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Abstract: The measurement of acoustic fields generated by ultrasonic transducers is important for
determining the focal length, lateral resolution, and amplitudes of the lateral and grating lobes. The
acoustic field is commonly characterized by a set of scans using a needle hydrophone. The output of
the hydrophone can be connected to an analog filter to enhance the signal. However, the analog filter
might not be sufficient to avoid the noises that distort the signals. Alternatively, linear digital filters
can be advantageous to improving the acoustic-field characterization. In this work, three filters were
investigated: moving average (MA), band-pass Hamming window (HW), and band-pass Blackman
window (BW). The filters were implemented and evaluated in terms of the root-mean-square error
(RMSE) of the measured sound field, which was filtered, in relation to the simulated acoustic field
(gold standard). As a compromise between effective filtering and signal non-distortion, a method
to model the MA kernel length was proposed. All the filters reduced the noise of the measured
acoustic field. The HW and the BW filters were more effective (RMSE = 4.01%) than the MA filter
(RMSE = 4.28%). In spite of the small quantitative difference, acoustic field comparisons showed
qualitative improvements.

Keywords: acoustic field characterization; transducers; ultrasound; digital filters; window filters

1. Introduction

The experimental determination of the acoustic field generated by a transducer is a
very important process in the design of ultrasound transducers [1,2], as well as for their
maintenance and calibration. The measurement of the acoustic field is useful to obtain
various characteristics of the beam, such as the focal length, beam width, and directivity
pattern.

The acoustic field is normally acquired underwater using a needle hydrophone, which
detects the ultrasound pulses emitted by the transducer in a region of interest using an xyz-
positioning stage [1–3]. A waveform (i.e., a time-varying signal) associated with each grid
point is obtained. The signals obtained can be represented by peak values, peak-to-peak
values, average values, root-mean-square (RMS) values, or envelope peak values. Then,
the generated acoustic field can be plotted in terms of the chosen values.

The needle hydrophone can be made of a piezoelectric polymer, polyvinylidene fluo-
ride (PVDF), which has a very large sensitivity and bandwidth compared to ceramics [4,5].
In [6], a sensor for measuring acoustic waves from a high-intensity focused ultrasound
(HIFU) transducer also used a PVDF polymer. While a broadband hydrophone is suitable
for reliably sampling the pulse emitted by the transducer, it is also susceptible to capturing
unwanted frequencies that arise from factors associated with the source and measurement
setup [4,7]. These factors, which can distort the hydrophone signal and cause variation
in the measured acoustic pressure, include fluctuations in electrical impedance and drive
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voltage, changes in water temperature (especially during long scans), alignment and po-
sitioning errors, reflections from the tank or water surface, poor water quality, electrical
noise, and environmental vibrations [7–9].

In general, a needle hydrophone is used to detect weak acoustic signals, which have a
very low amplitude. Due to this, the output of the hydrophone is commonly connected
to a pre-amplifier to provide a gain stage to amplify the measured signal [4]. In addition,
an analog low-pass filter can be combined with the hydrophone output to avoid aliasing
and suppress the potential amplification of high-frequency noise. Although the low-pass
filter can improve the performance of the measured acoustic signal, further improvement
might be achieved by applying additional filtering beyond the low-pass filter [10]. As an
alternative, digital filters can be applied to filter the signals after they are sampled and
digitized [11].

In the literature, many studies have reported on the use of digital filters for different
applications in acoustics. A digital filter was applied [12] to reduce the noise interference
in radio-frequency (RF) signals, used in ultrasound elastography images. A filter was
developed for medical ultrasound images, to reduce the speckle noises while maintaining
the edges of the human tissue [13].

A band-pass finite impulse response (FIR) filter was used [14] to enhance the visual-
ization of the audible sound field in real time using the Schlieren technique, such that the
noise was reduced by removing unwanted frequency components. The sinusoidal sound
fields of frequency 10 kHz and 15 kHz were obtained using a band-pass filter with the
order parameter equal to 200 (for a Nth order FIR filter, there will be N + 1 coefficients [15]).

Second- and fourth-order moving average (MA) filters were proposed [16] to be
implemented in an Arduino-based acquisition system to filter temperature and ultrasound
echo signals. The higher-order filter improved the results, producing smoother signals.
Another filter [17], a moving average hybrid FIR filter, which linearly combines MA and
hybrid median filters, reduced noise and improved the edges of 2D ultrasound images.

Two low-pass filters, one with a Blackman window and the other with a flat top
window, were designed in MATLAB Simulink [18]. The filters were 34th order and the
normalized cutoff frequency was 0.2. The roll-off of the Blackman window was faster
than the flat top window, which provided greater attenuation in the stopband. In another
study [19], 4th- to 34th-order low-pass filters with Blackman Nuttall and Welch windowing
were analyzed to remove white noise from electrocardiogram (ECG) signals. The Blackman
Nuttall filter was more effective than the Welch filter, as it provided less distortion in the
signal.

