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ARTICLE OPEN

Resource-efficient fault-tolerant one-way quantum repeater
with code concatenation
Kah Jen Wo 1,2✉, Guus Avis 1,3,4,5✉, Filip Rozpędek5,6, Maria Flors Mor-Ruiz 7, Gregor Pieplow 8, Tim Schröder 8, Liang Jiang 6,
Anders S. Sørensen 9 and Johannes Borregaard 1,10✉

One-way quantum repeaters where loss and operational errors are counteracted by quantum error-correcting codes can ensure fast
and reliable qubit transmission in quantum networks. It is crucial that the resource requirements of such repeaters, for example, the
number of qubits per repeater node and the complexity of the quantum error-correcting operations are kept to a minimum to
allow for near-future implementations. To this end, we propose a one-way quantum repeater that targets both the loss and
operational error rates in a communication channel in a resource-efficient manner using code concatenation. Specifically, we
consider a tree-cluster code as an inner loss-tolerant code concatenated with an outer 5-qubit code for protection against Pauli
errors. Adopting flag-based stabilizer measurements, we show that intercontinental distances of up to 10,000 km can be bridged
with a minimized resource overhead by interspersing repeater nodes that each specialize in suppressing either loss or operational
errors. Our work demonstrates how tailored error-correcting codes can significantly lower the experimental requirements for long-
distance quantum communication.

npj Quantum Information           (2023) 9:123 ; https://doi.org/10.1038/s41534-023-00792-8

INTRODUCTION
The ability to faithfully transmit quantum information over long
distances opens up new opportunities for secure communica-
tion1,2, sensing networks3, and distributed quantum computing4.
There has been impressive progress towards the realization of
quantum networks with the demonstration of long-distance
entanglement distribution through satellites5, memory-enhanced
quantum communication6, and a multi-node quantum network7.
Quantum communication over intercontinental distances, how-
ever, remains a formidable challenge due to attenuation and
degradation of the quantum signal as a result of loss and
operational errors.
There are, in general, two classes of quantum-repeater

architectures that have been proposed to overcome these
obstacles8,9. Two-way repeaters divide the total distances into
smaller links where heralded entanglement can be created in a
probabilistic manner by direct photon transmission and success is
heralded by two-way communication between the repeater
nodes10–12. Such architectures require long-lived multi-mode
quantum memories to reach high communication rates13. An
alternative approach, which is the focus of this work, is to encode
the quantum information in quantum error-correcting codes to
battle both loss and operational (Pauli) errors as the signal is being
transmitted from one repeater node to the next in a one-way
architecture14–19. Such fault-tolerant one-way repeaters allow
bridging arbitrary distances with high communication rates since
the repetition rate is set by the local processing time of the
repeater nodes. However, they often have daunting requirements
in terms of resources needed for the physical implementation of

the repeater15,16,20,21. Focusing on the dominant error of photon
loss and abandoning fault-tolerance for operational errors can
significantly relax these requirements as recently demonstrated in
ref. 17. In particular, it was shown that by using only loss-tolerant
photonic tree-cluster encoding, the bottleneck of transmission
loss could effectively be overcome with only three spin qubits per
repeater node. That approach is, however, not fault-tolerant
against operational errors, and as a result the operational error
experienced by the qubit in transmission must be very low
( ~ 10−5) in order to bridge intercontinental distances.
Alternatively, the concatenation of two different quantum error-

correction codes has been considered to ensure fault-tolerant
operation and efficiently address both loss and operational errors
in quantum repeaters. In particular, the concatenation of a
continuous-variable (CV) Gottesman-Kitaev-Preskill (GKP) code
with small discrete-variable (DV) codes has recently been
proposed18,19,22–24, and was shown to have increased commu-
nication performance while reducing the resource cost. While the
experimental generation of optical GKP states has recently been
demonstrated25, the construction of such states with sufficiently
high quality remains a daunting challenge due to the require-
ments for the efficiency and performance of the hardware.
In this article, we propose a purely DV-based one-way quantum-

repeater architecture (see Fig. 1) that uses code concatenation and
flag-based quantum error correction to achieve fault-tolerant
operation in a resource-efficient manner. Specifically, we combine
a loss-tolerant tree-cluster state as an inner code17 with a 5-qubit
code operated with a flag qubit as an outer code. The generation
of large photonic cluster states can be done efficiently with single
emitters26 and has been demonstrated with a number of

1QuTech, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands. 2Centre for Quantum Technologies, National University of Singapore, Queenstown
117543, Singapore. 3Quantum Computer Science, EEMCS, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands. 4Kavli Institute of Nanoscience, Delft
University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands. 5College of Information and Computer Sciences, University of Massachusetts Amherst, Amherst, MA
01003, USA. 6Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA. 7Universität Innsbruck, Institut für Theoretische Physik, Technikerstraße 21a,
6020 Innsbruck, Austria. 8Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany. 9Center for Hybrid Quantum Networks (Hy-Q), The
Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark. 10Department of Physics, Harvard University, Cambridge, MA 02138, USA.
✉email: kjwo@u.nus.edu; gavis@umass.edu; borregaard@fas.harvard.edu

www.nature.com/npjqi

Published in partnership with The University of New South Wales

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-023-00792-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-023-00792-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-023-00792-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-023-00792-8&domain=pdf
http://orcid.org/0000-0003-3806-9233
http://orcid.org/0000-0003-3806-9233
http://orcid.org/0000-0003-3806-9233
http://orcid.org/0000-0003-3806-9233
http://orcid.org/0000-0003-3806-9233
http://orcid.org/0000-0001-7035-8065
http://orcid.org/0000-0001-7035-8065
http://orcid.org/0000-0001-7035-8065
http://orcid.org/0000-0001-7035-8065
http://orcid.org/0000-0001-7035-8065
http://orcid.org/0000-0003-4921-5929
http://orcid.org/0000-0003-4921-5929
http://orcid.org/0000-0003-4921-5929
http://orcid.org/0000-0003-4921-5929
http://orcid.org/0000-0003-4921-5929
http://orcid.org/0000-0001-8133-4704
http://orcid.org/0000-0001-8133-4704
http://orcid.org/0000-0001-8133-4704
http://orcid.org/0000-0001-8133-4704
http://orcid.org/0000-0001-8133-4704
http://orcid.org/0000-0001-9017-0254
http://orcid.org/0000-0001-9017-0254
http://orcid.org/0000-0001-9017-0254
http://orcid.org/0000-0001-9017-0254
http://orcid.org/0000-0001-9017-0254
http://orcid.org/0000-0002-0000-9342
http://orcid.org/0000-0002-0000-9342
http://orcid.org/0000-0002-0000-9342
http://orcid.org/0000-0002-0000-9342
http://orcid.org/0000-0002-0000-9342
http://orcid.org/0000-0003-1337-9163
http://orcid.org/0000-0003-1337-9163
http://orcid.org/0000-0003-1337-9163
http://orcid.org/0000-0003-1337-9163
http://orcid.org/0000-0003-1337-9163
http://orcid.org/0000-0003-2544-4073
http://orcid.org/0000-0003-2544-4073
http://orcid.org/0000-0003-2544-4073
http://orcid.org/0000-0003-2544-4073
http://orcid.org/0000-0003-2544-4073
https://doi.org/10.1038/s41534-023-00792-8
mailto:kjwo@u.nus.edu
mailto:gavis@umass.edu
mailto:borregaard@fas.harvard.edu
www.nature.com/npjqi


