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A B S T R A C T

In this work, a recently proposed high-cycle fatigue cohesive zone model, which covers crack
initiation and propagation with limited input parameters, is embedded in a robust and efficient
numerical framework for simulating progressive failure in composite laminates under fatigue
loading. The fatigue cohesive zone model is enhanced with an implicit time integration scheme
of the fatigue damage variable which allows for larger cycle increments and more efficient
analyses. The method is combined with an adaptive strategy for determining the cycle increment
based on global convergence rates. Moreover, a consistent material tangent stiffness matrix has
been derived by fully linearizing the underlying mixed-mode quasi-static model and the fatigue
damage update. The enhanced fatigue cohesive zone model is used to describe matrix cracking
and delamination in laminates. In order to allow for matrix cracks to initiate at arbitrary
locations and to avoid complex and costly mesh generation, the phantom node version of the
eXtended finite element method (XFEM) is employed. For the insertion of new crack segments,
an XFEM fatigue crack insertion criterion is presented, which is consistent with the fatigue
cohesive zone formulation. It is shown with numerical examples that the improved fatigue
damage update enhances the accuracy, efficiency and robustness of the numerical simulations
significantly. The numerical framework is applied to the simulation of progressive fatigue failure
in an open-hole [±45]-laminate. It is demonstrated that the numerical model is capable of
accurately and efficiently simulating the complete failure process from distributed damage to
localized failure.

. Introduction

Fatigue is often a critical failure process in fiber reinforced polymer laminates. Accurate, efficient and robust numerical prediction
ools can help in enhancing the efficiency of the design process of composite laminated structures, reducing manufacturing time,
nd minimizing the need for extensive testing to ensure the safety of new composite structures.

When fiber reinforced polymer laminates are subjected to loads, several interacting failure processes take place that make
eveloping reliable prediction tools a challenging endeavor. For example, matrix cracks can initiate and propagate and eventually
ead to interface delamination. Finally, fiber breakage can occur leading to overall failure of the laminate. The interaction of
hese competing processes and the type of final failure depend on the stacking sequence, laminate thickness and the presence of
otches [1,2]. Furthermore, the load character (cyclic or quasi-static) influences the final failure mode [3–5]. In addition, damage
ccumulation in fiber reinforced composite materials already takes place at an early stage which results in significant stiffness
eduction and stress redistribution. In order to accurately predict the performance of composite laminates, numerical models must
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take into account the progressive character of failure that covers the initial stage of early damage up to complete failure of the
laminate.

In literature, several numerical models have been developed for the quasi-static load case of complex laminates. For example,
iang et al. [6] modeled splitting and matrix cracks with interface elements at pre-defined locations according to experiments. Hallet
t al. [7] used a similar approach for matrix cracks and delamination and included a Weibull statistical criterion for fiber failure.
urthermore, Van der Meer et al. [8,9] used the phantom node version of the extended finite element method (XFEM) [10] for modeling

matrix cracks to reduce the complexity of meshing and to allow for mesh-independent cracks that can initiate at arbitrary locations
with a pre-defined crack spacing. Moreover, Chen et al. [11] used a 3D version of the floating node method [12] to model the
interaction of a large number of discrete matrix cracks with delaminations and demonstrated that the model was able to accurately
predict the sequence of failure processes in notched and unnotched laminates. More modeling approaches of composite laminates
subjected to quasi-static loading scenarios can be found in Refs. [13–22].

At present, there are only few progressive failure models that can simulate (high-cycle) fatigue failure in composite laminates.
One of the first papers of open-hole fatigue modeling of progressive failure was presented by Nixon-Pearson et al. [23], where
pre-inserted interface elements were used to model matrix cracks and a Paris-type cyclic cohesive zone model (CZM) [24,25] was
used for crack propagation. Iarve et al. [17] developed a model where the regularized eXtended finite element method (Rx-FEM)
was employed for modeling mesh-independent cracks and a fatigue initiation criterion based on S-N curves was presented. This
framework was further extended by Lu et al. [26] to account for high-density crack networks by allowing cracks to appear close
to each other. In the work by Tao et al. [27], a similar approach as in Nixon-Pearson et al. [23] was adopted, but extended with
a fatigue initiation criterion based on S-N curves, similar as proposed in Ref. [17]. As opposed to the discrete crack modeling
approaches for simulating matrix cracking in the previously mentioned approaches, Llobet et al. [28] used a continuum damage
modeling approach with fiber-aligned meshes and included a description for fiber damage due to cyclic loading. More recently, Tao
et al. [29] developed an enhanced fatigue cohesive zone model where stiffness degradation is described by a Paris-relation-informed
neural network and applied it to simulate an open-hole fatigue tension test with good accuracy.

In most of the existing methods, a fatigue cohesive zone model, that requires a Paris-relation [30] as input, is used for
modeling delamination and matrix cracking. These cohesive zone models are suitable for describing crack propagation of an initial
crack [24,25,31–36]. However, in full-laminate analysis, a matrix crack can also initiate under cyclic loading. Upon further applying
fatigue load cycles, a fracture process zone develops in the onset phase after which propagation of the crack takes place. In literature,
only a few CZMs take these three stages of fatigue crack growth into account [17,26,28,37–40].

Recently, Dávila [37] proposed a cyclic CZM that covers initiation, onset and propagation and is built on Turon’s quasi-static
mixed-mode CZM [41,42]. The fatigue CZM relies on S-N curves with simple engineering assumptions and empirical relations to
take the dependence of mode-mixity and stress-ratio into account. The method is based on the assumption that an intrinsic relation
exists between S-N curves and Paris’ relation [43]. The model is capable of simulating complex 3D crack fronts [44] in a reinforced
double cantilever beam (DCB) test [45] and can be extended to cases where the local stress ratio is not equal to the global load ratio,
as presented in [46] where the presence of residual stresses was taken into account. In addition, R-curve effects in thermoplastic
material systems can be captured with a multi-linear cohesive softening relation which accounts for large-scale fiber bridging [47].
Furthermore, it has been demonstrated that the method can simulate crack migration in a ply-drop specimen [48]. With regards
to laminate analyses, the unification of initiation and propagation makes the fatigue CZM suitable for simulating both interface
delamination and matrix cracking in progressive failure analyses of complex laminates.

Originally, the model presented in Ref. [37] employed an explicit update of the damage variable that evolves with load cycles.
Therefore, small cycle increments must be used during simulations to prevent instabilities in the damage evolution and a step size
criterion based on the maximum damage experienced in all integration points is required. This approach may become problematic in
full-laminate analyses where many integration points, due to stress redistribution and complex loading histories, experience different
damage rates throughout the simulation.

In this work, an implicit fatigue damage update is presented to make the formulation more suitable for use in full-laminate
analyses. The method is combined with efficient cycle jumping based on global iterations and a fully consistent tangent matrix has
been derived to enhance efficiency and robustness of the simulations. In order to allow for multiple cracks at arbitrary locations,
the fatigue CZM is combined with XFEM with a proper fatigue crack insertion criterion that is consistent with the fatigue damage
evolution.