A band-pass Hamming-window filter at a central frequency of 2.25 MHz and band-
width of 2.48 MHz (110%) was used to characterize an electroacoustic hydrophone devel-
oped in [20]. In [21], a band-pass Hamming window was used to filter the ultrasound
signals from an underground mine detector system. The filter lower and upper cutoff
frequencies were 39.9 kHz and 40.1 kHz, respectively, close to the operating frequency of
40 kHz. The transition band from each cutoff frequency to the stopband was 5 kHz and the
sampling frequency was 212 kHz.

In [22], three types of window functions used for designing FIR low-pass filters were
tested: the Kaiser window, Dolph–Chebyshev window, and Hamming window. In terms
of frequency selectivity, the Hanning window played a better role than the others. To
date, however, it seems that no systematic studies have been conducted that quantitatively
compare the performance of different types of digital filters employed to filter hydrophone
signals during the characterization of acoustic fields.

This work aims to test linear digital filters that can be easily implemented to improve
the acoustic field characterization by reducing the unwanted frequency components from
the hydrophone measurements. Three filters were evaluated: the moving average filter,
band-pass Hamming window, and band-pass Blackman window. The measured acoustic
field was filtered with these three filters and compared to the simulated acoustic field, taken
as the gold standard.
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2. Theory

Digital filters are very important for many kinds of devices such as smartphones,
radios, wireless data transfer, multimedia devices, and so on [23]. They are essential for
processing digital signals, being useful to separate signals that have been mixed and to
re-store signals that have been distorted [24]. For example, digital filters allow obtaining a
baby’s electrocardiogram still in the womb, separating the baby’s heartbeat signal from the
mother’s signals, such as her breathing and heartbeat [24].

Although analog filters can perform the same functions as digital filters, they are very
expensive, especially at high frequencies, as they are implemented with hardware com-
ponents such as operational amplifiers, capacitors, inductors, and resistors. Furthermore,
digital filters have superior performances than those obtained with analog filters [23,24]

Moreover, digital filters can be implemented through software [23], allowing them to
change their performance easily, for example, by increasing or decreasing the order and
changing the cutoff frequencies as needed.

However, an analog low-pass filter is required before the signal digitalization (analog-
to-digital conversion) to avoid the undersampling effect, also known as aliasing. When
aliasing occurs, the high frequencies are digitalized as low frequencies, distorting the infor-
mation. This can be avoided by adding an analog low-pass filter with a cutoff frequency
(f c) that is lower than half of the sampling frequency (f s). This is known as the Nyquist
criterion, which says that f s must be at least twice as high as the maximum frequency of
the signal to be sampled [15]. This analog low-pass filter is known as an anti-aliasing filter.
Next, the linear digital filters used in this work are introduced.

2.1. Moving Average Filter

The moving average (MA) filter operates straight in the time domain and it is the most
common filter in digital signals processing (DSP) due to its ease of implementation [24].
The MA is efficient at decreasing random noise and smoothing the signal. However, MA is
not suitable for separating signal components in the frequency domain. Although the MA
acts as a low-pass filter, its roll-off (i.e., the transition from the cutoff frequency to stopband
frequency) is large. For a given digitized temporal signal x[ ], the MA-filtered signal y[ ] is
defined as [24]

y[i] =
1
M

M−1

∑
j=0

x[i + j] , (1)

where M is the number of samples used in the moving average. In short, Equation (1)
means that each signal sample is replaced by the average of M adjacent samples, including
the sample being filtered. For example, supposing a signal in the discrete time domain
being operated by the MA with M = 3, the value of the signal at index 80 will be y[80] =
(x[80] + x[81] + x[82])/3.

The MA filter can be implemented as a convolution using a simple filter kernel (the
kernel of the filter is its impulsive response, h[ ]). For example, the kernel of an MA
with M = 3 is h[ ] = {1/3, 1/3, 1/3}. The MA is a sum of the convolution of the signal
with a rectangular pulse (kernel), resulting in an area equal to one. Formally, the kernel
convolution sum h[ ] of length M, with the input signal x[ ], with j going from 0 to M − 1,
results in the output signal y[ ], given as [24]:

y[i] =
M−1

∑
j=0

h[j]x[i− j] . (2)

2.2. Windowed-Sinc Filter

The windowed-sinc filter (also called window filter) is implemented by convoluting
its kernel with the signal in the discrete time domain. However, the window filter kernel is
modeled for different purposes, such as selecting and removing the amplitudes at specific
frequencies, making it possible to remove noise and extract only the pertinent information
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from the signal. Thus, the window filter is suitable to be used as a low-pass, high-pass,
band-pass, or band-reject filter (the latter is also called a notch filter [24]).

