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Abstract
Heatwaves and bushfires cause substantial impacts on society and ecosystems across the globe.
Accurate information of heat extremes is needed to support the development of actionable
mitigation and adaptation strategies. Regional climate models are commonly used to better
understand the dynamics of these events. These models have very large input parameter sets, and
the parameters within the physics schemes substantially influence the model’s performance.
However, parameter sensitivity analysis (SA) of regional models for heat extremes is largely
unexplored. Here, we focus on the southeast Australian region, one of the global hotspots of heat
extremes. In southeast Australia Weather Research and Forecasting (WRF) model is the widely
used regional model to simulate extreme weather events across the region. Hence in this study, we
focus on the sensitivity of WRF model parameters to surface meteorological variables such as
temperature, relative humidity, and wind speed during two extreme heat events over southeast
Australia. Due to the presence of multiple parameters and their complex relationship with output
variables, a machine learning (ML) surrogate-based global SA method is considered for the SA.
The ML surrogate-based Sobol SA is used to identify the sensitivity of 24 adjustable parameters in
seven different physics schemes of the WRF model. Results show that out of these 24, only three
parameters, namely the scattering tuning parameter, multiplier of saturated soil water content, and
profile shape exponent in the momentum diffusivity coefficient, are important for the considered
meteorological variables. These SA results are consistent for the two different extreme heat events.
Further, we investigated the physical significance of sensitive parameters. This study’s results will
help in further optimising WRF parameters to improve model simulation.

1. Introduction

Extreme weather events are occurring more fre-
quently and intensely in recent years compared to the
past across the globe (Masson-Delmotte et al 2021).

Among these extreme events, heatwaves and bush-
fires are challenging to society due to their substan-
tial and persistent impact on human and natural sys-
tems (Perkins-Kirkpatrick and Lewis 2020, Abram
et al 2021). Recent studies show that heatwaves
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are intensifying globally and regionally in Australia,
underscoring the urgent need for efficient mitiga-
tion and adaptation techniques (Perkins-Kirkpatrick
and Lewis 2020, Reddy et al 2021). Due to its fre-
quent exposure to heatwaves, bushfires, and other
extreme events, Southeast Australia, in particular, has
been identified as a region with a greater suscept-
ibility to the effects of climate change (Bureau of
Meteorology and CSIRO 2020, Sharples et al 2016,
Di Virgilio et al 2019a). The increasing frequency
and intensity of bushfires in the region have been
linked to climate change, further aggravating the
risks and consequences of these events (Sharples et al
2016, Canadell et al 2021). Considering these events
have disastrous impacts, accurately simulating heat
extremes using numerical weather prediction (NWP)
models is critical to support appropriate planning of
adaptation and mitigation efforts.

The accuracy of a simulation from an NWP
model depends on the exactness of the initial con-
ditions and the ability of the model to represent
the physical processes that occur in the atmosphere
(Bjerknes 1910). These physical processes occur at
different spatial and temporal scales. Due to limited
computational resources, the model cannot accur-
ately represent the physical processes at all scales.
Certain physical processes occur at smaller scales
than those captured by the model grid. Moreover,
even at scales equivalent to the grid resolution, some
processes have complex mechanisms that are com-
putationally intensive or intricate to be represen-
ted explicitly. Parameterizations address this short-
coming by offering simplified, computationally effi-
cient representations of complex physical processes,
such as convection, cloud formation, soil moisture
transport, and boundary layer physics, to name a
few. Parameterization schemes employ mathemat-
ical equations to capture these complex physical pro-
cesses and relate these partially represented processes
to the large-scale processes that the model resolves.
These equations are typically based on empirical rela-
tionships or theoretical understanding derived from
observations or detailed process studies (Kain 2004,
Hong and Lim 2006). Numerous tuneable paramet-
ers are frequently included in the parameterization
schemes to simulate atmospheric processes. These
parameters are typically constants and exponents in
the model equations, and their default values are
specified by the scheme developers based on experi-
mental or theoretical investigations (Hong et al 2004).
Therefore, accurate specification of these parameters
within the model’s physical representation is crucial
for the reliability of model simulations (Yang et al
2012, Di et al 2015).