The organization of this article is as follows. Firstly the improvement to Dávila’s fatigue damage formulation is presented and a
fully consistent material tangent is derived. Subsequently, the XFEM implementation with a proper fatigue crack insertion criterion
is presented. The model is applied to several numerical examples to verify the methods and to the show the improved performance.
In order to demonstrate the capabilities of the presented numerical framework, an open-hole [±45]-laminate under fatigue loading
is simulated.

2. Methods

2.1. Fatigue cohesive zone model

The fatigue CZM by Dávila [37,49] is built on top of the static CZM with mode-dependent dummy stiffness by Turon [41,42].
In this section, the formulation of the fatigue CZM is given in local coordinate frame with basis vectors {𝒆𝑛, 𝒆𝑠1, 𝒆𝑠2} aligned with
2

the crack plane.
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In order to allow for a reduction of elastic stiffness due to fatigue and static loading, a scalar damage variable 𝑑 is introduced.
he traction is computed as

𝐭 = (𝐈 − 𝑑𝐏)𝐊[[𝐮]] (1)

here [[u]] is the displacement jump, 𝐊 is the dummy stiffness matrix and 𝐏 is a selection matrix expressed as

𝐊 =
⎡

⎢

⎢

⎣

𝐾𝑛 0 0
0 𝐾𝑠ℎ 0
0 0 𝐾𝑠ℎ

⎤

⎥

⎥

⎦

, (2)

𝐏 =

⎡

⎢

⎢

⎢

⎣

⟨[[𝑢]]𝑛⟩
[[𝑢]]𝑛

0 0
0 1 0
0 0 1

⎤

⎥

⎥

⎥

⎦

(3)

where 𝐾𝑛 and 𝐾𝑠ℎ are the normal and shear dummy stiffnesses respectively. The operator ⟨∙⟩ is the Macaulay operator, defined as
max(0, ∙) and makes sure that interfacial penetration is prevented when the normal component of the displacement jump is negative.
The damage variable 𝑑 determines the stiffness reduction and its evolution depends on the mode-mixity such that the energy
dissipated matches with the phenomenological mixed-mode fracture energy relation proposed by Benzeggagh and Kenane [50]. It
is shown in [42,51] that the correct energy dissipation under mixed-mode fracture is ensured by relating the ratio between dummy
stiffnesses 𝐾𝑛 and 𝐾𝑠ℎ to the fracture properties with the following equation

𝐾𝑠ℎ = 𝐾𝑛
𝐺𝐼𝑐,𝑑

𝐺𝐼𝐼𝑐,𝑑

(

𝑓𝑠ℎ
𝑓𝑛

)2

(4)

where 𝑓𝑛, 𝑓𝑠ℎ, 𝐺𝐼𝑐,𝑑 and 𝐺𝐼𝐼𝑐,𝑑 are the tensile strength, shear strength, mode-I and mode-II fracture energies, respectively. The
ixed-mode CZM is formulated in the form of an equivalent 1D traction-separation relation

𝜎 = (1 − 𝑑)𝐾𝛥 (5)

where 𝜎 is the equivalent stress, 𝐾 is the mode-dependent dummy stiffness and 𝛥 is the equivalent displacement jump. These
quantities are defined as

𝜎 =
√

⟨𝑡𝑛⟩
2 + 𝑡2𝑠1 + 𝑡2𝑠2 (6)

𝐾 = 𝐾𝑛(1 − ) + 𝐾𝑠ℎ (7)

𝛥 =
𝐾𝑛 ⟨[[𝑢]]𝑛⟩

2 +𝐾𝑠ℎ[[𝑢]]2𝑠ℎ
√

𝐾2
𝑛 ⟨[[𝑢]]𝑛⟩

2 +𝐾2
𝑠ℎ[[𝑢]]

2
𝑠ℎ

(8)

where  is a displacement-based measure of mode-mixity

 =
𝐾𝑠ℎ[[𝑢]]2𝑠ℎ

𝐾𝑛 ⟨[[𝑢]]𝑛⟩
2 +𝐾𝑠ℎ[[𝑢]]2𝑠ℎ

(9)

and [[𝑢]]𝑠ℎ is the Eucledian norm (length) of the shear displacement jump vector

[[𝑢]]2𝑠ℎ = [[𝑢]]2𝑠1 + [[𝑢]]2𝑠2 (10)

The values of equivalent displacement jump at fracture initiation and complete fracture of the 1D equivalent traction-separation
relation (Eq. (5)) are expressed as

𝛥0 =

√

√

√

√

√

𝐾𝑛([[𝑢]]0𝑛)2 +
(

𝐾𝑠ℎ([[𝑢]]0𝑠ℎ)
2 −𝐾𝑛([[𝑢]]0𝑛)2

)

𝜂

𝐾
(11)

𝛥𝑓 =
𝐾𝑛[[𝑢]]0𝑛[[𝑢]]

𝑓
𝑛 +

(

𝐾𝑠ℎ[[𝑢]]0𝑠ℎ[[𝑢]]
𝑓
𝑠ℎ −𝐾𝑛[[𝑢]]0𝑛[[𝑢]]

𝑓
𝑛

)

𝜂

𝐾𝛥0
(12)

where 𝜂 is the Benzeggagh-Kenane interaction parameter. The pure-mode jump components corresponding to fracture initiation and
complete fracture are given by

[[𝑢]]0𝑛 =
𝑓𝑛
𝐾𝑛

, [[𝑢]]𝑓𝑛 =
2𝐺𝐼𝑐,𝑑

𝑓𝑛
(13)

[[𝑢]]0𝑠ℎ =
𝑓𝑠ℎ
𝐾𝑠ℎ

, [[𝑢]]𝑓𝑠ℎ =
2𝐺𝐼𝐼𝑐,𝑑

𝑓𝑠ℎ
(14)

An energy-based damage variable  is introduced as the state variable, which is defined as the ratio of dissipated energy 𝐺𝑑
over the critical mixed-mode energy release rate 𝐺𝑐

 ≡
𝐺𝑑 =

𝛥 − 𝛥𝑓 (15)
3

𝐺𝑐 𝛥𝑓 − 𝛥0
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Fig. 1. Dávila’s fatigue cohesive zone model. The evolution of damage variable  is such that at constant stress and mode-mixity the time to failure 𝑁fail
matches with an S-N curve.