To understand how a window digital filter is obtained, one must start from the ideal
filter response in the frequency domain. The kernel of the ideal frequency-domain filter
is a rectangular function (Figure 1a), and its time-domain equivalent is a sinc function
(Figure 1b), which is obtained by the inverse Fourier transform of the rectangular function.
The idea is to give unity gain to the components of interest in the signal, and to give zero
gain to the other components. This is accomplished by multiplying the kernel by the signal
in the frequency domain, or convolving them in the discrete time domain, as seen in (2).
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Figure 1. Windowed-sinc low-pass filter with a cutoff frequency of 0.2 fs: (a) frequency response of
the ideal filter kernel, and (b) its respective infinite sinc function; (c) kernel used from a sinc function
truncated with M + 1 samples, and (d) its low-pass and overshoot near the cutoff frequency.

For sinc kernel to be implemented in a computer, that is, in a discrete domain, the
sinc function must be limited (truncated) symmetrically around the main lobe, with M + 1
points (M must be an even number, and the sum of one is due to the central symmetry
point), and all samples outside this range must be set to zero [24]. Also, the entire sequence
must be shifted to the right so that the kernel can “run” from zero to M, resulting in a causal
function (Figure 1c). However, the abrupt discontinuities at the ends of the truncated sinc
result in unwanted ringing at the band-pass and overshoot around the cutoff frequency
(Figure 1d). This distortion phenomenon is known as the Gibbs effect [15,24].

A very efficient method to reduce the distortions in the frequency domain is to multiply
the truncated sinc by a weighting function, known as the apodization window (hence the
name of the windowed-sinc filter). Thus, the apodization window makes the ends of the
sinc function gradually decrease to zero.
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There is a variety of apodization functions, but the Hamming and Blackman windows
are particularly advantageous as they have higher stopband attenuation than others. While
the stopbands of the rectangular (windowless), Bartlett (triangular), and Hanning (raised
cosine) windows are −21 dB, −25 dB, and −44 dB, respectively, the Hamming and the
Blackman windows are −53 dB and −74 dB, respectively. On the other hand, the roll-off
of the Blackman window is 3 times larger than the roll-off of the rectangular window and
1.5 times larger than that of the Hamming window. Moreover, the roll-off rates are the
same Hanning and Bartlett windows [15]. Therefore, for a given kernel of length M + 1, the
choice of an apodization window is a trade-off between stopband and roll-off.

Although the stopband is dependent on the window type, the roll-off can be adjusted
by increasing or decreasing M: the larger the M, the faster the roll-off, and vice versa [24].
This means that a Blackman window could achieve the Hamming roll-off while maintain-
ing the Blackman stopband, but the filtering computing time also increases due to the
convolution operation (2).

2.3. Band-Pass Filter with Hamming Window and Blackman Window

The Hamming window (HW) and the Blackman window (BW) filters were used in this
work because they have larger stopbands than the other window filters mentioned here.
The process for designing the two filters is very similar, so they were designed together in
this section. A band-pass filter is suitable to improve the characterization of the acoustic
field, as the transducer bandwidth has been previously characterized using the pulse-echo
measurement. By fitting the frequency band of the band-pass filter within the bandwidth
of the transducer, the pulse is separated from unwanted noise in the sampled window
measured with the hydrophone.

In the design of a filter, the lower and upper cutoff frequencies (respectively, f 1 and
f 2) must be normalized by the sampling frequency, f s, and must be a value between 0 and
0.5 [24] (considering the Nyquist frequency).

The value of M must be an even positive integer. It can be approximated by [24]

M =
4

BW
, (3)

where BW is the frequency bandwidth of the roll-off, which is also normalized by the sam-
pling frequency f s. Equation (3) is a trade-off between the roll-off speed and computation
efficiency: the larger the M, the faster the roll-off (because the transition bandwidth is
shorter) and the longer the computation time is, and vice versa.

Afterward, the kernel of the windowed-sinc Hamming filter was calculated by [24]

h[i] = k

 sin
(

2π f2

(
i− M

2

))
i− M

2
−

sin
(

2π f1

(
i− M

2

))
i− M

2

[0.54− 0.46cos
(

2πi
M

)]
. (4)

In (4), the arguments of the sinc functions, which are inside the left brackets, are
subtracted by −M/2 to shift them to the right (see Figure 1c). In order to avoid division
by zero when i = M/2, then the equation h[M/2] = k (2π f 2 − 2π f 1) is used to replace
Equation (4). The k is constant for a unity gain filter. In practice, k is disregarded while the
kernel is being computed and then all samples are normalized as needed [24]. This can be
conducted by normalizing the kernel FFT, and the kernel filter is obtained by applying the
inverse of the FFT.

