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S U M M A R Y 

Bulk-density ( ρ) of soil is an important indicator of soil compaction and type. A knowledge of 
the spatial variability of in situ soil density is important in geotechnical engineering, hydrology 

and agriculture. Surface geophysical methods have so far shown limited success in providing 

an accurate and high-resolution image of 3-D soil-density distribution. In this pursuit, 3-D 

seismic full-waveform inversion (FWI) is promising, provided the robustness and accuracy 

of density inversion via this approach can be established in the near-surface scale. Ho wever , 
simultaneous reconstruction of ρ and seismic wave velocities through multiparameter FWI 
remains a challenging task. Near-surface seismic data are commonly dominated by dispersive 
surface waves whose velocities are controlled by the value and distribution of shear-wave 
velocity ( V S ). One major difficulty in estimating reliab ly ρ from near -surface seismic data is 
due to the relati vel y low sensiti vity of the seismic w av efield to ρ compared to seismic v elocities. 
Additionally, the accuracy of the estimated ρ decreases due to error in V S —an issue known as 
parameter coupling. Parameter coupling makes it difficult to estimate accurately ρ within the 
framework of conventional gradient-based FWI. More sophisticated optimization approaches 
(e.g. truncated Newton) can reduce the effect of parameter coupling, but these approaches are 
commonl y not af fordab le in near -surface applications due to heavy computational burden. In 

this research, w e ha v e inv estigated how choosing correctly the force direction of the seismic 
source can contribute to a higher accuracy of ρ estimates through 3-D FWI. Using scattered 

wavefields, the Hessian, and inversion tests, an in-depth and systematic investigation of data 
sets corresponding to different force directions has been carried out. A comparison of the 
scattered wavefields due to a point-localized ρ perturbation for different force directions shows 
the robustness of the horizontal-force data set to noise compared to the vertical-force data set. 
Fur ther more, for a point-scatterer model, an analysis of the gradients of the misfit function 

using the Hessian shows that utilizing a horizontal-force source enables one to reconstruct the 
high-resolution gradient with relati vel y small parameter coupling. Finally, inversion tests for 
two different subsoil models demonstrate that 3-D FWI on a horizontal-force-source seismic 
data set is capable of providing a more accurate 3-D ρ distribution in soil compared to a 
vertical-force-source data set. Our results show that the use of a horizontal-force source might 
allow avoiding computationally demanding, costly optimization approaches in 3-D FWI. 

Key words: Numerical modelling; Surface waves and free oscillations; Waveform inversion. 
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 I N T RO D U C T I O N  

he distribution of density in the subsoil is generally quite het-
rogeneous. A knowledge of the 3-D distribution of soil density
s beneficial in numerous engineering, and environmental applica-
ions, in urban planning and constructions, and in natural hazard
C © The Author(s) 2023. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License (
permits unrestricted reuse, distribution, and reproduction in any medium, provided
ssessments. Bulk density ( ρ) controls the soil’s ability to pro-
ide structural support and determine water/solute movement and
oil aeration. Bulk density is regarded as a key factor controlling
oil compaction. Subsoil bulk density is closely linked to physi-
al, chemical and biological properties of the soil layers. Different
oil types and soil textures/structures correspond to different soil
oyal Astronomical Society. This is an Open Access 
 https://creati vecommons.org/licenses/b y/4.0/ ), which 
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density. Density is also related to key geotechnical or hydrological 
parameters like porosity or void ratio, hydraulic conductivity and 
small-strain shear modulus. 

Soil density is conventionally measured by direct methods, for 
e xample e xcavation sampling, core and clod methods (Vanremor- 
tel & Shields 1993 ) or by indirect methods, for example radiation 
and regression approaches (Lobsey & Viscarra Rossel 2016 ). Al- 
though the direct methods are affected by sampling disturbances, 
both methods are generall y expensi ve and time-consuming. These 
conventional approaches are limited to a given point from where 
the soil sample is collected or to a 1-D profile along a borehole. 
It is challenging to infer the 3-D spatial variability of subsoil 
density. 

Surface geophysical methods have occasionally been used to map 
the distribution of soil density. These methods are advantageous be- 
cause they are mostl y non-inv asi ve, are generall y useful for mapping 
large areas and allow temporal monitoring. Microgravity method 
has been used for mapping variations in subsoil density related to 
cavities and voids and geological structures (e.g. Tuckwell et al. 
2008 ; Arisona et al. 2018 ). Electrical and electromagnetic prop- 
erties have been correlated to density and compaction distribution 
in the ground, mostly in the very shallow ( < 2 −3 m) soil layers 
which are rele v ant for agriculture and hydro geolo gy (e.g. Weih- 
nacht & B örner 2007 ; Allred et al. 2008 ; Franko & Grote 2013 ). 
The bulk density inferred from these approaches is an empirical es- 
timate, with limited spatial resolution and accuracy. Seismic wave 
velocities, both for P and S wa ves, ha ve also been correlated to 
compaction and bulk density distribution in soil (Donohue et al. 
2012 ; Anbazhagan et al. 2016 ; Romero-Ruiz et al. 2021 ). 

More recentl y, seismic full-w av eform inv ersion (FWI) has been 
used to obtain the 2-D spatial variability of density in the near- 
surface (e.g. Dokter et al. 2017 ; Gao et al. 2020 ; Chen et al. 2021 ; 
Mecking et al. 2021 ). FWI has proven to be a powerful tool to 
reconstruct in high-resolution the subsurface properties by fitting 
the observed seismic data with the synthetic data. With the increase 
of computation po wer , 3-D FWI in the near-surface scale has lately 
been plausible (e.g. Tran et al. 2019 , 2020 ; Irnaka et al. 2022 ; 
Irnaka 2022 ). 3-D FWI can capture subsurface heterogeneities more 
accurately than 2-D FWI because of incorporation of actual 3-D 

wave propagation in the subsurface (Butzer et al. 2013 ; Irnaka 
et al. 2022 ). Ho wever , most 3-D FWI studies so far concentrated 
on estimation of the high-resolution, near-surface seismic velocity 
field, and not density (e.g. Tran et al. 2019 ; Smith et al. 2019 ; 
Tran et al. 2020 ; Teodor et al. 2021 ; Irnaka et al. 2022 ; Irnaka 
2022 ). 

FWI is capable of e v aluating simultaneousl y multiple parame- 
ters, namely seismic velocities ( V P , V S ), density ( ρ) and attenuation 
( Q P , Q S ), across a variety of spatial scales. Herein we will focus 
on 3-D ρ estimation in the near-surface scale using active seis- 
mic sources. The difficulties in resolving the ρ distribution with 
reasonable accuracy arise mainly from the low sensitivity of the 
seismic wavefield to ρ (compared to V P and V S ) and strong cou- 
pling among multiple parameters, especially between ρ and V S (Pan 
et al. 2018a ). Near-surface seismic data are typically dominated by 
surface waves which are most sensitive to the V S distribution and 
much less sensitive to ρ. As a result, any differences in waveform 

due to ρ perturbations can easily be hidden by noise in real-world 
data. 

Several approaches have so far been proposed to mitigate the 
parameter coupling effect in FWI (K öhn et al. 2012 ; M étivier et al. 
2015 ; Wang et al. 2016 ; Yang et al. 2016 ; Pan et al. 2018a ; Gao 
et al. 2021 ). Ho wever , these approaches are mostl y computationall y 
prohibitive for near-surface applications. For instance, taking the 
shape of the misfit function between observed and synthetic seis- 
mic waveforms into consideration, M étivier et al. ( 2015 ) and Gao 
et al. ( 2021 ) have applied truncated Newton method with an accu- 
rate Hessian inv erse. The y hav e shown, using 2-D synthetic seis- 
mic data, the superiority of this approach over gradient-based opti- 
mization approaches such as non-linear conjugate gradient (NCG) 
and Broyden-Fletcher–Goldfarb–Shanno (BFGS) for multiparame- 
ter FWI. Ho wever , solving the Newton’s equation iteratively using 
the second-order adjoint-state method requires at each non-linear 
iteration up to several tens of forward simulation more than the 
gradient-based inversion (M étivier et al. 2013 ). Because a typical 
unconsolidated and fully saturated soil column including very soft 
peat and clay layers can have V S as low as 50 m s −1 and V P about 
1500 m s −1 , the forward calculation of the seismic wavefield re- 
quires very fine spatial and temporal sampling. This results in a 
very high computational cost. This computational burden, in addi- 
tion to the low sensitivity of seismic data to ρ, have been the limiting 
factors for application of 3-D FWI for estimating high-resolution ρ
distribution in the subsoil. 

The parameter coupling effect has been conventionally evalu- 
ated by comparing the theoretical radiation pattern of the scattered 
wa vefields betw een different parameter classes based on the Born 
approximation (e.g. Virieux & Oper to 2009 ; Oper to et al. 2013 ). 
This theoretical approach does not take the various factors included 
in seismic data into account, such as the complexity of a subsurface 
model, the effect of finite frequency and the acquisition geometry. 
This limitation can bring misunderstanding and/or misinterpretation 
of the parameter coupling effect. In order to quantitatively evalu- 
ate the parameter coupling on the gradient of the misfit function 
in a realistic situation, Pan et al. ( 2018a ) has proposed a method 
that uses numerically calculated Hessian-vector products. Ho wever , 
this technique has not been applied to surface-wave dominated, 3-D 

near-surface seismic data. 
To mitigate the low sensitivity and parameter coupling issues in 

FWI for ρ estimation, another idea is to make a judicious choice 
of the force direction while generating the seismic wavefield. Pre- 
vious studies have shown that, compared to a vertical-force seismic 
source, using a horizontal-force source results in less parameter 
coupling in 2-D FWI and higher resolution of the obtained V S and ρ
models (Dokter et al. 2017 ; Wittkamp et al. 2019 ). If the parameter 
coupling issue is less severe in case a horizontal-force source is used, 
then that will lead to computational efficiency. Smith et al. ( 2019 ) 
and Irnaka ( 2022 ) have also shown that using a horizontal-force 
source has helped increasing the accuracy in the deeper part of the 
near-surface model obtained via 3-D FWI. Ho wever , the reasons 
why a horizontal-force source should offer better results in FWI 
(greater accuracy and less parameter coupling) than a vertical-force 
source are not yet suf ficientl y understood. 

In this research, we systematically investigate the effect of using 
different force directions on the accuracy of the 3-D FWI. We first 
investigate the waveform differences due to a ρ perturbation, and the 
impact of different source-force directions on the noise robustness. 
To e v aluate the parameter coupling effect, we then investigate the 
differences in the shape of the misfit function (i.e. the gradient 
and Hessian). We use the numerically calculated Hessian for this 
purpose. The Hessian is also used to compare the resolution of the 
estimated density . Finally , we perform 3-D FWI using synthetic data 
considering realistic near-surface subsoil models and different force 
directions. 

This paper is organized as follows. First, we briefly explain the 
theory of FWI that is rele v ant for comparing systematically the three 
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actors mentioned above (i.e. noise robustness, parameter coupling,
nd resolution) for the purpose of 3-D ρ estimation. We then explore
n detail the effect of force directions on these three factors for a
oint-scatterer model. Lastly, we perform 3-D FWI for a spatially
ncorrelated model and a realistic subsoil model derived from field
easurements, and compare the accuracy of the reconstructed ρ for

ifferent force directions. 