experimental platforms27–30. The 5-qubit code31 ensures efficient
correction of operational errors for which the tree code does not
provide protection. By adopting flag-based stabilizer measure-
ments, we show that communication rates in the kHz range can
be achieved over thousands of kilometers for qubit transmission
errors ~10−3 with a minimized qubit overhead per repeater node.
Our design intersperses two types of repeater nodes that

operate differently on the two codes similar to the CV-DV
architecture of ref. 18. TYPE I nodes perform error correction solely
on the tree code while TYPE II nodes perform error correction on
both codes. Consequently, TYPE II nodes are more complex than
TYPE I nodes. We show how the extra cost of TYPE II nodes can be
included in the design of the repeater architecture to maximize
network performance while minimizing the cost. Finally, we
outline how both types of repeater nodes can be constructed
from 5 modular processors containing only 1 quantum emitter
and at most 4 memory spins each. This makes our design suitable
for implementation with current quantum-network hardware such
as solid-state defect centers coupled to a small qubit register of
nuclear spins32,33.
The paper is structured as follows. In the sections “Quantum-

repeater protocol” to “Decoding”, we introduce the high-level
repeater protocol and its building blocks. In the section
“Implementation”, we discuss a possible implementation with
efficient spin-photon interfaces based on cavity-coupled quantum
emitters and in the section “Repeater performance”, we quantify
the performance of the repeater, which we optimize for various
distances.

RESULTS
Quantum-repeater protocol
The repeater architecture incorporates three main steps. First, a
message qubit is encoded in an error-correction code at the
starting node. This is followed by re-encoding and error correction
at subsequent repeater nodes before final decoding at the end
node. A high-level schematic of the entire repeater network is

shown in Fig. 1, and we will now address each of the three steps
separately in more detail below.

Encoding
The message qubit at the start node is first encoded into the ⟦5, 1,
3⟧ code, otherwise known as the 5-qubit code (see Fig. 1b). Here,
⟦n, k, d⟧ refers to a code that encodes k logical qubits using n
physical qubits with a code distance d. We have chosen the 5-qubit
code as the outer code because it is the smallest quantum error-
correcting code that can correct single arbitrary Pauli errors31, an
attractive trait in minimizing physical resource requirements. We
note that the encoding of the logical state can be performed fault-
tolerantly using a scheme recently demonstrated with a diamond
Nitrogen-Vacancy platform in ref. 34. This involves heralding the
desired encoded logical state via repeated stabilizer measurements
in conjunction with a flag qubit.
After encoding the message qubit into the outer 5-qubit code,

each of the five data qubits of the code is then further encoded
into a photonic tree-cluster state (inner code) that provides loss
tolerance via information redundancy35. The tree-cluster code can
be described by its branching vector t= [b0, b1,…, bd] which
determines the degree of branching from each level in the tree
beginning from the root qubit (see Fig. 2). Every node in the tree-

Fig. 1 Quantum-repeater network overview. a Overview of the hybrid one-way quantum-repeater network containing two types of repeater
nodes: TYPE I and TYPE II. b In the start node (grayed because no error correction is involved), a message qubit is encoded using the 5-qubit
code into five data spin qubits. Then, each of those data spin qubits is encoded in parallel into a photonic tree-cluster state via a Bell state
measurement (orange dashed box) with the root spin-qubit of the tree. The [2, 2] tree is used as an example here. The trees (each encased in a
green box) are then sent in parallel along the repeater network where the nodes are a distance L0 apart from each other. TYPE I nodes consist
of five processing blocks. Each of these blocks decodes the received tree and re-encodes the decoded qubit into a fresh tree via heralded
storage17. c TYPE II nodes decode the incoming tree at the tree level, then perform stabilizer operations (i.e., two-qubit gates and syndrome
extraction on the 5-qubit code level) between the decoded qubit and the ancilla qubits with accompanying flag qubits in the nodes. After the
stabilizer operations, the decoded qubit is re-encoded back into a new tree and sent off to the next node. d At the end node, the incoming
five trees are received and decoded in parallel. The 5-qubit code corrections are applied according to the syndromes obtained along the
network and finally, they are decoded back into the message qubit.

Fig. 2 Tree-cluster state. A [3, 2] tree-cluster state is shown as an
example to illustrate the different levels of a tree. Each vertex/circle
represents a qubit initially prepared in the state
þj i ¼ ð 0j i þ 1j iÞ= ffiffiffi

2
p

. The edges connecting the vertices correspond
to a CPHASE gate being applied between the two qubits.
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cluster state described by the branching vector represents a qubit
in state þj i ¼ ð 0j i þ 1j iÞ= ffiffiffi

2
p

and each of the edges represents
CPHASE gate. This resulting tree-cluster state is then the unique
state that is stabilized, i.e., it has eigenvalue+ 1 for each of the
operators Kν ¼ Xν

Q
b2Nν

Zb, where ν labels the qubits of the tree
state andNν denotes the set of qubits connected to the νth qubit.
To encode a data qubit in the tree-cluster code, a single Bell state
measurement of the root qubit of the tree-cluster state and the
respective data qubit is sufficient as detailed in ref. 17 and shown
in Fig. 1b.
At this point, the message qubit has been encoded into 5

photonic tree-cluster states, which are sent down the repeater
network in parallel (see Fig. 1a). Note that we are assuming a
generation scheme of the photonic tree-cluster states where each
photon of the tree is generated sequentially from a single emitter
featuring a multi-level electronic ground state manifold26, hence
the photons are sent down the optical fibers using time-bin
encoding. For details on this scheme, we refer to ref. 17.
Consequently, the 5 trees can be transmitted using 5 single-
mode fibers.

