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Plastic waste discharge to the global ocean
constrained by seawater observations

YanxuZhang 1,2,11 , PeipeiWu1,11, RuochongXu1,XuantongWang1, Lili Lei 1 ,
Amina T. Schartup 3, Yiming Peng1, Qiaotong Pang1, Xinle Wang1, Lei Mai 4,
Ruwei Wang4, Huan Liu 5, Xiaotong Wang 5, Arjen Luijendijk6,7,
Eric Chassignet 8, Xiaobiao Xu 8, Huizhong Shen9, Shuxiu Zheng10 &
Eddy Y. Zeng 4

Marine plastic pollution poses a potential threat to the ecosystem, but the
sources and their magnitudes remain largely unclear. Existing bottom-up
emission inventories vary among studies for two to three orders ofmagnitudes
(OMs). Here, we adopt a top-down approach that uses observed dataset of sea
surface plastic concentrations and an ensemble of ocean transport models to
reduce the uncertainty of global plastic discharge. The optimal estimation of
plastic emissions in this study varies about 1.5 OMs: 0.70 (0.13–3.8 as a 95%
confidence interval)millionmetric tons yr−1 at the present day.We find that the
variability of surface plastic abundance caused by different emission inven-
tories is higher than that caused by model parameters. We suggest that more
accurate emission inventories, more data for the abundance in the seawater
and other compartments, and more accurate model parameters are required
to further reduce the uncertainty of our estimate.

Marine plastic debris has become a growing concern in recent years
due to its potential threat towildlife andhumans1,2. Oceanplasticwaste
mainly derives from terrestrial sources via either riverine discharge or
the erosion of waste from coastal zones while a smaller contribution is
from direct dumping by shipping and fishing activities (~25% of the
total terrestrial discharge)3–5. A majority of these sources ultimately
result from the mismanaged plastic waste (MPW) associated with
soaring plastic production in the past 70 years6. However, the global
flux of plastic waste emitted to the ocean remains unclear, which
severely hinders our ability to make effective mitigation strategies.

Estimating the emissions of plastic debris to the global ocean is a
challenging task due to the large spatiotemporal heterogeneity of
MPW generations and hydrological conditions of the river watersheds
and coastal areas4,5. One limitation is the data availability as we have
only ~102 rivers with data so far, compared to the large number (>106)
of all the rivers worldwide7,8. Regression models are often developed
between the measured discharge and proxy data, such as population,
plastic use, MPW generation, income level, land use, runoff, and
precipitation5,7–9. These models are then applied to other rivers with-
out measurement data to achieve a global estimate. Using different
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subsets of rivers and choosing different proxy data, the estimated
global flux can range by up to three orders of magnitudes (OMs)
among these studies (Fig. 1). Also, rivers act as reservoirs for plastics,
affecting the discharge to oceans10. There is a similar or even worse
paucity of data for the emissions from the erosion of waste from
coastal zones4.

In contrast to directly measured emissions, surface ocean plastic
abundances have been extensively measured in the recent decade.
There are more than 3000 samples of surface net tow data, mostly
located in the centers of gyres in the northern hemisphere that are
found to be plastic garbage patches11. Previous studies summarized
these data and estimated a load of global plastic in the surface ocean,
which ranges 14.4–236 thousandmetric tons (Mts)11–13. However, these
estimates are not directly comparablewith plastic emissions, given the
complex transport and transformation processes of plastic particles in
theocean (e.g., windage, photo-degradation, beaching, fragmentation,
sinking and buoying, and biofouling/defouling)14. A large fraction of
the emissions are removed from the surface ocean by these processes
and is known as “missing plastics”11,15. Numerical models with a variety
of complexity have been developed in the past decade16–22. These
models track the spatial pattern relatively well but contain substantial
uncertainties of 2–3 OMs in estimating the surface ocean plastic
abundance10.

In this study, we use a top-down approach to estimate the plastic
waste discharge to the global ocean based on surface ocean plastic
abundance data. A similar method has been adopted by Brahney et al.
to constrain the atmospheric sources of plastics23. We develop a three-
dimensional Euler-based global ocean plastic model, which explicitly
includes a comprehensive representation of the important processes
for plastic particles in the ocean (e.g., sinking and rising, drifting,
fragmentation/abrasion, beaching, and biofouling/defouling). The
model is driven by ocean physics data from an ocean general circula-
tion model and simulates the historical emissions, transport, trans-
formation, and accumulation of different types and sizes of plastic
particles from 1950 to 2018 (see the “Methods” section). The model
results are constrained bymeasured surface ocean plastic abundances
sampledbetween 2000and2015.We limit the observations to the data
obtained by visual identification due to its large sample size and spatial
coverage (Supplementary Table 8)11,13,24,25. The data obtained by other
methods (e.g., Fourier transform infrared spectrophotometer or
Raman spectroscopy) are not included due to the large discrepancies
with the visual identification method (Supplementary Discussion)26.
Mass concentrations are used to compare with the observed surface
concentrations as plastic discharge inventories are also in a mass unit,
while number concentrations are transformed tomass concentrations
as they are prone to larger uncertainties due to the fragmentation
processes (Supplementary Discussion)11. We employ a three-
dimensional variational method to derive an optimally estimated