The Weather Research and Forecasting (WRF)
model is an NWP model widely used as a weather
forecasting tool and for dynamical downscal-
ing purposes across the globe. Researchers and

meteorological organizations have adopted themodel
extensively due to its adaptability, flexibility, and
high-resolution capabilities (Skamarock et al 2021,
Evans et al 2014). The WRF model has been used
in numerous studies in simulating extreme events
like heatwaves and extreme bushfires in Southeast
Australia (Kala et al 2015, 2023, Di Virgilio et al
2019a). The WRF model has multiple options for
parameterization schemes for each physical pro-
cess. Different combinations of parameterization
schemes give the user a choice of model configur-
ations (Skamarock et al 2021). Previous studies have
examined the sensitivity of various physics paramet-
erization schemes in simulating extreme events over
Southeast Australia (Evans et al 2012, 2014, Ji et al
2022) but no studies have explored the sensitivity
of parameters within the physics schemes. As dis-
cussed earlier, the values of parameters in these phys-
ics parameterization schemes play a crucial role in
model fidelity. Therefore, calibration of these para-
meter values using observations could help improve
the model simulation (Duan et al 2017, Chinta and
Balaji 2020, Baki et al 2022a).

Parameter estimation can be a complex pro-
cess due to several challenges. With many tuneable
parameters (often in tens to hundreds), the num-
ber of model simulations required to calibrate these
parameters increase exponentially as the number of
tuneable parameters increases. Furthermore, mul-
tiplemeteorological variables, such as humidity, wind
speed, and temperature, to name a few, must be con-
sidered simultaneously during calibration. The para-
meter calibration process requires enormous com-
putational resources. This challenge can be over-
come by first implementing sensitivity analysis (SA)
to identify the parameters significantly influencing
the model output variables of interest. This approach
helps reduce the number of parameters that need cal-
ibration, ultimately improving the accuracy of the
variables of interest in the model output (Quan et al
2016, Chinta et al 2021). SA investigates how vari-
ations in themodel output can be attributed to differ-
ent sources of uncertainty in the model’s input para-
meters (Saltelli 2002). Several studies have implemen-
ted SA toWRFmodel parameters to identify the para-
meters that influence the output variables (Yang et al
2012, Di et al 2015, 2017, 2018, Ji et al 2018, Wang
et al 2020, Baki et al 2022b).

This study aims to identify the WRF model para-
meters that most affect the different model out-
put meteorological variables related to heat extremes
(i.e. heatwaves and fire weather). We do this by focus-
sing on Southeast Australia during two extreme fire
weather and heatwave events. This study is organized
as follows; section 2 introduces the surrogate model
based global SA technique and describes the data,
events selected, and WRF model parameters for the
SA. Section 3 presents the SA results and a detailed
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discussion of the physical significance of identified
sensitive parameters. Section 4 summarises the con-
clusions from this study.

2. Methods

2.1. Machine learning (ML) surrogate-based
Sobol SA
SA is broadly classified into local and global categor-
ies. The local SA is performed by exploring how the
perturbed input parameters around specific refer-
ence values influence the ouput(s). However, global
SA explores the entire feasible parameter space and
highlights each parameter’s total effects, including
their interactive effects on the model output. The
local SA method is widely used because of its limited
computational requirements (Rakovec et al 2014).
However, if the input parameters interact and have
a non-linear influence on the output(s), the local SA
method will be substantially biased and underestim-
ate the importance of parameters (Saltelli et al 2019).
The considered WRF model parameters are expec-
ted to have complex interactions and non-linearly
influence the outputs (Di et al 2015, Quan et al
2016, Chinta et al 2021, Baki et al 2022b). Hence, in
this study, we use the global SA method. There are
many global SA techniques, including Morris One-
at-A-Time, Multivariate adaptive regression splines,
Fourier amplitude sensitivity test, and Sobol SA. Out
of these global SAmethods, previousWRF parameter
SA studies recommend the Sobol SA method because
of its accuracy, capacity to address interaction effects,
discontinuities, and possible non-linear effects of the
parameters on the output variables (Wang et al 2020,
Baki et al 2022b).