Re-encoding and error correction
In the repeater network, the incoming photonic qubits from the
previous node will be received by either a TYPE I or TYPE II
repeater node, each specializing in dealing with types of errors.
The TYPE I nodes only operate on the inner tree code to correct
transmission loss, and we envision that each TYPE I node consists
of 5 parallel repeater subnodes similar to the nodes considered in
ref. 17. Each of these 5 subnodes receives and operates on 1 of the
5 tree-encoded qubits of the outer 5-qubit code. Their basic
operation is to decode each incoming photonic tree-encoded data
qubit into a spin-qubit and then re-encode it into a new photonic
tree encoding. In this process, loss will be corrected but not logical
errors on the outer 5-qubit code level.
The re-encoding of the data qubit into the new tree-cluster

state is achieved with a Bell state measurement between any one
of the first-level photonic qubits in the incoming tree and the root
qubit of the new tree along with the measurement of the
remaining qubits in the incoming tree in appropriate single-qubit
bases according to the stabilizer generators of the tree (see
section “Encoding”). The whole procedure can be performed in a
loss-tolerant way with only two memory spins and a single cavity-
coupled emitter as outlined in ref. 17. Note that we assume that
decoherence errors in all memory spins considered in this article
are negligible compared to other gate errors because the
information is only stored short-term in the memory spins in
our network protocol.
Importantly, the Bell state measurement between a first-level

photonic qubit of the incoming tree and the stationary root qubit
of the new tree is not protected against faulty gate operations,
which introduces re-encoding error ϵr on our encoded qubit on
the tree-code level. In addition, we assume that each qubit in the
trees is subjected to a single-qubit depolarizing error of ϵ0, which
comes from the inherent operational error in the underlying
hardware. The presence of this re-encoding error is why the
scheme in ref. 17 is not fault-tolerant and requires very low re-
encoding error rates for long-distance communication. Here, we
solve this issue with the outer 5-qubit code, which provides an
extra layer of protection for the message qubit in the TYPE II
repeater nodes.
The TYPE II repeater nodes are designed to primarily correct for

the accumulated re-encoding errors in the network by operating
on both the inner tree encoding and the outer 5-qubit encoding.
We refer to the accumulated re-encoding error between TYPE II
nodes as the transmission error ϵtrans. This transmission error
experienced by the encoded qubit is modeled via the single-qubit
depolarizing channel discussed in Methods “Error model”. The first

step to correct for ϵtrans is to decode the tree encoding using the
same procedure as the TYPE I nodes thereby correcting loss errors.
Once the 5 incoming trees are decoded into 5 single spin qubits,
the syndrome extraction of the 5-qubit code is performed in a
fault-tolerant manner using a flag qubit to correct for ϵtrans. For the
fault-tolerant error-correction protocol, refer to Methods “Fault-
tolerance”. After the syndrome extraction, the decoded qubits are
re-encoded back into newly generated trees and are sent down
the network. Note that since a TYPE II node also performs the
same decoding and encoding procedure as a TYPE I node, we also
take into account the errors generated by these steps in the
transmission error. Refer to Methods “Error model” for how these
are taken into account.
Additionally, we consider noisy two-qubit gates in TYPE II

nodes, which we model via a two-qubit depolarizing channel with
an error rate of ϵ0 discussed in Methods “Error model”. Note that,
as we will discuss in the section “Implementation”, there are two-
qubit gates in each of the TYPE II nodes that have to be performed
in a teleported manner, which have an error rate of 3ϵ0 because
each of them is essentially comprised of 3 two-qubit gates.
In the section “Repeater performance”, we discuss that the

inherent operational error is related to the re-encoding error via
the relation ϵr ≈ 3ϵ0 found through our numerical simulation (see
Methods “Error model”). This means with the increase of the re-
encoding error, the two-qubit gates in TYPE II nodes become
noisier, and the placements of TYPE II nodes in the network would
become more sparse. Note that we assume errors introduced by
single-qubit gates are negligible since they are typically much
smaller than errors induced by two-qubit gates in an architecture
based on diamond defects36. We also assume that the dominant
errors in the qubit readout operations enter through the noisy
two-qubit gates because the qubit readout operations considered
in this paper are always associated with stabilizer operations of the
5-qubit code. Therefore, the qubit readouts themselves are
considered error-free. In summary, the faulty re-encoding
procedure in both TYPE I and TYPE II nodes, and the noisy two-
qubit gates in the TYPE II nodes are the only source of operational
errors in our model.
Besides correcting for transmission errors, the 5-qubit code can

also correct for failed decoding attempts of the photonic tree-
cluster states due to the loss of too many photons. In general, any
quantum error-correcting code capable of correcting t arbitrary
Pauli errors could also be used to correct 2t-erasure errors37.
Consequently, the 5-qubit code can correct for up to two failed
decoding attempts (erasure errors) of the incoming photonic tree-
states. While the probability of 2-erasure errors occurring within
the same TYPE II node is very small due to the loss correction of
the TYPE I nodes, we find that correcting for a single lost tree, i.e.,
1-erasure errors, at the TYPE II nodes can significantly boost the
communication rate (see Supplementary Notes 1 and 3). We,
therefore, apply the erasure-error correction in this work in the
section “Repeater performance”, for more details please refer to
Methods “Erasure-error correction”.

Decoding
The extracted syndromes of the error correction, which provide
information about whether a 1-erasure error has occurred or not,
are simply stored in a classical register. This register is classically
communicated to the end node where it is interpreted and only
when required single-qubit gates are applied to correct the errors
according to the interpreted syndromes. Thus, it is not necessary
to perform any correction on the quantum level at the repeater
nodes. This allows us to avoid additional decoherence due to
latency introduced by applying the error correction at every TYPE
II node and allows for performing corrections based on the joint
information of all error syndromes from the repeater network. This
approach is known as Pauli frame updating38.
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The end node is a TYPE II node, where the tree-cluster states are
first decoded into the 5 data spin qubits. Error correction is then
performed on the 5 data spin qubits according to the syndromes
extracted throughout the network, after which they are then
further decoded back into the original message qubit and
measured. Note that since the encoding and decoding procedure
on the 5-qubit code level is only done at the start and end node,
we assume that errors introduced at these steps are negligible.