global plastic emission to oceans based on prior emission estimates
and seawater plastic observations. A super ensemble containing 156
(=52× 3) members is constructed by sampling the uncertainties of
modeled transport and transformation processes (n = 52) and the
existing emission inventories (n = 3). The optimization process is
repeated separately with each sampled member to generate an
ensemble of optimally estimated emissions, which represents the
uncertainties of our estimations (see the “Methods” section).

Results and discussion
Ocean surface plastics
We choose three emission scenarios to represent the range of
uncertainties originating from emission inventories in the litera-
ture: (1) High: riverine emissions as suggested by Lebreton et al.5; (2)
Middle: riverine emissions by Mai et al.7; and (3) Low: riverine
emissions by Weiss et al.9. The Lebreton and Mai inventories are for
total plastics, including both microplastics (diameter <5mm) and
macroplastics (diameter > 5mm), while the Weiss inventory only
includes microplastics. In a sensitivity analysis, we transfer the
microplastic emissions by the Weiss inventory to total plastics
according to the mass fraction of microplastics in river samples
[41–48% according to Weiss et al.9], but the optimized emissions are
not significantly influenced. For each scenario, we also consider the
direct emission from coastal zones following Jambeck et al.4 and
marine sources from shipping and fishing activities with the latter
two scaled by the riverine emissions27, resulting in global emissions
of 7.1, 0.68, and 0.031 million Mt yr–1 for the three scenarios,
respectively (see the “Methods” section). According toWilcox et al.,
the historical trends of emissions from 1950 to 2018 are assumed to
follow the trend of accumulated global plastic production
(Supplementary Fig. 1)28.

The modeling results from the three scenarios reveal large spatial
variability for plastic distributions in the surface ocean and success-
fully replicate thedevelopmentof “GarbagePatches” in the subtropical
ocean gyres in both hemispheres (Fig. 2a–c). In these regions with
anticyclonic wind stress, Ekman transport, and direct windage effects
result in a convergence zone that concentrates buoyant plastics27.
Taking the Middle scenario as an example, the “test case” model
(Table 1; see the “Methods” section formore details) simulates that the
concentrations of plastics accumulating in these regions range
between 0.2 and 4.4 kg km−2 while the observed range is
<0.01–16 kg km−2. Compared with the northern hemisphere, accumu-
lation zones in the South Pacific Ocean and South Atlantic Ocean
present lower modeled concentrations (0.2–1.4 kg km−2 vs.
<0.01–2.3 kg km−2 in observation) due to the lower terrestrial dis-
charge. The model allows us to identify additional zones of plastic
accumulation. Heavy discharge from Asia results in 0.2–6.1 kg km−2 in
the western subtropical Pacific Ocean (especially the coastal regions)
and the highest observed concentration is 14 kg km−2. Simulated con-
centrations near the discharge points along the coastlines of South
Asia and Europe are also relatively high (up to 5.1 vs. 3.1 kg km−2 in
observation). Relatively higher concentrations are modeled in the
Atlantic sector of the Arctic Ocean (0.24 kg km−2) than in other remote
areas due to intense fishing and ship traffic29.

The three scenarios simulate drastically different concentration
levels in the surface ocean, resulting from the large differences in
emissions. The High, Middle, and Low scenarios generate a plastic
mass of 579, 55, and 2.7 thousand Mt in the global surface ocean,
respectively, spanning 2.3 OMs. Figure 2 also contrasts the model
results with observed surface plastic concentrations. We find that the
Middle scenario agrees with the available observations the best, with
51% (49%) of the data points above (below) the 1:1 line (total n = 764
after averaging the observations within the same 2° × 2.5° model grid),
whereas the High and Low scenarios simulate 86% (14%) and 6% (94%)
above (below) the 1:1 line, respectively. The High andMiddle scenarios

0.001 0.01 0.1 1 10 100
Discharge [million metric tons yr-1]

Weiss et al. 2021

Meijer et al. 2021

Mai et al. 2020

Lebrenton and Andrady 2019

Schmidt et al. 2017

Lebreton et al. 2017

Jambeck et al. 2015

Fig. 1 | Estimated global total plastic waste discharge (million metric tons
year−1) from land to ocean.Note that the x-axis is logarithm-based. Jambeck et al.4

consider the emissions from the coastal zones, while Lebreton et al.5, Schmidt
et al.83, Mai et al.7, Meijer et al.8, and Weiss et al.9 consider only riverine discharge,
and Lebreton and Andrady84 include both riverine and coastal zone sources.
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have similar r2 values (coefficient of determination for a linear
regressionmodel, 0.37 and0.38), slightly higher than the Low scenario
(0.33). All the emission scenarios tend to underestimate the highest
observed concentrations in the gyre centers, likely caused by numer-
ical diffusion due to the coarse model resolution17. Most previous
models do not consider real plastic emissions and thus are not com-
parable with observations. Some models also have issues in reprodu-
cing the observations in the low concentration ranges or simulating
inaccurate ocean locations for the highest plastic concentration
patches12.

