

Delft University of Technology

End-to-end neural network based optimal quadcopter control

Ferede, Robin; de Croon, Guido; De Wagter, Christophe; Izzo, Dario

DOI
10.1016/j.robot.2023.104588
Publication date
2024
Document Version
Final published version
Published in
Robotics and Autonomous Systems

Citation (APA)
Ferede, R., de Croon, G., De Wagter, C., & Izzo, D. (2024). End-to-end neural network based optimal
quadcopter control. Robotics and Autonomous Systems, 172, Article 104588.
https://doi.org/10.1016/j.robot.2023.104588

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.robot.2023.104588
https://doi.org/10.1016/j.robot.2023.104588

Robotics and Autonomous Systems 172 (2024) 104588

A
0

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

End-to-end neural network based optimal quadcopter control✩
Robin Ferede a,∗, Guido de Croon a, Christophe De Wagter a, Dario Izzo b

a Micro Air Vehicle lab, Control and Simulation, Delft University of Technology, Kluyverweg 1, Delft, 2629 HS, The Netherlands
b Advanced Concepts Team, European Space Agency, Keplerlaan 1, Noordwijk, 2201 AZ, The Netherlands

A R T I C L E I N F O

Dataset link: https://github.com/tudelft/optim
al_quad_control_SL

Keywords:
End-to-end control
Optimal control
Supervised learning
G&CNet
Reality gap
Sim-to-real transfer

A B S T R A C T

Developing optimal controllers for aggressive high-speed quadcopter flight poses significant challenges in
robotics. Recent trends in the field involve utilizing neural network controllers trained through supervised or
reinforcement learning. However, the sim-to-real transfer introduces a reality gap, requiring the use of robust
inner loop controllers during real flights, which limits the network’s control authority and flight performance.
In this paper, we investigate for the first time, an end-to-end neural network controller, addressing the reality
gap issue without being restricted by an inner-loop controller. The networks, referred to as G&CNets, are
trained to learn an energy-optimal policy mapping the quadcopter’s state to rpm commands using an optimal
trajectory dataset. In hover-to-hover flights, we identified the unmodeled moments as a significant contributor
to the reality gap. To mitigate this, we propose an adaptive control strategy that works by learning from optimal
trajectories of a system affected by constant external pitch, roll and yaw moments. In real test flights, this model
mismatch is estimated onboard and fed to the network to obtain the optimal rpm command. We demonstrate
the effectiveness of our method by performing energy-optimal hover-to-hover flights with and without moment
feedback. Finally, we compare the adaptive controller to a state-of-the-art differential-flatness-based controller
in a consecutive waypoint flight and demonstrate the advantages of our method in terms of energy optimality

and robustness.
1. Introduction

Nowadays there is an increasing demand for autonomous quad-
copters for various military and civilian applications [1]. For many
applications such as emergency response, inspection, delivery or racing
the drone must fly as fast, and as energy efficient as possible [2].
However, developing autonomous systems for aggressive high-speed
flight still poses many challenges. One of these challenges is developing
computationally efficient optimal control algorithms that take into
account non-linear dynamics and actuator limits.

Current state-of-the-art research on optimal quadcopter control fo-
cuses on making controllers track a reference guidance trajectory.
Popular tracking methods include the differential-flatness-based con-
troller (DFBC) [3–6] and the traditional nonlinear-model-predictive
controller (NMPC) [7–12]. While the DFBC is more computationally
efficient, traditional NMPC has gained a lot of popularity in quad-
copter control due to advances in hardware. The advantages of NMPC
over DFBC are improved tracking accuracy for dynamically infeasible
trajectories as well as improved robustness to model mismatch [13]
(especially by means of adaptive algorithms [10,14]). Furthermore,

✩ This work was supported by the European Space Agency.
∗ Corresponding author.
E-mail addresses: r.ferede@tudelft.nl (R. Ferede), G.C.H.E.deCroon@tudelft.nl (G. de Croon), C.deWagter@tudelft.nl (C. De Wagter), dario.izzo@esa.int

(D. Izzo).

in recent work, a traditional NMPC method was shown to outper-
form human pilots in a drone-racing task by tracking offline-generated
time-optimal trajectories [15].

Both NMPC and DFBC suffer from a fundamental limitation: they
dissect the control problem into multiple layers of abstraction. These
layers typically encompass the following components:

1. The reference trajectory, which is designed to solve the primary
optimization objective. This process is often computationally
intensive, requiring either offline calculations or online sub-
optimal simplifications, such as polynomial guidance [4,6,16],
point mass trajectories [12,17], or numerical approximation
methods [18–20]

2. A controller for trajectory tracking, which serves a secondary
role in minimizing trajectory tracking errors

3. A low-level rate controller, responsible for determining mo-
tor commands. It carries a third objective of minimizing and
prioritizing thrust and rate tracking errors.

When applied in a real-world context, these layers of abstraction inher-
ently introduce sub-optimal behaviors. For instance, when the drone
vailable online 27 November 2023
921-8890/© 2023 The Authors. Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.robot.2023.104588
Received 21 June 2023; Received in revised form 13 October 2023; Accepted 24 N
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ovember 2023

https://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
mailto:r.ferede@tudelft.nl
mailto:G.C.H.E.deCroon@tudelft.nl
mailto:C.deWagter@tudelft.nl
mailto:dario.izzo@esa.int
https://doi.org/10.1016/j.robot.2023.104588
https://doi.org/10.1016/j.robot.2023.104588
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2023.104588&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Robotics and Autonomous Systems 172 (2024) 104588R. Ferede et al.
Fig. 1. (a) The reality gap issue is resolved by estimating the moment model mismatch and feeding it to the adaptive G&CNet. b) We perturb the dynamics by adding a weight
on one side, the Bebop drone successfully flies through the 3 × 4 m track by adapting its rpm command based on the observed state and moment model mismatch.
deviates from the optimal planned trajectory due to external distur-
bances, there may exist an alternative trajectory that becomes more
optimal.

A recent trend in quadcopter control research is the application
of machine learning techniques to guidance and control problems.
Deep neural networks have been trained for trajectory generation using
reinforcement learning [21] and supervised machine learning [22].
Similarly, trajectory tracking has been improved by training neural net-
works either from flight data [23,24] or from simulation data [25,26].
Other studies have merged guidance and control within a single neural
network, efficiently removing one abstraction layer through reinforce-
ment learning [27,28] or supervised learning [29–31]. An especially
remarkable case can be seen in a recent Nature paper [27], where a
deep neural network trained with reinforcement learning outperforms
human drone racing champions by directly issuing thrust and rate
commands. In the supervised learning methods [29–31] (also employed
in space applications [32,33]), networks known as G&CNets are trained
to replicate optimal state feedback from a dataset of optimal trajec-
tories. Once trained, the G&CNets provide a computationally efficient
means to compute optimal control onboard the quadcopter, eliminating
the need for trajectory (re)planning. Real flight tests have successfully
demonstrated this approach for longitudinal trajectories, employing a
simplified 2-dimensional quadcopter model [29]. In these experiments,
the G&CNets calculated thrust and pitch acceleration commands, which
were tracked by an INDI controller [34].