Implementation
We will now discuss a specific modular design of the repeater
nodes that allow for implementation with small qubit processors
containing 1 cavity-coupled quantum emitter and at most 4
memory spins. Our choice of a modular design is motivated by
current hardware capabilities with, e.g., solid-state defect centers
where efficient spin-photon interfaces can be achieved through
coupling to nanophotonic resonators32,33,39. By coupling to a few
near-by nuclear spins, such small processors can be envisioned.
Coupling between the processors (needed for TYPE II nodes) can
be achieved through photon-mediated interactions between the
emitters as we outline below.
As described above, a TYPE I node consists of 5 parallel repeater

subnodes similar to the node described in ref. 17, with each
subnode requiring only 2 memory spins and 1 quantum emitter
for the generation of depth-3 photonic tree-cluster states to
perform the loss-tolerant re-encoding operation.
The photonic tree generation follows the scheme of ref. 26,

where the photons of the tree are sequentially emitted from the
emitter with intermediate entangling operations between the
emitter and the 2 memory spins. In this way, the branches of the
tree are generated one by one starting from the bottom. We note
that this generation scheme requires a subsequent re-ordering of
the photons using optical switching and a delay line as detailed in
ref. 17 such that the first-level photons lead when arriving at the
next repeater node. This is necessary since the absence/presence
of a first-level photon determines the measurement bases of the
remaining photons of the branch.
A key element for the re-encoding operation is a cavity-

mediated CPHASE gate between an incoming photon and the
emitter40–43. The basic principle of this gate is that if only one of
the ground states of the emitter is coupled to the cavity mode, an
incoming photon will be reflected with/without a π-phase shift if
the emitter is in the uncoupled/coupled state. This operation
allows for transferring the quantum state of a photon to the
emitter, heralded by subsequent detection of the photon. As
shown in ref. 17, this makes the re-encoding operation robust to
transmission losses by first transferring the state of a first-level
photon of the incoming tree to the emitter in a heralded way
followed by a Bell state measurement between the emitter and a
memory spin. The memory spin constitutes the root qubit of a
fresh tree-cluster state emitted prior to the reception of the
incoming tree.
The requirements of TYPE II nodes are different from the TYPE I

nodes since they perform error correction on the outer 5-qubit
code in addition to the loss correction on the inner tree-cluster
code. Here we outline how a modular architecture can enable this
increased functionality with a very modest increase in resources
compared to TYPE I nodes. Similar to TYPE I nodes, we consider an
implementation with 5 cavity-coupled emitters that each can
receive and generate their tree-cluster states using 2 additional
memory spins per emitter (see Fig. 3). To allow for the syndrome
extraction of the 5-qubit code, we only need one of these emitters
to be coupled to 2 extra memory spins, which act as ancilla and
flag qubits of the 5-qubit code. Consequently, we require a
sequential extraction of the syndromes, which increases the
duration of the error-correction procedure. A faster parallel
extraction would be possible with the added expense of more

ancilla and flag qubits, but here we choose to focus on the
sequential operations to minimize the number of qubits per
repeater node.
We assume direct coupling between an emitter and its near-by

memory spins based, for example, on spin-spin interactions, which
allows for the implementation of multi-qubit gate operations.
However, as shown in Fig. 4, the syndrome extraction of the
5-qubit code requires two-qubit gates between the ancilla qubits

Fig. 3 Physical resources of the TYPE II repeater nodes. 5 sets of
single-sided cavities, each with a quantum emitter Ej with
j∈ {1, 2, 3, 4, 5} and accompanying memory spins. The 5 emitter
spins host the decoded qubits from the 5 trees. They are equipped
with optical switches that allow for performing teleported CNOT
gates between the desired decoded qubits that are physically far
apart. In all the sets, 2 extra qubits, i.e., Mj and Rj, are needed for tree
generation and teleported two-qubit gates. In one of the sets,
another 2 qubits are needed for the ancilla and flag qubits, denoted
by A and F, respectively.

Fig. 4 Error-correction circuit. The circuit that a TYPE II node
performs to fault-tolerantly correct for operational errors using the
5-qubit code. For the fault-tolerant error-correction protocol, refer to
Methods “Fault-tolerance”.
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belonging to different emitter-cavity systems and the data spin-
qubit. To implement such non-local operations, teleported gates
can be used.
The teleported CNOT gate involves heralding a Bell pair

between two emitters via the transmission and subsequent
reflection of a photon44–47 (see Fig. 5). The creation of such a
Bell pair can be performed using the same operations and same
spins, which are shown enclosed in dashed gray triangles in Fig. 3,
to decode an incoming tree-cluster and generate a new tree-
cluster. Note that we can only perform the Bell pair creation once
the fresh tree has been generated with the memory spin R hosting
the root qubit and the emitter spin is “freed”, i.e., reinitialized.
Specifically, for creating a Bell pair, a photon entangled with one
of the emitters is generated by emission and then scattered off
another cavity-spin system followed by a heralding measurement
of the photon. This will prepare the two emitter spins in a Bell
state, which can be used to mediate a gate between two remote
spin qubits through gate teleportation. To perform teleported
CNOT gates between two qubits of interest, local CNOT gates
between the qubits of interest and the emitter spins are
performed followed by single-qubit measurements of the emitter
spins. Note that the emitter spins in the repeater nodes hold the
decoded data qubits upon the reception of trees, therefore we
need to first free them up by transferring the decoded data qubits
onto the auxiliary memory spins as shown in Fig. 5 before
performing the CNOT gate. This will then amount to a CNOT
operation between the two distant spin qubits up to a single-qubit
correction dictated by the measurement outcome. In order to
connect the pairs of cavity-emitter systems dictated by the error-
syndrome-extraction circuit (see Fig. 4), we imagine that fast
optical switching48 is employed to ensure the generation of Bell
pairs between the respective emitter spins.

Repeater performance
In this section, we benchmark the performance of the repeater
network by looking at the secret key rates that are achieved when
executing a Quantum Key Distribution (QKD) protocol. This
quantity encapsulates both the fidelity of the final message qubit
and the raw bit rate of the network. Therefore, the determination
of the secret key rate provides an excellent means of assessing the
general performance of the network. Since our repeater network is
based on the one-way quantum-repeater protocol, we consider
the prepare-and-measure-based six-state protocol49 as the most
suitable QKD protocol, whose secret key fraction is dependent on

the effective error rate of the message qubit at the end node.
Details about this secret key fraction are given in Methods
“Repeater performance”.
Furthermore, we boost the secret key rate by leveraging the

5-qubit code’s ability to correct for erasure errors as explained in
the section “Re-encoding and error correction”. Note that our
secret key rate depends on 2 facts: (1) the effective error rate at
the end node depends on how many erasure errors occurred in
the network, and (2) the presence of erasure errors results in a
different successful transmission probability of the message qubit
through the network (see Methods “Repeater performance”).
Recall that we only consider correcting for 1-erasure errors and
not 2-erasure errors at the 5-qubit code level for reasons explained
in the section “Re-encoding and error correction”. These
dependencies are accounted for in the secret key rate calculation
by performing a weighted sum over the possible number of 1-
erasure-error occurrences in the network, effectively resulting in
an average secret key rate