 M E T H O D O L O G Y  

.1 3-D FWI 

WI solves a non-linear optimization problem to reconstruct the
ubsurface model by minimizing the misfit function E defined by
he synthetic and the observed seismic data (e.g. Pratt et al. 1998 ). In
his study, we use the square of l 2 norm of the w aveform dif ferences
s the misfit function E : 

E( m ) = 

1 

2 
‖ u syn ( m 

) − u obs ‖ 2 , (1) 

here u syn ( m ) is the synthetic seismic (displacement) data calculated
ssuming a subsurface model m , and u obs is the observed seismic
ata. The model parameters m are the elastic properties ( V P , V S and
) that are functions of space in 3-D. We use the finite-difference

ime-domain (FDTD) method to calculate the synthetic seismic data
Virieux 1986 ; Le v ander 1988 ). We generate body force in different
irections ( f x , f y , f z ) in the Cartesian coordinate, at the same position
nd with the same amplitude (unit: N m 

−3 ). 
The minimization of the misfit function E in eq. ( 1 ) and finding an

ptimal solution for m over the large parameter space is a non-linear,
arge-scale problem. Therefore, a local optimization approach is
ommonly used to solve this problem (e.g. Mora 1987 ; Pratt et al.
998 ; Brossier et al. 2009 ). The local optimization approach it-
rati vel y updates the model parameters m using the following
ormula: 

m n + 1 = m n + αn � m n , (2) 

here m n is the model parameter at n th iteration, � m n is the de-
cent direction of the misfit function E and αn is the step length
hat is estimated by a line search method (Nocedal & Wright
006 ). Among various non-linear optimization approaches to calcu-
ate � m n , the gradient-based approaches, such as steepest descent
SD), non-linear conjugate gradient (NCG) and limited-memory
royden–Fletcher–Goldfarb–Shanno ( l -BFGS), are considered in

his study, given the respective computation costs. In the case of
D, the following simple formula is used for the calculation of
 m n : 

� m n = −P m 

∇ m 

E n , (3) 

here ∇ m E n is the gradient of the misfit function calculated by the
djoint-state method (Plessix 2006 ), and P m is the preconditioning
lter. The other approaches (NCG and l -BFGS) use the same for-
ula (eq. 3 ) at the first iteration, and after that they use � m n which

s calculated using ∇ m E n at the current iteration n and the previous
istory of ∇ m E n . Therefore, the characteristics of P m ∇ m E n are the
ey elements for ef fecti vel y solving the optimization problem using
hese approaches (SD, NCG and l -BFGS). 

To reconstruct ρ models, we apply 3-D FWI to the synthetic
ata sets generated using different force directions for the seismic
ource. First, to reduce the memory requirements, we adopt the
ime-frequency approach (Sirgue et al. 2008 , 2010 ): the seismic
avefield u syn is simulated in the time domain, but the descent
irection of the misfit function � m n is calculated in the frequency
omain. During the non-linear inversion, the descent direction � m n 

s calculated using the NCG method (Nocedal & Wright 2006 ). � m n 

s then normalized by the maximum value of each parameter class,
ollowed by scaling with the representative value of each model
arameter. The same step length αn is assumed for all parameter
lasses; αn is estimated by a line search method in order to invert
ll model parameters simultaneously. 

The preconditioning filter P m in eq. ( 3 ) is also essential in control-
ing accuracy and efficiency of FWI. For P m , we take the diagonal
lements of the approximate Hessian for each parameter class (Ap-
endix A ). In FWI, this filter is conventionally used to compensate
or the effect of the limited illumination on ∇ m E n , such as geo-
etrical spreading (e.g. Ravaut et al. 2004 ; Operto et al. 2004 ,

006 ). This filter also calculates suitable scaling for each parameter
lass, as the diagonal elements of the approximate Hessian contain
he information of the scattering radiation pattern (for details see
ppendix A ). Finally, in order to reduce the computational cost to

alculate the Hessian, we estimate P m only at the first iteration, and
se the same filter for the rest of the inversion. Note that this strat-
gy can decrease the performance of FWI, for example convergence
peed and accuracy of an estimated model, when the initial model
s very far from an optimum model. 

.2 Approach to e v aluate differ ent f or ce dir ections in 3-D 

WI for density 

e investigate the capability of 3-D FWI to estimate ρ by concen-
rating on three factors, namely noise robustness, parameter cou-
ling, and resolution (Section 3 ). We then e v aluate the reconstructed
models using different force directions (Section 4 ). In this sub-

ection, we discuss first our approach of assessing the efficacy of
hese different force directions, considering the above-mentioned
hree factors and the theory introduced in Section 2.1. 

.2.1 Noise robustness 

or real-world applications of FWI on noisy field data, the robust-
ess is a crucial factor. As shown in eq. ( 1 ), FWI finds the model
arameter m that minimizes the square of the l 2 norm of the wave-
orm residuals. Suppose the observed data with noise can be divided
nto data calculated using the true model and noise, that is u obs =
 syn ( m true ) + u noise . In this case, when we consider a specific model
arameter m = m 0 ( �= m true ), eq. ( 1 ) can be written as, 

E( m 0 ) = 

1 

2 
‖ u sct ( m 0 ) + u noise ‖ 2 , (4) 

here the scattered wavefield u sct ( m 0 ) due to the model perturbation
 m true − m 0 ) is defined as u sct ( m 0 ) = u syn ( m true ) − u syn ( m 0 ). Eq. 4
hows that the value of E is determined by the amplitude of noise
hen the amplitude of u noise is larger than that of u sct ( m 0 ). This
akes it difficult to effectively distinguish the difference between
 true and m 0 . 
We consider a specific pair of the model ( m 0 , m true ) where the

ifference is only in ρ, and other properties ( V P and V S ) remain
he same. Then, we calculate numerically the scattered wavefield
 sct ( m 0 ) and the squared norm of the amplitudes. Here, seismic
ources and receivers are distributed on the free surface. We com-
are the noise robustness for different force directions using the
quared norm of the amplitude in the scattered wavefields. 
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2.2.2 Parameter coupling 

As shown in eqs ( 2 ) and ( 3 ), the preconditioned gradient P m ∇ m E n 

contains key information to obtain the accurate descent direction 
� m n close to the true model-update direction at the first iteration 
when using SD, NCG and l -BFGS. The gradient P m ∇ m E n partly 
represents the shape of the misfit function E in the model domain. 
Generall y, e v aluating the shape of E is crucial in order to solve 
the inverse problem adv antageousl y in terms of both accuracy and 
efficienc y. For e xample, −∇ m E n represents the direction in which 
E decreases, but it is not al wa ys identical to the direction toward the 
true model: assuming that the misfit function E is a quadratic func- 
tion, there is a possibility that the descent direction to an optimum 

solution of a certain parameter class (e.g. V S ) contaminates the de- 
scent direction of another parameter class (e.g. ρ). In this research, 
we delve into this parameter coupling contained in the gradient. As 
illustrated in eqs ( 2 ) and ( 3 ), the inversion at the first iteration seeks 
an optimum solution along the direction of −P m ∇ m E n using a line 
search method. This procedure implies that a significant parameter 
coupling effect in −P m ∇ m E n can make the model parameter fall 
into the local minima at early iterations, and the inversion fails to 
converge to an optimum solution. For FWI, using data sets corre- 
sponding to different force directions implies optimizing E having 
different shapes in the model domain. We, therefore, investigate the 
shape of E and explore the parameter coupling effect in −P m ∇ m E n 

due to the force direction. 
First, we define the parameter coupling effect in ∇ m E . When the 

misfit function E is quasi-linear, that is m n is close to the optimum 

solution, E can be approximated as a quadratic function of m . In 
this case, ∇ m E follows the Newton’s equation: 

−∇ m 

E( m n ) = H ( m n ) � m 

N , (5) 

where H ( m n ) is the Hessian of E at m = m n , and � m 

N is
the model-update direction toward the optimum solution. Eq. ( 5 ) 
indicates that the update direction based on the gradient (i.e. 
−∇ m E ( m n )/ |∇ m E ( m n ) | ) is not identical to the Newton-step direction
(i.e. � m 

N / | � m 

N | ). This difference is the parameter coupling con- 
sidered in this study, which is characterized by the Hessian H ( m n ) 
in eq. ( 5 ). Here, the Hessian has a multiparameter form H m i m j and 
is written using Jacobian ( ∂ u syn / ∂ m ) as follows: 

H m i m j = � 

{(
∂ u syn 

∂m i 

)∗ (
∂ u syn 

∂m j 

)
+ 

(
∂ 2 u syn 

∂ m i ∂ m j 

)∗ (
u syn − u obs 

)}

= H 

a 
m i m j 

+ R m i m j , (6) 

where m i and m j are model parameters ( V P , V S , ρ), and the symbol 
∗ denotes the complex conjugate in the frequency domain. The first 
term H 

a 
m i m j 

on the right-hand side of eq. ( 6 ) is the approximate 
Hessian, which is the cross-correlation between Jacobians with re- 
spect to m i and m j . The second term R m i m j on the right-hand side 
of eq. ( 6 ) is the cross-correlation between the second-order par- 
tial deri v ati ve w avefield and the data residual, which represents the 
second-order scattering (Pratt et al. 1998 ). In this study, assuming 
that the residuals are small due to the small model perturbations, the 
second term R m i m j is neglected and only the approximate Hessian 
H 

a 
m i m j 

is considered. Thus, eq. ( 5 ) can be rewritten as follows: 

−
⎡ 

⎣ 

∇ V P E 

∇ V S E 

∇ ρ E 

⎤ 

⎦ ≈
⎡ 

⎣ 

H 

a 
V P V P 

H 

a 
V P V S 

H 

a 
V P ρ

H 

a 
V S V P 

H 

a 
V S V S 

H 

a 
V S ρ

H 

a 
ρV P 

H 

a 
ρV S 

H 

a 
ρρ

⎤ 

⎦ 

⎡ 

⎣ 

� V P 
N 

� V S 
N 

�ρN 

⎤ 

⎦ . (7) 

The diagonal elements of the matrix on the right-hand side of eq. ( 7 ) 
(e.g. H 

a 
ρρ) represent the coefficients for the Newton step (e.g. �ρN ) 

in the gradient of the same parameter class (e.g. ∇ ρE ). On the other 
hand, the off-diagonal elements represent how the gradient for a 
certain parameter class (e.g. ∇ ρE ) is influenced by the Newton step 
of the other parameter classes (e.g. � V S 

N ), that is the parameter cou- 
pling ef fect. Therefore, the ef fect in the gradient can be e v aluated b y 
inv estigating the relativ e strength of the off-diagonal elements with 
respect to the diagonal elements. Note that the diagonal elements 
are the auto-correlation of Jacobians for a certain model parameter 
class (i.e. m i = m j ), and the off-diagonal elements are the cross- 
correlation between Jacobians for two different model parameter 
classes (i.e. m i �= m j ). 