In this article, we take the G&CNet approach a step further and
investigate for the first time an end-to-end, i.e., state-to-rpm network
for a high dimensional quadcopter model taking into account drag,
aerodynamic effects and actuator delays. Unlike any of the previous
work our network directly calculates the rpm motor commands al-
lowing us to take advantage of the actuator’s limits without being
limited by any abstraction layers. In our experiments, the optimization
objective is achieving energy optimality, an objective closely linked to
time optimality, resulting in generally rapid and smooth trajectories.
The biggest obstacle with our approach is the reality gap between the
model and the real world. In this research, we identify the reality gap
and propose an adaptive method to mitigate the effects of unmod-
eled roll, pitch and yaw moments. Furthermore, we benchmark our
controller’s performance against a state-of-the-art differential-flatness-
based controller using an identical setup with the same hardware. We
selected DFBC as our benchmark over NMPC due to its similar onboard
computational demands in comparison to our approach. Through this
comparison, we highlight the benefits of our method in relation to
energy optimality and robustness.

2. Methodology

2.1. Quadcopter model

Referring to the quadcopter configuration and axes definition illus-
trated in Fig. 2, the state and control input of the quadcopter can be
2

Fig. 2. Quadcopter configuration and axes definition (z-axis points downwards).

described as follows:

𝐱 = [𝐩, 𝐯,𝝀,𝜴,𝝎]𝑇 𝐮 = [𝑢1, 𝑢2, 𝑢3, 𝑢4]𝑇

Where 𝐩 = [𝑥, 𝑦, 𝑧] and 𝐯 = [𝑣𝑥, 𝑣𝑦, 𝑣𝑧] are the position and velocity in
the world frame, 𝜴 = [𝑝, 𝑞, 𝑟] is the angular velocity in body frame,
𝝀 = [𝜙, 𝜃, 𝜓] are the Euler angles that describe the orientation of the
body frame and 𝝎 = [𝜔1, 𝜔2, 𝜔3, 𝜔4] are the angular velocities of each
of the propellers in rpm. The control input 𝐮 contains the normalized
rpm commands 𝑢𝑖 ∈ [0, 1]. The system dynamics are described by:

�̇� = 𝐯 �̇� = 𝐠 + 𝑅(𝝀)𝐅 (1)

�̇� = 𝑄(𝝀)𝜴 𝐼�̇� = −𝜴 × 𝐼𝜴 +𝐌

�̇� = ((𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛)𝐮 + 𝜔𝑚𝑖𝑛 − 𝝎)∕𝜏

Where 𝐠 = [0, 0, 𝑔]𝑇 is the gravitational acceleration, 𝐼 is the moment of
inertia matrix given by diag(𝐼𝑥, 𝐼𝑦, 𝐼𝑧), 𝜔𝑚𝑖𝑛 and 𝜔𝑚𝑎𝑥 are the minimum
and maximum propeller rpm limits and 𝜏 is the first order delay
parameter of the actuator model. Furthermore, 𝑅(𝝀) is the rotation
matrix defined by:

𝑅(𝝀) =
⎡

⎢

⎢

⎣

𝑐𝜃𝑐𝜓 −𝑐𝜙𝑠𝜓 + 𝑠𝜙𝑠𝜃𝑐𝜓 𝑠𝜙𝑠𝜓 + 𝑐𝜙𝑠𝜃𝑐𝜓
𝑐𝜃𝑠𝜓 𝑐𝜙𝑐𝜓 + 𝑠𝜙𝑠𝜃𝑠𝜓 −𝑠𝜙𝑐𝜓 + 𝑐𝜙𝑠𝜃𝑠𝜓
−𝑠𝜃 𝑠𝜙𝑐𝜃 𝑐𝜙𝑐𝜃

⎤

⎥

⎥

⎦

and 𝑄(𝝀) denotes a transformation between angular velocities and Euler
angles. 𝐅 = [𝐹𝑥, 𝐹𝑦, 𝐹𝑧]𝑇 is the specific force acting on the quadcopter
in the body frame which we model as a function of the body velocities
and the propeller RPMs using a thrust and drag model based on [35]:

𝐹𝑥 = −𝑘𝑥𝑣𝐵𝑥
4
∑

𝑖=1
𝜔𝑖 𝐹𝑦 = −𝑘𝑦𝑣𝐵𝑦

4
∑

𝑖=1
𝜔𝑖

𝐹𝑧 = −𝑘𝜔
4
∑

𝜔2
𝑖 − 𝑘𝑧𝑣

𝐵
𝑧

4
∑

𝜔𝑖 − 𝑘ℎ(𝑣𝐵2𝑥 + 𝑣𝐵2𝑦)

(2)
𝑖=1 𝑖=1

Robotics and Autonomous Systems 172 (2024) 104588R. Ferede et al.
Table 1
Model parameters for the Parrot Bebop quadcopter. The moments of inertia 𝐼𝑥 , 𝐼𝑦 , 𝐼𝑧 are obtained from [36]. All other parameters have been identified by means of linear regression
with sensor data obtained from various flights.
𝑘𝑥 [rpm−1 s−1] 𝑘𝑦 [rpm−1 s−1] 𝑘𝜔 [rpm−2 m s−2] 𝑘𝑧 [rpm−1 s−1] 𝑘ℎ [m−1] 𝐼𝑥 [kg m2] 𝐼𝑦 [kg m2] 𝐼𝑧 [kg m2]

1.08e−05 9.65e−06 4.36e−08 2.79e−05 6.26e−02 0.000906 0.001242 0.002054

𝑘𝑝 [rpm−2 N m] 𝑘𝑝𝑣 [N s] 𝑘𝑞 [rpm−2 N m] 𝑘𝑞𝑣 [N s] 𝑘𝑟1 [rpm−1 N m] 𝑘𝑟2 [rpm−1 N m s] 𝑘𝑟𝑟 [N m s] 𝜏 [s]

1.41e−09 −7.97e−03 1.22e−09 1.29e−02 2.57e−06 4.11e−07 8.13e−04 0.06
I
a

a
w

Table 2
Validation loss for a variety of architectures after training on the hover-to-hover dataset
for 10 epochs.

60 neurons 120 neurons 180 neurons
per layer per layer per layer

1 layer 0.00180 0.00113 0.00099
2 layers 0.00060 0.00025 0.00019
3 layers 0.00038 0.00015 0.00010
4 layers 0.00028 0.00014 0.00011

Similarly, 𝐌 = [𝑀𝑥,𝑀𝑦,𝑀𝑧]𝑇 is the moment acting on the quadcopter
which we model with the following equations:

𝑀𝑥 = 𝑘𝑝(𝜔2
1 − 𝜔

2
2 − 𝜔

2
3 + 𝜔

2
4) + 𝑘𝑝𝑣𝑣

𝐵
𝑦

𝑀𝑦 = 𝑘𝑞(𝜔2
1 + 𝜔

2
2 − 𝜔

2
3 − 𝜔

2
4) + 𝑘𝑞𝑣𝑣

𝐵
𝑥

𝑀𝑧 = 𝑘𝑟1(−𝜔1 + 𝜔2 − 𝜔3 + 𝜔4)

+ 𝑘𝑟2(−�̇�1 + �̇�2 − �̇�3 + �̇�4) − 𝑘𝑟𝑟𝑟

(3)

See Table 1 for the parameter values identified for our platform.

