic shale layers surrounding isotropic sand 
la yers. The shale la yers are marked in blue and the sand layers in 
y ellow in F ig. 9 . The model has 2.5-D main structural features with 
the addition of a simple 3-D Gaussian perturbation only in the sand 
layers to imitate a fluid distribution in a reservoir. This perturbation 
is defined by 

σ sand = σ u 
sand + ασ u 

sand exp 

(
−| r sand − r c | 

γ

)
, (27) 

where the subscripts sand denote the values located in the sand 
layers and the superscripts u indicate the defined unperturbed value; 
r c is the location of the maximum perturbation; α and γ are the 
factors that control the magnitude and range of the perturbation, 
respecti vel y. In this example, we set the peak perturbation location 
r c at x = 500 m, y = 0 m and z = 40 m; and define α = 4 and γ =
50 m. 

We use a moving 3-D forward modelling window to simulate a 
moving transmitter scenario. The z -direction in the forward mod- 
elling window is directed to the drilling direction so it is consis- 
tent with the component direction of the induction tools (Pardo 
& Torres-Verd ́ın 2015 ). Hence, the coordinate system in the win- 
dow is rotated from the Cartesian coordinate system according to 
the drilling direction as illustrated in Fig. 9 (a). Consequently, the 
conductivity tensor elements are transformed following the domain 
rotation (Gao 2006 ), see Appendix C for further details. In each 
of the forward modelling windows, we set a constant background 
conductivity σ 0 = 0.1 S m 

−1 . 
Following the typical tool configurations described in Antonsen 

et al. ( 2022 ), we set a z -oriented transmitter with a frequency of 
24 kHz and three receivers with spacings of 7, 15 and 30 m as illus- 
trated in Fig. 10 for the logging simulations. A forward modelling 
window with a size of 32 × 32 × 32 m 

3 may not be enough to 
capture the full sensitivity of all the receivers, especially the one 
with the largest spacing. Hence, we tested two different windows 
with different sizes of 32 × 32 × 64 and 64 × 64 × 64 m 

3 to see 
dif ferent sensiti vities of the receivers with the forward modelling 
domain size. We refer to the smaller window as window 1 and the 
larger one as window 2. In both windows, we keep a grid size of 
0.25 × 0.25 × 0.25 m 

3 resulting in a total of 128 × 128 × 256 and 
256 × 256 × 256 grid blocks for windows 1 and 2, respecti vel y. 

The memory requirement of solving a linear system of equa- 
tions using iterative methods and FFT convolution roughly scales 
linearly with the number of grid blocks N . The memory require- 
ments for storing the electric fields and conductivity model remain 
the same with and without domain decomposition. Ho wever , be- 
cause the GMRES solver and FFT convolution operations are done 
on each subdomain separately using the domain decomposition 
method, the memory requirement for GMRES solver and FFT con- 
volution operations can be reduced from O( N ) to O( N / M ), with M 

the number of subdomains. This allows us to fully take advantage 
of the GPU acceleration with limited GPU memory and solve a 
large linear system of IE without having to store everything in the 
memory at the same time. 

The logging position starts at x = 0 m, y = 0 m and z = 0 m
and ends at x = 900 m, y = 0 m and z = 78.74 m. In each logging
position, we use the CIE-DD-GS-A scheme and we set the order of 
the subdomain according to the distance of the subdomain closest 
edges to the source point as shown in Fig. 11 . We set εf = 10 −3 as 
the outer iteration stopping criteria as it is good enough to see the 
main pattern of | H zz | component at the receiver positions along the 
drilling trajectory. 

Fig. 12 shows | H zz | component measured by the receivers at 
each transmitter position using different windows. Qualitatively, 
the differences in the results between the two window settings are 
increasing with the receiver spacings. This result shows different 

art/ggad454_f7.eps


IE method with domain decomposition 843 

2 4 6 8 10

Outer iteration

100

101

102

103

104

T
ot

al
 G

M
R

E
S

 it
er

at
io

ns

(b) CIE-DD-J-A

sub-domain 1 sub-domain 2 sub-domain 3

1 2 3 4 5 6 7

Outer iteration

100

101

102

103

104

T
ot

al
 G

M
R

E
S

 it
er

at
io

ns

(a) CIE-DD-GS-A

Figure 8. Total GMRES iterations within each (a) CIE-DD-GS-A and (b) CIE-DD-J-A schemes for the anisotropic medium example. 

Figure 9. (a) xz -plane view at y = 0 m. (b) xy -plane view at z = 40 m. (c) 3-D view of the model with the shale layers removed. The magenta dashed lines 
indicate the drilling trajectory. The black box is a forward modelling window example with a size of 64 × 64 × 64 m 

3 at one logging position. 