We e v aluate eq. ( 7 ) using numericall y calculated Hessian for a 
specific model in order to compare the parameter coupling effect 
for different force directions (Section 3.2). Fur ther more, to take into 
account the preconditioned gradient in the actual implementation 
of FWI (eq. 3 ), we consider the preconditioning filter P m in eq. ( 7 ). 
By multiplying both sides of eq. ( 7 ) with P m , we have the following 
relations: 

− P V P ∇ V P E ≈ P V P H 

a 
V P V P � V P 

N + P V P H 

a 
V P V S � V S 

N + P V P H 

a 
V P ρ�ρN

= K V P ↔ V P + K V S → V P + K ρ→ V P , (8)

− P V S ∇ V S E ≈ P V S H 

a 
V S V P � V P 

N + P V S H 

a 
V S V S � V S 

N + P V S H 

a 
V S ρ�ρN

= K V P → V S + K V S ↔ V S + K ρ→ V S , (9)

− P ρ∇ ρ E ≈ P ρ H 

a 
ρV P 

� V P 
N + P ρ H 

a 
ρV S 

� V S 
N + P ρ H 

a 
ρρ�ρN 

= K V P → ρ + K V S → ρ + K ρ↔ ρ, (10) 

where we call K m i ↔ m i and K m j → m i ( m i �= m j ) the update kernel and 
the contamination kernel, respecti vel y (Pan et al. 2018a ). Note that 
Pan et al. ( 2018a ) do not include the preconditioning filter in the 
definition of the ker nels. Fur ther more, when � m 

N is localized at 
a single point, the kernels are identical to the point spread func- 
tions (PSFs, Fichtner & Trampert 2011 ; Fichtner & Leeuwen 2015 ; 
Pan et al. 2018a , 2019 ), which is used for e v aluating the resolution 
in this study (see Section 2.2.3). In this research, we numerically 
calculate kernels in eqs (8) –( 10 ) using a point scatterer model con- 
sidering typical near-surface seismic acquisition parameters. We 
then investigate how the relative strength between the update and 
the contamination kernels differs due to different force directions. 

2.2.3 Resolution 

Resolution is another important indicator to e v aluate the perfor- 
mance of FWI. For instance, in near-surface engineering problems, 
it is sometimes important to detect the existence of a thin layer in 
the subsurface or to image the accurate shape of an anomaly like a 
void. We investigate here how the resolution of FWI in such cases 
might differ for the different force directions. 

First, we define the resolution using kernels introduced in Section 
2.2.2. Given a point-localized perturbation as � m 

N in eqs ( 8 )–( 10 ), 
the spatial distribution of the value of the update kernel in the model 
domain represents how � m 

N is smeared around a point scatterer in 
the preconditioned gradient. On the other hand, the distribution 
of the values of the contamination kernel in the model domain 
represents the spatial extent where the parameter coupling pre v ails 
around a point scatterer in the preconditioned gradient. We define 
the spreading width of the kernels as the distance between the point 
scatterer and the location where the value of the kernels is half of 
the maximum value of the update kernel. A large spreading width of 
the update kernel will indicate low resolution of the reconstructed 
model, while a large spreading width of the contamination kernel 
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Figure 1. A synthetic model for investigating noise robustness, parameter 
coupling, and resolution. 
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ill imply occurrence of spatial parameter-coupling in a wide area
round the point scatterer. 

Evaluating the resolution using the kernels defined above is simi-
ar to the resolution analysis in Pan et al. ( 2018a ), except that we use
he inverse of the diagonal elements of the approximate Hessian as
he generalized inverse of the Hessian in the resolution matrix [see
q. 54 in Pan et al. ( 2018a )]. As before, we numerically calculate
he kernels using a point scatterer model considering typical near-
urface seismic acquisition parameters and then investigate how the
preading widths of the kernels differ for different force directions
Section 3.3). 

 R E S U LT S  O F  3 - D  F W I  F O R  

I F F E R E N T  F O RC E  D I R E C T I O N S :  
O I S E ,  PA R A M E T E R  C O U P L I N G  A N D  

E S O LU T I O N  

or these numerical tests, we consider a depth-dependent 3-D model
ith a point scatterer at a location where V S and ρ perturbations are

llocated at a single grid ([ x , y , z ] = [25 m, 25 m, 7.5 m] in Fig. 1 ).
he model is discretized with 100 × 100 × 50 gridpoints in x -, y -
nd z -direction with a grid spacing of 0.5 m. The background values
f V P , V S and ρ are kept within the typical ranges found for soils,
ssuming fully water saturated condition ( V P : 1600–1800 m s −1 , V S :
00–450 m s −1 , ρ: 1800–2200 kg m 

−3 ). Sources and receivers are
istributed on the free surface as shown in Fig. 1 . Such a setup for the
umerical study allows investigating the scattered wavefields due to
 point scatterer. Given a good initial model, FWI aims to reconstruct
he true model using the scattered wavefield dominated by first-
rder scattering due to small perturbations in medium properties.
he following discussion using a point scatterer can be applied to
 complex wavefield in the real world, as such a wavefield can be
pproximated as superposition of scattered wavefields due to point
catterers distributed over the entire model space. 

.1 Noise robustness 

e investigate for different source directions the noise robustness
f ρ estimation using wavefields scattered due to a perturbation in
only (Section 2.2.1). For calculating the scattered wavefields, the

ackground models without �ρ and with �ρ located at [ x , y , z ]
 [25 m, 25 m, 7.5 m] are denoted as m 0 and m true , respecti vel y

Fig. 1 ). As model perturbation, a �ρ which is −10 per cent of the
ackground value is considered. We calculate 3-component particle-
 elocity wav efields (i.e. v x , v y , v z ) due to a seismic source, denoted by
he cyan symbol in Fig. 1 . For a comparison between different force
irections, three sources with three different force directions (i.e. f x ,
 y , f z ) are considered at the same location. Here, the directions for the
wo horizontal-force sources are either in the 2-D plane containing
oth of the source and a point scatterer ( x -direction) or perpendicular
o it ( y -direction), which enables one to take into account scattered
avefields generated by significantly different incident wavefields

i.e. SV/Ra yleigh wa v es for an f x source and SH/Lov e wav es for an
 y source ). We use the following Fuchs–M üller wavelet (Fuchs &
 üller 1971 ) with a central frequency f c = 20 Hz: 

f ( t) = sin ( 2 π t f c ) − 0 . 5 sin ( 4 π t f c ) . (11) 

o keep the computation time for the 3-D FWI manageable, this
requency is not chosen to a higher value. Sources and receivers are
ocated on the free surface. 

In Fig. 2 , we show the snapshots at 0.14 s, illustrating different
haracteristics of the wavefield due to different force directions.
ith horizontal-force sources, the energy of the scattered wave-

elds at the location of �ρ dominates in the backward direction
see Figs 2 a, c and e). These wavefields are generated by the in-
ident SV/Rayleigh and SH/Love waves for the f x and f y sources,
especti vel y; the surface w a ves (Ra yleigh/Love wa ves) propagate
arallel to the free surface toward the point scatterer, while the body
 aves (SV/SH w av es) hav e incident angles of ∼60 ◦. When using
 vertical-force source ( f z ), the incoming Ra yleigh wa ve is back-
cattered with a large amplitude (see Fig. 2 g), while some energy is
resent also in the forward direction (see Figs 2 g and i). 

To address the noise robustness, we calculate the squared norm of
he amplitude in the scattered wavefields over the depth slice shown
n Fig. 2 . A comparison of the sum of the squared norm (Table 1 )
hows that the scattered wavefields due to horizontal-force sources
 f x or f y ) have more energy than those due to a vertical-force source
 f z ). Additionally, Table 1 shows that the scattered wavefield at the
ame receiver component as the source (i.e. f x –v x , f y –v y and f z –
 z ) has, as expected, the lar gest ener gy. Fur ther more, the scattered
avefields for the horizontal sources ( f x –v x or f y –v y ) have much

ar ger ener gy than the vertical force ( f z –v z ). This lar ge ener gy in f x –
 x or f y –v y wavefields are due to the presence of backward scattering
ith large amplitudes (see Figs 2 a and e). Thus, in the context
f ρ estimation, 3-D FWI applied to a horizontal-force data set
s more robust to noise than that applied to a vertical-force data
et (see Section 2.2.1), assuming same amplitude and source–time
unction for all sources. As the scattered wavefields generated by
if ferent incident w avefields from the two ortho gonal horizontal-
orce sources (i.e. SV/Rayleigh waves for an f x source and SH/Love
aves for an f y source) have larger energy than those due to a
ertical-force source, the conclusion on noise robustness remains
alid for the case when the source is located at any arbitrary location
n the free surface. 

.2 Parameter coupling 

ere we investigate the parameter coupling effect in the precondi-
ioned gradient for ρ using the update and the contamination kernels
alculated for the same point-scatterer model as in Section 3.1 (see
ection 2.2.2). We compare the relative strength between these two
ernels for different force directions. 

For calculation of the kernels, 16 seismic sources located at 10 m
pacing and 256 3-component receivers at 2 m spacing are used;
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Figure 2. Depth slice of 9-component scattered wavefields (3-component source: f x , f y , f z , 3-component particle velocity: v x , v y , v z ) due to a point scatterer 
�ρ. 

Table 1. Squared norm of the amplitude in the 9-component scattered wave- 
fields shown in Fig. 2 . 

v x v y v z Total 

f x 10.6e-09 4.1e-09 7.9e-09 22.6e-09 
f y 7.4e-09 16.7e-09 1.2e-09 25.2e-09 
f z 5.7e-09 4.3e-09 6.5e-09 16.4e-09 
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the y are respectiv ely denoted by red and black symbols in Fig. 1 . 
The vertical-force sources (i.e. f z ) and horizontal-force sources 
(i.e. f y ) have the same source–time function (eq. 11 ), as in Sec- 
tion 3.1. We consider only one horizontal-force direction (i.e. f y ) 
because the model and the acquisition geometry are symmetric. 
The kernels (eqs 8 –10 ) are calculated in the frequency domain 
using 8 monochromatic frequencies (i.e. 10, 14, 18, 22, 26, 30, 
34 and 38 Hz). This setup enables us to e v aluate the impact of a 
typical near-surface seismic acquisition geometry on the kernels. 
The kernels are calculated assuming a perturbation ( −10 per cent 
of the background value) as the Newton step ( � m 

N ) at a point 
scatterer. 

Fig. 3 presents a comparison of the preconditioned gradients 
for ρ calculated using the adjoint-state method (i.e. −P ρ∇ ρE in 
eq. 10 ) and the update and contamination kernels for ρ (i.e. K ρ↔ ρ

and K V S → ρ in eq. 10 ) between data sets corresponding to different 
source-force directions. The relative strength between the update 
and the contamination kernels is compared based on the maxi- 
mum magnitude of the kernels shown in Fig. 3 . When using the 
f z data set, K V S → ρ (Fig. 3 c) has a larger relative strength than 
K ρ↔ ρ (Fig. 3 b). In other words, the effect of the perturbation of 
V S (i.e. �V 

N 
S ) dominates in −P ρ∇ ρE (Fig. 3 a); the strong param- 

eter coupling occurs when updating the ρ model in the direction 
along −P ρ∇ ρE . On the contrary, K V S → ρ for the f y data set (Fig. 3 f) 
has a smaller relative strength than K ρ↔ ρ (Fig. 3 e). This implies 
that −P ρ∇ ρE (Fig. 3 d) is not significantly influenced by �V 

N 
S , 

and therefore the ρ model can be updated with a relati vel y weak 
parameter -coupling prob lem. F rom the above findings, the shape 
of E for the f y data set has more fav ourab le characteristics for ρ
estimation using 3-D FWI (i.e. weak parameter coupling) than the 
shape of E for the f z data set. Choosing f y as a force direction would 
result in reconstructing a more accurate ρ model within the frame- 
work of gradient-based FWI, without taking the Hessian inverse into 
account. 