SKR ¼ τ�1
tot

XmII

i¼0

mII

i

� �
fmII;i ptransðmII; iÞ; (1)

where mI (mII) is the number of TYPE I (TYPE II) nodes, f mII;i is the
secret key fraction, ptrans(mII, i) is the probability of successful
transmission with 1-erasure errors in i distinct TYPE II nodes (see
Methods “Repeater performance”), and

τtot ¼ τtree þ 14τss þ 26τtele þ 8τmeas; (2)

is the total processing time of each TYPE II node for 1 logical qubit.
Here, τss is the local spin-spin two-qubit gate time, τtele is the
teleported two-qubit gate time, and τmeas is the spin readout time.
We arrived at eq. (2) by considering the longest possible time
taken by the fault-tolerant error-correction protocol since that will
become the processing bottleneck of the network (see Supple-
mentary Note 4). We assume that the readout of the ancilla and
flag qubit can be done simultaneously. Finally, a new tree-cluster
has to be generated in the TYPE II node with tree vector
t= [b0, b1,…, bd] which takes time τtree and is estimated as17

τtree � b0 100þ b1ð1þ b2ð1þ � � � bd�1ð1þ bdÞ � � � ÞÞ½ �τph
þb0 3þ b1ð1þ b2ð1þ � � � bd�2ð1þ bd�1Þ � � � ÞÞ½ �τss;

(3)

where τph is the emission time of a single photonic qubit and the
emission time of the first-level photons is assumed to be 100τph.
The longer emission time of the photons means a narrower
frequency bandwidth. This is necessary since the first-level
photons may participate in a cavity-mediated CPHASE gate at
the next repeater station. If the frequency bandwidth of the
incoming photon is not narrow compared to the cavity (Purcell)
enhanced linewidth of the emitter, the gate operation will be
imperfect. Assuming an emission time of 100τph will ensure that
these imperfections lead to gate errors ≲ 10−4 17.
In principle, TYPE I nodes could operate faster than TYPE II

nodes since they are only performing loss correction at the tree-
code level. However, TYPE I nodes would have to wait for the TYPE
II nodes to complete their operations before transmitting the tree-
encoded qubits. Thus, the operation time of the TYPE II nodes
becomes the bottleneck that sets the repetition rate of the
repeater network and faster TYPE II nodes are not required. As a
consequence, the hardware architecture at TYPE I and II nodes can
be quite similar, facilitating the large-scale building of such nodes.
To find the optimal configuration of the repeater network, that

is to maximize the secret key rate while using as few physical
resources as possible, we perform a numerical minimization of a
dimensionless cost function for a specific total distance

C ¼ SKR�1 Latt
τphLtot

ðmI þ κmIIÞ; (4)

Fig. 5 Teleported CNOT gate. Procedure for performing a
teleported CNOT gate between an ancilla qubit (control) and a
data qubit (target) by heralding a Bell pair between two emitters
and performing a measurement on the Bell pair. For simplicity, not
all spins coupled to each cavity are shown (Fig. 3). We use the
realization of a teleported CNOT gate between an ancilla qubit A
and the decoded qubit in E2 as an example. The steps are as follows:
(1) The decoded qubits in the emitter spins Ej are transferred to the
auxiliary memory spins Mj. (2) A Bell pair is heralded between the
two emitter spins. (3) Local spin-spin CNOT gates are performed
between spins of interest. (4) The qubits corresponding to the Bell
pair heralded in step (2) are measured to perform a teleported CNOT
gate between desired control and target qubits up to some Pauli
gate(s) correction according to the measurement outcome.
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over the parameters L0,mII, and t with constraints discussed in
Methods “Numerical minimization”. Note that for simplicity, we
assume a uniform interspersing of TYPE I and TYPE II nodes in the
repeater network. For more details on how the repeaters are
interspersed, refer to Supplementary Note 8. The coefficient κ is
the relative cost of a TYPE II to a TYPE I node. In a repeater network
with multiple types of nodes, one type of node may require more
functionality (as is the case here) and thus be more expensive than
another. For instance, if κ= 1, then the cost of a TYPE I node is the
same as that of a TYPE II node.
To quantify the cost per unit length, we divide the number of

nodes in the cost function with the total distance between the
start and end node Ltot. This is expressed in units of the
attenuation length Latt to make the cost function dimensionless.
We also quantify the cost per unit of time by including the inverse
of the secret key rate (SKR) which is in unit Hertz. Note that the
secret key rate depends on the photon emission time τph,
therefore its presence in the denominator in eq. (4) serves to make
the cost function dimensionless. It also means that we are
expressing the cost per unit time in units of the photon emission
time. The values for the constants used are shown in Table 1.
The results of the optimizations for different error rates are

shown in Fig. 6 for κ= 1. For short distances, the homogeneous
repeater scheme from ref. 17 (dashed lines) is superior since it does
not possess the time overhead of error correction that comes with
TYPE II nodes and thus enables a higher repetition rate. For longer
total distances, however, the secret key rate of the concatenated
repeater protocol (solid lines with markers) greatly surpasses that
of the homogeneous repeater protocol of ref. 17 due to the added
protection from the outer 5-qubit code. For instance, for ϵr= 0.1%
(purple line), the secret key rate for the concatenated repeater
is ~5.5 kHz at 103 km, while for the homogeneous counterpart
(dashed line), the rate at the same total distance is less than 1 Hz.
Furthermore, despite the higher secret key rates of the homo-
geneous repeater scheme, we see that from Fig. 6b its cost is
significantly higher than that of the concatenated repeater
protocol. This means that the secret key rate itself is not the only
relevant indicator of overall performance, but the cost associated
with building the proposed network needs to be considered as
well. Note that even if the cost function is ignored and if the
repeater network is configured by purely maximizing the secret
key rate, the gain in the secret key rate would be minimal with the
tradeoff being a significantly increased cost (see Supplementary
Note 5).
The accompanying results in Fig. 7a reveal the optimal inter-

repeater distances required to achieve the best secret key rates
whilst maintaining minimum cost. When considering higher re-
encoding error probabilities ϵr for fixed total distances, the