3xR 2xR 1xR xT

Figure 10. Illustration of an induction tool with a single transmitter and 
three receivers. Tx and Rx stand for transmitter and receiver, respectively. 
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ensitivities of the transmitter–receiver spacing and we can observe
hat the sensitivity range is proportional to the receiver spacing. 
The computation time required to calculate the magnetic field for
ne logging position using the windows 1 and 2 settings takes an
verage of approximately 54.28 and 633.77 s, respectively. Updating
he interaction terms is the most e xpensiv e part of the computation
ime, taking up around 80 per cent of the time at every iteration. One
f the main reasons is that the FFT of dyadic Green’s tensors for
he interaction terms is not pre-calculated before the Gauss–Seidel
terations due to not enough memory space available to store these
ensors. This adds extra FFT function calls which can be avoided
hen the dyadic Green’s operators can be put into memory. 
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In every position, it took three to four Gauss–Seidel iterations 
with 49–86 total GMRES iterations to reach the desired tolerance 
using the window 1 setting. Whereas using the window 2 setting, 
it took four to seven Gauss–Seidel iterations with 293–424 total 
GMRES iterations in each logging position. 

4  C O N C LU S I O N  

The linear system of equations arising in the IE method for 3-D EM 

method modelling can be naturally decomposed into a set of linear 
systems of equations that correspond to the IE in different parts of 
the modelling domain. The IE-DD formulation reduces the mem- 
ory requirement to compute a large-scale problem as it provides 
the connection between each subdomain while still maintaining the 
viability of using FFTs to calculate the convolution integral oper- 
ation. By expressing these linear systems of equations in a block 
matrix representation where each block represents the interactions 
betw een the domains, w e ha ve made a link between the deri v ation in 
Zhdanov et al. ( 2006 ) and Endo et al. ( 2009 ) with a pre-conditioned 
fixed-point iteration using domain decomposition method. Depend- 
ing on the choice of the pre-conditioner, the fixed-point iteration 
corresponds to the block Gauss–Seidel and Jacobi iterative method. 
In every Gauss–Seidel or Jacobi iteration, the inverse of the block in- 
tradomain interaction term is calculated using the Krylov subspace 
method instead of a direct solver. In addition to the domain decom- 
position method, we use the implementation of contraction integral 
pre-conditioner when solving the linear system in each subdomain. 

Our numerical results show that a reduction in computation time 
can be achieved although the total number of GMRES solver iter- 
ations in IE-DD schemes is more than in the full-domain IE. This 
speed-up is due to the GMRES solver in the decomposed domains 
being cheaper to compute and it is shown that it only takes less 
than 10 IE-DD outer iterations to reach the desired tolerance. Ad- 
ditionall y, specifying adapti ve relati v e residual stopping improv es 
the computation time of the IE-DD by reducing the total number 
of GMRES iterations required for reaching the desired error tol- 
erance. The implementation of domain decomposition shows the 
advantage of reduction in discretization and isolating subdomain 
with high contrast. Our numerical experiments show computation 
time reductions by factors of 1.97–2.84 compared to the full-domain 
pre-conditioned IE. In addition, the domain decomposition method 
can be used to reduce the memory requirements of the opera- 
tions involved in solving a large system of IE. The IE-DD with 
Gauss–Seidel pre-conditioning generally has a better convergence 
rate compared to the Jacobi pre-conditioning. Ho wever , the form of 
the Jacobi iterative method is more suitable for parallel computation 
as the operation in each subdomain can be computed independently, 
which is a subject for future implementation. 

In this study, we have only implemented IE-DD with a simple 
iterative update corresponding to the Gauss–Seidel and Jacobi iter- 
ative methods. The Gauss–Seidel and Jacobi iterative methods are 
in general not very competitive in terms of convergence compared 
to the Krylov subspace method (Barrett et al. 1994 ). Therefore, 
further potential improvement of the IE-DD presented in this study 
is obtained by implementing the Krylov subspace as the outer itera- 
tion update instead of the Gauss–Seidel and Jacobi iteration update. 
Another interesting application of the domain decomposition in the 
IE method would be to incorporate a direct method that can be com- 
puted in parallel into the domain decomposition pre-conditioner, for 
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xample using the T -matrix method (Jakobsen & Tveit 2018 ; Som-
er & Jakobsen 2018 ). Since the domain decomposition method

an be used for solving any linear system of equations in general,
t can be applied to other numerical or geophysical methods that
nvolve solving a linear system of equations. 
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A P P E N D I X  A :  F O RWA R D  