2.2. Energy optimal control problem

Given a state space 𝑋 and set of admissible controls 𝑈 , the goal is to
find a control trajectory 𝐮 ∶ [0, 𝑇] → 𝑈 that steers the system from an
initial state 𝐱0 to some target state 𝑆 ⊂ 𝑋 in time 𝑇 while minimizing
some cost function. The energy optimal control problem considered in
this paper is formulated as

minimize
𝐮,𝑇

𝐸(𝐮, 𝑇) = ∫

𝑇

0
‖𝐮(𝑡)‖2𝑑𝑡

subject to �̇� = 𝑓 (𝐱,𝐮) 𝐱(0) = 𝐱0 𝐱(𝑇) ∈ 𝑆
(4)

It is worth highlighting that this objective is closely connected to
the time-optimization criterion. As the motor command vector 𝐮 is
normalized within [0, 1], it is anticipated to exhibit oscillations around
the hover thrust, approximately at 0.5. Consequently, this behavior
implies that the integral will be roughly proportional to the final time
𝑇 .

Similar to [29] the control problem is transformed into a Nonlinear
Programming (NLP) problem using Hermite Simpson transcription. The
trajectories 𝐱(𝑡),𝐮(𝑡) are discretized into 𝑁 + 1 points with a time
step 𝛥𝑡 = 𝑇 ∕𝑁 such that 𝐱𝑘 = 𝐱(𝑘𝛥𝑡) and 𝐮𝑘 = 𝐮(𝑘𝛥𝑡) Using the
AMPL [37] modeling language with the SNOPT NLP solver [38], the
optimal (discretized) trajectory 𝐱∗0 … 𝐱∗𝑁 and 𝐮∗0 …𝐮∗𝑁 can be computed.
To generate extensive datasets for these trajectories, we harness the
power of parallel processing by executing the SNOPT algorithm on
a server equipped with 256 CPUs, where the solver typically takes
approximately 8 s to run on a single CPU.

2.3. Dataset generation and network training

A dataset is created by generating optimal trajectories for a range of
initial conditions. From these trajectories, a dataset of state–action pairs
can be obtained of the form (𝐱∗𝑖 ,𝐮

∗
𝑖) 𝑖 = 0,… , 𝑁 . We use these state–
3

action pairs to train a Neural Network 𝑓𝑁 ∶ 𝑋 → 𝑈 to approximate d
the optimal feedback1 that maps 𝐱∗𝑖 to 𝐮∗𝑖 . In all our experiments we
use a neural network with 3 hidden layers of 120 neurons with ReLU
activation and an output layer of 4 neurons with Sigmoid activation
(Fig. 1). This architecture was chosen because it achieved a sufficiently
low loss with a modest number of weights. Increasing the number of
neurons beyond this point did not significantly reduce the loss. For a
comparative assessment of validation loss across various architectures,
please refer to Table 2. Similar to [29] we use the mean squared error
loss function:

𝑙 = ‖𝑓𝑁 (𝐱∗𝑖) − 𝐮∗𝑖 ‖
2

with mini-batch size 256 and a starting learning rate of 1e−3.

2.4. Adaptive method

We modify our model by assuming the existence of some constant
external moment 𝐌𝑒𝑥𝑡 = [𝑀𝑒𝑥𝑡,𝑥,𝑀𝑒𝑥𝑡,𝑦,𝑀𝑒𝑥𝑡,𝑧]𝑇 acting on the system.
The external moment can thus be considered part of our state vector
𝐱 = [𝐩, 𝐯,𝝀, 𝛺,𝝎,𝐌𝑒𝑥𝑡]𝑇 The modified system dynamics becomes:

�̇� = 𝐯 �̇� = 𝐠 + 𝑅(𝝀)𝐅 (5)
�̇� = 𝑄(𝝀)𝜴 𝐼�̇� = −𝜴 × 𝐼𝜴 +𝐌 +𝐌𝑒𝑥𝑡

�̇�𝑒𝑥𝑡 = 0 �̇� = ((𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛)𝐮 + 𝜔𝑚𝑖𝑛 − 𝝎)∕𝜏

Using the same approach as before, we can now generate optimal tra-
jectories for this system and train a network to approximate the optimal
state feedback. Additionally, the neural network will now have 3 extra
inputs for 𝑀𝑒𝑥𝑡,𝑥,𝑀𝑒𝑥𝑡,𝑦,𝑀𝑒𝑥𝑡,𝑧. The obtained controller will now use
these extra inputs to optimally compensate for the unmodeled moments
(assuming they are constant). For the onboard implementation, we will
obtain the values of 𝐌𝑒𝑥𝑡 by subtracting the modeled moment (Eq. (3))
from the measured moment

𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 𝐼�̇� +𝜴 × 𝐼𝜴 (6)

using filtered (8 Hz 2nd order Butterworth low-pass filter) gyroscope
measurements. It is important to note that the filtering causes our
estimates for 𝐌𝑒𝑥𝑡 to be slightly delayed. Furthermore, the controller’s
output is based on the assumption of a constant external moment so we
can expect our method to only be effective if the modeling errors are
in a sufficiently low-frequency range.

2.5. Differential-flatness-based controller (DFBC)

DFBC is a state-of-the-art method for generating aggressive trajecto-
ries using piece-wise high-order polynomials 𝐩(𝑡) = [𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), 𝜓(𝑡)]𝑇

that pass through a set of waypoints while minimizing the ‘Snap’
defined by the following integral [4]:

∫

𝑇

0
𝜇𝑟
[

𝑥(4)(𝑡) + 𝑦(4)(𝑡) + 𝑧(4)(𝑡)
]2

+ 𝜇𝜓
[

𝜓 (2)(𝑡)2
]

𝑑𝑡

n this problem, the final time is fixed, and the polynomial coefficients
re found by solving a quadratic constraint optimization problem. As

1 From [30]: ‘‘the Hamilton–Jacobi-Bellman equations are important here
s they imply the existence and uniqueness of an optimal state-feedback 𝐮∗(𝐱)
hich, in turn, allow to consider universal function approximators such as
eep neural networks to represent it’’.

Robotics and Autonomous Systems 172 (2024) 104588R. Ferede et al.
Fig. 3. Experimental setup: The Parrot Bebop’s position and attitude are tracked with OptiTrack and sent via WiFi, while an onboard extended Kalman filter fuses the OptiTrack
and IMU data to get an accurate state estimate for the G&CNet.
shown in [4], if we change the final time by a factor of 𝛼, the new
minimum snap solution is simply a time-scaled version of the original
polynomial 𝐩(𝛼𝑡). By changing the value of 𝛼, the trajectory can be
faster or slower without having to recompute the optimal solution.
In order to achieve accurate tracking, we use an outer-loop INDI
controller where the velocity and acceleration feed-forward commands
are directly computed from the polynomials.