optimum inter-repeater distance L0 decreases to minimize the loss
error to counter the increasing re-encoding error rate. From Fig.
7b, we see that the configuration with the highest re-encoding
error has the lowest proportion of TYPE II nodes in the network,
even though it has the lowest inter-repeater distance. This is
because the re-encoding error rate scales with the error rate of the
two-qubit gates in the TYPE II nodes as explained in the section
“Re-encoding and error correction”. Therefore, adding more TYPE
II nodes no longer entails better error suppression, but instead
introduces more error in the network. Hence, we find an
asymmetry between the number of TYPE I and TYPE II nodes as
the ratio of mI to mII deviates from unity. This result demonstrates
that even when we consider the cost of TYPE I and TYPE II nodes
to be equal, i.e., κ= 1, the asymmetry between loss and operation
errors in the repeater network is still present. Note that it is in
principle possible for the ratio of mI to mII to have values below
unity. In our calculation, however, because of the constraint on the
mII set, the minimum value that this ratio can attain is unity.
To demonstrate how the value of κ > 1 influences the cost and

secret key rate when considering TYPE II nodes that are more
expensive than TYPE I nodes, we optimize with κ∈ {1, 2, 10} for
fixed re-encoding error rate ϵr= 0.1% in Fig. 8. As the value of κ
increases, we see that the secret key rate is only minimally
affected as shown in Fig. 8a whilst the number of TYPE II nodes in
the network is significantly decreased as shown in Fig. 8b. From
Fig. 8c, we infer that this is followed by an increase in the number
of TYPE I nodes in the network. This is expected as TYPE II nodes
are more costly. Additionally, Fig. 8c shows how the ratio of TYPE I

Table 1. Repeater specifications.

Quantity Value

Spin-spin gate time, τss ♢ 100 ns

Single photon emission time, τph ♢ 1 ns

Spin readout time, τmeas 1 μs
Teleported two-qubit gate time, τtele 1 μs
Optical fiber’s attenuation length, Latt ♢ 20 km

Effective photon-detection efficiency, ηd ♢ 0.95

Values of the quantities used in the minimization of the cost function are
shown in eq. (4). Note that we assume the availability of efficient frequency
conversion to the telecom band such that the attenuation length in optical
fibers is 20 km. The symbol ♢ denotes that the values were also used in ref.
17. The effective photon-detection efficiency, ηd is the combined efficiency
of in/out-coupling of the photon, frequency conversion, and the efficiency
of the photon detectors.

Fig. 6 Repeater network performance. a The secret key rate SKR
corresponding to b the minimized cost function Cmin as a function
of the distance Ltot for various re-encoding error probabilities ϵr with
fixed relative node weight κ= 1. For comparison, the secret key
rates and the costs of the homogeneous repeater network from
ref. 17 multiplied by a factor of 5 are included as dashed lines as well.
The factor of 5 is included to compensate for the fact that the
concatenated repeater is similar to 5 parallel homogeneous repeater
networks. The cost function of the homogeneous repeater is the
same as eq. (4) with mII= 0, and was minimized independently.
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to TYPE II nodes changes as a function of the distance. For high-
cost TYPE II nodes (κ= 10) the ratio decreases with distance. This
can be understood from the accumulation of re-encoding errors in
the network. For small distances, the accumulated error is
relatively small, and it is therefore advantageous to employ a
few TYPE II nodes. For larger distances, the accumulated error
necessitates more TYPE II nodes despite their higher cost. On the
other hand, we observe that the ratio of TYPE I to TYPE II nodes
increases with distance even for a low cost of TYPE II nodes (κ= 1).
We attribute this to the fact that placing too many TYPE II nodes in
the network introduces more operational errors than it can
suppress.

DISCUSSION
In conclusion, we have outlined how a resource-efficient DV one-
way quantum repeater can be constructed by concatenating a
flag-based 5-qubit code with a loss-tolerant tree-cluster code. The
high loss tolerance and conceptually straightforward encoding/
decoding of the tree-cluster code make it suitable as an inner
code that protects against photon loss in transmission between
repeater nodes. An extra layer of protection is provided by the
outer 5-qubit code which effectively suppresses operational errors
that accumulate due to the non-fault-tolerant nature of the tree-
cluster code against Pauli errors. As a result, the code-
concatenated repeater is able to bridge distances of several
thousand kilometers for re-encoding error probabilities as high
as ~ 0.1%.
The code concatenation allows for an architecture tailored to

the asymmetry between loss and operational errors that are
characteristic of quantum communication. Specifically, we have
shown how the optimizations can include the relative cost of the
different repeater nodes to arrive at an optimized architecture

with many relatively cheap TYPE I nodes that only correct errors
due to transmission loss, but far fewer expensive TYPE II nodes
that also correct operational errors. In particular, we found that
such an optimization could be done with a minimal effect on the
optimal secret key rate of the repeater network.
This represents a major advantage because it achieves fault-

tolerant operation with a modest resource overhead and allows
for long-distance communication with error rates roughly an order
of magnitude larger compared to the non-fault-tolerant scheme of
ref. 17. Furthermore, the DV nature of our protocol circumvents the
highly challenging generation of optical GKP states, making our
proposal applicable to a wide range of experimental systems,
which are predominantly qubit-based. In Supplementary Note 11,
we provide further details on the comparison between our work
and previous repeater protocols outlining how our scheme has a
minimized number of spin qubits per repeater node. Due to the
flexibility of our architecture, it is possible to use other quantum
error-correcting codes such as the ⟦7, 1, 3⟧ and ⟦9, 1, 3⟧ codes or
the ⟦4, 2, 2⟧ quantum error detecting code with minimal
modification. We leave it up to future work to investigate if such
approaches could lead to better results in terms of the choice of
code, network performance, and resource requirement.
We have outlined a possible modular implementation of the

repeater based on few-qubit processors with an efficient spin-
photon interface through a cavity-coupled quantum emitter.
Solid-state systems such as group-IV defect centers in dia-
mond6,33,50 are promising hardware candidates having demon-
strated both efficient coupling to nanophotonic cavities6 and

Fig. 7 Repeater ratio and spacing. a The inter-repeater distance L0,
and b the ratio of the number of TYPE I to TYPE II nodes mI:mII as a
function of total distance corresponding to Fig. 6.

Fig. 8 Repeater weight characterization. a The secret key rate SKR
corresponding to the minimized cost function Cmin as a function of
the distance Ltot for various relative node weights κ with fixed re-
encoding error probability ϵr= 0.1%. For comparison, the secret key
rate of the homogeneous repeater network multiplied by a factor of
5 from ref. 17 is included as a dashed line optimized with respect to
the cost function shown in eq. (4) with fixed mII= 0. b The
corresponding number of TYPE II nodes in the network and c the
corresponding ratio of the number of TYPE I to TYPE II nodes as a
function of the total distance.
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access to small-scale qubit registers through coupling to near-by
nuclear spins33. To implement both TYPE I and TYPE II nodes, only
5 cavity-emitter systems are required. Importantly, it is sufficient
for each of these systems to have just 1 cavity-coupled emitter
spin with direct, e.g., magnetic, coupling to 4 near-by nuclear
spins. Operations between the processors, which are needed for
the TYPE II nodes can be achieved through teleported gates
facilitated by photon-mediated interactions between the
quantum-emitter spins.