The update and the contamination kernels for V S are also calcu- 
lated (Fig. 4 ). As opposed to ρ, the relative strengths of the contam- 
ination kernels ( K ρ→ V S ) shown in Figs 4 (c) and (f) are smaller than 
those of the update kernels ( K V S ↔ V S ) shown in Figs 4 (b) and (e), 
regardless of the force directions. Thus, both data sets equally allow 

reconstruction of an accurate V S model without suffering from a 
strong parameter coupling due to �ρN . 

3.3 Resolution 

In this subsection, we investigate the resolution of ρ estimates using 
the update and contamination kernels calculated in Section 3.2. We 
compare the spreading widths (Section 2.2.3) between these two 
kernels for different force directions. 

The spreading widths of the kernels for ρ are shown by yellow 

lines and black arrows in Fig. 3 . The spreading widths of K ρ↔ ρ

do not significantly differ between f z and f y data sets (Figs 3 b and 
e): the maximum widths for f z and f y data sets are 2.2 and 2.1 m, 
respecti vel y. This indicates that the resolution in the reconstructed 
ρ model would be quite similar for different force directions if the 
contamination kernel K V S → ρ is small. On the contrary, the spreading 
width of K V S → ρ for the f z data set (Fig. 3 c) is much larger (3.8 m) 
than that for the f y data set (1.9 m, Fig. 3 f). Therefore, the use of the 
f z data set can cause artefacts due to parameter coupling ( �V 

N 
S ) in 

a wide area in the reconstructed ρ model. 
Ne xt, we e xamine the spreading widths of the update and the 

contamination kernels for V S (yellow lines and black arrows in 
Fig. 4 ) to e v aluate how their characteristics differ from those for ρ. 
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he spreading width of K V S ↔ V S for the f z data set is larger than that

or the f y data set (Figs 4 b and e): the maximum width for the f z 
ata set is 3.4 m, while that for the f y data set is 2.5 m. Therefore,
he use of the f y data set will enable constructing a preconditioned
radient which is more focused at �V 

N 
S than using the f z data set.

ontrary to ρ, the spreading widths of K ρ→ V S for both data sets
re significantly small ( < 0.5 and 0.7 m, see Figs 4 c and f), which
an result in few contaminations due to �ρN in the V S estimates for

oth force-direction data sets. 

F  
 N E A R - S U R FA C E  M O D E L S :  R E S U LT S  

F  3 - D  F W I  F O R  D I F F E R E N T  F O RC E  

I R E C T I O N S  

he results in the previous section have demonstrated that FWI
pplied to horizontal-force data sets can reconstruct more accurate

and V S models than FWI applied to vertical-force data sets, in
erms of the noise robustness, weak parameter coupling, and high-
esolution gradient for ρ. For ρ estimation using gradient-based
WI, the relati vel y weak parameter coupling in the preconditioned
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gradient is the key factor which contributes to better results. In this 
section, we perform 3-D FWI using specific near-surface models to 
examine this difference. 

Two near-surface models are used for different purposes. First, 
to visualize the impact of parameter coupling on the reconstructed 
result, we consider a spatially uncorrelated model where the anoma- 
lous zone for each parameter class is located at a separate position 
(Section 4.1). Next, to approximate the field condition, we build a 
realistic near-surface model containing 3-D heterogeneities (Sec- 
tion 4.2). The model is derived from actual downhole data acquired 
in the field. We incorporate anelastic attenuation in the synthetic 
data through viscoelastic forward modelling. Random noise is also 
added to the data. 

4.1 FWI results for a spatially uncorrelated model 

4.1.1 Model building and inversion setup 

Our spatially uncorrelated model represents a special case where 
� m 

N in eqs ( 8 )–( 10 ) is spatially decomposed into parameter classes. 
Data using this particular model produce the update and the contam- 
ination kernels at different locations in the preconditioned gradient. 
The kernels, spatially separated in the preconditioned gradient for 
a certain parameter class, produce the artefacts due to different 
parameter classes at locations that differ from the location of the 
correct anomaly. This helps distinguishing the parameter coupling 
effect in the results. 

We consider the 10 m × 5 m box-shaped anomalies for V P , V S and 
ρ located at different positions but at the same depth (Fig. 5 ). The 
background model varies only in depth (Fig. 1 ). Note that Figs 5 (b) 
and (c) are created by subtracting the initial background model 
(Fig. 1 ) from the true model to clearly visualize the box-shaped 
anomalies. Although the anomalies – �V 

N 
S and �ρN – have values 

which are −20 per cent of the background, the �V 

N 
P is −10 per 

cent of the background value. 
We perfor m g radient-based 3-D FWI on vertical-force ( f z ) and 

horizontal-force ( f y ) data sets. The acquisition geometry and the 
source wavelet are the same as those in Sections 3.2 and 3.3 . We 
use the background model (Fig. 1 ) as the initial model in 3-D FWI, 
and assume the source wavelet as known. During the inversion, the 
model parameters ( V P , V S , ρ) are simultaneously updated. The same 
monochromatic frequencies as in Sections 3.2 and 3.3 are used to 
calculate the preconditioned gradients. To compare the different 
data sets using vertical- and horizontal-force sources, we use the 
same stop-criterion for inversion: the iteration is stopped when the 
relative change between the misfit of the current iteration step and 
that of the second to the last iteration step is less than 1 per cent. 
Since the data is not sensitive to � V P because of the very long 
w avelength of P w ave ( ∼40 m) relative to the size of the anomaly, 
we discuss only about the reconstructed V S and ρ models. 

4.1.2 Parameter coupling: after the first iteration 

We first investigate the preconditioned gradients for ρ (i.e. 
−P ρ∇ ρE ) at the first iteration using the vertical-force source 
(Fig. 6 a) and the horizontal-force source (Fig. 6 b). Because of the 
spatially uncorrelated anomalies, the update kernels ( K ρ↔ ρ) are im- 
aged around the location of the anomaly of ρ (b lue bo xes in F igs 6 a 
and b), while the contamination kernels ( K V S → ρ) are distributed 
around the location of the anomaly of V S (green boxes in Figs 6 a 
and b). When using the f z data set, K V S → ρ dominates significantly 
in −P ρ∇ ρE compared to K ρ↔ ρ (see Fig. 6 a). On the contrary, the 
f y data set produces K ρ↔ ρ with larger magnitude than K V S → ρ in 
−P ρ∇ ρE (see Fig. 6 b). As a consequence, 3-D FWI using the f y 
data set can estimate �ρN more accurately than FWI using the f z 
data set, with a weak parameter coupling due to �V 

N 
S at least at the 

first iteration. 
As opposed to ρ, the preconditioned gradients for V S (i.e. 

−P V S ∇ V S E) at the first iteration (Figs 6 c and d) do not contain 
significant artefacts due to K ρ→ V S (b lue bo xes in F igs 6 c and d). 
This result is consistent with the results for a point scatterer model 
(see Section 3.2). Besides, one can see that the amplitude distribu- 
tion of −P ρ∇ ρE for the f z data set is similar to that of −P V S ∇ V S E
(see Figs 6 a and c). This suggests that −P ρ∇ ρE for the f z data set is
contaminated by �V 

N 
S . 

4.1.3 Results after all iterations 

During the inversion, the ρ models are iterati vel y updated (Fig. 7 ). 
In the first iteration, both data sets produce artefacts around the 
location of the anomaly of V S associated with K V S → ρ (green boxes in 
Figs 7 a and d). The artefacts are generated because the ρ models are 
updated in the directions along −P ρ∇ ρE in the first iteration (Figs 6 a 
and b) based on eqs ( 2 ) and (3 ). W ith iterations, ho wever , the non-
linear optimization process (i.e. NCG) reduces these artefacts for 
both data sets, resulting in gradual reconstruction of the anomaly 
of ρ at the correct location [see the results after iteration 10 in 
Figs 7 (b) and (e) and after iteration 40 in Figs 7 (c) and (f)]. Finally, 
at the convergence (i.e. after 69 iterations for the f z data set and 
after 71 iterations for the f y data set), the reconstructed ρ model 
using the f y data set no longer exhibits any significant artefacts that 
were produced at the earlier iterations (green box in Fig. 8 b). On 
the other hand, the finally obtained result of 3-D FWI using the f z 
data set shows some remaining artefacts due to parameter coupling 
(see the green box in Fig. 8 a). Fur ther more, a comparison of the 1D 

profiles (Fig. 8 c) shows that utilizing the f y data set provides better ρ
estimates (values closer to the true values) than the f z data set. The 
likely reason for this difference is the strong parameter coupling 
effect in the f z data set in the preconditioned gradient (Fig. 6 a). In 
this case, after the first iteration, the FWI estimates a ρ model which 
is very far from the true model (Fig. 7 a), and as a consequence, at 
the end the final model also falls into a local minimum located in 
the vicinity of the solution of the first iteration. 

We also examine the reconstructed V S models after the inversion 
for the vertical-force data set (Fig. 8 d) and the horizontal-force data 
set (Fig. 8 e). Contrary to ρ, the anomaly of V S is successfully recon- 
structed without serious artefacts regardless of the force directions 
(Figs 8 d and e). Fur ther more, a comparison of 1-D profiles (Fig. 8 f) 
shows that both data sets estimate almost identical V S models. 

4.2 FWI results for a realistic subsoil model 

In Section 4.1 the initial model is different from the true model 
at locations that differ among the parameter classes. That helped 
distinguishing the parameter coupling effect in the results. Ho wever , 
this assumption is obviously unrealistic. For FWI using field data 
where the accuracy of the initial model can only be controlled to a 
limited extent, one has to choose a suitable approach for building 
the initial model, considering the data quality and/or any available 
prior information. Besides, the inversion tests in Section 4.1 have 
been carried out, assuming purely elastic wavefields and noise-free 
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In this subsection, we take into consideration a more realistic 
situation. The subsoil model is built on downhole information ob- 
tained in the field. Unlike in Section 4.1, we work here with data 
having random noise and viscoelastic wavefield instead of elastic 
wavefield. 

4.2.1 Model building and pseudo-seismic data 

To build the realistic 3-D subsoil model, we use V S and poros- 
ity ( φ) data measured at a soft-soil site in the wester n par t of 
the Netherlands (Fig. 9 a). In this earlier study, V S was measured 
at 25 cm interval in depth via SCPT (Seismic Cone Penetration 
Test) and the porosity from laboratory tests on soil samples col- 
lected in boreholes (Ghose 2007 ; Zhubayev & Ghose 2012 ). From 

continuous soil sampling performed at this site, the soil-layer com- 
position is known (Fig. 9 a). The soil column is composed of al- 
ternating layers of clay and sand. Also, a peat layer located at 
∼5 m depth shows a very high porosity ( ∼0.83), indicative of low 

density. 
Using this data set, we have constructed a five-layered model 

of the near-surface (till 15 m depth; Fig. 9 b) for testing 
FWI. The ρ values in Fig. 9 (b) are calculated from φ as 
follows: 

ρ = ρs (1 − φ) + φS f ρf , (12) 

where ρs is solid grain density, ρf is fluid density and S f represents 
the degree of water saturation. For ρs and ρf , we use the repre- 
sentati ve v alues for such soil types in this area (Table 2 ). Since 
the water table at this site is located at 1.4 m depth, we consider 
an unsaturated condition until 1.4 m, and a fully water-saturated 
condition below this depth. For the unsaturated and fully saturated 
conditions, we assume S f = 50 per cent and S f = 100 per cent, 
respecti vel y. Since we do not have V P data, the V P values at the 
full y w ater-saturated condition are calculated based on Gassmann’s 
equation (e.g. Mavko et al. 2009 ), while the unsaturated V P val- 
ues are assumed to be 800 m s −1 . For the soil properties required 
in the Gassmann’s equation, we consider the representative values 
(Table 2 ) based on past research (Inci et al. 2003 ; Emerson & Foray 
2006 ; Chesworth 2008 ; Kumar & Madhusudhan 2012 ). Finally, ex- 
tending this model (Fig. 9 b), 3-D heterogeneity is introduced as 
shown in Figs 10 (a)–(c). The complexity of the 3-D model is char- 
acterized by a peat layer (second layer in Fig. 9 b) that gradually 
thins out in x - and y -directions and a sand layer (fourth layer in 
Fig. 9 b) that gently dips in 3-D. Note that the 1-D layered model 
in Fig. 9 (b) is located at the centre of the 3-D model (at [ x , y ] =
[13.5 m, 13.5 m]). In order to simulate the viscoelastic wavefields, 
we assume a constant value of 20 for both Q P and Q S , for the entire 
model. 