Model uncertainties
The model has large uncertainties due to the relatively coarse resolu-
tion and simplified ocean physics. The effects of some small-scale
processes such as anticyclonic and cyclonic eddies are not included in
the model. These processes are quite complicated and are found to
contribute inversely in different studies30,31. In addition, the present
understanding of the physical and biogeochemical processes of plas-
tics in the ocean is incomplete. There is indeed a trade-off between a
finer resolution and a larger number of sensitivity experiments.We set
many model scenarios to test the sensitivity of model results to the
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Fig. 2 | Comparison between the modeled and observed total surface ocean
plastic mass concentrations. a, d High emission scenario. b, e Middle emission
scenario. c, f Low emission scenario. In panels a–c, the background colors are the
modeled annual mean for the year 2018, while the circles are observations. In

panels d–f, the dashed lines are 100:1, 10:1, 1:1, 1:10, and 1:100. All the concentra-
tions and the calculation of R2 and RMSE are in a base 10 logarithmic scale with a
unit of g km−2. Sources of observation data are listed in Supplementary Table 8.
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model parameters (Table 1 and Fig. 3a), which allows us to assess the
model uncertainty and compare it against that of plastic emissions.
These model scenarios have different fragmentation/abrasion,
beaching, biofouling, and sedimentation rates with values ranging as
reported in the literature and are driven by the sameemission scenario

(the Middle one). Also, our model focuses on the global scale so the
impact of small-scale processes seems to be of second-order
importance.

In the previous studies, the fragmentation/abrasion rates are a
function of environmental factors including light, temperature,

Table 1 | Model parameter sensitivity analyzed in this study

Model parameter Scenario

Test case The beaching rate is 10% day−1.

The rate of fragmentation and abrasion is 10% yr−1.

The effect of biofouling is not modified.

The effect of sedimentation is not modified.

The ocean source accounts for 20% of the total discharge.

Beaching ratea 1%/day The beaching rate is 1% day−1.

5%/day The beaching rate is 5% day−1.

25%/day The beaching rate is 25% day−1.

Constant The beaching rate is constant on the global coasts, regardless of sandybeach length.

Fragmentation rate 1%/yr The rate of fragmentation and abrasion is 1% yr−1.

10%/mon The rate of fragmentation and abrasion is 10% mon−1.

Depending on size The rate of fragmentation and abrasion formicroplastic is 10%mon−1 while the rate for
macroplastic is 10% yr−1.

Depending on type The rate of fragmentation and abrasion for PE is 10% yr−1, PP and PVC are 1% yr−1, and
others are 10% mon−1.

Biofouling rate Low The effect of biofouling is reduced by a factor of 0.1.

High The effect of biofouling is magnified by a factor of 10.

Sedimentation rate Low The effect of sedimentation is reduced by a factor of 0.1.

High The effect of sedimentation is amplified by a factor of 10.

Marine sources Low There is no ocean-based discharge.

High The ocean source accounts for 40% of the total discharge.
aThe beaching rate here is not corrected by the portion of sandy beaches (see the “Methods” section).
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a Sensitivity to an individual parameter b Sensitivity to multiple randomly-sampled parameters

Fig. 3 | Sensitivity of the modeled total plastic mass in the surface ocean (Mt,
metric tons) to different parameters. a Sensitivity to an individual parameter.
b Sensitivity to multiple randomly-sampled parameters. Note the y-axis is on a
logarithmic scale. The model scenarios include varying beaching, fragmentation,

biofouling, and sedimentation rates. Additional members consider uniform
beaching rates for all beaches, fragmentation rates depending on particle size and
chemical composition, and low and high marine sources (Table 1).
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oxygen, and plankton biomass32. Limited experimental data show that
these rates could vary for more than an OM among plastic types and
environmental conditions (see the “Methods” section). We find that
perturbing this rate by a factor of 10 causes a 22% change in the total
plastic mass on the surface ocean as the deposition and sedimentation
rates are functions of particle sizes (Fig. 3a). The modeled fraction of
uncatchable plastics with diameters less than 0.33mm that is the
standardmesh size of neuston trawls, varies between 0.18% and 18% in
the surface ocean. Plastics below this size could not be caught by
regular trawls and cause an underestimation of surface plastic con-
centrations in the observation dataset. Our model thus could appraise
such underestimates. The model also suggests that more uncatchable
particles are generated with stronger fragmentation/abrasion. In
another scenario, we specifically increase the fragmentation/abrasion
rate of microplastics by 10 times (but keep that of macroplastics
unchanged), as small plastic degrades faster than large ones due to a
higher surface-area-to-volume ratio13. The fraction of uncatchable
plastics in the surface ocean also increase to 5.1%.