S U B S T I T U T I O N  I N  G AU S S – S E I D E L  

I T E R AT I V E  M E T H O D  

The inverse of a lower triangular matrix can be obtained through 
forward substitution (Venkateshan & Swaminathan, 2014 ). For sim- 
plicity, we demonstrate the forward-substitution process in the case 
of domain decomposition with three subdomains. We can write the 
block-matrix representation and its splitting for three subdomains: 

A = 

⎡ 

⎣ 

A 11 A 12 A 13 

A 21 A 22 A 23 

A 31 A 32 A 33 

⎤ 

⎦ = 

( D + L + U 

) , (A1) 

with the matrices D , L and U are the block diagonal, strictly lower 
triangular and strictly upper triangular of A , respecti vel y. These 
terms are defined as 

D = 

⎡ 

⎣ 

A 11 0 0 
0 A 22 0 
0 0 A 33 

⎤ 

⎦ , 

L = 

⎡ 

⎣ 

0 0 0 
A 21 0 0 
A 31 A 32 0 

⎤ 

⎦ , 

and 

U = 

⎡ 

⎣ 

0 A 12 A 13 

0 0 A 23 

0 0 0 

⎤ 

⎦ . 

(A2) 

Here, each of the blocks denotes the interdomain or intradomain 
operators described in Section 2 as 

A i i = 

(
I −G 

( i i ) � σ ( i) 
)
, (A3) 

A i j = −G 

( i j) � σ ( j) , i 	= j. (A4) 

The fixed-point equations using matrix A that corresponds to the 
Gauss–Seidel iterative method 

˜ E 

k+ 1 = 

( D + L 

) −1 
[ 

E 

(0) −U ̃

 E 

k 
] 
. (A5) 
By substituting the matrices D , L and U for three subdomains and 
calculating the inverse of ( D + L 

) , we obtain: ⎡ 

⎣ 

E 

(1) 

E 

(2) 

E 

(3) 

⎤ 

⎦ 

k+ 1 

= 

⎡ 

⎣ 

A 

−1 
11 0 0 

−A 

−1 
22 A 21 A 

−1 
11 A 

−1 
22 0 

−A 

−1 
31 −A 

−1 
33 A 32 A 

−1 
22 A 

−1 
33 

⎤ 

⎦ 

⎡ 

⎣ 

R 1 

R 2 

R 3 

⎤ 

⎦ , (A6) 

where 

A 

−1 
31 = A 

−1 
33 A 31 A 

−1 
11 − A 

−1 
33 A 32 A 

−1 
22 A 21 A 

−1 
11 , (A7) 

and the terms R i denote the i th row of the second term in the 
right-hand side of eq. ( A5 ) written as ⎡ 

⎣ 

R 1 

R 2 

R 3 

⎤ 

⎦ = 

⎡ 

⎣ 

E 

(1 , 0) − A 12 E 

(2) ,k − A 13 E 

(3) ,k 

E 

(2 , 0) − A 23 E 

(3) ,k 

E 

(3 , 0) 

⎤ 

⎦ . (A8) 

By multiplying the matrix on the right-hand side of equation (A.6), 
we obtain the following equations: 

E 

(1) ,k+ 1 = A 

−1 
11 R 1 , (A9) 

E 

(2) ,k+ 1 = A 

−1 
22 

[
R 2 − A 21 A 

−1 
11 R 1 

]
, (A10) 

E 

(3) ,k+ 1 = A 

−1 
33 

[
R 3 − A 32 A 

−1 
22 

(
R 2 − A 21 A 

−1 
11 R 1 

) − A 31 A 

−1 
11 R 1 

]
. 

(A11)

Note that the term A 

−1 
11 R 1 in the second right-hand side 

term of eqs ( A10 ) and the third right-hand side term of ( A11 ) 
can be substituted by E 

(1) ,k+ 1 from eq. ( A9 ). Also, the term 

A 

−1 
22 

(
R 2 − A 21 A 

−1 
11 R 1 

)
in the second right-hand side term of 

eq. ( A11 ) can be substituted by E 

(2) ,k+ 1 from eq. ( A10 ). With sub- 
stitutions on these terms, eqs ( A9 )–( A11 ) can be expressed as: 

E 

(1) ,k+ 1 = A 

−1 
11 R 1 , (A12) 

E 

(2) ,k+ 1 = A 

−1 
22 

[
R 2 − A 21 E 

(1) ,k+ 1 ], (A13) 

E 

(3) ,k+ 1 = A 

−1 
33 

[
R 3 − A 32 E 

(2) ,k+ 1 − A 31 E 

(1) ,k+ 1 ], (A14) 

where the terms A 

−1 
i i are the block matrices that indicate the pro- 

cess of solving a linear system of equations in the i th subdomain. 
It can be observed from eqs ( A12 )–( A14 ) that, in general, there 
are recurrences of the term E 

( i) ,k+ 1 in all of the equations in the 
j th subdomain for j > i . This implies the results of the fixed-point 
eq. ( A5 ) can be obtained by sequentially solving the linear system of 
equations in each subdomain and updating the right-hand side in the 
equations for the next subdomain using the most recent solutions. 