Fig. 2. Nomenclature of the fatigue CZM. The fatigue traction-separation response (∙) is inside the quasi-static envelope.

and can only increase in pseudo time 𝑡, such that for time step 𝑛 (𝑡 = 𝑡𝑛):

(𝑡𝑛) = max
0≤𝜏≤𝑡𝑛

(

(𝜏)
)

(16)

The stiffness-based damage variable 𝑑 in Eq. (1) is related to the energy-based damage variable through

𝑑 = 1 −
(1 −)𝛥0

𝛥𝑓 + (1 −)𝛥0
(17)

Dávila’s fatigue damage formulation

In Dávila’s fatigue CZM, the number of cycles to failure of a 1D bar with a single crack and cyclic load matches with an S-N
curve (see Fig. 1). This is achieved by reducing the stiffness at constant applied stress until the traction-separation response reaches
the quasi-static softening line, which marks failure of the material point. The evolution of the energy-based damage variable during
fatigue 𝑓 is described with the following (nonlinear) differential equation

d𝑓

d𝑁
= 𝑓(𝛥, 𝛥∗,) (18)

where 𝛥∗ is the reference displacement, which is the displacement corresponding to the residual traction (see Fig. 2) and can be
computed as

𝛥∗ = (𝛥𝑓 − 𝛥0) + 𝛥0 (19)

The quasi-static damage 𝑠 is computed as

𝑠 =
𝛥 − 𝛥0
𝛥𝑓 − 𝛥0

(20)

and the updated damage is determined as the maximum of the static and the fatigue damage

 = max
(

𝑠,𝑓
)

(21)

to ensure that the traction-opening response during fatigue loading is inside the quasi-static envelope.
4
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In [49], several fatigue damage functions were proposed and compared. It was shown that the so-called CF20 damage function

𝑓CF20
 = 1

𝛾
(1 −)𝛽−𝑝

𝐸𝛽 (𝑝 + 1)

(

𝛥
𝛥∗

)𝛽
(22)

gave the most satisfactory results. Here, 𝛾 is the number of cycles to failure at the endurance limit (which is usually set to 107
cycles), 𝑝 can be calibrated such that the propagation rates in the simulation match with (available) Paris curves [49] and 𝛽 is the
exponent in the S-N curve, computed as

𝛽 =
−7𝜂
𝑙𝑜𝑔𝐸

(23)

where 𝜂 is a brittleness parameter that can take into account the low-cycle fatigue response in the S-N curve.
For a given stress ratio 𝑅 ≡ 𝜎min∕𝜎max, the relative endurance limit 𝐸, defined as the ratio of equivalent endurance limit 𝜎end

nd mode-dependent static strength 𝑓, is computed from the relative endurance limit 𝜖 (at full load reversal 𝑅 = −1) with the
Goodmann diagram:

𝐸 =
2𝐶𝑙𝜖

𝐶𝑙𝜖 + 1 + 𝑅(𝐶𝑙𝜖 − 1)
(24)

where 𝐶𝑙 is an empirical relation which takes into account the effect of mode-mixity [52]:

𝐶𝑙 = 1 − 0.42 (25)

In summary, the input fatigue model parameters for CF20 are 𝜂, 𝜖 and 𝑝.

Implicit fatigue damage update

In order to compute the damage at current pseudo time 𝑡𝑛, the damage rate function in Eq. (18) must be integrated, which is
mathematically expressed as

𝑡𝑛
𝑓 = 𝑡𝑛−1 + ∫

𝑡𝑛

𝑡𝑛−1
𝑓(𝛥, 𝛥∗,) d𝑁 (26)

Dávila [37] used an Euler forward (explicit) time integration scheme where the integral is approximated as 𝛥𝑁𝑓 (𝑛−1)
 , with 𝑓 (𝑛−1)


representing 𝑓 evaluated at 𝑡𝑛−1. In this work, the damage at current time step 𝑛 (corresponding to time 𝑡𝑛) is computed with the
eneralized trapezoidal rule:

(𝑛)
𝑓 = (𝑛−1) + 𝛥𝑁

[

(1 − 𝜃)𝑓 (𝑛−1)
 + 𝜃𝑓 (𝑛)



]

(27)

with parameter 𝜃 ∈
(

0, 1
]

.1 Through Eq. (22), 𝑓 (𝑛)
 requires (𝑛)

𝑓 , making the update with Eq. (27) implicit. The resulting nonlinear
quation can be solved at local integration point level, e.g. with Newton’s method by performing iterations until a local convergence

criterion is met.

Remark. The right-hand side (RHS) of Eq. (27) depends on the step size 𝛥𝑁 . When the step size is too large and a material point
completely fails within the time step, no solution exists for Eq. (27) (see Fig. 3). This issue is circumvented by setting 𝑓 = 1 when
this occurs.

Consistent linearization of the traction update

In [37] and [42], a numerical tangent stiffness based on finite differences was used to approximate the tangent of the static
cohesive relation and the extension with fatigue damage. However, the accuracy of approximating the tangent and robustness
depends on the choice of the perturbation and is case-dependent. In addition, the traction update needs to be performed for each
perturbation of the displacement jump component, which may not be computationally efficient.

In order to improve the efficiency and robustness, which is crucial in full-laminate analyses, a consistent tangent stiffness matrix
is derived below for the static cohesive zone model [42] and the fatigue damage extension [37], including the improved (implicit)
fatigue damage update presented in this work.

The traction at current time 𝑛 is written as a function of displacement jump [[u]], current damage  and cycle jump 𝛥𝑁

𝐭 = �̂�([[u]],([[u]], 𝛥𝑁)) (28)

The linearized traction update can be expressed as

𝛿𝐭 =
(

𝜕�̂�([[u]],([[u]], 𝛥𝑁))
𝜕[[u]]

)

(𝑛)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐃

𝛿[[u]] (29)

1 Note that for 𝜃 = 0, the formulation reduces to an Euler forward scheme.
5
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Fig. 3. Right-hand side of Eq. (27) as a function of damage (𝑛)
𝑓 (curves in gray) at constant equivalent displacement 𝛥 while increasing the cycle increment

𝛥𝑁 starting from 𝛥𝑁 = 0 (horizontal gray line). For a given 𝛥𝑁 , the solution of Eq. (27) is the intersection with the blue line RHS = (𝑛)
𝑓 . The damage value

0 of the previous pseudo time step 𝑛 is indicated with ∙. When the cycle increment is too large, there exists no intersection for (𝑛)
𝑓 ∈

[

0 , 1
)

(curves in red).

where it is explicitly indicated that the time 𝑛 is kept constant. The material tangent 𝐃 can be identified in this expression as the
linear operator that maps an iterative-increment of the displacement jump to an iterative-increment of the traction vector.