3. Experimental setup

The quadcopter used in our experiment is the Parrot Bebop 1 which
has its onboard software replaced by the Paparazzi-UAV open-source
autopilot project [39]. All computations will run in real time on the
Parrot P7 dual-core CPU Cortex A9 processor. The Parrot Bebop has an
MPU6050 IMU sensor that will be used to obtain measurements of the
specific force and angular velocity along the body axes. Additionally,
the Bebop can measure the angular velocities (in rpm) of each of the
propellers, which is a requirement for our control method.

All flight tests are performed in The CyberZoo which is a research
and test laboratory in the faculty of Aerospace Engineering at the TU
Delft. This lab consists of a 10 by 10 meter area surrounded by nets
with an OptiTrack motion capture system that can provide position
and attitude data in real-time. An extended Kalman filter is used to
fuse the OptiTrack and IMU data to obtain an estimate of the position,
velocity, attitude and body rates. These estimated state variables, along
with RPM measurements obtained from the ESC, serve as inputs for
the G&CNet, which operates at a 500 Hz frequency. The outputs of
the network will be directly used as rpm commands to the motors.
The DFBC method will use the same state estimates to obtain the
feedforward terms for the INDI controller. See Fig. 3 for an overview
of the experimental setup.

4. Results

4.1. Identifying the reality gap

4.1.1. Nominal G&CNet
Using the system dynamics from Eq. (1) we generate a dataset

of 100,000 energy-optimal trajectories with a target hover state de-
fined by 𝐱, 𝐯,𝝀,𝜴, �̇�, �̇�, �̇� = 0. The rpm limits are set to 𝜔𝑚𝑖𝑛 =
5000, 𝜔𝑚𝑎𝑥 = 10000 and the initial conditions are uniformly sampled
from the following intervals:

𝑥 ∈ [−5, 5] 𝑦 ∈ [−5, 5] 𝑧 ∈ [−1, 1]

𝑣𝑥 ∈ [− 1
2 ,

1
2] 𝑣𝑦 ∈ [− 1

2 ,
1
2] 𝑣𝑧 ∈ [− 1

2 ,
1
2]

𝜙 ∈ [− 2𝜋
9 ,

2𝜋
9] 𝜃 ∈ [− 2𝜋

9 ,
2𝜋
9] 𝜓 ∈ [−𝜋, 𝜋]

𝑝 ∈ [−1, 1] 𝑞 ∈ [−1, 1] 𝑟 ∈ [−1, 1]

𝝎 ∈ [𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥]4

We split this dataset into a training set of 90,000 trajectories and a test
set of 10,000 trajectories. The G&CNet is trained until a mean squared
error of ∼0.0003 is obtained on the test set.
4

4.1.2. Simulation and flight test
With the trained nominal G&CNet, we simulate the closed loop

system dynamics and do a flight test where the drone flies from hover to
hover in a 3 × 4 m rectangle. In order to fly to the target waypoints, we
subtract the waypoint coordinates from the 𝑥, 𝑦 and 𝑧 neural network
inputs. Both in simulation and the flight test, the drone flies 10 laps in
which the target waypoint is switched every 4 s. In Fig. 4 a top-down
view of the trajectory can be seen for the simulation and the flight
test. As expected, in the simulation, the trajectories show significant
overlap and the drone consistently arrives at the waypoint without
overshooting. In the flight test, the trajectories are more spread out and
a large deviation can be seen in the positive 𝑥-direction. The unmodeled
effects are especially visible in the forward translation maneuver where
the drone speeds up too much and overshoots the next waypoint. In
Fig. 5 these forward trajectories are shown from a sideways view. It
can be seen that the drone loses too much altitude causing it to speed
up and overshoot.

4.1.3. Unmodeled effects
We investigate the unmodeled aerodynamic effects from the for-

ward translation flight by comparing the measured and modeled mo-
ments and specific forces. The measured moments and forces are ob-
tained by using the filtered (16 Hz 2nd order Butterworth non-causal
filter) gyroscope and accelerometer measurements. Fig. 6 shows these
measured and modeled quantities for one of the forward translation
trajectories of the nominal G&CNets from Fig. 5.

It can be observed that the pitch moment seems to have a signifi-
cant low-frequency model mismatch. The unmodeled pitch moment is
mostly negative which might explain why the drone is diving down so
much in the flight test. Because our current parametric model cannot
capture this effect, we choose to go for an adaptive control strategy.

4.1.4. Adaptive G&CNet
We use the modified system dynamics with external moments from

Eq. (5) to generate another 100,000 energy-optimal trajectories with
the same target state and initial conditions as before, only now we also
uniformly sample the external moments from the following intervals:

𝑀𝑥,𝑒𝑥𝑡,𝑀𝑦,𝑒𝑥𝑡 ∈ [−0.04, 0.04] 𝑀𝑧,𝑒𝑥𝑡 ∈ [−0.01, 0.01]

With the generated dataset we train the adaptive G&CNet with 3 extra
𝑀𝑒𝑥𝑡 inputs to learn the optimal state feedback for the modified system.
Again, we train until a mean squared error of ∼0.0003 is achieved.

With the adaptive G&CNet, we perform the same flight test using the
4 waypoints and compare the results to the nominal network. In Figs. 4
and 5 the trajectory is compared to the previous nominal network and
the simulation. It can be seen that the trajectory no longer deviates
towards the positive 𝑥-direction and the overshoot in the forward
translation maneuver is significantly reduced. Furthermore the box-plot
in Fig. 7 shows the arrival time 𝑇 and energy 𝐸(𝑇) = ∫ 𝑇0 ‖𝐮(𝑡)‖2𝑑𝑡
corresponding to the trajectories from Fig. 5. As one might expect,
the performance gain of the adaptive network is most significant in
terms of Energy. However, the arrival time and energy in the flight

Robotics and Autonomous Systems 172 (2024) 104588R. Ferede et al.
Fig. 4. Top-down view of the simulated trajectory next to the Nominal- and Adaptive G&CNet flight test.
Fig. 5. Sideways view of the trajectories between waypoints 1 and 2: Simulation next
to the Nominal- and Adaptive G&CNet flight test.

tests are still significantly higher than in simulation which is probably
due to the remaining unmodeled effects causing the overshoot at the
2nd waypoint

4.2. Bench-marking: Adaptive G&CNet vs. DFBC

4.2.1. Adaptive G&CNet
For the task of flying through consecutive waypoints, we will train

an adaptive G&CNet to reach the waypoint with a forward final ve-
locity in the direction of a 45◦ yaw angle. Using the modified system
dynamics from Eq. (5) we generate a dataset of 10,000 energy-optimal
trajectories with a target state given by:

𝑥, 𝑦, 𝑧, 𝑣𝑧, 𝑝, 𝑞, 𝑟, �̇�, �̇�, �̇� = 0, 𝑣𝑦𝑣𝑥
= tan(𝜋4), 𝜓 = 𝜋

4

The rpm limits are set to 𝜔𝑚𝑖𝑛 = 3000, 𝜔𝑚𝑎𝑥 = 12000 and the initial
conditions are uniformly sampled from the following intervals:

𝑥 ∈ [−5,−2] 𝑦 ∈ [−1, 1] 𝑧 ∈ [− 1
2 ,

1
2]

𝑣𝑥 ∈ [− 1
2 , 5] 𝑣𝑦 ∈ [−3, 3] 𝑣𝑧 ∈ [−1, 1]

𝜙 ∈ [− 2𝜋 , 2𝜋] 𝜃 ∈ [− 2𝜋 , 2𝜋] 𝜓 ∈ [− 𝜋 , 𝜋]
5

9 9 9 9 3 3
Fig. 6. Comparison of the measured and modeled moments and (specific) forces
encountered in one of ’Nominal G&CNet’ flights from Fig. 5.