For this realistic 3-D subsoil model, the viscoelastic wavefields 
are simulated using vertical-force ( f z ) and horizontal-force ( f y ) 
sources. Since the 3-D FWI applied to an f x data set gives almost 
the same results as those for 3-D FWI applied to an f y data set for 
this model (see Section S1 in the Suppor ting Infor mation), we here 
discuss only the results for the f y data set. The model is discretized 
using 180 × 180 × 120 gridpoints in x -, y - and z -direction, with a 
grid spacing of 0.15 m. We consider a symmetric acquisition geom- 
etry with 9 seismic sources at 10 m spacing and a fixed array of 121 
3-component receivers planted at 2 m spacing, as shown in Fig. 10 . 
The sources generated a Fuchs–M üller wavelet (eq. 11 ) with a cen- 
tral frequency of 20 Hz. As mentioned earlier, this frequency is not 
chosen to a higher value only to keep the computation time for the 
3-D FWI manageab le, w hile still achie ving suf ficientl y the goals of 
this research. It is also the same reason why we restricted the depth 
to only 15 m. We finally add identical random noise to both force 
data sets. The S/N ratio in the y-component data ( v y ) at the farthest 
source–recei ver of fset (28.3 m) due to the f y source is ∼8, while 
that in the z-component data ( v z ) at the same offset due to the f z 
source is ∼60. The big difference in the S/N ratio reflects the dif- 
ference in the amplitudes of the dominated wavefields in each data 
set. 

The example of the simulated data (particle velocity), represent- 
ing field seismic data using different force directions for the seis- 
mic source, is shown in Fig. 11 . As expected, for the f z source, 
the energy is predominantly present in the vertical-component 
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Table 2. Values of soil properties (Inci et al. 2003 ; Emerson & Foray 2006 ; Chesworth 
2008 ; Kumar & Madhusudhan 2012 ) for calculating ρ and V P for each soil layer ( ρs : 
solid density , ρf : fluid density , K s : solid bulk modulus, K f : fluid bulk modulus, νsk : 
Poisson’s ratio of the soil skeleton). 

Soil type ρs 
(
kg m 

−3 ) ρf 
(
kg m 

−3 ) K s ( GPa ) K f ( GPa ) νsk 

Clay 2650 1000 14 2.18 0.10 
Sand 2650 1000 30 2.18 0.23 
Peat 1500 1000 1.4 2.18 0.15 
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eceiver (Fig. 11 c), while for the same source limited amount of
eismic energy present in the horizontal-component receiver
Figs 11 a and b) is due to the Rayleigh waves. On the contrary,
or the f y source there is more energy in the horizontal-component
eceivers (Figs 11 d and e) than in the vertical-component (Fig. 11 f).
dditionally, the f y data show reflected arrival from the lower bound-

ry of the peat layer at ∼0.3 s, which is less visible in the f z 
ata. 
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4.2.2 Initial model 

We perform at first 2-D SH FWI using the 2-D ( v y ) data set. This 
data set is derived from the f y data set along the three 2-D lines at 
y = 3.5, 13.5 and 23.5 m (Fig. 10 ). For an initial V S model for the 
2-D SH FWI, we build a homogeneous model using the first-arri v al 
travel times. An initial ρ model is constructed by first using an 
empirical relationship between V S and V P (Kitsunezaki et al. 1990 ) 
and then using a relationship between V P and ρ (Ludwig 1970 ). 

For 2-D SH FWI, we use a global-correlation-based misfit func- 
tion (Choi & Alkhalifah 2012 ): the model is updated to maximize 
the cross-correlation between the normalized observed and cal- 
culated seismograms. This misfit function does not focus on the 
amplitudes but on the similarities (phase matching) between the 
seismograms, w hich enab les reconstructing a rough model using 
2-D FWI without compensating for the difference between the 3-D 

and 2-D geometrical spreading. Therefore, at this point, we apply 3- 
D to 2-D point-to-line source phase correction by convolving each 
trace of the 3-D seismic data set with 

√ 

t −1 , where t is the recording 
time (Forbriger et al. 2014 ; Sch äfer et al. 2014 ; Liu et al. 2022 ). We 
assume the source–time function to be known. The V S and ρ models 
are updated simultaneously during the inversion. The attenuation Q S 

is assumed to be known. The estimation of Q S is possible, for exam- 
ple, by using the passive-viscoelastic FWI approach (Groos et al. 
2014 ): the optimum Q value with the minimum misfit function for 
an initial model is chosen through the grid search. 

The V S and ρ sections estimated by 2-D SH FWI along the three 
2-D lines are used, followed by spline interpolation, to build the 
3-D initial model (Figs 10 e and f). The V P initial model is built 
using the empirical relationship between V P and V S (Kitsunezaki 
et al. 1990 ; Fig. 10 d). Note that the initial model in Figs 10 (d)–(f) 
is used for 3-D FWI using both f z and f y data sets, although build- 
ing an initial model using SH FWI is possible only for the f y data 
set. This allows us to investigate the sole impact of the force direc- 
tion of the seismic source on the reconstructed ρ model using 3-D 

FWI. 

4.2.3 Parameter coupling: after the first iteration 

The preconditioned gradients for ρ ( −P ρ∇ ρE ) calculated at the 
first iteration for the f z data set (Fig. 12 a) and the f y data set 
(Fig. 12 b) exhibit significant differences. Contrary to Section 4.1, 
the update and contamination kernels are not spatially separated 
in the preconditioned gradient. This is because the true model 
perturbations ( � m 

true ) for each parameter class, that is the differ- 
ences between the true and initial models, are distributed over the 
whole model, and are superimposed on each other (Figs 12 g and 
h). Also, a large � m 

true (Figs 12 g and h) implies that it would 
not be possible to assume the Newton step ( � m 

N ) in eqs (8 )–
(10 ) as we do in Section 4.1.2. The Newton step � m 

N could be 
estimated by investigating the detailed shape of the misfit func- 
tion E ; ho wever , the computational cost for this analysis is pro- 
hibiti vel y expensi ve. Due to these constraints, it is challenging to 
visualize the kernels and e v aluate the parameter coupling using 
eqs (8) –(10 ). 

In order to overcome this difficulty, we directly calculate the ap- 
proximate Hessian ( H 

a 
m i m j 

), which is a component of the kernels in 
eqs (8) –(10 ). The effect of the off-diagonal elements of this Hessian 
(i.e. the spatial cross-correlation of the Jacobians between differ- 
ent grids) on the preconditioned gradient varies with the spatial 
distribution of � m 

N . Since � m 

N is unknown, we take the relative 
magnitude of the coefficients of � m 

N in eqs (8 )–(10 ). For this pur- 
pose, we assume a simple case where H 

a 
m i m j 

is diagonally dominant. 
In this case, eq. ( 10 ) can be written as: 

− 1 

diag 
(
H 

a 
ρρ

) + ερ

∇ ρ E ≈ diag 
(
H 

a 
ρV P 

)
diag 

(
H 

a 
ρρ

) + ερ

�V 

N 
P 

+ 

diag 
(
H 

a 
ρV S 

)
diag 

(
H 

a 
ρρ

) + ερ

�V 

N 
S 

+ 

diag 
(
H 

a 
ρρ

)
diag 

(
H 

a 
ρρ

) + ερ

�ρN , (13) 

where diag 
(

H 

a 
m i m j 

)
is the diagonal element of H 

a 
m i m j 

, and 

diag 
(
H 

a 
ρρ

) + ερ represents the preconditioning filter for ρ (i.e. P ρ) 
(see Appendix A for details). Evaluation of eq. ( 13 ) enables one to 
investigate the parameter coupling grid by grid, while the spatial 
parameter coupling between different grids is ignored. 

The second term on the right-hand side of eq. ( 13 ) represents 
the parameter coupling due to V S , and the third term represents 
the appropriate update direction for ρ. Because the coefficient of 
�ρN (the third term) is almost 1, investigating the coefficient of 
�V 

N 
S (the second term) allows appreciating how �V 

N 
S is amplified 

and how it contaminates the appropriate update direction for ρ
in the preconditioned gradient. For brevity, hereafter, we call the 
coefficient for the second term, d iag 

(
H 

a 
ρV S 

)
/ 
(
d iag 

(
H 

a 
ρρ

) + ερ

)
, 

as the coupling coefficient of ρ. 
The coupling coefficients of ρ show that their values are smaller 

for the f y data set (Fig. 12 e) than for the f z data set (Fig. 12 d). Around 
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z  

c  

t  

A  

t  

c  

t  

d  

s  

g  

o
 

o  

c  

z  

w  

b  

c  

F  

z  

a  

z  

a  

n  

�

f  

t  

c  

s  

p  

F  

b  

t  

a
 

g  

f  

i  

r  

d

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/236/2/727/7424135 by Technische U

niversiteit D
elft user on 22 D

ecem
ber 2023
 = 10 m at the centre of the model, for instance, the coupling
oefficient of ρ for the f y data set is approximately 25, while that for
he f z data set is approximately 50 (see the black arrow in Fig. 12 f).
ssuming that �V 

N 
S and �ρN do not significantl y dif fer between

he force directions, this difference in the amplitude of the coupling
oefficients suggests that using the f z data set results in twice larger
he parameter coupling than using the f y data set (see eq. 13 ). We can
raw the same conclusion if the ratio of �V 

N 
S to �ρN is almost the

ame for the different force data sets, because the preconditioned
 radient is nor malized by its maximum value in the implementation
f FWI here (see Section 2.1). 