By performing partial differentiation and after some re-arrangement, the expression of the material tangent becomes

𝐃 = (𝐈 − 𝑑𝐏)𝐊
⏟⏞⏞⏟⏞⏞⏟

secant stif fness

−𝐏𝐊[[𝐮]] 𝜕𝑑
T

𝜕[[u]] (30)

Differentiation of the last term in Eq. (30) and applying the chain rule gives

𝜕𝑑
𝜕[[u]] = 𝜕𝑑

𝜕
𝜕
𝜕[[u]] +

𝜕𝑑
𝜕𝛥0

𝜕𝛥0
𝜕[[u]] +

𝜕𝑑
𝜕𝛥𝑓

𝜕𝛥𝑓

𝜕[[u]] (31)

where the partial derivatives 𝜕𝛥0∕𝜕[[u]] and 𝜕𝛥𝑓∕𝜕[[u]] can be further expanded:

𝜕𝛥0
𝜕[[u]] =

𝜕𝛥0
𝜕

𝜕
𝜕[[u]] +

𝜕𝛥0
𝜕𝐾

𝜕𝐾
𝜕

𝜕
𝜕[[u]] (32)

𝜕𝛥𝑓

𝜕[[u]] =
𝜕𝛥𝑓

𝜕
𝜕
𝜕[[u]] +

𝜕𝛥𝑓

𝜕𝐾

𝜕𝐾
𝜕

𝜕
𝜕[[u]] +

𝜕𝛥𝑓

𝜕𝛥0

𝜕𝛥0
𝜕[[u]] (33)

The partial derivatives in Eqs. (31) to (33) can be computed with quantities already obtained from the traction update algorithm
presented before:

𝜕𝑑
𝜕

=
𝛥0𝛥𝑓

[

( − 1)𝛥0 −𝛥𝑓
]2

(34)

𝜕𝑑
𝜕𝛥0

=
( − 1)𝛥𝑓

[

( − 1)𝛥0 −𝛥𝑓
]2

(35)

𝜕𝑑
𝜕𝛥𝑓

=
(1 −)𝛥0

[

( − 1)𝛥0 −𝛥𝑓
]2

(36)

𝜕𝛥0
𝜕

=
𝐾𝑠ℎ([[𝑢]]0𝑠ℎ)

2 −𝐾𝑛([[𝑢]]0𝑛)
2

2𝛥0𝐾
𝜂−1𝜂 (37)

𝜕𝛥0
𝜕𝐾

= −
𝛥0
2𝐾

(38)

𝜕𝛥𝑓

𝜕
=

𝐾𝑠ℎ[[𝑢]]0𝑠ℎ[[𝑢]]
𝑓
𝑠ℎ −𝐾𝑛[[𝑢]]0𝑛[[𝑢]]

𝑓
𝑛

𝛥0𝐾
𝜂−1𝜂 (39)

𝜕𝛥𝑓

𝜕𝐾
= −

𝛥𝑓

𝐾
(40)

𝜕𝐾
𝜕

= −𝐾𝑛 +𝐾𝑠ℎ (41)

𝜕
𝜕[[u]] =

2𝐾𝑛𝐾𝑠ℎ
(

𝐾 ⟨[[𝑢]] ⟩

2 +𝐾 [[𝑢]]2
)2
6
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𝜕

Q
o

[

−([[𝑢]]𝑠ℎ)2 ⟨[[𝑢]]𝑛⟩ , [[𝑢]]𝑠1 ⟨[[𝑢]]𝑛⟩
2 , [[𝑢]]𝑠2 ⟨[[𝑢]]𝑛⟩

2

]T

(42)

𝜕𝛥𝑓

𝜕𝛥0
= −

𝛥𝑓

𝛥0
(43)

During loading, 𝜕∕𝜕[[u]] is non-zero at current time 𝑛 and global iteration 𝑗. Due to the max operator in Eq. (21), the term
∕𝜕[[u]] is not continuous which requires considering each case (static and fatigue loading) separately.

uasi-static loading. When quasi-static damage is larger than fatigue damage, the term 𝜕∕𝜕[[u]] is obtained by partial differentiation
f the static damage (Eq. (20)):

𝜕
𝜕[[u]] =

𝜕𝑠
𝜕𝛥

𝜕𝛥
𝜕[[u]] +

𝜕𝑠
𝜕𝛥0

𝜕𝛥0
𝜕[[u]] +

𝜕𝑠
𝜕𝛥𝑓

𝜕𝛥𝑓

𝜕[[u]] (44)

with
𝜕𝛥

𝜕[[u]] =
(

𝐾2
𝑛 ⟨[[𝑢]]𝑛⟩

2 +𝐾2
𝑠ℎ[[𝑢]]

2
𝑠ℎ

)−3∕2

⎡

⎢

⎢

⎣

𝐾𝑛 ⟨[[𝑢]]𝑛⟩
[

𝐾2
𝑛 ⟨[[𝑢]]𝑛⟩

2 +
(

2𝐾2
𝑠ℎ −𝐾𝑛𝐾𝑠ℎ

)

[[𝑢]]2𝑠ℎ
]

𝐾𝑠ℎ[[𝑢]]𝑠1
(

2𝐾2
𝑛 ⟨[[𝑢]]𝑛⟩

2 −𝐾𝑛𝐾𝑠ℎ ⟨[[𝑢]]𝑛⟩
2 +𝐾2

𝑠ℎ[[𝑢]]
2
𝑠ℎ
)

𝐾𝑠ℎ[[𝑢]]𝑠2
(

2𝐾2
𝑛 ⟨[[𝑢]]𝑛⟩

2 −𝐾𝑛𝐾𝑠ℎ ⟨[[𝑢]]𝑛⟩
2 +𝐾2

𝑠ℎ[[𝑢]]
2
𝑠ℎ
)

⎤

⎥

⎥

⎦

(45)

𝜕𝑠
𝜕𝛥

= 1
𝛥𝑓 − 𝛥0

(46)

𝜕𝑠
𝜕𝛥0

=
𝛥 − 𝛥𝑓

(𝛥𝑓 − 𝛥0)2
(47)

𝜕𝑠
𝜕𝛥𝑓

=
𝛥0 − 𝛥

(𝛥𝑓 − 𝛥0)2
(48)

Fatigue loading. When fatigue damage is larger than quasi-static damage, the term must be determined differently. The implicit
damage update in Eq. (27) can be recast in residual form as

𝑟 = (𝑛) −(𝑛−1) − 𝛥𝑁
[

(1 − 𝜃)𝑓 (𝑛−1)
 + 𝜃𝑓 (𝑛)



]

(49)

The residual is a function of independent variables  and [[u]]. Therefore, the variation of the residual is expressed as

𝛿𝑟 =

(

𝜕𝑟
𝜕

)

[[u]]
𝛿 +

(

𝜕𝑟
𝜕[[u]]

)



𝛿[[u]] (50)

The local damage state at current time 𝑛 is obtained in every global iteration by iteratively solving for the residual to be zero
(within a sufficiently small tolerance). Therefore, the variation of the locally converged residual does not change between global
iterations:

𝛿𝑟 = 0 (51)

which is a consistency condition. Similar to what is done for plasticity models with return mapping algorithms, this consistency
condition can be used to obtain a relation between the variation of the displacement jump and the locally converged damage variable
 from which the derivative of the damage with respect to displacement jump can be identified:

𝛿 = −

( 𝜕𝑟
𝜕[[u]]

)


( 𝜕𝑟
𝜕

)

[[u]]
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝜕
𝜕[[u]]

𝛿[[u]] (52)

Applying the chain-rule gives the expressions for the partial derivatives
(

𝜕𝑟
𝜕

)

[[u]]
= 𝜕𝑟

𝜕
+ 𝜕𝑟

𝜕𝛥∗
𝜕𝛥∗

𝜕
(53)