Fig. 7. Energy and time comparison during the 4 m forward flight between waypoints
1 and 2: Simulation compared to Nominal and Adaptive G&CNet.

Robotics and Autonomous Systems 172 (2024) 104588R. Ferede et al.
Fig. 8. Energy plotted over time during 4 laps of the 3 × 4 m track. The points in
time where a lap is completed are represented by a dot. The DFBC method that uses
the least energy is marked with a ‘‘+’’. The flight that crashes is marked with an ‘‘×’’.

𝑝 ∈ [−1, 1] 𝑞 ∈ [−1, 1] 𝑟 ∈ [−1, 1]

𝝎 ∈ [𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥]4

We split this dataset into a training set of 9000 trajectories and a test set
of 1000 trajectories and train until a mean squared error of ∼0.0003 is
obtained on the test set. With the trained adaptive G&CNet we perform
a flight test where we fly through 4 waypoints in a 3×4m rectangle (See
Figs. 9 and 11). The controller switches to the next target waypoint and
changes the coordinate system once the drone is within 1.2 m from
the current target. When switching to the next waypoint, we rotate our
coordinate system by 90◦ (around the z-axis) and set the next waypoint
as the origin.

4.2.2. DFBC
We generate a piece-wise 6th order polynomial

𝐩(𝑡) = [𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), 𝜓(𝑡)]𝑇 that passes through 10 laps of the 4 × 3 m
track with a final time of 40 s. To make sure the trajectory starts in
hover, the initial velocity, acceleration and yaw of the trajectory are set
to 0. At the 2nd waypoint, we constrain the yaw angle to be 45◦ which
we increment by 90◦ for each of the following waypoints. Additionally,
at these waypoints, we constrain the velocity to be aligned with the yaw
direction. Using the time scaling values starting at 𝛼 = 0.7 we generate
faster and faster trajectories by incrementing 𝛼 by 0.05. We then track
these trajectories with the INDI controller for 4 laps. We increased
alpha until the INDI controller could no longer track the trajectory
(resulting in a crash). An overview of all the performed flights can be
found in Figs. 14 and 15 in the appendix.

4.2.3. Energy/time comparison
We now compare the lap times and the energy integral obtained

from the flight tests. In Fig. 8 the energy integral 𝐸(𝑡) = ∫ 𝑡0 ‖𝐮(𝜏)‖2𝑑𝜏
is plotted over time for the adaptive G&CNet flight and all DFBC
flights. It can be noted that the fastest DFBC method finishes the 4
laps significantly faster than the G&CNet. In terms of energy, however,
the adaptive G&CNet outperforms all of the DFBC methods. The DFBC
method that uses the least energy (𝛼 = 1.0) still uses more energy and
time to finish the track. In Fig. 9, a top-down view of the trajectory
of the ’energy optimal’ DFBC method is plotted next to the adaptive
G&CNets flight. It can be seen that the DFBC method travels in a smooth
circular trajectory at a relatively high velocity, while the G&CNet takes
tighter corners and flies at a lower velocity while still finishing the 4
laps quicker.
6

Fig. 9. Top-down view of the adaptive G&CNet’s flight and the ’energy optimal’ DFBC’s
flight at 𝛼 = 1.0.

4.2.4. Robustness experiment
In order to compare robustness, we apply an external moment to the

drone by adding a bumper with a weight on the left side of the Bebop
(Fig. 1). With this alteration, we perform the same flight tests as before.
In Fig. 10 we again show the energy/time plot for all of the performed
flights. It can be seen that the DFBC controller fails a lot earlier at
𝛼 = 1.05. In terms of time, the adaptive G&CNet demonstrated superior
performance, with the quadcopter flying faster than all of the DFBC
flights. The trajectories of the G&CNet and the fastest DFBC flight can
be seen in Fig. 11. Another interesting observation is that the G&CNet
flies slower with this added weight than it did in the previous flight.
Here our method exhibits a clear advantage over DFBC, as it does not
require a reference trajectory, and can dynamically adjust its course
in real time. Furthermore, if we compare the rpm commands of both
methods (Fig. 12) it can be seen that the G&CNet can handle sustained
rpm saturations, while the DFBC method at 𝛼 = 1.05 experiences similar
saturations (at the same propeller) and crashes.

5. Discussion & future work

It is important to contextualize our results compared to current
state of the art control methods. In comparison with traditional con-
trollers like DFBC or similarly NMPC, our approach offers a unique
solution. While these traditional methods involve a multistage process,

Robotics and Autonomous Systems 172 (2024) 104588R. Ferede et al.
Fig. 10. Energy plotted over time during 4 laps of the 3 × 4 m track with the added
weight. The points in time where a lap is completed are represented by a dot. The
DFBC method that uses the least energy is marked with a ‘‘+’’. The flight that crashes
is marked with an ‘‘×’’.

Fig. 11. Top-down view of the adaptive G&CNet’s flight and the fastest DFBC’s flight
at 𝛼 = 1.0 with the added weight.
7

Fig. 12. Comparison of the normalized RPM commands of the Adaptive G&CNet
compared to the fastest DFBC flight at 𝛼 = 1.00 and the failed flight at 𝛼 = 1.05.

Fig. 13. Trajectory of the adaptive G&CNet through a 4 × 3 m track where the 3rd
waypoint is raised by 1 meter.

with pre-computed trajectories and onboard tracking controllers, our
methodology integrates planning and tracking into a unified control
system. We achieve this by training neural networks with optimal
trajectory data, allowing them to approximate the best path for each
state. Therefore, our work can be viewed as a specialized form of MPC,
where the network offers an approximate solution to the end-to-end
trajectory optimization problem without any limitations tied to a finite
time horizon. Our method boasts several significant advantages. Firstly,
it achieves a substantial reduction in onboard computation time, no-
tably highlighted when comparing the approximately 8 s required by
a powerful server to solve the optimal control problem using SNOPT
versus the mere 0.002 s it takes the trained network to calculate opti-
mal control on the drone’s limited processor. Our approach enhances
optimality by streamlining control layers found in traditional meth-
ods and exhibits improved robustness against unmodeled moments, as
shown in our robustness experiment. However the main disadvantage
of our method is that it requires substantial upfront offline computation
for generating extensive trajectory datasets and training the network,
which may pose a limitation.