Next, we look more carefully into the preconditioned gradients
f ρ at the centre of the model. The 1-D profiles illustrate different
haracteristics for different force directions (e.g. Fig. 12 c). Around
 = 10 m, the values for the f y data set oscillate around zero,
hile almost all values for the f z data set are positive (see the
lack arrow in Fig. 12 c). To investigate the possible reason, we
alculate the true V S and ρ perturbations ( � V S 

true and �ρ true ) in
ig. 12 (i). At the same location (at the centre of the model around
 = 10 m), the true model perturbations show characteristics that
re similar to the preconditioned gradient: �ρ true oscillates around
ero, while � V S 

true is mostly on the positive side (see the black
rrow in Fig. 12 i). Although the true model perturbations would
ot accurately represent the Newton step, the similarity between
ρ true (red line in Fig. 12 i) and the preconditioned gradient for ρ

or the f y data set (red line in Fig. 12 c) permits one to anticipate
hat the gradient for the f y data set would more closely reflect �ρN ,
ompared to the gradient for the f z data set. On the other hand, the
imilarity between � V S 

true (blue dashed line in Fig. 12 i) and the
reconditioned gradient for ρ for the f z data set (blue dashed line in
ig. 12 c) suggests that the gradient is probably heavily contaminated
y �V 

N 
S . The use of the f y data set offers the possibility to obtain

he preconditioned gradient for ρ with few artefacts due to �V 

N 
S ,

nd hence leads to a more accurate ρ model from 3-D FWI. 
We also investigate the parameter coupling in the preconditioned

radient for V S (Appendix B ). Unlike the preconditioned gradient
or ρ, the different force data sets do not show significant differences
n the parameter coupling. But the f y data set can offer higher-
esolution V S model than the f z data set (see Appendix B for more
etails). 

art/ggad445_f12.eps


740 Y. Kawasaki, S. Minato and R. Ghose 
D

ow
nloaded from

 https://academ
ic.oup.com

/gji/article/236/2/727/7424135 by Technische U
niversiteit D

elft user on 22 D
ecem

ber 2023
4.2.4 Results after all iterations 

During the iterations in FWI, V S and ρ are updated simultaneously, 
while V P remains fixed to the initial model (Fig. 10 d); the data is 
not sensitive to V P because of the very long wavelength of P wave 
( ∼40 m) relative to the heterogeneous structure. Similar to 2-D SH 

wave FWI (Section 4.2.2), Q P , Q S and the source–time function are 
assumed to be known. To avoid cycle skipping, we perform mul- 
tiscale inversion (Bunks et al. 1995 ), where we gradually increase 
the maximum frequency for inversion (Table 3 ). We use four in- 
version stages; the frequencies at each stage are selected such that 
they continuously cover the vertical wavenumbers (Sirgue & Pratt 
2004 ). 

When the convergence is achieved, the synthetic waveforms fit 
well with the observ ed wav eforms (red dashed lines in Fig. 11 ). A 

comparison of the ρ models (Figs 13 a–c) shows that the use of the 
f y data set gives a better resolution of the ρ values in the cla y la yer 
than when the f z data set is used (see green arrows in Figs 13 a–c). 
We indeed see a sharp transition from the clay layer (third layer) 
to the sand layer (fourth layer) in case of the f y data set. The 1-D 

profiles at the centre of the model also illustrate that the ρ estimates 
for the f y data set are more accurate than that for the f z data set, 
especially at ∼10 m depth (see the black dashed line in Fig. 13 d). 
This is probably because for the f z data set there is a relati vel y 
strong parameter coupling at around 10 m depth, while for the f y 
data set, the parameter coupling is rather weak, as demonstrated 
also in Section 4.2.3. Fur ther more, the use of the f y data set in 3-D 

FWI allows estimating the low ρ in the peat layer more accurately 
than the use of the f z data set (see the black solid arrow in Fig. 13 d). 

Next, in order to examine the overall accuracy of the inverted 
ρ models for different force data sets, we define the rate of the 
model-error change as follows: 

D m 

= 

m 

error 
est − m 

error 
ini 

m 

error 
ini 

× 100 , (14) 

where m 

error 
ini = | m true − m ini | and m 

error 
est = | m true − m est | represent 

the model errors for the initial model ( m ini ) and for the estimated 
model ( m est ), respecti vel y. Eq. ( 14 ) indicates that D m is 0 at the 
beginning of the inversion (i.e. m est = m ini ), becomes a negative 
value if m est approaches the true value (i.e. m true ), and becomes 
−100 if the model is perfectly reconstructed (i.e. m est = m true ). 
On the other hand, D m becomes a positive number if the model is 
updated in the opposite direction to the true value from the initial 
model. 

To compare the overall trends of ρ estimates for f z and f y data sets, 
we calculate grid by grid D ρ using eq. ( 14 ). The result is shown in 
histograms in Fig. 14 . For both f z and f y data sets, we note incorrect ρ
updates in the opposite direction to the true model (i.e. D ρ > 0). This 
could be due to the presence of side-lobe in the vertical section of 
the ρ model at the layer boundaries (note the surrounding of the peat 
lay er in F ig. 13 d), due to the limited frequency bandwidth in our 
data, limited acquisition geometry (e.g. Virieux & Operto 2009 ; Li 
& Demanet 2016 ), and/or the convergence to the local minima. Such 
side-lobe increases the model error over the whole model during 
the inversion as shown in Section S2 in Supporting Information. 
Nonetheless, the use of the horizontal-force sources does lead to a ρ
structure which correlates well with the true ρ when the convergence 
is achieved (see Section S2 in the Supporting Information). The 
comparison of the histograms of D ρ also illustrates that 3-D FWI 
applied to the f y data set is beneficial for estimating the accurate ρ: 
there are correct ρ updates for the f y data set at many gridpoints 
(see the grids showing D ρ < 0 in Fig. 14 ), while the use of the f z 
data set produces incorrect ρ updates at many points (see the grids 
where 0 < D ρ < 40 in Fig. 14 ). 

For the noise-contaminated data, we note that the horizontal- 
force data set has a lower S/N ratio than the vertical-force data 
set (see Section 4.2.1 ). Nevertheless, using the f y data gives much 
better ρ estimates compared to using the f z data. This suggests that 
horizontal-force data might be more robust to noise in the context 
of ρ estimation compared to vertical-force data, which is also found 
in Section 3.1. 

Lastly, we compare the reconstructed V S models using f z and f y 
data sets (Appendix C ). As opposed to ρ, their accuracy is not sig- 
nificantl y dif ferent for the two force directions, except for a slight 
difference in resolution (see Appendix C for more details). The 
choice of the force directions of the seismic source does not sig- 
nificantl y af fect the ov erall accurac y of the V S estimates; howev er, 
small changes in accuracy can still be caused b y dif ferent resolution 
of the preconditioned gradient for V S . The small improvement in ac- 
curacy leads to a slightly higher correlation between the true and the 
estimated models (see Section S2 in the Supporting Information). 

5  D I S C U S S I O N  

5.1 Reason behind the superiority of a horizontal-f or ce 
sour ce f or density r econstruction 

In Section 4 , the inversion study using two different near-surface 
synthetic models has demonstrated that 3-D FWI applied to a 
horizontal-force data set gives more accurate ρ distribution com- 
pared to that applied to a vertical-force data set. There are two 
possible reasons behind the superiority of a horizontal-force source 
ov er a v ertical-force source: parameter coupling between V S and 
ρ is relati vel y weak and/or the observed data are relati vel y more 
sensitive to ρ. Based on the results shown in this paper, we con- 
clude that the different parameter coupling effects contained in the 
preconditioned gradient can cause the difference in the accuracy 
of the finally estimated ρ for each force direction. Given a sim- 
ple point scatterer model, the comparison of the relative strengths 
between the update and the contamination kernels has shown that 
the contamination in the preconditioned gradient for ρ due to a V S 

perturbation is less severe for a horizontal-force data set than for 
a vertical force data set (see Section 3.2). Such a benefit of using 
a horizontal-force data set has been demonstrated also for two re- 
alistic near-surface models, at least at the first iteration (see Figs 6 
and 12 ). In the context of the gradient-based inversion, the less con- 
taminated, preconditioned gradient at the first iteration can lead to 
a ρ value which is close to the global minimum. This allows one to 
avoid falling into a local minimum during the non-linear inversion. 
This can of fer finall y more accurate ρ estimates after the conver- 
gence. The other possible reason, that is the difference in sensitivity 
to ρ of data sets of different-force directions, may have a rather 
small contribution to our results, because the spatial variability of 
the sensitivity is scaled for each force data set using the diagonal 
elements of the approximate Hessian (see Appendix A ). 

5.2 Limitation of the analyses 

Our findings on parameter coupling are based on numerical in- 
vestigations. Results of numerical investigations are influenced 
by the choice of the subsurface model, acquisition geometry, 
inversion method, and parametrization (e.g. K öhn et al. 2012 ; 
M étivier et al. 2015 ; Yang et al. 2016 ; Pan et al. 2018b , 2019 ; 

https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggad445#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggad445#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggad445#supplementary-data
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Table 3. Monochromatic frequencies for multiscale inversion. 

Stage Monochromatic frequencies (Hz) 

1 2.5, 3.8, 5.0, 6.3, 7.5, 8.8, 10.0 
2 2.5, 3.8, 5.0, 6.3, 7.5, 8.8, 10.0, 11.3, 12.5, 13.8, 15.0, 16.3, 17.5, 18.8, 20.0 
3 3.1, 4.3, 5.6, 6.8, 8.1, 9.3, 10.6, 11.8, 13.1, 14.3, 15.6, 16.8, 18.1, 19.3, 20.6 

21.8, 23.1, 24.3, 25.6, 27.0, 28.5, 30.0 
4 2.4, 3.6, 4.9, 6.1, 7.4, 8.6, 9.9, 11.1, 12.4, 13.6, 14.9, 16.1, 17.4, 18.6, 19.9, 21.1 

22.4, 23.6, 24.9, 26.2, 27.7, 29.2, 30.7, 32.4, 34.2, 36.0, 37.9, 40.0 
z 

(m
) 0

10
15

5
10

15
20

5
10

15
20

x (m) y (m)

(a) Reconstructed ρ (fz) (b) Reconstructed ρ (fy)

(d) 1D profile(c) True ρ
0

5

10

15

True

fz
fy

1000 2000 3000
ρ (kg/m3)

5
0

10
15

5
10

15
20

5
10

15
20

x (m) y (m)

5

z 
(m

) 0

10
15

5
10

15
20

5
10

15
20

x (m) y (m)

5

1000

1200

1400

1600

1800

2000

ρ(kg/m
3)

Initial

Figure 13. The reconstructed ρ models (a) when using an f z data set and (b) when using an f y data set. (c) The true ρ model. The green arrow shows the clay 
layer. (d) The comparison of 1-D profiles for the two different force-direction data sets at [ x , y ] = [13.5 m, 13.5 m]. 

0

2

4
6

8

10

12

14

0 40-40 80-80

×104

Fr
eq

ue
nc

y

Dρ (%)

fz
fy

Correct update Incorrect update

Figure 14. The comparison of the histograms of D ρ for two different force- 
direction data sets. 