(

𝜕𝑟
𝜕[[u]]

)


= 𝜕𝑟

𝜕𝛥
𝜕𝛥

𝜕[[u]] +
𝜕𝑟
𝜕𝛥∗

𝜕𝛥∗

𝜕[[u]] +
𝑁
∑

𝑖=1

𝜕𝑟
𝜕𝑖

𝜕𝑖
𝜕[[u]] (54)

where the last terms after the summation are the partial derivatives of the parameter functions that depend on the displacement
jump (for CF20:  = {𝐸, 𝛽, 𝑝}). Applying the chain rule to the fourth term in Eq. (54) gives

𝜕𝛥∗
= 𝜕𝛥∗ 𝜕𝛥0 + 𝜕𝛥∗ 𝜕𝛥𝑓

(55)
7
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where 𝜕𝛥0∕𝜕[[u]] and 𝜕𝛥𝑓∕𝜕[[u]] are derived earlier (see Eqs. (32) and (33)). Performing the differentiation of the other derivatives
in Eqs. (53) to (55) gives

𝜕𝑟
𝜕𝛥

= −𝛥𝑁𝜃
𝜕𝑓
𝜕𝛥

(56)

𝜕𝑟
𝜕𝛥∗ = −𝛥𝑁𝜃

𝜕𝑓
𝜕𝛥∗ (57)

𝜕𝑟
𝜕

= 1 − 𝛥𝑁𝜃
𝜕𝑓
𝜕

(58)
𝑁
∑

𝑖=1

𝜕𝑟
𝜕𝑖

𝜕𝑖
𝜕[[u]] = −𝛥𝑁𝜃

[𝑁
∑

𝑖=1

𝜕𝑓
𝜕𝑖

𝜕𝑖
𝜕

]

𝜕
𝜕[[u]] (59)

𝜕𝛥∗

𝜕
= 𝛥𝑓 − 𝛥0 (60)

𝜕𝛥∗

𝜕𝛥𝑓
=  (61)

𝜕𝛥∗

𝜕𝛥0
= 1 − (62)

where, for CF20 with  = {𝐸, 𝛽, 𝑝}, the term in Eq. (59) can be further expanded:
𝑁
∑

𝑖=1

𝜕𝑓
𝜕𝑖

𝜕𝑖
𝜕

=

[

𝜕𝑓
𝜕𝐸

+

(

𝜕𝑓
𝜕𝛽

+
𝜕𝑓
𝜕𝑝

𝜕𝑝
𝜕𝛽

)

𝜕𝛽
𝜕𝐸

]

𝜕𝐸
𝜕𝐶𝑙

𝜕𝐶𝑙
𝜕

(63)

ith
𝜕𝑓
𝜕𝛥

=
𝛽
𝛥
𝑓 (64)

𝜕𝑓
𝜕𝛥∗ = −

𝛽
𝛥∗ 𝑓 (65)

𝜕𝑓
𝜕

=
𝑝 − 𝛽
1 −

𝑓 (66)
𝜕𝑓
𝜕𝐸

= −
𝛽
𝐸
𝑓 (67)

𝜕𝑓
𝜕𝛽

=
[

ln
( 𝛥
𝛥∗

)

+ ln(1 −) − ln(𝐸)
]

𝑓 (68)

𝜕𝑓
𝜕𝑝

= −
𝑓
𝑝 + 1

[

1 + (𝑝 + 1)ln(1 −)
]

(69)

𝜕𝐸
𝜕𝐶𝑙

=
2𝜖(1 − 𝑅)

[

𝐶𝑙𝜖(𝑅 + 1) − 𝑅 + 1
]2

(70)

𝜕𝐶𝑙
𝜕

= −0.42 (71)

𝜕𝛽
𝜕𝐸

=
7𝜂 ln (10)
ln (𝐸)2𝐸

(72)

𝜕𝑝
𝜕𝛽

= 1 (73)

Phantom node version of XFEM

The fatigue CZM with the improved damage update is combined with the phantom node version of XFEM [10]. When a certain
stress criterion in a bulk integration point is reached, a discontinuity is inserted in the displacement field of the element (see Fig. 4).
In order to include microstructural information of cracks propagating in the fiber direction, the normal 𝐧 of the crack is fixed in the
direction perpendicular to the fibers following Van der Meer and Sluys [8].

A discontinuity in the displacement field is achieved by duplicating the original element and expressing the displacement field
in terms of the independent displacement fields of the two overlapping sub-elements:

𝐮(𝐱) =
{

𝐍(𝐱)𝐮𝐴, 𝐱 ∈ 𝛺𝐴
𝐍(𝐱)𝐮𝐵 , 𝐱 ∈ 𝛺𝐵

(74)

where 𝐮𝐴 and 𝐮𝐵 are the vectors containing the nodal DOFs of the sub-elements with original nodes and phantom nodes. The
connectivity of the sub-elements is given as

𝛺𝑛
𝐴 = {𝑛1, 𝑛2, �̃�3} (75)

𝛺𝑛
𝐵 = {�̃�1, �̃�2, 𝑛3} (76)

The displacement jump vector along the cohesive segment 𝛤𝑑 is defined as

[[u]](𝐱) = 𝐍(𝐱)(𝐮 − 𝐮 ), 𝐱 ∈ 𝛤 (77)
8
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Fig. 4. Crack insertion in XFEM element. When the stress in a bulk integration point (left) satisfies the insertion criterion, a cohesive segment is inserted (right).

atigue XFEM insertion criterion

In order to allow for matrix cracks to initiate at arbitrary locations, an XFEM fatigue crack insertion criterion is presented in
he following. In the fatigue CZM, fatigue damage already accumulates before the static initiation stress is reached, provided that
he stress is above the endurance limit. Therefore, the endurance limit is a natural choice to define as the moment for insertion of
ohesive crack segments, which is consistent with the fatigue damage formulation.

The relative endurance limit depends on the local stress ratio 𝑅 and mode-mixity  via Eqs. (24) and (25). The endurance limit
an be computed with the relative endurance limit and the static equivalent strength as

𝜎end = 𝐸𝑓 (78)

where the static mode-dependent strength 𝑓 is related to the mode-dependent dummy stiffness (Eq. (7)) and the equivalent initiation
jump (Eq. (11)):

𝑓 = 𝐾𝛥0 (79)

Substituting the pure-mode initiation displacement components (Eq. (14)) in the expression for the equivalent fracture initiation
jump (Eq. (11)) and substituting the result, together with the expression for the mode-dependent dummy stiffness (Eq. (7)),
in Eq. (79) gives

𝑓 =
√

(𝐾𝑛(1 − ) + 𝐾𝑠ℎ)
[

𝑓 2
𝑛 ∕𝐾𝑛 + (𝑓 2

𝑠ℎ∕𝐾𝑠ℎ − 𝑓 2
𝑛 ∕𝐾𝑛)𝜂

]