In the broader context, the field of neural network based optimal
quadcopter control is still in its early stages, yet it has already deliv-
ered extremely impressive results such as those detailed in the Nature
paper [27] in which a neural controller beats human drone racing
champions. However, current methods are highly specialized and lack
generalizability [21,27,28]. These approaches often rely on neural

Robotics and Autonomous Systems 172 (2024) 104588R. Ferede et al.
Fig. 14. Top down view of all the DFBC trajectories used in the energy/time comparison from Section 4.2.3.
networks trained for specific track layouts and require complex mod-
eling of aerodynamic effects, including parametric models, Gaussian
processes, and neural networks, sometimes even predicting modeling
errors based on global position coordinates [27]. We acknowledge that,
akin to other studies, our network is highly specialized, as it results
from the utilization of a finely tuned quadcopter model and tailored
trajectory datasets for specific flights. Nevertheless, we have taken
measures to move towards a more versatile form of control. Through
8

training our network on a dataset encompassing a varied range of
initial conditions and modeling errors, we have already made notable
advancements in this direction. Even within the constraints of our
approach, our neural network has demonstrated its ability to execute
various trajectory types, as detailed in Appendix A of the paper.

Furthermore it is important to emphasize that our primary focus
is introducing end-to-end optimal quadcopter control for high-speed
flight. While there are some limits in terms of generalizability, we have

Robotics and Autonomous Systems 172 (2024) 104588R. Ferede et al.
Fig. 15. Top down view of all the DFBC trajectories used in the robustness experiment from Section 4.2.4.
effectively demonstrated the unique aspects of our approach, including
real-time optimal control at a high on-board frequency of 500 Hz, the
seamless integration of guidance and control, and the development
of a method to bridge the gap between simulation and real-world
applications.

Our method can be extended in several ways to enhance its ca-
pabilities. A logical next step would be to widen our datasets to
include a greater variety of starting conditions, allowing us to perform
a wider range of maneuvers using our approach. Additionally, we
could enhance our neural networks by introducing additional inputs.
This would enable them to represent solutions to parametric optimal
control problems, accommodating variations in final conditions and
additional waypoint constraints. Furthermore, our approach has the
potential for extension to real-world scenarios where obstacle avoid-
ance plays a critical role. Given that our neural networks offer an
computationally efficient means of planning optimal trajectories, they
could be integrated with obstacle avoidance algorithms. In this setup,
the obstacle avoidance algorithm would identify safe waypoints devoid
of obstacles, and subsequently, the G&CNets would be employed to
plan optimal trajectories towards these waypoints. This approach is
reminiscent of [40], which incorporates obstacle-free guidance systems
as local planners alongside a probabilistic waypoint planner, opening
up promising paths for future exploration. While the effectiveness of
these strategies awaits further research and exploration, the prospects
are encouraging.

6. Conclusion

We have presented a novel G&CNet setup to perform energy-optimal
end-to-end quadcopter control. Our approach introduces an efficient
algorithm for on-board optimal control computation, eliminating the
requirement for a reference trajectory or inner-loop controller, albeit
9

with the initial offline computation time as a minor trade-off. With
real flights, we have investigated the performance of this G&CNet,
revealing that unmodeled moments were a significant contributor to
the reality gap. To mitigate these effects, we proposed and implemented
an adaptive control strategy that shows a significant improvement in
flight performance. Furthermore, we compare our proposed adaptive
G&CNet to a DFBC method in consecutive waypoint flight scenarios,
revealing clear advantages of our method over DFBC. Specifically, our
method is more energy efficient, robust against large disturbances, and
more flexible, with the ability to dynamically adjust its path in real
time without relying on a reference trajectory.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Code available at https://github.com/tudelft/optimal_quad_control_
SL.

Acknowledgment

This research was co-funded under the Discovery programme of,
and funded by, the European Space Agency.

Appendix A. Varying altitude

The adaptive G&CNet utilized in Section 4.2 has, thus far, only
been used to fly through a set of waypoints constrained to a horizontal
plane. To exhibit the versatility of the trained G&CNet, we will now
execute a flight along the same 3 × 4 m track, but with one waypoint

https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL
https://github.com/tudelft/optimal_quad_control_SL

Robotics and Autonomous Systems 172 (2024) 104588R. Ferede et al.
positioned 1 meter higher in altitude. Fig. 13 shows the trajectory of
this flight. Remarkably, even though the network was trained with a
narrow range of +−0.5 m in 𝑧 variation, it adeptly navigates through all
the waypoints. This demonstration not only underscores the network’s
capability to navigate complex 3D paths but also its ability to generalize
to some degree beyond the provided dataset.

Appendix B. DFBC trajectories

Figs. 14 and 15 show a top-down view of all the performed DFBC
flights.

Appendix C. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.robot.2023.104588.

References

[1] M. Hassanalian, A. Abdelkefi, Classifications, applications, and design challenges
of drones: A review, Prog. Aerosp. Sci. 91 (2017) 99–131.

[2] L. Bauersfeld, D. Scaramuzza, Range, endurance, and optimal speed estimates
for multicopters, CoRR abs/2109.04741, 2021, URL https://arxiv.org/abs/2109.
04741.

[3] M.J. Van Nieuwstadt, R.M. Murray, Real-time trajectory generation for dif-
ferentially flat systems, Internat. J. Robust Nonlinear Control 8 (11) (1998)
995–1020.

[4] D. Mellinger, V. Kumar, Minimum snap trajectory generation and control for
quadrotors, in: 2011 IEEE International Conference on Robotics and Automation,
2011, pp. 2520–2525.

[5] M. Faessler, A. Franchi, D. Scaramuzza, Differential flatness of quadrotor dy-
namics subject to rotor drag for accurate tracking of high-speed trajectories,
IEEE Robot. Autom. Lett. 3 (2) (2017) 620–626.

[6] E. Tal, S. Karaman, Accurate tracking of aggressive quadrotor trajectories using
incremental nonlinear dynamic inversion and differential flatness, IEEE Trans.
Control Syst. Technol. 29 (3) (2020) 1203–1218.

[7] P. Ru, K. Subbarao, Nonlinear model predictive control for unmanned aerial
vehicles, Aerospace 4 (2) (2017) URL https://www.mdpi.com/2226-4310/4/2/
31.

[8] D. Bicego, J. Mazzetto, R. Carli, M. Farina, A. Franchi, Nonlinear model
predictive control with enhanced actuator model for multi-rotor aerial vehicles
with generic designs, J. Intell. Robot. Syst. 100 (3–4) (2020) 1213–1247.

[9] C. Liu, H. Lu, W.-H. Chen, An explicit MPC for quadrotor trajectory tracking, in:
2015 34th Chinese Control Conference, CCC, 2015, pp. 4055–4060.