G  

i  

i  

S  

p  

p  

o  

T

 

m  

c  

o  

s  

r  

2  

i  

e  

R  

w  

n  

e  

(  

t  

c  

o  

b  

s  

c  

e  

o  

r  

ρ  

p

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/236/2/727/7424135 by Technische U

niversiteit D
elft user on 22 D

ecem
ber 2023
ao et al. 2021 ). In this regard, we have considered seismic data
n the scale of near-surface e xploration (i.e. sev eral tens of meters
n the horizontal direction and ∼15 m in the vertical direction).
uch data sets are dominated by surface waves. The impact of
arametrization (e.g. seismic velocities versus impedances) on the
arameter coupling effect and the variation of this effect depending
n the force direction of the source remain still an open question.
his needs to be investigated in the future. 
For inversion, w e ha ve used the non-linear conjugate gradient
ethod (NCG) with a preconditioning filter of low computational

ost (Appendix A ). As mentioned in Section 1 , other sophisticated
ptimization approaches, which take the accurate Hessian into con-
ideration (e.g. truncated Newton method), can help reduce the pa-
ameter coupling (M étivier et al. 2015 ; Yang et al. 2016 ; Gao et al.
021 ), but they generally increase the computational cost dramat-
cally. Another approach, which may accurately estimate ρ, would
 xploit hierarchical inv ersion (Jeong et al. 2012 ; Prieux et al. 2013 ;
en & Liu 2016 ): seismic velocities (i.e. V P and V S ) are updated
ith the fixed ρ at the first step, and then all parameters are simulta-
eously inverted at the second step. This hierarchical approach was
arlier tested using 2-D FWI in an exploration scale, and our results
Section 3.2) imply efficacy of this approach also for 3-D FWI at
he near-surface scale. Since the V S estimate has a small parameter
oupling effect due to error in ρ (see, for instance, Fig. 4 ), V S can be
btained in the first step with reasonable accuracy, which can then
e used to help reducing the parameter coupling for ρ in the second
tep. Note, ho wever , that the computational cost for this hierarchi-
al approach can be much greater than the simultaneous inversion,
specially for 3-D FWI. Our results have demonstrated that the use
f the horizontal-force data sets would enable one to obtain accu-
ate ρ estimates at a low cost using simultaneous inversion for both

and V S , without suffering from the strong parameter-coupling
roblem. 

art/ggad445_f13.eps
art/ggad445_f14.eps
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Also, the difference in the parameter coupling due to different 
wave types is not yet well understood. Typical near-surface seismic 
data contain several prominent wave types—surface waves and var- 
ious body waves. Each wave type is scattered due to a perturbation 
with different amplitude distribution, resulting in different parame- 
ter coupling effect (e.g. Pan et al. 2018a ). In Section 3.1, for exam- 
ple, the scattering pattern differs due to the different incident wave 
types (SV/Ra yleigh wa v es or SH/Lov e wav es) produced by different 
force directions and recorded at different receiver components (see 
Fig. 2 ). Besides, Rayleigh wave propagation involves elliptical mo- 
tion, either in retrograde or prograde sense, depending on its mode 
and depth. Gao et al. ( 2021 ) has shown that such different motions 
associated with Rayleigh waves cause different scattering patterns. 
Thus, the discussions in Section 3 are limited to the model consid- 
ered in our numerical study. In this regard, a horizontal-force source 
generates both Rayleigh and SV waves propagating with a specific 
energy distribution over the whole model, which makes it difficult 
to e v aluate the ef fect of the depth of a point scatterer on parameter 
coupling. This means that the wave type is crucial in order to esti- 
mate the extent of parameter coupling for a given subsurface model. 
Our numerical in vestigations, ho wever , have considered the net in- 
fluence on parameter coupling of all these wave types generated 
by a body force, and it is not possible to e v aluate the contribution 
of one particular wave type here. Addressing this problem might 
help optimizing near-surface seismic acquisition. For instance, one 
may choose a combination of source–receiver components or an 
arbitrary force direction in 3-D for a source such that the wave type 
with the smallest parameter coupling dominates the observed data. 
In order to e v aluate the contribution from each wave type to pa- 
rameter coupling effect, the theoretical scattering pattern based on 
Born approximation for the surface waves as well as for the body 
waves would be needed (e.g. Snieder 1986 ). 

Finally, the FWI result can be improved by simultaneously and/or 
sequentiall y using dif ferent force data sets during the inversion. An 
example can be that of a horizontal-force data set, which is not 
much influenced by parameter coupling; such a data set can be used 
to estimate reasonably accurate V S and ρ at the first step, and then 
joint inversion of horizontal-force and vertical-force data sets may 
enhance the result at the second step. Fur ther more, especially in 
the presence of significant lateral heterogeneity in the subsurface 
(e.g. Section 4.2), using two orthogonal horizontal-force sources 
(e.g. f x and f y ) for the inversion can help improving the result: the 
use of the full wavefields produced by the horizontal-force sources 
may reduce parameter coupling further. Such simultaneous or se- 
quential in version, ho wever , increases the computation time greatly 
as the data volume increases. To face such challenges, more cost- 
ef fecti ve optimization approaches, like a mini-batch method (e.g. 
van Leeuwen & Herrmann 2013 ), might be of advantage. 

5.3 Practical considerations for horizontal-force sources 

We have shown the benefit of using a seismic data set with a 
horizontal-force source in 3-D FWI for density. Ho wever , in the 
current practice of near-surface seismic investigations, use of a 
horizontal-force source is less common than a vertical-force source. 
One reason is that generating ef ficientl y horizontall y polarized seis- 
mic wave is more difficult from a practical point of view. The 
slipping of the friction plate is a well-known problem for tradi- 
tional horizontal-force (shear-wave) sources. This makes it difficult 
to generate a comparably large force as a vertical-force source, 
which results in reduction of the investigation depth. Attenuation of 
shorter-w avelength S w aves in the low-velocity formations is further 
responsible for lower signal-to-noise ratio at a given depth, com- 
pared to P waves that enrich preferentially the vertical-force data. 
In the recent decades, ho wever , shear-wave vibrators with small 
footprints have become more accessible for subsurface investiga- 
tion in the near-surface exploration scale (e.g. Ghose et al. 1996 ; 
Ghose & Goudswaard 2004 ; Drijkoningen et al. 2006 ; Krawczyk 
et al. 2013 ; Burschil et al. 2022 ). Such vibrators can help generate 
a stable source signal with a relati vel y large frequency bandwidth, 
which should alleviate the cycle-skipping issue and increase source 
repeatability. Another possible ef fecti ve source is an inclined im- 
pact source such as the Galperin source (H äusler et al. 2018 ) which 
has been developed for multicomponent seismic data acquisition 
in the near-surface scale. This source can help improve the source 
coupling with the ground by mitigating the slipping of the friction 
plate. Although horizontal-component records with a high signal- 
to-noise ratio (produced by a strong seismic source) are crucial for 
the success of 3-D FWI applied to a horizontal-force data set (see 
e.g. Fig. 11 ), such data sets might be more noisy at high frequen- 
cies in the horizontal components than in the vertical-component 
records. This is due to the difficulty in achieving adequate receiver 
coupling with the ground over a large frequency bandwidth (Krohn 
1984 ). Further verification of the conclusions drawn in this article 
is now under progress through field studies involving 3-component 
sources and receivers. 

6  C O N C LU S I O N S  

In this paper, we have looked into the performance of gradient-based 
3-D FWI applied to vertical force and horizontal force seismic data 
sets, in order to estimate the 3-D subsoil density distribution. We 
hav e inv estigated three important factors, namely noise robustness, 
parameter coupling and resolution, through numerical tests. We have 
simulated realistic near-surface seismic data dominated by surface 
waves. 

Our investigations using the scattered wavefield due to a point- 
localized density perturbation have shown that the wavefield energy 
for a horizontal-force source is larger than that for a vertical-force 
source. This contributes to robustness with respect to noise of 3-D 

FWI using a horizontal-force data set, for estimating the subsurface 
density distribution. Fur ther more, our investigation on the update 
and the contamination kernels for a point-scatterer model has indi- 
cated that the use of a horizontal-force data set allows reconstructing 
the high-resolution, preconditioned gradient for density with a rel- 
ati vel y small parameter coupling. This is beneficial for estimating 
density at a low computational cost using a gradient-based FWI. Fi- 
nally, inversion studies for two different near-surface models have 
demonstrated that 3-D FWI using a horizontal-force data set can 
reconstruct the density distribution more accurately than that using 
a vertical-force data set. A horizontal-force source is suitable for 
obtaining 3-D subsoil density distribution through FWI, without 
a heavy computational burden. The subsoil density variability ob- 
tained from 3-D FWI will be useful in many important applications 
in the near-surface scale. 
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 öhn , D. , 2011. Time domain 2-D elastic full waveform tomography, PhD
thesis , Kiel University, Germany. 
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Mecking , R. , K öhn, D., Meinecke, M. & Rabbel, W., 2021. Cavity detection 
b y SH-w ave full-w av eform inv ersion – a reflection-focused approach, 
Geophysics, 86 (3), W A123–W A137. 

M étivier , L. , Brossier, R., Virieux, J. & Operto, S., 2013. Full waveform 

inversion and the truncated Newton method, SIAM J. Sci. Comput., 35 (2), 
B401–B437. 

Mora , P. , 1987. Nonlinear two-dimensional elastic inversion of multioffset 
seismic data, Geophysics, 52 (9), 1211–1228. 

M étivier , L. , Brossier, R., Operto, S. & Virieux, J., 2015. Acoustic multi- 
parameter FWI for the reconstruction of P-wave velocity, density and 
attenuation: preconditioned truncated Newton approach, in Proceed- 
ings of the SEG Technical Pr ogr am Expanded Abstr acts 2015, pp. 
1198–1203. 

Nocedal , J. & Wright, S.J., 2006. Numerical Optimization, 2nd edn, Springer. 
Nuber , A. , Manukyan, E. & Maurer, H., 2015. Enhancement of near-surface 

elastic full wav eform inv ersion results in regions of low sensitivities, J. 
appl. Geophys., 122, 192–201. 

Operto , S. , Ravaut, C., Improta, L., Virieux, J., Herrero, A. & Dell’Aversana, 
P., 2004. Quantitative imaging of complex structures from dense wide- 
aperture seismic data by multiscale traveltime and waveform inversions: 
a case study, Geophys. Prospect., 52 (6), 625–651. 

Operto , S. , Virieux, J., Dessa, J.-X. & Pascal, G., 2006. Crustal seismic 
imaging from multifold ocean bottom seismometer data by frequency 
domain full waveform tomography: application to the eastern Nankai 
trough, Geophys. J. Res., 111 (B9), doi:10.1029/2005JB003835. 

Operto , S. , Gholami, Y., Prieux, V., Ribodetti, A., Brossier, R., Metivier, 
L. & Virieux, J., 2013. A guided tour of multiparameter full-waveform 

inversion with multicomponent data: from theory to practice, Leading 
Edg e , 32 (9), 1040–1054. 

Pan , W. , Geng, Y. & Innanen, K.A., 2018a. Interparameter trade-off quan- 
tification and reduction in isotropic-elastic full-waveform inversion: syn- 
thetic experiments and Hussar land data set application, Geophys. J. Int., 
213 (2), 1305–1333. 

Pan , W. , Innanen, K.A. & Geng, Y., 2018b. Elastic full-waveform inver- 
sion and parametrization analysis applied to walk-away vertical seis- 
mic profile data for unconventional (heavy oil) reservoir characterization, 
Geophys. J. Int., 213 (3), 1934–1968. 

Pan , W. , Innanen, K.A., Geng, Y. & Li, J., 2019. Interparameter trade-off 
quantification for isotropic-elastic full-waveform inversion with various 
model parameterizations, Geophysics, 84 (2), R185–R206. 

Plessix , R.-E. , 2006. A re vie w of the adjoint-state method for computing the 
gradient of a functional with geophysical applications, Geophys. J. Int., 
167 (2), 495–503. 

Pratt , R.G. , Shin, C. & Hick, G., 1998. Gauss–Newton and full Newton 
methods in frequency–space seismic waveform inversion, Geophys. J. 
Int., 133 (2), 341–362. 

Prieux , V. , Brossier, R., Operto, S. & Virieux, J., 2013. Multiparameter full 
wav eform inv ersion of multicomponent ocean-bottom-cable data from 

the Valhall field. Part 1: imaging compressional wave speed, density and 
attenuation, Geophys. J. Int., 194 (3), 1640–1664. 