A P P E N D I X  B :  V E R I F I C AT I O N  O F  T H E  

C O N V E N T I O NA L  I E  C O D E  

To verify the accuracy of our conventional 3-D IE code, we compare 
our numerical results to those obtained with a semi-analytical 1-D 

solver (Shahriari et al. 2018 ) and a 3-D finite-volume solver (Hou 
et al. 2006 ). Following Jahani et al. (2023 ), we consider an LWD 

simulation across a layered anisotropic medium with a drilling angle 
of 80 ◦ as illustrated in Fig. B1 . The tool consists of a tri-axial 
transmitter and receiver with a frequency of 12 kHz and a receiver 
spacing of 7.62 m. We use a moving forward modelling window with 
a size of 48.64 × 48.64 × 48.64 m 

3 . This window is discretized 
into 128 × 128 × 128 grid blocks and a cell size of 0.38 × 0.38 
× 0.38 m 

3 . We set a constant background conductivity of 0.1118 S 

−1 

http://dx.doi.org/10.1016/j.jappgeo.2021.104438
http://dx.doi.org/10.1093/gji/ggw237
http://dx.doi.org/10.1190/geo2015-0513.1
http://dx.doi.org/10.1190/1.3552595
http://dx.doi.org/10.1190/1.2358403
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igure B1. Sketch of logging while drilling across an anisotropic layered
edium. 

Fig. B2 shows the co-axial and co-planar components of the
agnetic fields obtained using different numerical methods. We

o not include the Y co-planar components of the magnetic fields
ecause the values are zero. Overall, the results obtained from our
E-code show a good agreement with the 1-D semi-analytical and
-D finite-volume results. The average absolute difference of all
omponents calculated using our IE code is less than one per cent
ompared to the 1-D semi-analytical result. 

P P E N D I X  C :  C O N D U C T I V I T Y  T E N S O R  

R A N S F O R M AT I O N  F O R  

R A N S V E R S E LY  A N I S O T RO P I C  

O R M AT I O N  

he tensor structure of electrical conductivity σ for anisotropic
edia is generally expressed as (Zhdanov 2009 ) 

= 

⎡ 

⎣ 

σxx σxy σxz 

σyx σyy σyz 

⎤ 

⎦ , (C1) 

σzx σzy σzz 
ith an off-diagonal symmetry σ ij = σ ji . For a vertical transverse
sotropic medium with the z -axis as the vertical axis, the conductiv-
ty tensor is written as (Gao 2006 ; Jakobsen & Tveit 2018 ) 

= 

⎡ 

⎣ 

σh 0 0 
0 σh 0 
0 0 σv 

⎤ 

⎦ , (C2) 

here σ h and σ v are the conductivity in the horizontal and vertical
irections, respecti vel y. In the case where the angle between the
ormation layering and the drilling trajectory is not 90 ◦, it is neces-
ary to rotate the conductivity tensor from the formation coordinate
ystem to the induction tool coordinate system. For a transversely
sotropic formation, the e xplicit e xpressions of the rotated conduc-
ivity tensor are as follows (Gao 2006 ) 

σ ′ 
xx = σh + 

( σv − σh ) sin 2 θ cos 2 φ, 

σ ′ 
xy = 

( σv − σh ) sin 2 θ sin φ cos φ, 

σ ′ 
xz = 

( σv − σh ) sin θ cos θ cos φ, 

σ ′ 
yy = σh + 

( σv − σh ) sin 2 θ sin 2 φ, 

σ ′ 
yz = 

( σv − σh ) sin θ cos θ sin φ, 

and 

σ ′ 
zz = σv − ( σv − σh ) sin 2 θ, 

(C3) 

here θ and φ are the z -axis rotation and y -axis rotation angles
rom the formation coordinate system to the induction tool coor-
inate system, respecti vel y. The resulting conducti vity tensor has
on-zero off-diagonal components and our method can deal with
his complication without making any other changes in the imple-
entation. 
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Figure B2. Comparison of the calculated magnetic field couplings with different numerical methods. 
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