Sobol SA is based on Analysis of Variance decom-
position, also known as Hoeffding-Sobol decompos-
ition, which states that a functional output variance
can be expressed as the combination of variances of
the output function contributed by individual para-
meters, interactions of parameter pairs, and so on in
the increasing dimensionality (Sobol′ 2001, Saltelli
et al 2010). Based on the definition of variance as a
measure of likeliness, the Sobol sensitivity indices are
estimated as the ratios of variances contributed by the
parameter interactions with respect to the total vari-
ance. The computation of sensitivity indices requires
functional evaluations over a large number of input
samples, which is computationally very expensive for
theWRFmodel. However, it is feasible to generate the
thousands of output samples required for the SA by
employing a surrogate ML model that has been well
trained on a limited set of WRF model runs. Among
the various ML models available for use as surrogate
models, Gaussian process regression (GPR) has been
identified as one of the best suitable choices in such
scenarios (Ji et al 2018, Baki et al 2022b).

GPR is a probabilistic and non-parametric ML
technique that is accurate enough to predict and
model unknown functions. The GPR is built upon
theGaussian Process, which is ‘a collection of random
variables, any finite number of which have consist-
ent Gaussian distributions’ (Williams and Rasmussen
1995, 2006). For any vector of random input variables
x = {x1, x2, . . . , xn}, the corresponding latent func-
tions f(x) = {f(x1) , f(x2) , . . . , f(xn)} form a joint
multivariate Gaussian distribution governed by a
mean function and kernel function. Based on this, the
GPR can be explained in four stages. First, assuming
a mean and a kernel function, a collection of ran-
dom output latent functions is obtained over ran-
dom input variables, known as a Gaussian prior dis-
tribution. Second, provided a set of observed training
samples and assuming the targets follow a Gaussian
distribution, the hyperparameters of the kernel func-
tion are obtained by maximizing the log-likelihood
of the target’s Gaussian distribution. Third, with the
optimized hyperparameters, a posterior distribution
can be modelled by conditioning the observations for
a new set of test points. Finally, the posterior distri-
bution can be used to make predictions of any set of
new test points and keep the model updated.

2.2. WRFmodel configuration
This study employs the Advanced Research WRF
(WRF-ARW) model version 4.4 for the numerical
simulations (Skamarock et al 2021). The model
domain encompassing southeast Australia consists of
206 × 181 grid points with a horizontal resolution
of 12 km (figure S1). The model has 40 σ vertical
levels with the top layer set at the 50 hPa atmo-
spheric level. The time integration is performed with
a time step of 72 s. The European Centre forMedium-
Range Weather Forecast Reanalysis 5th generation
data set (ERA5) (Hersbach et al 2020) at 0.25◦ hori-
zontal resolution with a six-hourly interval are used
as the initial and lateral boundary conditions. The
WRF model output data is stored at hourly inter-
vals. The parameters and physics schemes are adapted
based on previous studies (Di et al 2015, Quan et al
2016, Chinta et al 2021, Baki et al 2022b). The sim-
ilar WRF physics parametrisation scheme combina-
tion performed reasonably well in simulating the cli-
matology and extreme temperatures over the study
domain (Evans and McCabe 2010, Kala et al 2015).
A total of 24 adjustable model parameters are identi-
fied across seven different physics schemes. These 24
parameters are chosen because they have documented
ranges. The details are presented in table 1.

2.3. Experimental setup
In this study, we select the two heat extremes where
heatwaves and extreme fire weather days are observed

3



Environ. Res. Lett. 19 (2024) 014010 P J Reddy et al

Table 1. The WRF model physics schemes used in this study with corresponding adjustable parameters in the schemes and their
respective default values and ranges. These default values and ranges are adapted from previous studies (Di et al 2015, Quan et al 2016,
Chinta et al 2021, Baki et al 2022b).