Ravaut , C. , Operto, S., Improta, L., Virieux, J., Herrero, A. & Dell’Aversana, 
P., 2004. Multiscale imaging of complex structures from multifold 
wide-aperture seismic data by frequency-domain full-waveform to- 
mography: application to a thrust belt, Geophys. J. Int., 159 (3), 

1032–1056. 
Ren , Z. & Liu, Y., 2016. A hierarchical elastic full-waveform inversion 
scheme based on wavefield separation and the multistep-length approach, 
Geophysics, 81 (3), R99–R123. 

Romero-Ruiz , A. , Linde, N., Baron, L., Solazzi, S.G., Keller, T. & Or, D., 
2021. Seismic signatures reveal persistence of soil compaction, Vadose 
Zone J., 20 (4), e20140. 
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P P E N D I X  A :  P R E C O N D I T I O N I N G  

I LT E R  B A S E D  O N  D I A G O NA L  

E S S I A N  

e use the diagonal elements of the approximate Hessian ( H 

a 
mm 

n eq. 6 ) for the preconditioning filter P m in eq. ( 3 ). The diagonal
essian is calculated by cross-correlation of the Jacobian with re-

pect to a certain parameter class m (i.e. ∂ u syn / ∂ m ). Since a whole
odel is divided into gridpoints, H 

a 
mm 

can be written in the N ×
 matrix form, where N is the number of grids. Here, the diagonal
lements of H 

a 
mm 

[i.e. diag( H 

a 
mm 

) ] represent the cross-correlation
etween the Jacobians at the same grid, while the off-diagonal ele-
ents represent the spatial cross-correlation between the Jacobians

t different grids. Since H 

a 
mm 

is typically assumed to be diagonally
ominant and banded due to the finite-frequency effect (Pratt et al.
998 ), diag( H 

a 
mm 

) or its approximated form (e.g. pseudo-Hessian)
as been commonly used for the preconditioning filter (e.g. Shin
t al. 2001 ; Ravaut et al. 2004 ; Operto et al. 2004 , 2006 ). In this re-
earch, we follow the approach of Butzer ( 2015 ), where the inverse
f diag( H 

a 
mm 

) is used for P m as follows: 

P m 

= ( diag( H 

a 
mm 

) + ε m 

) −1 , (A1) 

here the stabilization factor (i.e. ε m ) is introduced to avoid the
i vision b y the very small v alues of diag( H 

a 
mm 

) . 
Using the preconditioning filter (eq. A1 ), one can compensate for

he effect of geometrical spreading. Since the gradient ( ∇ m E ) is cal-
ulated based on the adjoint-state method (Plessix 2006 ) using the
 avefield af fected b y geometrical spreading, ∇ m E has limited spa-

ial distribution of the amplitudes. In the near-surface exploration
cale, this indicates that the amplitudes of ∇ m E are concentrated
round the free surface due to the dominance of the surface waves
n the observed seismic data. Thus, without a preconditioning filter,
he model around the free surface is preferentially updated during
he inversion, which leads to a slow convergence (e.g. Nuber et al.
015 ; Yan et al. 2020 ). Since diag( H 

a 
mm 

) is calculated using the
acobian which includes the effect of geometrical spreading, its
patial amplitude distribution (energy) is concentrated near the free
urface. Therefore, by using the inverse of diag( H 

a 
mm 

) as a precon-
itioning filter, one can compensate for the limited spatial amplitude
istribution of ∇ m E . This makes it possible to uniformly update the
hole model from the shallow to the deep parts, resulting in a fast

onvergence. 
There is another advantage of using the diagonal Hessian as a

reconditioning filter. In multiparameter FWI, it is necessary to
stimate a suitable scaling factor for each parameter class in com-
ensating for the amplitude distribution of ∇ m E . This is because the
acobian or the radiation pattern of the wavefield scattered due to a
odel perturbation differs for the different parameter classes (e.g.
irieux & Operto 2009 ; Operto et al. 2013 ; Gao et al. 2021 ). In

his research, we calculate the diagonal Hessian for each parameter
lass. The preconditioning filter, therefore, automatically balances
he spatial energy of the gradient for each parameter class. 

Finally, in order to calculate the exact diag( H 

a 
mm 

) , the Green’s
unctions associated with each receiver position and each receiver
omponent are required: we need to carry out N r × N rc simulations
or each iteration, where N r is the number of receivers and N rc is the
umber of receiver components. Unfortunately, the computational
ost for this simulation is prohibiti vel y expensi ve. Therefore, to
educe the computational burden, we calculate the receiver-side
reen’s function only for a specific receiver component corre-

ponding to a force component. Moreover, P m is calculated at
he first iteration and kept constant for the rest of iterations (e.g.
perto et al. 2006 ; Butzer 2015 ), which results in the additional
eduction of the computational cost. 

P P E N D I X  B :  PA R A M E T E R  C O U P L I N G  

NA LY S I S  F O R  V  S  

U S I N G  A  R E A L I S T I C  

U B S O I L  M O D E L  

s in Section 4.2.3, we investigate here the parameter coupling
n the preconditioned gradient for V S . We consider the following
quation: 

− 1 

diag 
(
H 

a 
V S V S 

) + εV S 

∇ V S E ≈ diag 
(
H 

a 
V S V P 

)
diag 

(
H 

a 
V S V S 

) + εV S 

�V 

N 
P 

+ 

diag 
(
H 

a 
V S V S 

)
diag 

(
H 

a 
V S V S 

) + εV S 

�V 

N 
S 

+ 

diag 
(
H 

a 
V S ρ

)
diag 

(
H 

a 
V S V S 

) + εV S 

�ρN , (B1) 

here diag 
(
H 

a 
V S V S 

) + εV S represents the preconditioning filter for
 S ( P V S in eq. 9 ). We compare the coupling coefficients of V S (i.e.
 iag 

(
H 

a 
V S ρ

)
/ 
(
d iag 

(
H 

a 
V S V S 

) + εV S 

)
) for the different force data

ets (Figs B1 d–f). 
The coupling coefficients of V S show extremely small values

 ∼10 −2 ) below 2 m depth (Figs B1 d–f). Note that the value is
uch smaller than the coefficient for �V 

N 
S ( ≈1). This indicates

hat the effect of �ρN on the preconditioned gradients for V S is
0 −2 smaller than that of �V 

N 
S : the preconditioned gradients for

 S are not significantly contaminated by the artefacts due to �ρN ,
egardless of the force directions. 

Below z = 5 m at the centre of the model, the gradient values
or V S for the f z data set are mostly positive (blue dashed line in
 ig. B1 c), w hich is similar to the gradient values for ρ (see the blue
ashed line in Fig. 12 c). Although the overall trends for the gradient
or the f y data set is characterized by an oscillatory nature, one can
ecognize the large positive value around 11 m depth (see the red
ine and the black arrow in Fig. B1 c). The true model differences
 � V S 

true and �ρ true ) show the oscillation of �ρ true around zero and
arge positi ve v alues for � V S 

true below z = 5 m (see the black arrow
n Fig. B1 i). Thus, the large positi ve v alues of the gradient around
1 m depth for both force-direction data sets (Fig. B1 c) indicate that
he preconditioned gradients for V S reflect the direction along �V 

N 
S 

ithout significant artefacts due to �ρN . Besides, the oscillatory
ature of the preconditioned gradient for the f y data set suggests the
ossibility of achieving higher-resolution images than with f z data
et (Figs B1 a–c), which is discussed in Section 3.3. 

P P E N D I X  C :  I N V E R S I O N  R E S U LT S  

O R  V  S  

U S I N G  A  R E A L I S T I C  S U B S O I L  

O D E L  

imilar to ρ (Section 4.2.4), we compare the reconstructed V S mod-
ls using f z and f y data sets (Figs C1 a and b) with the true V S model
Fig. C1 c). Both inversions successfully reconstruct the overall V S 

tructure. Ho wever , the results for the f z data set show a few artefacts
n the clay layer (see green dashed circles in Fig. C1 a), while using
he f y data set does not produce such artefacts in the same layer (see
reen dashed circles in Fig. C1 b). 

The comparison of 1-D profiles illustrates better V S estimates for
he f y data set in the peat layer than for the f z data set (see the solid
lack arrow in Fig. C1 d). Additionally, there is a larger oscillation
n the clay lay er w hen using the f z data set than using the f y data set
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(see the black dashed arrow in Fig. C1 d). These differences reflect 
difference in resolution capabilities of the preconditioned gradient 
for the two different source directions, as discussed in Appendix B . 

We calculate the histograms of D V S (eq. 14 ) for f z and f y data 
sets (Fig. C2 ). Unlike for ρ (Fig. 14 ), one cannot recognize any 
significant difference among the overall trends of D V S for the dif- 
ferent force-direction data sets. In other words, an almost identical 
V S model is estimated for all different force directions of the seismic 
source. 

These results demonstrate that the choice of the force direction 
does not significantl y af fect the overall accuracy of the V S esti- 
mates; such a choice might cause only a small difference in the 
accuracy due to different resolution of the preconditioned gradient 
for V S . 
er 2023

art/ggad445_fb1.eps


3-D FWI using different force directions 747 

z 
(m

) 0

10
15

5
10

15
20

5
10

15
20

x (m) y (m)

(a) Reconstructed VS (fz) (b) Reconstructed VS (fy)

(d) 1D profile(c) True VS
0

5

10

15

5
0

10
15

5
10

15
20

5
10

15
20

x (m) y (m)

5

z 
(m

) 0

10
15

5
10

15
20

5
10

15
20

x (m) y (m)

5

50

60

70

80

90

100

110

120

V
S (m

/s)

0 200 300
VS (m/s)

100

True

fz
fy

Initial

Figure C1. The reconstructed V S models (a) when using an f z data set, and (b) when using an f y data set. (c) The true V S model. The green arro w sho ws the 
cla y la yer. (d) The comparison of 1-D profiles for the different force data sets at [ x , y ] = [13.5 m, 13.5 m]. 

0

2

4
6

8

10

12

14

0 40-40 80-80

×104

Fr
eq

ue
nc

y

DVS
 (%)

fz
fy

Correct update Incorrect update

Figure C2. The comparison of the histograms of D V S for two different 
force-direction data sets. 

C © The Author(s) 2023. Published by Oxford University Press on behalf of The Royal Astronomical Society. This is an Open Access 
article distributed under the terms of the Creative Commons Attribution License ( https://cr eativecommons.or g/licenses/by/4.0/ ), which 
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/236/2/727/7424135 by Technische U

niversiteit D
elft user on 22 D

ecem
ber 2023

art/ggad445_fc1.eps
art/ggad445_fc2.eps
https://creativecommons.org/licenses/by/4.0/

	1 INTRODUCTION
	2 METHODOLOGY
	3 RESULTS OF 3-D FWI FOR DIFFERENT FORCE DIRECTIONS: NOISE, PARAMETER COUPLING AND RESOLUTION
	4 NEAR-SURFACE MODELS: RESULTS OF 3-D FWI FOR DIFFERENT FORCE DIRECTIONS
	5 DISCUSSION
	6 CONCLUSIONS
	ACKNOWLEDGMENTS
	DATA AVAILABILITY
	SUPPORTING INFORMATION
	REFERENCES
	APPENDIX A: PRECONDITIONING FILTER BASED ON DIAGONAL HESSIAN
	APPENDIX B: PARAMETER COUPLING ANALYSIS FOR VS USING A REALISTIC SUBSOIL MODEL
	APPENDIX C: INVERSION RESULTS FOR VS USING A REALISTIC SUBSOIL MODEL