The Blackman window filter is obtained by replacing the expression inside the right
brackets of (4), which is a Hamming window function, with the Blackman window function,
as shown here [24]:

h[i] = k

 sin
(

2π f2

(
i− M

2

))
i− M

2
−

sin
(

2π f1

(
i− M

2

))
i− M

2

[0.42− 0.5cos
(

2πi
M

)
+ 0.08cos

(
4πi
M

)]
. (5)
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3. Materials and Methods

In this section, the acoustic field measurement and simulation processes, as well as the
design of the filters and performance evaluation, are presented.

3.1. Quantitative Analysis

The pure qualitative analysis of the results regarding waveforms and acoustic fields
can lead to misinterpretations, as the perception of the results is subjective [13]. Thus, to
obtain accurate comparisons, the filter performance was numerically calculated by using
the root mean square error (RMSE) equation [25]:

RMSE =

√√√√ 1
N

N

∑
i=1

(AFSIM[i]− AF[i])2, (6)

where AFSIM are the simulated values (gold-standard reference), AF are the measured
values (not filtered, and filtered), i is an index of the sample of a pulse or a given point
(x, z, y = 0) located at the acoustic field, and N is the number of samples or points of the
respective measurement.

To quantify the point-to-point absolute error between the filtered and the gold-
standard acoustic fields, the absolute error (AE) was used as a metric. This index of
quality allowed comparisons of the acoustic fields by using images of errors. An error
image is an image that attributes a color to a given AE[i], which was calculated by [26]

AE[i] = |AFSIM[i]− AF[i]| (7)

3.2. Acoustic Field Measurement

The acoustic field from a 2D phased-array ultrasound transducer (Figure 2) was
measured with the self-made needle hydrophone described in [5]. Because the hydrophone
was not calibrated, the measurements were normalized by the maximum amplitude of
the field. The phased-array transducer used in this work is the same transducer used
in [27] to make 3D acoustic images of objects immersed in water. The transducer consists
of 16 squared elements with sides equal to 5 mm distributed in a 4 × 4 matrix, which can
emit and receive ultrasound pulses individually. The center frequency of the transducer is
480 kHz and its −6 dB bandwidth is 50% [27]. Both the transducer and the hydrophone
were built in our ultrasound laboratory.
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Figure 2. Two-dimensional phased-array transducer.

The transducer was excited by an ultrasonic pulser/receiver (5077PR, Panametrics-
NDT, Waltham, MA, USA), which was adjusted to a 500 kHz squared pulse with an
amplitude of 100 V, 10 dB gain, and a 10 MHz low-pass filter. The acoustic field generated
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by the transducer was measured in a water tank (Figure 3), with a needle hydrophone held
by an automatic scanning system, sweeping the xz-plane at y = 0.
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Figure 3. Signal acquisition system to measure the acoustic field.

As the pulser/receiver has only one T/R channel; all the transducer elements were
connected in parallel, emitting at the same time. Thus, the measured acoustic field was
equivalent to that of a single-element square transducer with a 20.6 mm side.

The ultrasonic pulse emitted by the transducer reached the hydrophone at an x, z
point in the field. Consequently, the hydrophone generated an electrical pulse that was
received by the R channel of the pulser/receiver, which filtered the signal with a 10 MHz
analog low-pass filter. This frequency was 20 times greater than the central frequency of
the transducer.

The digital oscilloscope (MSO8104A Infiniium, Agilent Technologies, Englewood, CO,
USA) was only used for the transducer–hydrophone alignment process, which consisted of
moving the hydrophone in front of the transducer surface. This was necessary to define the
position of the center of the transducer and to adjust the scanning system.

Next, the pulser/receiver sent the pre-filtered signal for its digitization, which was
performed on an 8-bit analog-to-digital converter (ADC) board that had a maximum sample
rate of 100 MS/s (NI PCI-5112, National Instruments, Austin, TX, USA). In order to reduce
the amount of data for processing, the signals were sampled at 25 MS/s. The digitization
frequency was 2.5 times higher than the analog low-pass filter. Therefore, the Nyquist
criterion was observed to avoid undersampling.

After digitalizing and storing the signal in the PC, it sent a synchronized trigger pulse
to the tank driver to move the hydrophone with a step of 1 mm (λ/3) in z; when the z-axis
was fully swept, the hydrophone was moved with a step of 1 mm in x and the path of z
was reversed. The process was repeated until the entire plane −50 mm ≤ x ≤ 50 mm by
5 mm ≤ z ≤ 150 mm was sampled.

Before the acoustic field calculation, the DC components in the signals were removed
by subtracting the mean. Then, the acoustic field was obtained in MATLAB (The Math-
Works, Inc., Natick, MA, USA) by assigning to each point of the mesh the maximum pulse
amplitude at its respective point. Finally, the measured acoustic field was normalized.