(80)

hich is an expression in terms of input material model parameters and mode-mixity only. The material model parameters are
eadily available in a bulk integration point. However, in the absence of a cohesive segment in the XFEM element before crack
nsertion, Eq. (9) cannot be used to compute the displacement-based mode-mixity . Since the normal 𝐧 is fixed in the direction of
he fibers and known before crack insertion, the traction in each bulk element can be computed with the bulk stress using 𝐭 = 𝝈𝐧.
y using the fact that before crack insertion damage is zero (𝑑 = 0 → 𝑡𝑛 = 𝐾𝑛[[𝑢]]𝑛, 𝑡𝑠ℎ = 𝐾𝑠ℎ[[𝑢]]𝑠ℎ), the mode-mixity can be computed

in each integration point of a bulk element:

 =
𝑡𝑠ℎ∕𝐾𝑠ℎ

⟨𝑡𝑛⟩ ∕𝐾𝑛 + 𝑡𝑠ℎ∕𝐾𝑠ℎ
(81)

from which the endurance limit and the mode-dependent strength can be computed with Eqs. (78) to (80). The equivalent stress in
the bulk integration point is computed with Eq. (6). Finally, the XFEM fatigue crack insertion criterion is defined as

𝑓𝐼 (𝝈) ≡
𝜎(𝝈)

𝜎end(𝝈)
> 1.0 (82)

hich represents a surface in stress-space when 𝑓𝐼 (𝝈) = 1.0 (see Fig. 5).
It should be emphesized that at the moment of crack insertion when Eq. (82) is satisfied, fatigue damage in the newly inserted

ohesive crack segment is zero. Only after crack insertion, fatigue damage can accumulate according to the formulation presented
n the previous section.

hifted cohesive relation

Cohesive XFEM segments are inserted on the fly when the stress criterion is reached. The static initiation stress used in this work
s the B-K interpolation of the elastic stored energy [53] before the peak at zero damage (see Eq. (79)). For fatigue damage, the
atigue crack insertion criterion presented in the previous section is used.
9
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Fig. 5. Fatigue and static damage initiation surfaces in stress-space.

Fig. 6. Shifted fatigue cohesive zone model.

At the time of insertion, the stress in the material is non-zero. Therefore, following [54], Hille’s approach is used [55] where a
hift is applied such that the traction for zero opening in the cohesive segment is in equilibrium with the stress in the bulk 𝝈 before

and after insertion. The shift at the moment of crack insertion is computed as

[[u]]shif t = 𝐊−1𝝈𝐧 (83)

The updated traction at current time 𝑛 is computed with Eq. (1) where the displacement jump is the sum of the jump passed to
the integration point [[u]]FEM and the shift [[u]]shif t (see Fig. 6).

2.2. Adaptive cycle jumping

The cycle increment during fatigue loading is determined with a measure based on the number of global Newton–Raphson
iterations 𝑁iter , following a strategy similar to [56] as previously applied in static loading [8]. The cycle increment 𝛥𝑁 for the
next time step 𝑛 + 1 is computed from the current (converged) time step 𝑛 as

𝛥𝑁 (𝑛+1) = 𝐶−(
𝑛iter −𝑛

opt
iter

𝜉 )𝛥𝑁 (𝑛) (84)

here 𝐶, 𝜉 and 𝑁opt
iter are model parameters. If convergence is not reached within a specified maximum number of iterations 𝑛max

iter ,
he step is cancelled and restarted with a reduced cycle increment 𝛥𝑁 (𝑛) ← 𝑐red𝛥𝑁 (𝑛).

. Examples

First a simple 1D case is simulated with a single XFEM element and shifted cohesive relation in order to verify the presented
odeling approaches and to demonstrate the improved accuracy with the implicit fatigue damage update. As a second example,
DCB test is simulated where the importance of an implicit scheme for integrating the damage rate function is highlighted. In

he last example, an open-hole [±45]𝑠-laminate simulation is shown to demonstrate the capabilities of the numerical framework in
imulating the complex interaction of matrix cracking and interface delamination under fatigue loading.

.1. Example A: Single XFEM cohesive element test

Firstly, a simple case under uniaxial tension is simulated (see Fig. 7). The maximum applied stress level is 𝜎max = 6MPa. The
ensile strength, mode-I fracture energy and dummy stiffness are 𝑓𝑡 = 10MPa, 𝐺𝐼𝑐 = 0.1 and 𝐾 = 104 N∕mm. The fatigue model

max
10

parameters are 𝑝 = 𝛽, 𝜂 = 0.8 and 𝜖 = 0.2. The XFEM crack is inserted in the middle element when the applied stress 𝜎 = 0.2𝑓𝑡.
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Fig. 7. Specimen dimensions of single element test.

Fig. 8. Damage evolution with two different constant cycle increments 𝛥𝑁 . (a) 𝛥𝑁 = 10, (b) 𝛥𝑁 = 1000.

For the case of constant tension, the damage evolution can be analytically derived as shown in [49]. The time to failure is given
with the following equation

𝑁fail = �̄�(𝜎max) = 𝛾𝐸𝛽
(𝜎max

𝑓𝑡

)−𝛽[
1 −

(𝜎max

𝑓𝑡

)𝑝+1]
(85)

here 𝛾 = 107 (see Eq. (22)).
In the case of the maximum stress level considered in this example, the damage state at which the material point is considered

o have failed is equal to fail = 1 − 𝜎max∕𝑓𝑡 = 0.4.
The damage evolution as a result of three different time integration parameter values 𝜃 ∈ {0, 0.5, 1} (see Eq. (27)), corresponding

to Euler forward, trapezoidal rule and Euler backward, is shown in Fig. 8. When the step size is sufficiently small, as in the case with
𝛥𝑁 = 10, all three methods show good correspondence with the exact analytical result. When the step size is increased to 𝛥𝑁 = 1000,
the trapezoidal rule with 𝜃 = 0.5 results in the most accurate response as it is second-order accurate, while Euler forward and Euler
backward underestimate and overestimate the damage accumulation, respectively. Also note that with 𝛥𝑁 = 1000, the final damage
fail = 0.4 is not reached. This is caused by the fact that in the constant stress simulation, no equilibrium solution exists when
 > fail.

The simulations are also performed with the adaptive cycle jump scheme described in Section 2.2, where the cycle increment
ize 𝛥𝑁 is chosen based on the convergence characteristics from the previous pseudo time step. The damage evolution is shown in

Fig. 9(a). The number of elapsed cycles in each pseudo time step as a result of the accumulation of the (adaptive) cycle increments is
hown in Fig. 9(b). It can be observed that the implicit damage update with adaptive stepping based on global convergence behavior
s capable of tracing the full evolution of damage with high accuracy and efficient time stepping.

The exercise is repeated with four different stress levels. The corresponding number of cycles to failure is plotted on the
nderlying S-N curve that serves as input for the model in Fig. 10. A good match is obtained with the numerical simulations,
hich verifies the XFEM implementation with shifted cohesive relation and implicit fatigue damage update.
11



Engineering Fracture Mechanics 295 (2024) 109786P. Hofman et al.

i

m
i
p

C

t

Fig. 9. Damage evolution and elapsed cycles per pseudo time step with adaptive cycle increment 𝛥𝑁 .