[10] G. Torrente, E. Kaufmann, P. Foehn, D. Scaramuzza, Data-driven MPC for
quadrotors, IEEE Robot. Autom. Lett. 6 (2) (2021) 3769–3776, http://dx.doi.
org/10.1109/lra.2021.3061307, arXiv:2102.05773.

[11] A. Romero, S. Sun, P. Foehn, D. Scaramuzza, Model predictive contouring
control for near-time-optimal quadrotor flight, CoRR abs/2108.13205, 2021, URL
https://arxiv.org/abs/2108.13205.

[12] A. Romero, R. Penicka, D. Scaramuzza, Time-optimal online replanning for agile
quadrotor flight, IEEE Robot. Autom. Lett. 7 (3) (2022) 7730–7737.

[13] S. Sun, A. Romero, P. Foehn, E. Kaufmann, D. Scaramuzza, A comparative study
of nonlinear mpc and differential-flatness-based control for quadrotor agile flight,
IEEE Trans. Robot. (2022).

[14] D. Hanover, P. Foehn, S. Sun, E. Kaufmann, D. Scaramuzza, Performance,
precision, and payloads: Adaptive nonlinear MPC for quadrotors, IEEE Robot.
Autom. Lett. 7 (2) (2022) 690–697.

[15] P. Foehn, A. Romero, D. Scaramuzza, Time-optimal planning for quadrotor
waypoint flight, Science Robotics 6 (56) (2021) eabh1221.

[16] M.W. Mueller, M. Hehn, R. D’Andrea, A computationally efficient motion
primitive for quadrocopter trajectory generation, IEEE Trans. Robot. 31 (6)
(2015) 1294–1310.

[17] S. Tankasala, C. Pehlivanturk, E. Bakolas, M. Pryor, Smooth time optimal
trajectory generation for drones, 2022, arXiv preprint arXiv:2202.09392.

[18] M. Geisert, N. Mansard, Trajectory generation for quadrotor based systems using
numerical optimal control, CoRR abs/1602.01949, 2016, URL http://arxiv.org/
abs/1602.01949.

[19] Y. Mao, M. Szmuk, X. Xu, B. Açikmese, Successive convexification: A superlin-
early convergent algorithm for non-convex optimal control problems, 2018, arXiv
preprint arXiv:1804.06539.

[20] Y. Yu, K. Nagpal, S. Mceowen, B. Açıkmeşe, U. Topcu, Real-time quadrotor
trajectory optimization with time-triggered corridor constraints, 2022, arXiv
preprint arXiv:2208.07259.

[21] Y. Song, M. Steinweg, E. Kaufmann, D. Scaramuzza, Autonomous drone racing
with deep reinforcement learning, in: 2021 IEEE/RSJ International Conference
on Intelligent Robots and Systems, IROS, IEEE, 2021, pp. 1205–1212.
10
[22] G. Tang, W. Sun, K. Hauser, Learning trajectories for real- time optimal control
of quadrotors, in: IEEE/RSJ Intl Conf on Intelligent Robots and Systems, IEEE,
2018, URL https://par.nsf.gov/biblio/10100589.

[23] Q. Li, J. Qian, Z. Zhu, X. Bao, M.K. Helwa, A.P. Schoellig, Deep neural
networks for improved, impromptu trajectory tracking of quadrotors, in: 2017
IEEE International Conference on Robotics and Automation, ICRA, IEEE, 2017,
pp. 5183–5189.

[24] S. Li, Y. Wang, J. Tan, Y. Zheng, Adaptive RBFNNs/integral sliding mode
control for a quadrotor aircraft, Neurocomputing 216 (2016) 126–134, URL
https://www.sciencedirect.com/science/article/pii/S0925231216307780.

[25] J. Hwangbo, I. Sa, R. Siegwart, M. Hutter, Control of a quadrotor with
reinforcement learning, IEEE Robot. Autom. Lett. 2 (4) (2017) 2096–2103.

[26] E. Kaufmann, A. Loquercio, R. Ranftl, M. Müller, V. Koltun, D. Scaramuzza, Deep
Drone Acrobatics, in: RSS: Robotics, Science, and Systems, Robotics: Science and
Systems Foundation, Corvalis, Oregon, USA, 2020, pp. 1–10, arXiv:2006.05768.

[27] E. Kaufmann, L. Bauersfeld, A. Loquercio, M. Müller, V. Koltun, D. Scaramuzza,
Champion-level drone racing using deep reinforcement learning, Nature 620
(7976) (2023) 982–987, http://dx.doi.org/10.1038/s41586-023-06419-4.

[28] Y. Song, A. Romero, M. Müller, V. Koltun, D. Scaramuzza, Reaching the limit
in autonomous racing: Optimal control versus reinforcement learning, Science
Robotics 8 (82) (2023) eadg1462.

[29] S. Li, E. Öztürk, C.D. Wagter, G.C.H.E. de Croon, D. Izzo, Aggressive online
control of a quadrotor via deep network representations of optimality principles,
CoRR abs/1912.07067, 2019, URL http://arxiv.org/abs/1912.07067.

[30] C. Sánchez-Sánchez, D. Izzo, Real-time optimal control via deep neural networks:
Study on landing problems, J. Guid. Control Dyn. 41 (2016).

[31] D. Tailor, D. Izzo, Learning the optimal state-feedback via supervised imitation
learning, Astrodynamics 3 (4) (2019) 361–374.

[32] L. Cheng, Z. Wang, F. Jiang, C. Zhou, Real-time optimal control for spacecraft
orbit transfer via multiscale deep neural networks, IEEE Trans. Aerosp. Electron.
Syst. 55 (5) (2018) 2436–2450.

[33] L. Cheng, Z. Wang, Y. Song, F. Jiang, Real-time optimal control for irregular
asteroid landings using deep neural networks, Acta Astronaut. 170 (2020) 66–79.

[34] E.J.J. Smeur, Q. Chu, G.C.H.E. de Croon, Adaptive incremental nonlinear
dynamic inversion for attitude control of micro air vehicles, J. Guid. Control
Dyn. 39 (3) (2016) 450–461.

[35] J. Svacha, K. Mohta, V.R. Kumar, Improving quadrotor trajectory tracking by
compensating for aerodynamic effects, in: 2017 International Conference on
Unmanned Aircraft Systems, ICUAS, 2017, pp. 860–866.

[36] S. Sun, C.C. de Visser, Q. Chu, Quadrotor gray-box model identification from
high-speed flight data, J. Aircr. 56 (2) (2019) 645–661.

[37] R. Fourer, D.M. Gay, B.W. Kernighan, A modeling language for mathematical
programming, Manage. Sci. 36 (5) (1990) 519–554.

[38] P.E. Gill, W. Murray, M.A. Saunders, SNOPT: An SQP algorithm for large-scale
constrained optimization, SIAM Rev. 47 (1) (2005) 99–131.

[39] B. Gati, Open source autopilot for academic research-the paparazzi system, in:
American Control Conference, ACC, 2013, IEEE, Washington, DC, 2013, pp.
1478–1481, http://dx.doi.org/10.1109/ACC.2013.6580045.