Another major source of uncertainty is the biofouling of plastics
by marine algae, which is the main driver of the vertical transport of
positive-buoyant plastics33. The biofouling rate is determined by algae
attachment, growth, respiration, and mortality34. These processes are
considered as the transformation routes among three types of plastics:
floating, neutral, and sinkingwith increasing degrees of biofouling and
density in this model (see the “Methods” section). The rates of differ-
ent processes in our model follow those of Kooi et al., which are esti-
mated based on literature data for an average marine algal species33.
These parameters, however, often vary by 0.5–1 OM among different
algal species35. Experimental data also indicate the surface longevity of
plastic particles of different sizes varies by a factor of 4 (17–66 days)
due tobiofouling36. Perturbing thebiofouling rate byanOMresults in a
0.47 OM change in total plastic mass in the surface ocean (Fig. 3a),
smaller than the results of Kvale et al.37. The smaller range of change is
probably attributed to the highly simplified removal effects of zoo-
plankton and marine snow which are represented by the plankton
biomass in our model.

The beaching/sedimentation rates are an important source of
uncertainty, as beaches and sediments are major reservoirs for marine
plastics18,38. The rates of both beaching/sedimentation, resuspension,
and the ultimate residence time of plastics on beaches/sediments
depend on the characteristics of plastics, the morphological features
of beaches/seafloor, wind, circulation, and wave conditions18,39–41. We
perturb the beaching rate from 1% to 25% day−1, which represents two
extremes of the behavior of plastic particles, i.e., nearly no beaching
and fast capture by beaches, as suggested by previous empirical
studies40,42–44. The model suggests that the beached plastics account
for 8.1–63%of total discharge in these scenarios (Fig. 3a). A similar level
of uncertainty is found for the plastic sedimentation rate, which could
vary as high as 2 OMs as suggested by Kane et al.45.

Plastic waste from shipping and fishing activities is a non-
negligible source of ocean plastics46–48. For example, the increasing
number of plastic drink bottles found in the ocean indicates that large
amounts of plastic waste originate from ships48. However, attempts to
estimate themagnitude of themarine source are scarce and only a few
studies assume that the marine source accounts for 20% of the total
plastic discharge27,45. Not considering the marine source results in an
18% reduction in the total plastic mass on the surface ocean compared
with the test case scenario. The surface plastic mass increases by 30%
when the fraction of the marine source increases from 20% to
40% (Fig. 3a).

Model ensemble and optimal emission
We evaluate the overall uncertainty associated with these model
parameters by a Monte Carlo approach as multiple parameters can
vary in a wide range simultaneously and could have significant inter-
actions with each other (Fig. 3b and Supplementary Fig. 2). Driven by
the Middle emission scenario, ensemble of 50 models is generated
with multiple model parameters randomly sampled from their
literature-reported ranges (SupplementaryTable 7 andSupplementary
Fig. 3). We find that different ensemble members span about an OM in
predicting the total surface ocean plastic mass. This variability range is
larger than that of the individual parameters asdiscussed above (about
0.5 OM). Indeed, the lowest (#2) and highest (#27)members both have
more than one parameter with relatively extreme values (Supple-
mentary Table 7). We also include another two models (#51 and #52)
that sample the lowest/highest parameters to represent the largest
possible collective variability and the surface mass range. The total
surface ocean plastic mass predicted by these two models varies by
about 2 OMs. Overall, we find that the variability caused by different
emission inventories (spanning 2.3 OMs) far surpasses that of model
parameters (spanning 1–2 OMs), indicating that the model can be
potentially effective in constraining the magnitude of emissions.

Figure 4 shows the probability distribution of the optimized glo-
bal emissions ofmarine plastics by employing a super ensemble three-
dimensional variational method (see the “Methods” section). The
method optimizes the global plastic emission by minimizing a cost
function that measures the deviation from the prior emission inven-
tory and the observed surfaceoceanplastic abundance (Eq. (24)). Such
an optimization process is repeated for each member of the super
ensemble, which is consisted of the same 52model members as above
but is driven by all three emission inventories. This results in a total of
156 (=3 × 52) optimal estimates for the global plastic emissions, and the
mean (taken as the best estimate) is 0.70 million Mt yr−1 with a 95%
confidence interval of 0.13–3.8millionMt yr−1, spanning about 1.5OMs.