Physics scheme Parameter Default Range Description

Surface layer-MM5
Monin–Obukhov Scheme
(Jiménez et al 2012)

P1 2.4× 10−5 1.2× 10−5−5× 10−5 The parameter for
heat/moisture exchange
coefficient (s m−2)

P2 0.0185 0.01−0.037 The coefficient for converting
wind speed to roughness
length over water

P3 1 0.5−2 Scaling related to surface
roughness

P4 0.4 0.35−0.42 Von Kármán constant

Cumulus-Kain-Fritsch Eta
scheme (Kain 2004)

P5 1 0.5−2 The multiplier for downdraft
mass flux rate

P6 1 0.5−2 The multiplier for
entrainment mass flux rate

P7 150 50−350 Starting height of downdraft
above USL (hPa)

P8 2700 1800−3600 Average consumption time of
CAPE (s)

P9 5 3−12 The maximum turbulent
kinetic energy value in
sub-cloud layer (m2 s−2)

Microphysics-WSM 6-class
scheme (Hong and Lim
2006)

P10 14900 8000−30000 Scaling factor applied to ice
fall velocity (1 s−1)

P11 8× 106 5× 106−12× 106 Intercept parameter of rain
(1 m−4)

P12 5× 10−4 3× 10−4−8× 10−4 The limited maximum value
for the cloud-ice diameter (m)

P13 0.55 0.35−0.85 Collection efficiency from
cloud to rain auto conversion

Shortwave
radiation-Dudhia scheme
(Dudhia 1989)

P14 1× 10−5 0.5× 10−5−2× 10−5 Scattering tuning parameter
(m2 kg−1)

Longwave radiation-RRTM
scheme (Mlawer et al 1997)

P15 1.66 1.55−1.75 Diffusivity angle for cloud
optical depth computation

Land surface-unified Noah
land surface model scheme
(Chen and Dudhia 2001,
Tewari et al 2004)

P16 1 0.5−2 The multiplier for hydraulic
conductivity at saturation

P17 1 0.5−2 The multiplier for the
saturated soil water content

P18 1 0.5−2 The multiplier for minimum
soil suction

P19 1 0.5−2 The multiplier for Clapp and
hornbereger ‘b’ parameter

Planetary boundary
layer-Yonsei University
(YSU) scheme (Hong et al
2006)

P20 0.3 0.15−0.6 Critical Richardson number
for boundary layer of water

P21 0.25 0.125−0.5 Critical Richardson number
for boundary layer of land

P22 2 1−3 Profile shape exponent for
calculating the momentum
diffusivity coefficient

P23 6.8 3.4−13.6 Coefficient for Prandtl
number at the top of the
surface layer

P24 15.9 12−20 Counter gradient
proportional coefficient of
non-local flux of momentum
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Figure 1. Comparison of normalised RMSE of air temperature (at 2 m height) (T; ◦C), relative humidity (at 2 m height) (Rh; %),
and wind speed (at 10 m height) (Ws; m s−1) of 256 WRF parameter runs for both considered events (2009 and 2019). Both the
events are simulated with the same set of 256 parameter values (in the same order). The line refers to the linear fit, and shading
represents the 95% confidence level of the linear fit.

over southeast Australia for the numerical simula-
tions. One is the southeast Australian heatwave event
starting in the last week of January and extending to
the second week of February 2009 (Engel et al 2013).
The 2009 event is simulated for 13 d covering the
period of extreme heat, i.e. from 26th January 12UTC
to 08th February 12 UTC. Another event is the heat
extremes during themid to end of December 2019/20
period. The 2019 event is simulated for 15 d cover-
ing heatwave and extreme fire weather days, i.e. from
16th December 12 UTC to 31st December 12 UTC. A
36 hmodel spin-up is considered for both events. The
simulation results are evaluated against the Bureau of
Meteorology Atmospheric high-resolution Regional
Reanalysis for Australia (BARRA2) data (Su et al
2022). BARRA2 provides hourly data at 12 km hori-
zontal resolution over the Australian region.