[40] E. Frazzoli, M.A. Dahleh, E. Feron, Real-time motion planning for agile
autonomous vehicles, J. Guid. Control Dyn. 25 (1) (2002) 116–129.

Robin Ferede received the M.Sc. degree in aerospace en-
gineering from Delft University of Technology, Delft, The
Netherlands, in 2022. His graduation work focused on end-
to-end neural network-based optimal quadcopter control.
Since 2022, he has been working toward a Ph.D. degree. His
research interests lie in combining optimal control theory
with machine learning algorithms to address the challenges
associated with autonomous quadcopter flight.

Guido de Croon received his M.Sc. and Ph.D. in the field
of Artificial Intelligence (AI) at Maastricht University, the
Netherlands. His research interest lies in computationally
efficient algorithms for robot autonomy, with an emphasis
on computer vision and evolutionary robotics. Since 2008
he has worked on algorithms for achieving autonomous
flight with small and lightweight flying robots, such as the
DelFly flapping wing MAV. In 2011-2012, he was a research
fellow in the Advanced Concepts Team of the European
Space Agency, where he studied topics such as optical
flow-based control algorithms for extraterrestrial landing
scenarios. Currently, he is a full professor at TU Delft and
scientific lead of the Micro Air Vehicle lab (MAV-lab) of the
Delft University of Technology.

https://doi.org/10.1016/j.robot.2023.104588
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb1
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb1
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb1
https://arxiv.org/abs/2109.04741
https://arxiv.org/abs/2109.04741
https://arxiv.org/abs/2109.04741
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb3
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb3
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb3
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb3
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb3
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb4
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb4
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb4
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb4
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb4
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb5
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb5
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb5
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb5
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb5
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb6
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb6
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb6
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb6
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb6
https://www.mdpi.com/2226-4310/4/2/31
https://www.mdpi.com/2226-4310/4/2/31
https://www.mdpi.com/2226-4310/4/2/31
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb8
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb8
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb8
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb8
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb8
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb9
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb9
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb9
http://dx.doi.org/10.1109/lra.2021.3061307
http://dx.doi.org/10.1109/lra.2021.3061307
http://dx.doi.org/10.1109/lra.2021.3061307
http://arxiv.org/abs/2102.05773
https://arxiv.org/abs/2108.13205
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb12
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb12
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb12
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb13
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb13
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb13
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb13
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb13
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb14
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb14
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb14
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb14
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb14
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb15
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb15
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb15
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb16
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb16
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb16
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb16
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb16
http://arxiv.org/abs/2202.09392
http://arxiv.org/abs/1602.01949
http://arxiv.org/abs/1602.01949
http://arxiv.org/abs/1602.01949
http://arxiv.org/abs/1804.06539
http://arxiv.org/abs/2208.07259
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb21
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb21
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb21
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb21
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb21
https://par.nsf.gov/biblio/10100589
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb23
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb23
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb23
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb23
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb23
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb23
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb23
https://www.sciencedirect.com/science/article/pii/S0925231216307780
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb25
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb25
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb25
http://arxiv.org/abs/2006.05768
http://dx.doi.org/10.1038/s41586-023-06419-4
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb28
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb28
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb28
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb28
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb28
http://arxiv.org/abs/1912.07067
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb30
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb30
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb30
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb31
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb31
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb31
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb32
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb32
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb32
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb32
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb32
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb33
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb33
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb33
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb34
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb34
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb34
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb34
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb34
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb35
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb35
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb35
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb35
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb35
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb36
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb36
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb36
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb37
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb37
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb37
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb38
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb38
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb38
http://dx.doi.org/10.1109/ACC.2013.6580045
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb40
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb40
http://refhub.elsevier.com/S0921-8890(23)00227-0/sb40

Robotics and Autonomous Systems 172 (2024) 104588R. Ferede et al.
Christophe De Wagter received his M.Sc. in Aerospace
Engineering at the Delft University of Technology in 2004
on the topic of vision-based control. In 2005 he created
the Micro Air Vehicle Lab where he worked as a researcher
until he obtained a Ph.D. in robotics. His areas of interest
range from control theory and sensor fusion to computer
vision, electronics and AI. He proposed novel concepts like
the DelFly, and worked on the DelftaCopter and hydrogen-
powered Nederdrone. In parallel, he has been a freelance
electronics and software developer for local startup com-
panies and is a private pilot, glider pilot, and certified
drone pilot. He is also the safety manager for the MAVLab
drone operations. Over the years he won many awards
ranging from the 1st prize for ‘‘Best Fully Autonomous
Indoor MAV’’ at the EMAV 2008 in Braunschweig, to the
‘‘World Champion in Artificial Intelligence Drone Racing’’,
at the AIRR-2019 in the United States.
11
Dario Izzo graduated as a Doctor of Aeronautical En-
gineering from the University Sapienza of Rome (Italy).
He then took a second master in Satellite Platforms at
the University of Cranfield in the United Kingdom and
completed his Ph.D. in Mathematical Modelling at the
University Sapienza of Rome where he lectured classical
mechanics and space flight mechanics. Dario Izzo later
joined the European Space Agency and became the scientific
coordinator of its Advanced Concepts Team. He devised and
managed the Global Trajectory Optimization Competitions
events, the ESA Summer of Code in Space and the Kelvins
innovation and competition platform. He published more
than 170 papers in international journals and conferences
making key contributions to the understanding of flight
mechanics and spacecraft control and pioneering techniques
based on evolutionary and machine-learning approaches.
Dario Izzo received the Humies Gold Medal and led the
team winning the 8th edition of the Global Trajectory
Optimization Competition.

http://mavlab.tudelft.nl
http://mavlab.tudelft.nl
http://mavlab.tudelft.nl
http://mavlab.tudelft.nl
http://mavlab.tudelft.nl
http://mavlab.tudelft.nl
http://mavlab.tudelft.nl
http://mavlab.tudelft.nl
http://mavlab.tudelft.nl
http://mavlab.tudelft.nl
http://mavlab.tudelft.nl
http://mavlab.tudelft.nl
http://mavlab.tudelft.nl
http://mavlab.tudelft.nl
http://mavlab.tudelft.nl
http://mavlab.tudelft.nl
http://mavlab.tudelft.nl
http://mavlab.tudelft.nl
http://www.delfly.nl
http://www.delftacopter.nl
http://www.nederdrone.nl

	End-to-end neural network based optimal quadcopter control
	Introduction
	Methodology
	Quadcopter model
	Energy optimal control problem
	Dataset generation and network training
	Adaptive Method
	Differential-flatness-based Controller (DFBC)

	Experimental Setup
	Results
	Identifying the reality gap
	Nominal G&CNet
	Simulation and flight test
	Unmodeled Effects
	Adaptive G&CNet

	Bench-marking: Adaptive G&CNet vs. DFBC
	Adaptive G&CNet
	DFBC
	Energy/Time comparison
	Robustness experiment

	Discussion & Future work
	Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgment
	Appendix A. Varying Altitude
	Appendix B. DFBC trajectories
	Appendix C. Supplementary data
	References