Fig. 10. Verification of the input at different stress levels.

Fig. 11. Computational model of the DCB specimen. The element width is 0.05mm in the refined zone (region in dark gray) and 0.25mm outside this zone
(region in light brown). Eight elements are used across the thickness of each arm.

3.2. Example B: Double cantilever beam test

The improved performance of the fatigue CZM in simulating fatigue crack growth in a DCB test is compared to the existing
formulation in [37]. For this purpose, the case recently studied in [57] with optimal fatigue parameters is used for comparison. The
results are compared with the experiments done by Renart et al. [58]. The plies have height ℎ = 1.472mm, width 25mm and an
nitial crack length 𝑎0 = 51.2mm. The computational model is shown in Fig. 11.

Each arm of the DCB specimen is modeled with 2D plane strain linear quadrilateral elements with unit thickness. The bulk
aterial is linearly elastic orthotropic and the static interface material properties and optimal fatigue model parameters determined

n [57] are given in Table 1. Furthermore, normal dummy stiffness 𝐾𝑛 = 2 × 105 N∕mm is used. In order to drive the fatigue cracking
rocess, displacement control is used with a maximum applied displacement 𝑢max

p = 5mm and global load-ratio 𝑅 = 0.1.

omparison integration schemes with constant cycle increments
To compare the performance of the implicit damage update with the explicit update, constant cycle increments 𝛥𝑁 ∈

{10, 20, 50, 100} are used. For the implicit scheme, the numerical time integration parameter is set to 𝜃 = 0.5, which reduces to
he trapezoidal rule with second-order accuracy. Fig. 12 shows the crack extension 𝛥𝑎 as a function of number of cycles 𝑁 , which
12
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Fig. 12. Crack extension with number of cycles as a result of (a) explicit and (b) implicit fatigue damage update.

clearly indicates the strong influence of the step size for the explicit fatigue damage update, whereas with the implicit scheme, the
global response is insensitive to the step size in the investigated range.

Fig. 13 shows the traction-opening history of several integration points along the interface for the case with 𝛥𝑁 = 50. With
he explicit scheme, numerically unstable damage growth can be observed which is fully removed with the implicit scheme where
amage grows during fatigue loading in a continuous fashion. The effect of numerically unstable damage growth is most profound
or integration points in the cohesive zone (for which  ∈ (0, 1)) after the static ramp-up phase, where a sharp drop in stiffness is
bserved for the first fatigue cycles (see Fig. 13).

Under displacement control, the energy release rate (ERR) reduces as the crack extends and the compliance increases. Since the
RR is closely related to the area under the traction-opening relation, points move farther away from the softening line, which in
urn decreases the rate of fatigue damage accumulation d∕d𝑁 as described by the underlying S-N curve. Consequently, larger step
izes can be used as the crack propagates.

imulations with adaptive cycle jumping
Under displacement control, the energy release rate (ERR) reduces and a sweep over several ERR values is performed in a single

CB simulation. Therefore, the crack growth rate can be computed as a function of the ERR at the maximum load level and compared
o the response of the experimental Paris relation. The crack length 𝑎 is computed numerically and is based on the average damage
long the interface following [46]:

𝑎 = 𝑎0 +
𝑁ip
∑

ip=1
ip𝐽ip𝑤ip (86)

here 𝐽ip𝑤ip is the product of the Jacobian and the integration weight. The crack growth rate at time step 𝑛 is then approximated
ith Euler backward differentiation:

d𝑎
d𝑁

(𝑛)
≈ 𝑎(𝑛) − 𝑎(𝑛−1)

𝛥𝑁
(87)

The ERR at maximum load 𝐺max
𝐼 is computed according to the ASTM D5528 standard [59]

𝐺max
𝐼 =

3𝐹max𝑢max
p

2𝑏(𝑎 + 𝛥cor )
(88)

where 𝐹max is the reaction force at the node where 𝑢max
p is applied (see Fig. 11), 𝑏 is the specimen width and 𝛥cor takes into account

the effect of finite rotations (here 𝛥cor = 6.2mm). The computed crack growth rate vs ERR is shown in Fig. 15, from which it can
be observed that a good match is obtained with the experimental results.

The complete evolution of the traction is shown in Fig. 14, from which three phases can be distinguished. First, the maximum
load is applied quasi-statically. When the first load cycles are applied (shown in black), the fracture process continuous to develop
into a complete cohesive zone during the onset phase (shown in red). When the process zone has fully developed, propagation of
the crack takes place (shown in blue).

3.3. Example C: Open-hole [±45]-laminate

A [±45]-laminate is simulated in order to demonstrate the capabilities of the developed fatigue failure framework to deal with
13

progressive laminate failure. This case was previously studied in the context of static loading in [9] for the purpose of simulating
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Fig. 13. Traction-opening histories of several integration points along in the interface as a result of (a) explicit and (b) implicit fatigue damage update.

Fig. 14. Traction profile evolution along the interface at different time steps shown in gray. The stages of the static ramp-up, fatigue crack onset and propagation
are indicated with black, red and blue colors respectively.

Fig. 15. Paris relation with simulation and with experimental results from [58].

Table 1
Ply material properties for the DCB specimen example.
Source: Taken from [57].

Elastic constants ply Fracture properties interface Fatigue parameters

𝐸1 154GPa 𝑓𝑛 30 MPa 𝜂 0.8757
𝐸2 = 𝐸3 8.5 GPa 𝐺𝐼𝑐 0.305Nmm−1 𝜖 0.2628
𝐺12 = 𝐺13 4.2 GPa 𝑝 𝛽 + 0.915
𝜈12 = 𝜈13 0.35
𝜈23 0.4
14
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Table 2
Ply material properties for open-hole numerical example.

Elastic constants Fracture properties Fatigue parameters

𝐸1 122.7GPa 𝑓2𝑡 80 MPa 𝜂 0.95
𝐸2 10.1 GPa 𝑓12 100 MPa 𝜖 0.25
𝐺12 5.5 GPa 𝐺𝐼𝑐 0.969Nmm−1 𝑝 𝛽
𝜈12 0.25 𝐺𝐼𝐼𝑐 1.719Nmm−1

𝜂 2.284

the interaction between matrix cracking and delamination without fiber fracture. The effect of thermal residual stresses as a result
of the curing process [46] is not taken into account. This requires an extension of the framework to capture a varying stress ratio,
which is outside the scope of the present work.