This study conducts parameter SA for the
critical meteorological variables of heat extremes
such as temperature, relative humidity, and wind
speed during both events (2009 and 2019). Firstly,
a Quasi-Monte Carlo Sobol sequence design is
employed to generate 256 parameter samples using
the Uncertainty Quantification Python Laboratory
package as recommended by the previous studies

(Wang et al 2020, Baki et al 2022b). Next, we per-
form the WRF simulations with the 256 generated
parameter samples for each event. A sample size of
256 is selected based on the sample size sensitivity
experiments (figure S2). Then we calculate each met-
eorological variable’s root mean square error (RMSE)
between WRF simulations and BARRA2 data. The
RMSE of 256WRF runs for both the events is presen-
ted in figure 1. The RMSE is normalised with min-
max normalisation for each selected event, respect-
ively. The 256 WRF runs with perturbed parameters
are broadly consistent for both the events with minor
differences which are expected due to slightly differ-
ent event characteristics (figure 1).

We then train the GPR model with parameter
samples as input and RMSE as output for each of the
considered meteorological variables. The GPRmodel
is evaluated against the WRF RMSE using a K-fold
cross-validation technique. Here the entire dataset is
divided into K-folds (K = 8). The GPR model is
trained with (K-1) folds; the left-out Kth fold is used
as test data. It is iterated over all the folds, and each test
set’s GPR predictions are stacked. The accuracy of the
GPR model is measured with the goodness of fit (R2)
metric by comparing the GPR predictions with WRF

5
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data. This shows that GPR has good accuracy with
high R2 values for each considered meteorological
variable (figure S3). Consequently, the trained GPR
model is used for predicting the RMSE of the 51 200
parameter samples. These parameter samples are gen-
erated using the Sobol sequence design, following
previous studies (Wang et al 2020, Baki et al 2022b).
Finally, Sobol sensitivity indices are calculated based
on these 51 200 samples, thereby providing insights
into the relative importance of the parameters. The
detailed flowchart of ML surrogate based Sobol SA
methodology is presented in supplementary figure
S4. Further, to improve the robustness of the ML
surrogate-based Sobol’ SA results, following the pre-
vious studies (Wang et al 2020, Baki et al 2022a), we
have also performed the response-surface-based SA
withmultivariate adaptive regression splines (MARS)
using the 256WRF sample.More details are presented
in supplementary material.

3. Results and discussion

3.1. Parameter SA of heat extremes
The parameter SA is performed for the hourly sur-
face (2 m) air temperature (T), surface (2 m) relat-
ive humidity (Rh), and surface (10 m) wind speed
(Ws) during the two case studies. Both the first- and
higher-order Sobol sensitivity indices of paramet-
ers for the corresponding meteorological variables
are presented in figure 2. The first-order sensitivity
indices represent the effect of variations in a single
parameter, and higher-order sensitivity indices rep-
resent the interaction effects of changes in multiple
parameters on the output (Sobol′ 2001, Saltelli 2002,
Saltelli et al 2010). The SA results are presented indi-
vidually for the considered extreme heat events (2009
and 2019) and for the combined data in figure 2. It
is observed that the SA results are mostly consistent
across both events and also for the combined data.
However, minor variations in the degree of sensitiv-
ity of the important parameters between the events
were observed (figure 2). These variations in themag-
nitude of sensitivity could be due to the slightly differ-
ent event characteristics (figure 1).

SA results suggest that parameters P14 (scattering
tuning parameter), P17 (multiplier of saturated soil
water content), and P22 (profile shape exponent in
themomentumdiffusivity coefficient)most affect the
considered meteorological variables (T, Rh, and Ws).
For T, only two parameters, P14 and P17, are most
important, and their sensitivity is mostly first-order.
Their higher-order sensitivity is minor compared to
the first-order effects on T (figure 2(a)). This means
that P14 and P17 individually affect the T to a large
extent, and the higher-order effects are mostly due to
the interactions between them (not shown). Similar
to T, P14 and P17 are the most influential parameters
for Rh, and in addition to these, P22 has some minor

influence on Rh. Again, for Rh, the sensitive para-
meters (P14, P17, and P22) influence is mostly first-
order (figure 2(b)). In contrast to T and Rh, for Ws,
P22 is equally or slightly more important as the P14
and P17 parameters (figure 2(c)). Results show that
the higher-order sensitivity of P14 and P17 for Ws
is considered to be as important as first-order sens-
itivity. This higher-order sensitivity of P14 and P17
forWs is partly due to their second-order interactions
(not shown). Several other parameters, P6, P10, P12,
P21, P23, and P24, show very minor effects on Ws
(figure 2(c)).