METHODS
Fault-tolerance
In a TYPE II node, an additional flag qubit in a TYPE II node is used
to perform error correction, with a circuit shown in Fig. 4. This
additional qubit aids in suppressing the otherwise undetectable
physical errors propagated by faulty gates in the stabilizer
operations51. In Fig. 9, we consider a subsystem of Fig. 4 as an
example and illustrate how an error that occurred right before a
two-qubit gate during the stabilizer operation could result in
logical errors on the data qubits due to the error being
propagated by the two-qubit gate onto the data qubits. Then,
we consider additional errors induced by the noisy two-qubit gate
on the target qubit. With one additional flag qubit prepared in
state 0j i, the propagated error on the data qubits would then be
detected because the flag qubit would be measured as being in
state 1j i. When the flag qubit is detected as being in state 1j i, we
switch over to the unflagged circuit and apply the Pauli operations
according to the syndromes measured during this unflagged
circuit to revert the propagated error. An example is shown in Fig.
9b, c. For the complete fault-tolerant error-correction protocol, see
the Supplementary Note 2.

Erasure-error correction
In the event of a 1-erasure error being heralded at a TYPE II node,
we initialize the spin in the node corresponding to the lost tree to
state 0j i, while the rest of the intact trees are decoded into spins
in the other nodes as usual. The 5-qubit code stabilizer operations

are then performed on the 5 qubits, projecting the mixed state
back into the logical codespace of the 5-qubit code, up to some
Pauli corrections on the 5 qubits. For example, if the 5th qubit that
was part of the encoded 5-qubit logical state ψLj i was lost, then
the original encoded state would be restored according to the
Pauli corrections in Table 2. The procedure is similar for correcting
a 2-erasure error, however, we have not included corrections of
2-erasure errors in our optimizations since they occur very rarely
compared to 1-erasure errors.
To complete the error correction look-up table, we considered

the cases in which additional Pauli errors also occurred on other
non-lost qubits. The resulting look-up table is shown in Table 3.
Note that this look-up table is not unique, i.e., multiple distinct
errors could lead to the same syndrome. For instance, if the 1st
qubit is lost, the syndrome �þþþj i corresponds to the cases
where either an X2, Z3, Z4, or X5 error also occurred. Since they are
indistinguishable due to the shared syndrome, we choose to only
correct for X2. Randomly choosing one out of the four possible
errors to correct does not affect the suppression of error because
we are considering the depolarizing noise model where every
Pauli error occurs with the same probability. However, if one is
considering a biased noise model, it is wise to choose which case
to correct in order to maximize the error suppression.

Fig. 9 Error propagation in the circuit. a Circuit diagram of the
error propagation in a subsection of the 5-qubit code circuit. b The
errors induced by gate a if it was triggered by an error on the ancilla
qubit and c similarly for gate b. Example taken from ref. 51.

Table 2. Effect of erasure error on projected state.

Syndrome Projected state

þþþþj i ψLj i
þ þ ��j i X5 ψLj i
þ � þþj i Z5 ψLj i
þ � ��j i X5Z5 ψLj i
The syndrome observed from reading out the ancilla qubits and the
corresponding restored encoded logical states assuming the 5th qubit was
lost.

Table 3. Erasure-error correction look-up table.

Correction

Syndrome Lost qubit: 1st/2nd 3rd/4th 5th

þþþþj i I I I

þþþ�j i X1 Y3Y4 X1
þþ�þj i Z1X2 Z3 X1X5
þþ��j i Y1X2 X3Y4 X5
þ�þþj i X1Z2 Z3X4 Z5
þ�þ�j i Z2 X3Z4 Z1X5
þ��þj i Y1Y2 X4 X1Y5
þ���j i Z1Y2 Y3Z4 Y5
�þþþj i X2 Y3X4 Y1X5
�þþ�j i X1X2 Z4 Z1X5
�þ�þj i Z1 X3X4 Z1
�þ��j i Y1 Z3Z4 Y1
��þþj i X1Y2 X3 Y1Y5
��þ�j i Y2 Z3Y4 Z1Y5
���þj i Y1Z2 Y3 Z1Z5
����j i Z1Z2 Y4 Y1Z5

Corrections to the 5 data qubits to project them back into the logical
codespace of the 5-qubit code depending on the ancilla outcomes and
which data qubit was lost.
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Note that for erasure correction, we do not use the error-
correction protocol with the flag qubit since we found that it does
not improve the fidelity of the error-corrected state compared to
not using the flag qubit. This is due to the fact that the
effectiveness of the flag qubit protocol relies on the initial 5-qubit
logical state having at most a Pauli error on 1 physical qubit, while
an erasure error effectively induces a correlated error, i.e., it is not
merely a single-qubit Pauli error. For how the erasure errors are
taken into account in the effective error rate, we refer to
Supplementary Note 9.

Error model
We model the noise in the two-qubit gates between two local
spins using the two-qubit depolarizing channel

Λ2ðϵÞ ¼ ð1� ϵÞϱþ ϵ

15

X
P2fI;X;Y;Zg�2nI�2

PϱP: (5)

where ϵ is a general error rate and ϱ is a two-qubit density matrix.
In our model, a non-teleported two-qubit gate is followed by
Λ2(ϵ0). Conversely, a teleported two-qubit gate, as shown in Fig. 5,
involves 3 two-qubit gates that each have an error of ϵ0. Thus, we
consider that an error of Λ2(3ϵ0) follows immediately after a
teleported two-qubit gate since ϵ0≪ 1.
Another noise channel that we consider is the single-qubit

depolarizing channel, which is given by

ΛðϵÞ ¼ ð1� ϵÞρþ ϵ

3

X
P2fX;Y;Zg

PρP; (6)

where ρ is a single-qubit density matrix. As previously noted in the
section “Quantum-repeater protocol”, each of the 5 logical qubits
at the tree-code level in the transmission is subjected to such error
channel with an error rate of ϵtrans, i.e., Λ(ϵtrans). The expression for
the transmission error is given by