Modeling preliminaries. The laminate has dimensions 38mm × 16mm × 1mm and contains a hole in the middle with a diameter of
6.4mm. The plies have a thickness 𝑡 = 0.5mm and are modeled with plane stress XFEM elements, whereas delamination between
the plies is modeled with zero-thickness interface elements. The constitutive relation of the matrix cohesive segments and interface
integration points is described with the improved fatigue CZM presented in Section 2.1. The material properties and the fatigue
model parameters are given in Table 2. The dummy stiffness of matrix cracks in normal direction is 𝐾𝑛 = 1.0 × 105 N mm−1,
whereas 𝐾𝑠ℎ is adapted according to Eq. (4). The shear stiffness of the interface is related to the shear modulus 𝐺12 and thickness
of the ply (𝐾𝑑 = 𝐺12∕

1
2 𝑡 = 22 000N∕mm) according to [9], taking into account the effect of out-of-plane ply shear deformation.

The computational domain is discretized using linear (constant strain) triangular elements with single-point Gauss integration.
Upon crack insertion, a two-point Gauss scheme is employed in the XFEM crack segment. Three-point Newton-Cotes is used for
the interface, following [9]. Furthermore, displacement control is used. The maximum applied displacement is 𝑢max

p = 0.1mm with
global load ratio 𝑅 = 0.1.

Crack segments are inserted when the stress in the bulk integration point reaches the stress endurance limit (see ). The shift is
applied in order to ensure traction continuity before and after insertion of the crack, which improves the convergence characteristics.
At the end of a converged pseudo time step, a maximum of 100 segments can be inserted at a time. After insertion, the global Newton–
Raphson loop is re-entered to equilibrate the solution with new crack segments [54]. With the XFEM representation, cracks can
initiate at arbitrary locations within a predefined crack-spacing width 𝑙c.

Eq. (84) is used to adapt the cycle increment 𝛥𝑁 throughout the simulations. The used stepping parameters are 𝐶 = 2, 𝜉 = 2,
𝑛optiter = 4, 𝑛max

iter = 10 and 𝑐red = 0.6.

Global response and damage development. Simulations are performed with crack-spacing parameter 𝑙𝑐 = 0.9. The progressive nature of
damage development is depicted in Fig. 16, which shows the reduction of global stiffness (reaction force over applied displacement
at the end) as a function of cycle number 𝑁 . At the indicated time instances, the damage profiles in the interface and the XFEM
matrix cracks are shown. From these figures, several stages of damage development can be distinguished. Firstly, a gradual stiffness
reduction takes place due to matrix cracking and delamination of the (small) triangular areas near the hole, followed by a rapid
damage development (from (a) to (c)) due to combined matrix cracking and major delamination on one side of the hole. After this
phase, a third stage of matrix cracking on the opposite side takes place (from (d) to (f)), leading to delamination with sharp stiffness
drops until complete failure of the laminate. The deformed mesh is shown in Fig. 17, from which it can be observed that a transition
from distributed to localized failure is obtained.

Time step dependence. The influence of the adaptive cycle jumping scheme on the accuracy of the simulation is illustrated in Fig. 18,
where the stiffness reduction is shown in Fig. 18(a) with two different adaptive stepping parameters, corresponding to small and
large cycle increments as depicted in Fig. 18(b). For the small increment simulation, the maximum cycle jump is 𝛥𝑁max = 1000.
It can be observed that the progression of damage and the time to failure is only slightly affected by the large step sizes, thereby
validating the choice to use global iterations as a measure for determining the cycle increment 𝛥𝑁 with implicit time integration of
the fatigue damage rate function. Moreover, Fig. 18(b) shows that the cycle jumping strategy with consistent tangent and implicit
fatigue damage update allows a seamless transition through periods that require small steps and periods that allow for large cycle
increments, with minimal influence on the accuracy.

Crack-spacing parameter dependence. The exercise is repeated for several crack-spacing parameter values 𝑙𝑐 (mm) ∈ {0.7, 0.9, 1.1, 1.3}.
Moreover, a case with two cracks per ply at predefined locations is included. The cracks are inserted in each ply in the direction of the
fibers and tangential to the hole. The global stiffness reduction is shown in Fig. 19. An interesting observation is that allowing more
than two cracks per ply has a significant positive effect on the fatigue life of the considered laminate. This can be explained by the
fact that matrix cracking results in a reduction of stress concentrations in the interface and thus less fatigue damage accumulation.
Another observation is that the response varies slightly with different crack-spacing parameter values. However, the discrepancy
is not monotonic, in the sense that reducing the spacing does not always lead to an increase in fatigue life. In fact, the difference
can be explained by analyzing Fig. 20, which depicts the damage in the XFEM matrix cracks in the bottom ply for each spacing
parameter value 𝑙c. It can be observed that the crack density and patterns are different, which explains a different progression of
stiffness reduction as observed in Fig. 19. However, when the response is shown on a log-scale, as is common practice with fatigue
15

analysis, the difference vanishes.
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Fig. 16. Stiffness reduction as a function of number of cycles 𝑁 (top) and damage evolution at indicated time instances in interface (in blue) and XFEM matrix
cracks in top ply (in red) and bottom ply (in green).

Fig. 21 shows the response in four integration points for the case of a crack spacing parameter 𝑙𝑐 = 0.9mm. As it can be observed,
two of the selected points completely separate, while the other integration points unload. This indicates that not necessarily all
XFEM cracks that have been inserted accumulate damage until complete material point failure, thereby allowing for simulating
the transition from distributed damage to localized failure. Another interesting fact is that the traction-separation response is not
parallel to the static softening line, as is the case with the simulated DCB case in the previous section (cf. Fig. 13(b)), indicating the
accurate time integration of the damage evolution equation.

4. Conclusion

A numerical framework for simulating progressive fatigue failure has been presented in this paper. The recently proposed fatigue
cohesive zone model by Dávila, which covers initiation and propagation, has been improved with an implicit time integration scheme
and consistent linearization of both the underlying quasi-static and the fatigue cohesive relation. Furthermore, the fatigue cohesive
zone model has been combined with XFEM for modeling mesh-independent transverse matrix cracks in full-laminate analyses.
16
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Fig. 17. Deformations in the laminate showing a transition from distributed to localized failure.

Fig. 18. Influence of the cycle jump size. (a) stiffness reduction with two different cycle jump parameters corresponding to small and large step sizes. (b) cycle
increments per pseudo time step. (c) accumulation of fatigue cycles throughout the simulation steps. The simulation with the small step strategy required more
than 1500 time steps, whereas with the larger step sizes the simulation finished in 174 time steps.

It has been shown with numerical examples that the improved damage update results in more accurate and efficient analyses.
The capabilities of the numerical framework have been demonstrated with the simulation of an open-hole [±45]-laminate under
fatigue loading. The numerical model can accurately simulate the interaction of transverse matrix cracking and delamination. A
slight sensitivity to the numerical crack-spacing parameter has been observed, although within acceptable range for predicting
fatigue life.
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Fig. 19. Influence of the spacing parameter 𝑙c on the simulation results on two different scales: linear on the left and log-scale on the right.

Fig. 20. Final damage  in XFEM cracks in bottom ply (shown in green) for different crack spacing parameter values 𝑙c. The delaminated area in the interface
is shown in dark gray.

Fig. 21. Traction-opening histories (right) of four XFEM integration points at different crack locations in the ply (left).
18
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