3.3. Acoustic Field Simulation

The steps taken to simulate the acoustic fields in MATLAB are presented in Figure 4.
First, a pulse emitted by the transducer, called vn(t), was obtained using the modeling of
the KLM and ABCD matrices (Figure 4a–c) [28–30]. Then, the pressure wave p(

→
r Q,t), at a

spatial point Q in the field, was calculated with the rigid-plane piston model, where
→
r Q

is the position vector of the point Q (Figure 4d–f) [25,31,32]. This linear model describes
a piezoelectric transducer as a piston in which the face particles vibrate in a phase, with
velocity vn(t), normal to the transducer face. The acoustic field at a position Q is the
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maximum amplitude of p(
→
r Q,t). The model used in the simulation was accurate for the

purpose of the experiment, considering that the medium for measuring the acoustic field is
water, which meets the boundary conditions of the model, because it is homogeneous and
isotropic.
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Figure 4. The acoustic-field simulation processing: (a) a simulated electrical excitation signal is con-
volved with (b) the impulse response of the transducer, resulting in (c) the pulse being emitted by 
the transducer, represented as vn(t); (d) then, the derivative of vn(t) is convolved with (e) the velocity 
potential impulse response of the rigid piston h(𝑟 ,t) observed at a point Qi. The result is multiplied 
by the water density ρ, resulting in (f) the pressure wave p(𝑟 ,t). The maximum of the absolute 
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Figure 4. The acoustic-field simulation processing: (a) a simulated electrical excitation signal is
convolved with (b) the impulse response of the transducer, resulting in (c) the pulse being emitted by
the transducer, represented as vn(t); (d) then, the derivative of vn(t) is convolved with (e) the velocity
potential impulse response of the rigid piston h(

→
r Qi ,t) observed at a point Qi. The result is multiplied

by the water density ρ, resulting in (f) the pressure wave p(
→
r Qi ,t). The maximum of the absolute

pressure wave is the acoustic field at
→
r Qi . All signals in this figure were normalized exclusively for

better visualization.

The developed algorithm took into account all parts of the transducer presented in
Figure 2, such as piezocomposite elements, matching layer, backing layer, and also the
micro-multicoaxial cable and series inductors, used to match the electrical impedance of
the transducer with that of the pulser/receiver.

In addition, a squared negative electrical pulse (Figure 4a), similar to that generated
by the pulser/receiver, was used for transducer excitation. It was possible to simulate a
pulse with the same characteristics as the real transducer, a central frequency f o of 480 kHz
and 50% bandwidth (Figure 4c), making the simulation of the acoustic field more accurate.

Moreover, parameters such as the grid size and its discretization, as well as the
sampling frequency used to simulate the acoustic field, were equal to those used in the
measurements. The ultrasound propagation velocity in water was c = 1500 m/s. The noise
was disregarded in the pulses. Figure 5 shows (a) the acoustic field simulated at the xz-
plane, (b) its axial beam profile, and (c) its lateral beam profile. The acoustic pressure along
the acoustic axis (z-axis) is useful for determining the focal distance where the amplitude
is maximum. The lateral beam profile at the focal distance is useful for determining the
lateral resolution, given as the full-width at the half-maximum (FWHM).
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3.4. Design of the Moving Average Filter

The length of the MA kernel, M, was varied, and the MA filter was applied to the
noiseless simulated pulse (Figure 4) to analyze how it was distorted as a function of M. This
was carried out by calculating the RMSE (6) of the filtered pulse with a given M, relative to
the simulated pulse.

The method was started by applying the MA filter to the simulated pulse, with M
from 1 (no filter) to 100 (approximately twice the number of samples of a one-cycle sinusoid
at the central frequency of the transducer, f o, such that M = 2 f s/f o) in steps of 1 (for better
visualization, only M = {1, 10, 50, 70} pulses are shown in Figure 6). Then, the RMSE
was calculated for each filtered pulse (Figure 7). The simulated unfiltered pulse was the
reference to calculate each RMSE(M).
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Figure 6. (a) A noiseless simulated pulse (black line) was MA-filtered with different kernel lengths,
M. When M = 10, the filtered pulse was similar to the original pulse, as the RMSE was only 2% (green
line). (b) The spectral frequency shows that even with only M = 10, the MA filter acted as a low-pass
filter, and the greater the M, the more deteriorated the pulse was.
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Figure 7. The RMSE of the simulated unfiltered pulse in relation to the filtered pulse with different
MA kernel lengths shows the RMSE increased, i.e., the pulse was distorted when M increased.

This method was useful for choosing an M that would not significantly deteriorate a
filtered pulse, as shown in Figures 6a and 7. The larger the kernel of the MA filter, the more
uncharacterized the pulse was.

In turn, a shorter kernel could preserve the waveform while attenuating high frequen-
cies, as shown in Figure 6a,b, respectively. This suggests that, although the MA filter acts as
low-pass filter, care must be taken to choose a kernel length so as not to mischaracterize the
pulse. After testing different kernel lengths, it was found that M = 0.2 f s/f o was a suitable
kernel length for the MA filter, as the RMSE when M = 10 was only 2%.