Similar to Sobol’ SA, the MARS SA is performed
on the 2009, 2019 events and combined data but only
using the 256WRF sample. MARS SA results are con-
sistentwith the Sobol’ SA (figures 2 vs S5). Further, we
validate the ML surrogate-based Sobol SA results by
examining one additional extreme heat event i.e. 2013
January heatwave (for more details on the event refer
to supplementary material). The 2013 and the com-
bined data of all three events SA results are consistent
with the 2009 and 2019 events SA results (figures 2 vs
S6). These results further increase the confidence of
SA results of the WRF model for heat extremes over
southeast Australia.

3.2. The physical significance of sensitive
parameters
Parameter P14 is the scattering tuning parameter
in the Dudhia shortwave radiation scheme, which
is related to the scattering under clear sky condi-
tions. This parameter directly influences the incom-
ing shortwave radiation reaching the Earth’s surface
by affecting the scattering attenuation (Dudhia 1989,
Montornès Torrecillas et al 2015). The solar radi-
ation is inputted to the land surface parameterisa-
tion scheme, which then transforms to surface energy
fluxes (sensible and latent heat). The surface fluxes
regulate the mixing in the planetary boundary layer
through thermals, affecting the horizontal wind speed
(Oke 2002). Therefore, T, Rh, and Ws are sensitive
to P14. When P14 is low, scattering is attenuated,
leading to an increase in incoming shortwave radi-
ation, which then heats the surface and increases the
surface temperature. Our results are consistent with
this: as P14 decreases, the mean T values increase
(figure 3(a)). This increase in mean T is mainly due
to the increase in daily maximum temperature (Tmax)
(figure 3(b)). P14’s influence on daily minimum tem-
perature (Tmin) is very minimal because the para-
meter is related to the scattering of shortwave radi-
ation, which is absent during night time (figure 3(c)).
Similar to T, P14 influences Rh (figures 3(d)–(f)).
As P14 decreases, the mean Rh and mean daily min-
imum relative humidity (Rhmin) decrease; however,
the mean daily maximum relative humidity (Rhmax)
is mostly unaffected (figures 3(d)–(f)). ForWs, lower
P14 results in stronger winds (both the mean and
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Figure 2. First-order (red) and higher-order (blue) sensitivity of various considered parameters (P1-P24) for (a) air temperature
(at 2 m) (T; ◦C), (b) relative humidity (at 2 m) (Rh; %), and (c) wind speed (at 10 m) (Ws; m s−1) during the 2009 (cross
stripes), 2019 (horizontal stripes) events separately and both events combined (no stripes). Total sensitivity is the sum of the
first-order (red) and higher-order (blue) sensitivities.

daily maximum wind speed (Wsmax)) and vice versa
(figures 3(g), (i), (j), and (l)).

Parameter P17, the multiplier of saturated soil
water content or soil porosity in the Unified Noah
land surface scheme, is the other most influential
parameter for T, Rh, andWs. P17 regulates the trans-
mission rate of moisture and heat transport in the
soil (Chen and Dudhia 2001, Tewari et al 2004). This

implicitly affects the rate of heat transfer and water
vapour exchange between the land surface and the
atmosphere (Tewari et al 2004, Chinta et al 2021).
Smaller values of P17 implies less porosity, which
means more dense soil with high soil thermal inertia.
The high thermal inertia means lower day time tem-
peratures and higher night time temperatures (Quan
et al 2016, Fonseca et al 2019, Temimi et al 2020).
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Figure 3. The mean of surface meteorological variable ((a) hourly temperature (T; ◦C), (b) daily maximum temperature (Tmax;
◦C), (c) daily minimum temperature (Tmin; ◦C), (d) hourly relative humidity (Rh), (e) daily minimum relative humidity (Rhmin),
(f) daily maximum relative humidity (Rhmax), (g)–(i) hourly wind speed (Ws; m s−1), and (j)–(l) daily maximum wind speed
(Wsmax; m s−1)) of 256 WRF runs with a different set of parameter values for the combined data of both events. The x- and y-axis
represent the respective sensitive parameters of corresponding meteorological variables (parameters P17 and P14 for temperature
(a)–(c), relative humidity (d)–(f), and wind speed (g) and (j); P17 and P22 for wind speed (h) and (k); P22 and P14 for wind
speed (i) and (l)). The color represents the mean values of the respective meteorological variables.