We note that the variability among different emission inventories
(1.4 OMs) far surpasses that of the observed ocean plastic abundance
data (mean 0.38 OM). The cost function thus puts much more weight
on the deviation from observed ocean plastic abundance data than
from the prior emission inventories. In another word, the optimized
emissions are mainly achieved by minimizing the model- and
observation-derived surface ocean plastic concentrations, while the
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Fig. 4 | Optimized global plastic discharge (Mt, metric tons). The estimation is
derived froma three-dimensional variationalmethodpoweredby a super ensemble
of model parameters and emission inventories. The thicker black line represents
the ensemble mean with thinner orange ones for each member. The curve is the
probability distribution function (pdf) of the optimized global plastic emissions,
which is assumed to be a log-normal distribution based on the simulated surface
plastic mass (Supplementary Fig. 2). The short gray vertical lines mark the 95%
confidence interval. The minimum andmaximum discharges derived frommodels
#52 and #51, which are not shown in the figure, are 102.9 and 107.0 Mt, respectively.
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priori emission estimates have a relatively small influence. However,
this does not mean the prior emission estimate is useless, as the
optimized emissions follow the same spatial and temporal distribu-
tion, chemical composition, source contribution, and size distribution
of the plastic emissions from the prior emission inventory. The
importance of the prior emission estimate would increase as the
knowledge of emission inventory is fortified and the prior emission
uncertainty better constrained.

The uncertainty of our optimized estimate for plastic emission is
relatively high (~1.5 OM). First, it is contributed by the variability of the
model parameters represented by the model ensemble. The modeled
ocean concentrations driven by the best-estimate emissions have a
meanabsolute error of0.68OMcompared to observations, and 77%of
the points have an error less than anOM (Supplementary Fig. 4), which
may represent additional model uncertainty not characterized by our
model ensemble. The evolving understanding of the environmental
processes for marine plastics will narrow down the uncertainty range
of our optimized estimate. Second, the top-down approach used in
this study limits us to discern emissions from riverine discharge, direct
emissions from coastal zones, or oceanic sources, as well as their
spatial and temporal patterns. The continuously accumulating obser-
vations may also allow us to constrain source-specific and/or regional
emissions to individual ocean basins in the future. Third, our results
are dependent on available observed surface plastic abundance data-
sets during 2000–2015 by “sporadically” cruise studies that are often
not repeated and mostly located in the centers of gyres. More
observed data that cover the global ocean (e.g., over the southern
hemisphere) and a longer timeperiod can increase the reliability of our
optimal estimation. Fourth, the observations of plastic abundances in
other compartments, e.g., water columns and beaches, are rather
limited to evaluate the model. Our model captures the observed ver-
tical trend, indicating a reasonable representation of the fraction of
plastic mass in the surface ocean (Supplementary Fig. 5). The model
ensemble yields awide range of fractions of the beached plastics to the
total discharge (Supplementary Fig. 7), which brackets the potentially
highly variable beached fraction in the real ocean. The high end of the
range, which is less likely to occur in the ensemble, is possible to be
higher than the observations19,49,50.We thus suggest that a combination
of both bottom-up and top-down approaches, such as developing
more accurate emission inventories, obtaining more data for abun-
dances of plastics in seawater andother compartments, andmeasuring
more accurate model parameters, would be the future research
directions.

As an independent alternative, the present study illustrates a top-
down approach to constrain global ocean plastic emissions by taking
advantage of seawater measurements. We substantially narrow down
the uncertainty of the plastic emissions to the global ocean from 2–3
OMs to ~1.5 OM. A more accurate estimate of the global ocean emis-
sions helps to understand the human perturbation on the marine
environment and the fate of plastics in the ocean9. Combined with
plastic waste management and MPW generation information, more
effective mitigation strategies and measures could also be designed
and implemented.

Methods
General description of model
Wesimulate the fate and transport of plastics by theNanjingUniversity
Marine Plastic (NJU-MP) model based on the MITgcm model
framework51,52. This model is Euler-based and simulates the emission,
transport, diffusion, sinking, and transformation (including biofouling,
fragmentation, and abrasion) of plastics in each model grid cell. The
model has a resolution of 2° × 2.5° horizontally with 22 vertical levels,
and a time step of 4 h. The ocean circulation data are from the Inte-
grated Global Systems Model (IGSM)53. The ocean boundary layer
physics ismodeled based on Large et al.54, and the effects ofmesoscale