3.5. Design of the Hamming Window and Blackman Window Band-Pass Filters

While the MA kernel filter was designed with a simulated pulse, the window filters
were modeled using a measured signal. The pulse was measured at x = 25 mm, z = 100 mm,
far off the acoustic axis, in the far field, and normalized by the highest of all measured
pulses in the acoustic field.

This point was chosen because it was possible to locate the pulse emitted by the
transducer (see Figure 8a, between 70 µs and 80 µs) as well as unwanted noise and oscilla-
tions. The oscillations that are evident below 70 µs have a frequency lower than that of the
pulse emitted by the transducer. Averaging the measurements can indeed remove random
noise. However, it was not possible to average the results because it would considerably
increase the time for acquisition. The signal acquisition was automatic, i.e., the signals were
continuously acquired while the hydrophone swept the field.

Applying the FFT to the signal, frequency components outside the transducer oper-
ating range (0.75 f o to 1.25 f o) were identified with magnitudes comparable to and even
greater than those of the transducer operating, as noted at 0.12 f o and 0.2 f o in Figure 8b.
The amplitude of the high-frequency noise was slightly lower than that of the pulse, but the
duration of the low-frequency noise was longer than that of the pulse. As a consequence,
the energy of the noise and oscillations was comparable to that of the pulse, making it
impossible to identify its effective range in the frequency domain presented in Figure 8b.

In order to attenuate unwanted frequencies and, at the same time, not to mischarac-
terize the measured pulse of the transducer, the low and high cutoff frequencies of the
band-pass filter were f 1 = 0.25 f o (120 kHz) and f 2 = 1.50 f o (720 kHz), respectively.

The transition band between the cutoff frequency and the stopband was chosen as
BW = 0.10 f o (48 kHz), resulting in M = 2084 (3) (considering that BW must be normalized
by f s, and M is an even number). The transducer operating band was, thus, kept within the
band-pass filter band.

After calculating the kernel size, the kernels of the Hamming window filter and of the
Blackman window filter were calculated using Equations (4) and (5), respectively.
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remained were within the bandwidth of the transducer. 
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Figure 8. (a) Noisy pulse acquired by the ADC board (amplitude normalized by the maximum
amplitude of the field). Pulse measured in the far-field region at x = 25 mm, z = 100 mm, located
between 70 µs and 80 µs in the sampled window, showing unwanted oscillations at a frequency lower
than that of the measured pulse. (b) Frequency components of the sampled signal. The normalized
frequency signal shows that the highest amplitudes occurred at 0.12 f o and at 0.2 f o (below the
transducer bandwidth). These undesired frequencies could be filtered such that the high amplitudes
that remained were within the bandwidth of the transducer.

Although the kernels look very similar (Figure 9a), the Blackman kernel truncation
was smoother than the Hamming kernel truncation (Figure 9b), which can reduce ringing
in the band pass range and reduce overshoot near the cutoff frequencies.
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Figure 9. (a) The Hamming window and the Blackman window kernels look very similar, (b) but the
apodization at the end of the Blackman window was smoother than that of the Hamming window (b).

The frequency response of the band-pass filters showed that the Blackman window
filter increased attenuation out of the band-pass range more than the Hamming filter does
(Figure 10a). The Blackman window stopband magnitude was lower than that of the
Hamming window, and the roll-off from both filters was similar (Figure 10b).
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Figure 10. (a) The FFTs of the Hamming window and Blackman window band-pass filters show
that the attenuation out of the band-pass region using the Blackman window was higher than that
obtained with the Hamming window. (b) The roll-off was similar with both filters.

4. Results

To evaluate the performance of the filters, a pulse was measured at x = 50 mm,
z = 150 mm in the plane y = 0, normalized by the maximum amplitude of the field. The
location chosen to acquire the signal is critical because its amplitude is greatly attenuated off
the acoustic axis and in the far field, making the pulse and noise magnitudes comparable
(Figure 11a). Thus, a noise could be computed as a pulse, generating an error in the
determination of the acoustic field. Although the signal was limited by the 8-bit acquisition
board, it was able to show that the filters actually work.
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Figure 11. For the point x = 50 mm and z = 150 mm, the signals presented refer to (a) measured 
signal—unfiltered; (b) measured signal—filtered with MA M = 10; (c) measured signal—filtered 
with HW M = 2084; (d) measured signal—filtered with BW M = 2084; and (e) simulated noiseless 
signal. 
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Figure 11. For the point x = 50 mm and z = 150 mm, the signals presented refer to (a) measured
signal—unfiltered; (b) measured signal—filtered with MA M = 10; (c) measured signal—filtered with
HW M = 2084; (d) measured signal—filtered with BW M = 2084; and (e) simulated noiseless signal.
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Although the MA filter with M = 10 smoothed the signal, unwanted distortions
remained, with significant amplitudes around 80 µs, and from 117 µs (Figure 11b). The
same MA filter applied to the simulated pulse of Figure 6a made the attenuation significant
from 2 f o on. Thus, it is reasonable to consider that the signal was smoothed when the high
frequencies were filtered, and that the remaining disturbances were at frequencies in the
operating range of the transducer and below that.