This is due to an increase in conduction which means
faster heat transfer between the surface and subsur-
face, leading to a slower rate of surface warming
(cooling) during the day (night). The slow rate of
day time (night time) surface warming (cooling) res-
ults in low (high) daily maximum (minimum) tem-
peratures. Our results are consistent with this and
show that at low P17, mean Tmax is lower and mean
Tmin is higher, compared to those during high P17
(figures 3(b) and (c)). Similar to Tmax and Tmin, as
P17 decreases, themeanRhmin increases; however, the
mean Rhmax decreases (figures 3(e) and (f)). Overall,
low P14 and low P17 results in high mean T and low
mean Rh (figures 3(a) and (d)).

The parameter P22 is the profile shape exponent
associated with the calculation of the momentum

diffusivity coefficient in the boundary layer scheme
(Hong et al 2006). P22 governs the turbulent mix-
ing in the boundary layer affecting the height of
the maximum diffusivity and leading to the influ-
ence of the horizontal wind speed (Oke 2002, Di
et al 2015, Baki et al 2022b). As P22 increases, the
height of momentum diffusivity declines and res-
ults in increasing (decreasing) momentum diffusiv-
ity coefficient below (above) the maximum height.
This means high P22 can lead to weak winds in
low levels and strong winds in the upper levels
of the atmosphere, respectively (Yang et al 2019).
Our results show that lower P22 values are asso-
ciated with stronger mean wind speeds (both Ws
and Wsmax) and vice versa (figures 3(h), (i), (k),
and (l)).
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Figure 4. Spatial plot of average daily maximum temperature (Tmax; ◦C) (a), daily minimum relative humidity (Rhmin) (e), and
daily maximum wind speed (Wsmax; m s−1) (i) during all days of both selected events (2009 and 2019) using the BARRA2 data.
Comparison of the WRF default parameters run (default), best (respective minimum RMSE of corresponding hourly
meteorological variable data out of 256 runs) parameters run (best (256)), and worst (respective maximum RMSE of
corresponding hourly meteorological variable data out of 256 runs) parameters run with respect to BARRA2 data for the
considered meteorological variables. The mean bias of Tmax (b)–(d), Rhmin (f)–(h), andWsmax (j)–(l) between default, best (256),
and worst (256) runs with respect to BARRA2.

3.3. Comparing the default, best, and worst
parameter combination results
The SA results show that only three parameters most
affect the considered meteorological variables. These
three sensitive parameters can be further optimised
to improve WRF model simulation of critical met-
eorological variables for heat extremes such as Tmax,
Rhmin, and Wsmax. The calibration of sensitive para-
meters with a multi-objective optimisation technique
is a complicated task, which is outside the present
study’s scope but can be done in a future study.
However, the 256 WRF simulations for the SA can
provide us with an understanding of how different
parameter sets, compared to the default values, can
improve (or amplify) the model biases of the selected
output variables. For this purpose, we compare the
results of default, best, and worst parameter combin-
ations out of 256 WRF runs, as illustrated in figure 4.
The parameter set withminimum (maximum)RMSE
of corresponding hourly meteorological variable data
(T, Rh, andWs) out of 256WRF runs is chosen as best
(worst).