eddies on isopycnal mixing are parameterized following Gent and
McWilliams55. We run the model from 1950 to 2018. The model has a
relatively coarse resolution to resolve the currents over coastal regions
and western boundary currents such as Kuroshio and Gulf Stream but
performs better over the open ocean56. The lower computational costs
compared to high-resolution models also allow us to perform long-
term and multiple-scenario runs. We test different time steps and the
results keep relatively robust due to the low stiffness in simulating
these processes. The model includes five categories of different che-
mical compositions and the density of each category is pre-deter-
mined: polyethylene (PE, 950kgm−3), polypropylene (PP, 900 kgm−3),
polyvinyl chloride (PVC, 1410 kgm−3), polystyrene (PS, 1050kgm−3),
and acrylonitrile butadiene styrene (ABS, 1050 kgm−3). Each category
has six size bins with bounds equally distributed on a log scale: four for
microplastics: <0.0781, 0.0781–0.3125, 0.3125–1.25, and 1.25–5mm,
and two for macroplastics: 5–50 and >50mm. The plastics’ density is
increased when biofouled and we consider three states for PE and PP:
floating, neutral, and sinking (nofloating andneutral states for PVC, PS,
and ABS as they are originally heavier than or as heavy as seawater).
There are a total of 54plastic tracers in themodel (PE and PP each have
18 tracers while the other three each have 6 tracers), representing the
common chemical compositions, size ranges, and biofouling states of
plastics in the marine environment.

We develop a universal framework for the transport of these tra-
cers in the global ocean. Tracking the three-dimensional motion of
plastic particles is distinct from estimating other trace components in
ocean models since plastic particles have non-negligible volumes and
different densities from seawater. Obtaining closed expressions
describing the hydrodynamic forces experienced by rigid particles
embedded in various flows has been a subject of active research for a
long time57. Equations could be selected and simplified, based on facts,
to help the simulation. Most of the time in the global ocean, light
particles (PP and PE) float and drift in quasi-two-dimensional motion
relative to the sea surface. Light particles can be biofouled and sink to
the subsurface ocean, where they can rise again after defouling. Other
particles that have ahigher density than the seawater (e.g., PVC),would
instantly sink after being dumped. Sinking or rising particles make an
approximate one-dimensional motion relative to the water column
and the velocity depends on their densities and diameters. Thus, in our
model, the motion of plastic particles is resolved into advection and
mixing (three-dimensional), sinking/rising (one-dimensional), and
drifting (two-dimensional). The above processes are computed sepa-
rately in the model (aka operator splitting) though they occur simul-
taneously in the real ocean. We calculate particles’ sinking, rising, and
drifting velocities by fluid dynamics and empirical equations. Without
loss of generality, plastic particles in our model are treated as smooth
rigid spheres. Theseprocesses are elaborated on in the sections below.

Plastic sources
We use the riverine plastic emission inventories from Lebreton et al.5,
Mai et al.7, andWeiss et al.9, and are referred to as theHigh,Middle, and
Low scenarios, respectively. The Lebreton inventory uses data from a
global compilation of solid waste for 105 countries by the World
Bank58. It considers the seasonality, spatial variability, and size dis-
tribution of local sources. This inventory estimates plastic discharge
based on waste management, population density, and hydrological
information, and uses MPW as a proxy to predict the discharge from
rivers without observation data. They also divided the total plastic
discharge intomicro- andmacroplastics according to the ratio of them
in sampled rivers. Mai et al.7 and Weiss et al.9 compiled available riv-
erine discharge data and developed regression models between the
discharge of individual rivers and the characteristics of the rivers (e.g.,
water discharge) and the countries in the corresponding watersheds
(e.g., population density, solid waste generation per capita, the frac-
tion of plastics in solid waste, and waste treatment rate). A key feature
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of theMai inventory is a predictionmodel for the waste treatment rate
by HumanDevelopment Index (HDI) based on an updated database by
World Bank59. Weiss et al. use a lower representative mass for micro-
plastics in rivers and are limited to data collected by plankton net
sampling9. For these two inventories, we fill the data gap in the spatial,
seasonal, and size (i.e.,micro vs.macroplastics, refer to Supplementary
Table 1 for its mapping to our modeled size bins) distributions of
emissions following the Lebreton inventory.

The coastal plastic emission inventory follows the framework of
Jambeck et al.4 which uses MPW as proxy data to estimate plastic dis-
charge but has a lower estimation by Chassignet et al.60. Similar to the
Lebreton inventory, it also relies on solid waste data from the World
Bank58. There is double counting for emissions from coastal areas that
are also located near river mouths, but the overall contribution is
negligible60. This Jambeck/Chassignet inventory is directly used for
coastal emissions when the Lebreton inventory is chosen for rivers.
When the other two lower riverine inventories are chosen, the above
coastal inventory is also scaled down to keep the ratio between the
riverine and coastal emissions constant. In addition to the riverine and
coastal plastic emissions, we consider direct ocean emissions from
marine activities such as shipping and fishing, which are assumed to
account for 25% of terrestrial discharge for all three emissions
scenarios27,45. The spatial pattern of the discharge from marine activ-
ities is allocated according to the global footprint of fisheries and
shipping tracks61,62.