In turn, the HW (Figure 11c) and the BW (Figure 11d) window filters with M = 2084
were more effective than the MA filter, as they make it easier to identify the pulse around
110 µs. The frequency response of the filter kernels modeled in Figure 10 showed that
frequencies below 0.25 f o and above 1.50 f o were greatly attenuated; one may hence
assume that unwanted distortions remain at frequencies around the operating band of the
transducer.

However, comparing the pulses filtered with HW (Figure 11c) and BW (Figure 11d)
with the simulated noiseless pulse (gold standard—Figure 11e), some noise was removed.
This suggests that unwanted frequency components are also included in the operating
band of the transducer, and that the linear filters in this work cannot remove them.

The filtering of high-amplitude noise was evaluated by adding a synthetic noise,
simulated in MATLAB, to the measured signal presented in Figure 11a. The synthetic noise
was the result of the sum of a 50 kHz continuous wave and 200 random pulses (single-
sinusoidal cycles of 10 MHz), both with twice the maximum amplitude of the measured
signal.

The 50 kHz continuous wave was low-frequency noise and the 10 MHz random pulses
were high-frequency noise. The unfiltered measured signal (raw) is shown in Figure 12a,
and the same signal with synthetic noise (synthetic), before and after MA, HW and BW
filtering, are shown in Figure 12b–d, respectively.
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As in Figure 11b, the MA filter in Figure 12b did not remove the low-frequency noise
from the signal with the synthetic noise, but it did smooth out the high-frequency noise.
On the other hand, the HW filter (Figure 12c) and the BW filter (Figure 12d) were very
effective in removing low- and high-frequency noise.

The measured acoustic field (Figure 13a) was filtered by applying the filters MA with
M = 10 (Figure 13b), HW with M = 2084 (Figure 13c) and BW with M = 2084 (Figure 13d).
The filter kernel was applied in each sampled signal in the mesh, and the pressure at a
given x, z point was the maximum of the absolute value over the sampled signal. All values
were normalized by their respective filtered acoustic field.
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(d) BW with M = 2084.

The RMSEs of the measured/filtered acoustic field in relation to the simulated one
were 6.34% for the unfiltered, 4.28% for the MA-filtered, and 4.01% for the HW- and BW-
filtered acoustic fields. Although the window filters reduced the RMSE by only around
0.27% relative to the MA filter, there was a qualitative improvement when comparing the
filtered acoustic fields of Figure 13 with the simulated noiseless one in Figure 5a.

For better visualizing the measured acoustic-field error as well as the performance
of the filters, images of the absolute error of the measured and filtered acoustic fields in
relation to the noise-free simulated acoustic field are given in Figure 14. By calculating the
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absolute error AE[i] for each point (7), this figure illustrates how different the normalized
pressure at each point was in respect to the gold standard. If there were no errors, the
image would be all blue.
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Figure 14. Absolute error of the measured acoustic field to the simulated acoustic field: (a) unfiltered;
(b) MA-filtered with M = 10; (c) HW-filtered with M = 2084; (d) BW-filtered with M = 2084.

Although all the images presented large-amplitude errors in the near field (z < 43 mm),
all filters improved the measured acoustic field, being more evident along the acoustic axis
(x = 0), where the pressure was higher than in other directions (keeping in mind that all
array elements were pulsed at the same time, therefore, without beam deflection). Both the
unfiltered (Figure 14a) and the MA-filtered (Figure 14b) acoustic field present a granular
aspect, while the acoustic fields filtered with the window filters, HW and BW, present
smoother images (Figure 14c,d, respectively). This can be explained by the fact that HW
and BW filters were capable of reducing the frequency components below the operating
band of the transducer, as shown in Figures 8 and 11c,d. The filters HW and BW showed
equivalent error images because their RMSE values were equal to 4.01%.

The focal length is the distance from the transducer up to the point where the maximum
amplitude occurs, and from which the acoustic amplitude decays monotonically. The axial
beam profile showed that the focal length of the measured acoustic field (Figure 15—black
line) was further away than the focal length of the simulated acoustic fields (Figure 15—
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yellow line). The focal length of the simulated acoustic field was 43 mm. The focal lengths
of the measured signal were 61 mm for the unfiltered (41.86% further than simulated),
48 mm for MA-filtered (11.63% further than simulated), and 40 mm for the HW- and
BW-filtered (6.98% closer than simulated) acoustic fields.
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Figure 15. Acoustic pressure along the acoustic axis: noiseless simulation—yellow line; unfiltered
measured—black line; MA-filtered—green line; HW- and BW-filtered—blue line.