Figure 4 presents the comparison of average Tmax,
Rhmin, andWsmax during all days of both events (2009
and 2019) for the default, best, and worst parameter
sets with respect to BARRA2 data. The default sim-
ulation results suggest that Tmax is under-predicted
by around 2 ◦C–4 ◦C and over-predicted both the
Rhmin (by about 0.06) and Wsmax (by approximately
2–4 m s−1) compared to the BARRA2 data over
much of the study domain. These changes are more

substantial over the eastern coastal strip (figures 4(b),
(f), and (j)). These results are broadly consistent
with the previous studies, which showed the cold
biases in the default parameter WRF model simu-
lated Tmax compared to observations over the study
region (Kala et al 2015, Di Virgilio et al 2019b, Ji
et al 2022). However, the best parameter combin-
ation results suggest that the simulation of Tmax,
Rhmin, andWsmax is improved over much of the study
domain compared to the default run (figures 4(c),
(g), and (k)). The improvements can be clearly seen
over the regions of Tmax greater than 40 ◦C (compare
figures 4(b) and (c)). Conversely, Tmax, Rhmin, and
Wsmax biases are amplified for the worst parameter
set compared to the default simulation (figures 4(d),
(h), and (l)). These results are consistent even when
only the extremely hot day of each event is considered
separately (figures S7 and S8). Overall, these results
suggest that tuning the most sensitive parameters can
further improve model simulation of meteorological
variables of interest.

3.4. Limitations
We would like to emphasize that this study has a
few caveats and limitations that should be noted.
The parameter SA results are mostly dependent on
regional conditions and could be on the type of the
selected event (here heat extremes) (Di et al 2015,
Quan et al 2016, Ji et al 2018, Chinta et al 2021).
Hence, the SA results of this study may not be pre-
cisely applicable to other regions or other kinds of
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extreme events (for example, wet extremes). Testing
the validity of this study’s SA results for different
extreme event types is beyond the scope of the present
study.

Another limitation is that we have conducted the
SA for only 24 parameters which may not be the
complete list of all tuneable parameters in the WRF
model. Nevertheless, this study is the first to sys-
tematically assess the sensitivity of WRF model para-
meters to considered meteorological variables dur-
ing extreme heat events over southeast Australia. This
study’s results are mostly relevant for short simula-
tions of these extremes, not necessarily for long-term
regional climate model simulations. Nonetheless, our
results will provide significant guidance for future
research on parameter calibration of sensitive para-
meters for improving the WRF model simulation of
heat extremes over southeast Australia. Future stud-
ies can use the present study’s methodology or a sim-
ilar one to conduct parameter SA of different regional
atmosphere models in various regions for a variety of
extreme events.

4. Conclusions

Studies using regional atmospheric modelling sys-
tems to better understand extreme heat events such
as heatwaves and bushfires rarely examine themodel’s
sensitivity to tuneable parameters within parameter-
ization schemes. This is the first study to address this
issue over southeast Australia, a region that is highly
susceptible to such extremes.We have investigated the
sensitivity of 24WRF tuneable parameters from seven
different physics parameterisation schemes to the
meteorological variables critical to the heat extremes
over southeast Australia. The ML surrogate-based
Sobol SAmethod is used to conduct the parameter SA
during the two extreme heat events (2009 and 2019)
in southeast Australia. Results show that only three
parameters, P14 (scattering tuning parameter), P17
(multiplier of saturated soil water content), and P22
(profile shape exponent in the momentum diffusiv-
ity coefficient), aremost important for the considered
meteorological variables (T, Rh, andWs) during heat
extremes in southeast Australia. These results are con-
sistent for both the considered events. These paramet-
ers are in the shortwave radiation, land surface, and
planetary boundary layer schemes.

Further, we examined the physical significance of
sensitive parameters on how they affect the simula-
tion of considered meteorological variables. In con-
clusion, results showed that both low values of P14
and P17 simulate high T and low Rh, whereas low
P14 and low P22 produce strong winds. Overall, this
study’s results suggest that only three out of 24 para-
meters needed to be considered for improving the
simulation of heat extremes over southeast Australia.
Future studies can focus on optimising these three

sensitive parameters for improving the simulation of
heat extremes over southeast Australia using multi-
objective optimisation techniques. Our overall meth-
odology will also be helpful for studies focussing on
extreme heat events elsewhere.
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