Cumulative plastic production is used as a proxy for the historical
trend of plastic discharge from the terrestrial environment during
1950–20186,28. The historical trend of plastic discharge from each
continent is assumed to follow that of per-capita gross domestic pro-
duct (GDP)63. The discharge of each type of plastic is allocated by its
proportion to global consumption in 2013 due to the lack of con-
sumption data for the whole period (Supplementary Table 3)64. The
historical trend of marine emissions follows that of fishery and ship-
ping activities62. The emissions fromshipping activities areexpected to
decrease substantially since intentional disposal was banned when the
MARPOL Convention went into effect in the 1980s65. There might still
be unintentional disposal due to container loss and accidents, but we
assume that this source is zero due to a lack of data. The resulted
global plastic emissions to the ocean for 2018 are thus estimated as 7.1,
0.68, and 0.031 million Mt for the High, Middle, and Low scenarios,
respectively. The corresponding historical total emissions are 161, 15,
and 0.70 million Mt, respectively (Supplementary Fig. 1).

Sinking and rising
Theplastic densities thatdependon their polymer types, togetherwith
their diameters and shapes, and seawater state, determine their sink-
ing/rising velocities. In a steady-state, threebalanced vertical forces act
on the particles:

Fg =Vpρpg ð1Þ

Fb = � V sρsg ð2Þ

FD = � 1
2
CDðResÞApρs

ðw�wsÞ3
∣w�ws∣

ð3Þ

FD + Fg + Fb =0 ð4Þ

whereFD is the vertical dragging forceof the seawater,Fg is gravity, and
Fb is buoyancy. Vp is the volume of the particle, while Vs is the volume
of the particle that is submerged in seawater (Vp = Vs in this case, but
Vp >Vs for floating particles with zero sinking/rising velocity relative to
the seawater, e.g., clean PP and PE). CD is the coefficient of dragging,

which is a function of the Reynolds number (Re) of a certainmotion of
a fluid. Ap is the horizontal sectional area of a particle, ρs is the density
of seawater, ρp is the density of a particle, w is the vertical velocity of
the particle, ws is the velocity of seawater, and g is the gravity
acceleration.

Based on Eqs. (1)–(4), we get:

ðw�wsÞ2 =
4∣g∣dðρp � ρsÞ
3CDðResÞρs

ð5Þ

where d is Stokes diameter of a particle, and CD is calculated as66

CDðReÞ=
24Re�1 Re≤0:3

18:5Re�0:6 0:3 <Re≤ 1000

0:44 1000<Re≤ 20,000

8
><

>:
ð6Þ

Res is the Re of seawater and is calculated as:

Res =
dρs∣w�ws∣

μs
ð7Þ

where µs is the dynamic viscosity of seawater. By substituting Eqs.
(6) and (7) into Eq. (5), with a few techniques (Supplementary
Methods), we can solve w67. In this way, we get the rising or sinking
speed of the particles, by which we simulate the vertical transport of
the plastic particles in the seawater columns (Supplementary
Table 4).

Drifting
Plastic particles floating on the sea surface are subject to wind forces,
which are commonly referred to as leeway drift, or windage68. We
consider the windage of all the plastic size categories, including both
microplastics and macroplastics69. The motion of a drifting particle in
balance, which is affected by five forces (gravity, buoyancy, seawater
stress, horizontal wind stress, and Coriolis force), is described by Eqs.
(1), (2), (8), (9), and (10), respectively.

Fs = � 1
2
CDðResÞAsρs

ðu� usÞ3
∣u� us∣

ð8Þ

Fa = � 1
2
CDðReaÞAaρa

ðu� uaÞ3
∣u� ua∣

ð9Þ

Fc =Vpρpf Cu ð10Þ

Rea =
dρa∣u� ua∣

μa
ð11Þ

where subscript p denotes plastic particle, a denotes air (or wind), and
s denotes seawater. Fs and Fa are the horizontal dragging force by
seawater and air, respectively. u, us, and ua are the velocity of plastic
particles, seawater, and wind, respectively. Aa and As are the vertical
sectional areas of particles exposed to the air and seawater, respec-
tively. ρa and Rea are the density and the Reynolds number of air,
respectively. µa is the dynamic viscosity of air. fC is the Coriolis
parameter.

We assume the vertical forces act on a particle floating on the
ocean surface to reach a balance:

Fg + Fb =0 ð12Þ

with which we can solve the Vs (in this case, Vs <Vp) and subsequently
Aa and As based on geometry (Supplementary Table 5). CD(Rea) and
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CD(Res) are calculated as functions of Reynolds number of air (Eq. (11))
and seawater (Eq. (7)), respectively, based on Eq. (6).

We solve u by assuming the horizontal forces Fa and Fs reach a
balance while Fc is neglected due to a much smaller magnitude:

Fa + Fs = 0 ð13Þ

By substituting Eqs. (8) and (9) into Eq. (13),we solveunumerically
by a gradient descentmethod. This leads to a constant drifting speed u
given ua and us. The ua is from NCEP/NCAR reanalysis70. The random
walk ofplastic particles causedby oceanic eddy turbulencewith a scale
that is smaller than the grid size is simulated as an isopycnal diffusion
process in the model, which follows the Laplacian operator with the
mixing coefficients given in Dutkiewicz et al.35.