Although this effect could be explained by a measurement error, Figure 15 shows that
the focal distance was reduced when a filter was applied to the noised measured acoustic
field. Taking into account that the focal distance is frequency-dependent (for a given
geometry, the higher the frequency, the longer the focal length) and that the filters applied
were low-pass and band-pass filters, the reduction in the focal length can be explained by
the attenuation of the high-frequency components of the measured pulses.

In fact, the window filters HW and BW decreased the focal length more than the
MA filter (Figure 15—blue line, and Figure 15—green line, respectively), as their higher
cut-off frequency was 1.5 f o, while the MA filter attenuated frequencies higher than 2 f o
(see Figure 6b). In conclusion, the high-frequency noises contributed to an increase the
focal length of the measured acoustic field. The RMSE of the normalized pressure profile
on the acoustic axis (x = 0 mm, y = 0 mm) were as follows: the RMSE of the unfiltered
field = 13.20%, the RMSE of the MA-filtered field = 7.39%, and the RMSE of the HW-filtered
and BW-filtered fields = 7.03%.

The lateral beam profiles were obtained from their respective acoustic fields (see
Figure 13) at their focal points (Figure 16). All the filters improved the results, and the
RMSE of the MA filter and of the window filters were equivalent. The filtering performance
of the MA, HW and BW filters, summarized in Table 1, shows that all filters improved the
acoustic field characterization.
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Figure 16. Lateral beam profile at the focal region: noiseless simulation—yellow line; unfiltered
measured—black line; MA-filtered—green line; and HW- and BW-filtered—blue line.
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Table 1. Summary of the main results: RMSE of the measured/filtered acoustic pressure over the
entire field, along the z-axis and transversal at focus; and error in focal length relative to simulated
values.

Filter Kernel
Length RMSE (%) Error (mm)

Acoustic field Along z-axis Transversal
at focus Focal length

Unfiltered - 6.34 13.20 4.18 18
MA 10 4.28 7.39 4.02 5
HW 2085 4.01 7.03 4.05 3
BW 2085 4.01 7.03 4.05 3

5. Conclusions

Linear digital filters are extensively used for many purposes, such as electronic devices,
medical images, RADAR, and signal processing. This work presented an effective, low-cost,
and useful method to design and implement linear digital filters that improve acoustic-field
characterization, reducing noises and unwanted distortions. Once the kernel is designed,
filtering is performed through a convolution of the Kernel and the ultrasound signal in the
time domain, with no complex mathematical calculations.

The MA filter with a kernel of only 10 samples acted as a low-pass filter, which
attenuated frequency components from twice the transducer central frequency. To model
the kernel length of the MA filter, a criterion of M = 0.2 f s/f o (wherein f s is the sampling
frequency and f o is the central transducer frequency) was established to avoid unwanted
distortion of the pulse. As a result, the RMSE of the measured acoustic field to the simulated
acoustic field reduced from 6.34% (unfiltered) to 4.28% (MA-filtered).

The HW and BW filters were more effective than the MA filter. However, these filters
are more difficult to model because there is a compromise between the computational load
and the roll-off band to determine the kernel length. The longer the kernel, the wider the
band of transition from the cut-off frequency to the stopband frequency. The HW and
BW were more effective because their stopband attenuations are much higher than that
of the MA. Furthermore, the HW and the BW make the implementation of the band-pass
filter feasible using cutoff frequencies around the frequency band of the transducer, thus
excluding frequencies that cause unwanted distortions. Although the BW has a stopband
attenuation higher than that of the HW (−74 dB versus −53 dB, respectively), and for a
given kernel length M + 1 the HW roll-off is shorter than that of the BW, their performances
were equivalent (both achieved an acoustic-field RMSE = 4.01%). The better performance
of window filters in comparison to the MA filter was obtained at the cost of computational
load, as the kernel length of HW and BW has M + 1 = 2085.

Although the RMSE quality index for the acoustic field showed that the window filter
was only 0.27% better than the MA filter, the acoustic fields filtered with HW and BW were
visibly much closer to the simulated noiseless acoustic field, used as a reference of quality
(see Figures 5a and 13). Furthermore, the results from the window filters can be improved
and customized for each transducer being characterized by adjusting the cut off frequencies
and the roll-off. Thus, window filters are suitable for improving the characterization of
acoustic fields generated by ultrasound transducers.

In the future, we intend to apply other filters to characterize acoustic fields, such as
nonlinear filters and adaptive filters, which can change the weighting coefficients according
to the local statistics. These filters will be compared to the window filters presented herein.
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