ϵtrans ¼ 1� ð1� ϵrÞnð1� ϵ0Þ: (7)

where ϵr is the re-encoding error and n is the number of links
between consecutive TYPE II nodes as illustrated in Fig. 10. Note
that we have parameterized the number of TYPE I nodes as
mI=mII(n− 1). We consider the error induced by both the tree
decoding and encoding step in TYPE II nodes. The tree encoding
step in TYPE II nodes introduces an error of ϵ0. Conversely, the
decoding step at a TYPE I and TYPE II node is similar, hence it
introduces an error of ϵr. However, instead of decoding the tree
upon reception into a fresh tree, TYPE II nodes would perform a
SWAP gate, which we assume has an error of ϵ0, between the
decoded qubit from a tree and an auxiliary memory spin in
preparation for a teleported two-qubit gate for the 5-qubit code
stabilizer operations as detailed in the section “Implementation”.
Regarding the tree generation scheme from ref. 17 which we

consider in our work, we note that, in principle, it could lead to
correlated errors in the tree-cluster states since it involves repeated
photon emission from the same emitter with an error rate of ϵ0. This
error on the emitter thus might propagate to more than a single
photon in the tree. It is, however, outside the scope of this work to
consider the effect of such correlated errors. We note that they

could potentially be kept small by, e.g., intermediate error detection
steps in the generation procedure32. We assume that we are able to
suppress the correlated errors, and then we can say that each
photon in our trees is merely subjected to Λ(ϵ0). From our numerical
simulation of the tree re-encoding procedure, we find that our
model results in a re-encoding error rate of ϵr ≈ 3ϵ0 at each TYPE I
node for the tree sizes considered in this work (see Supplementary
Note 10). This reflects the fact that despite the tree-clusters
consisting of hundreds of photons each subjected to Λ(ϵ0), the
dominant error comes from errors on the first-level photon and
spin-qubit involved in the re-encoding step. Errors on the remaining
photons, which are measured out, are efficiently suppressed by
employing a majority-voting correction strategy.

Repeater performance
The key performance metrics of the repeater network that we
consider are the end-to-end transmission probability of the
message qubit and the quality of the transmitted qubit. To
characterize the end-to-end transmission probability of the
message qubit, we start by considering the transmission prob-
ability, ηe, of a single tree-cluster state with branching vector
t= [b0, b1,…, bd] between consecutive repeater nodes. From
ref. 35, we have that

ηe ¼ ½ð1� μþ μR1Þb0 � ðμR1Þb0 �ð1� μþ μR2Þb1 ; (8)

where Rk ¼ 1� ½1� ð1� μÞð1� μþ μRkþ2Þbkþ1 �bk with Rd+1= 0
, bd+1= 0, and μ= 1− ηηd. Here, η ¼ expð�L0=LattÞ is the
transmission probability of a single photon between repeater
nodes with L0 being the inter-node distance and Latt being the
attenuation length of the optical fiber. Furthermore, ηd is the
combined efficiency of in/out-coupling of the photon, frequency
conversion, and photon detection. We assume that efficient
frequency conversion to the telecom band is possible such that
Latt= 20 km.
Without erasure-error correction on the 5-qubit code level, the

end-to-end transmission probability of the message qubit would
be given by η5mtot

e where mtot=mI+mII is the total number of
nodes in the repeater excluding the start node with mI (mII) being
the number of TYPE I (TYPE II) nodes in the network. Note that we
exclude the start node but include the end node when counting
mII. Nonetheless, it is advantageous to leverage the outer 5-qubit
code to also correct for erasure errors. Thus, we need to consider
how this affects the end-to-end transmission probability of the
message qubit.
We choose to treat cases with more than one erasure error, i.e.,

more than one failed tree encoding, at the same TYPE II node as a
failed transmission for simplicity as mentioned in the section
“Erasure-error correction”. The total transmission probability in this
case can then be expressed as

XmII

i¼0

mII

i

� �
ptransðmII; iÞ; (9)

with

ptransðmII; iÞ ¼ ½η5ne �mII�i½5η4ne ð1� ηneÞ�
i
; mII � i; (10)

being the probability of successful transmission with 1-erasure
errors in i distinct TYPE II nodes. Besides the transmission
probability, we also need to assess the quality of the transmitted
qubits. To this end, we consider a scenario where the transmitted
qubits are used to distill a secret key. In particular, we assume that
the six-state protocol49 is employed, which allows us to quantify
the quality of the transmitted qubits using its asymptotic secret
key fraction. This is given by52

fmII;i ¼ max ð1� QÞ 1� h
1� 3Q=2
1� Q

� �� �
� hðQÞ; 0

� �
; (11)

Fig. 10 Error propagation in the network. Error propagated by the
repeater operations between two consecutive TYPE II nodes with n
(parallel) links in between. Only 1 out of 5 of the parallel links is
shown for simplicity.
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where hðxÞ ¼ �xlog2x � ð1� xÞlog2ð1� xÞ is the binary entropy
and

Q ¼ 2ϵeffðmII; iÞ=3; (12)

denotes the QBER (QuBit Error Rate) of the fully decoded qubit at
the end node. The quantity ϵeff(mII, i) is the effective error rate of
the received qubit at the end node given there were i erasure-
error occurrences and mII TYPE II nodes.
With our error model, we determine ϵeff(mII, i) from numerical

simulations of the 5-qubit code throughout the repeater network.
The details of these simulations can be found in Supplementary
Note 7 where we also provide a semi-analytical approximation to
ϵeff(mII, i), which matches the numerical results to great precision
for the relevant range of effective error rates, i.e., error rate that is
less than the threshold QBER of the associated QKD protocol.

Numerical minimization
We minimize the cost function C in eq. (4) with respect to L0,mII,
and t with the following constraints: minimum inter-repeater
distance L0 ≥ 1 km, the maximum number of TYPE II nodes never
exceeds half of the total number of nodes, i.e., mII ≤ ⌊mtot/2⌋, the
maximum photon number Nmax ¼ 300 with the total photon
number N ¼ Pd

i¼0

Qi
j¼0 bj and a fixed depth of the tree d= 2.

Then, the minimization of C can be written as

Cmin ¼ min
L0 ;mII;t

C; subject to :

L0 � 1 km;

1 � mII � bmtot=2c;
t 2 f½b0; b1; b2� j 8j; bj 2 Z > 0 and N � Nmaxg;

(13)

where Z > 0 is the set of all positive integers. We chose the
quantity ⌊mtot/2⌋ as the maximum number of TYPE II nodes in our
optimization since the approximations that make eq. (1) accurate
starts to break down beyond this value. This is because we can no
longer properly place the TYPE II nodes such that they are evenly
spaced beyond this value (see Supplementary Note 8). The rest of
the parameters are fixed and their values are shown in Table 1. To
ensure that the true optimum does not lie in a regime where only
TYPE II nodes are permitted in the network, we independently
optimized such a configuration with respect to the cost function
and found that both the resulting secret key rate and cost are
significantly worse than for the hybrid configuration (see
Supplementary Note 6).
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