Stokes drift, a near-surface velocity induced by ocean wind-
generated gravity waves, can contribute to the near-surface transport
of mass including plastic particles71. For example, it changes the loca-
tions of convergence zones for plastic mainly caused by Ekman cur-
rents, resulting in a westward entrainment in the north of the
convergence zone in the Indian Ocean72. We consider the Stokes drift
for plastic tracers on the surface ocean in the model. The surface
Stokes drift estimates are from the GlobCurrent73 and the annualmean
from 1990 to 2015 is applied for the whole simulation period.

Fragmentation/abrasion
Fragmentation represents the process during which large plastic par-
ticles break up into smaller ones. Abrasion refers to the process in
which tiny plastics peel off from the surface of larger ones, usually
causedbymechanical shearing74. The rate of fragmentation in seawater
has limited data but varies drastically depending on the type and shape
of plastics, as well as the environmental factors75,76. For example, in a
laboratory experiment, seawater PE, PP, and PS lost ≤1% of their weight
per year while the ratio of loss was higher (3–27%) for other polymers
such as polyurethane and polyester76. In another study, PE and PPwere
found to have higher fragmentation rates than 1% yr−1. They lost
0.39–1.02%, with averages of 0.45% and 0.39%, respectively, of their
masses per month75. Considering the various fragmentation rates of
different types of plastics, the total fragmentation and abrasion rate R
(% yr−1) in seawater for all plastics is assumed tobe 3–30%yr−1, following
a log-normal distribution. Also, 10%yr−1 of the totalR (i.e., 0.3–3%yr−1) is
allocated as the abrasion rate77. The rate in the surface ocean (Rsurf) is
increased proportionally to the downward shortwave solar radiation
(q, also a proxy for temperature) in the surface ocean if the plastic
particles are not biofouled, reflecting the dependence of weathering
rate on sunlight revealed by controlled experiments78,79:

Rsurf =
R
175

� q+R ð14Þ

The surface downward shortwave radiation is taken from the
CMIP5 project, which causes a factor of approximately three between
the polar and tropical regions.

Beaching
A plastic particle has a chance to be ‘beached’ (i.e., deposited onto
beaches) when it arrives at a beach-adjacent cell. The chance or
“beaching rate” is geographically diverse depending on the coastal
morphological features, wind, and wave conditions. Previous stu-
dies suggest that beached plastic can be eroded back into the
ocean, and bi-directional exchanges occur between the beach and
coastal seawater40. Atwood et al. found that <10–94% of released
microplastics were beached and the majority of beaching occurred
within the first three days, which is about 3.3–31% per day42. Ocean
drifter studies revealed that the timescales of the beaching and
resuspension processes ranged from 3 to 4 weeks under different

conditions40,43,44. These timescales can be transferred to beaching
rates between 100% per 21 days and 100% per 28 days, i.e., 3.6–4.8%
day−1. We simulate the beaching process by a net beaching rate (i.e.,
beaching—resuspension) in this study due to the large uncertainty
of the two processes and the coarse resolution of our model. We
assume that the plastics in grid cells immediately adjacent to sandy
beaches are partially removed from the seawater and the mass of
beached plastics is proportional to the length of the beach in the
cell. We assume a net beaching rate in a cell as 2.5–18% day−1. Their
dynamics of beaching and resuspension are highly variably on local
scales. Not all sandy beaches have a net accumulation of plastic
debris, and not vice versa. We thus consider the fraction of sandy
beaches as a proxy for the coastal morphological features. So, the
effective beaching rate is corrected by the portion of sandy beaches
in a cell, which results in a rate between 0.15% and 1.1% day−1. The
global sandy beaches dataset is from Luijendijk et al.80. The global
estimated percentage of sandy shorelines varies from 10% to 75%
due to the lack of reliable global-scale assessment of occurrence or
rates of sandy shoreline change.

Biofouling and defouling
Biofouling of light plastic types (PE and PP) is modeled following
Kooi et al. which is based on the Lagrangian perspective but
adjusted for our Eulerian-based framework33. Kooi et al. directly
tracked the growth and respiration of plankton/microbe on the
particles but such a process is hard to be replicated in an Euler
model because we do not know the history/trajectories of these
particles. This process has an impact on the density of plastic par-
ticles and is simulated with three types of tracers in our model:
floating, neutral, and sinking. Floating plastics have no biomass
attached and stay floating on the sea surface with the same density
as the original plastic materials. Neutral plastics are assumed to be
neutrally buoyant and suspended in water columns. Sinking plastics
are heavier than seawater and sink into the subsurface ocean. The
biomass of plankton in global oceans is used as a proxy to scale the
overall biofouling potential from microbes, phytoplankton, zoo-
plankton, marine snow, and the ingestion and inclusion in feces.
The plankton biomass data is taken from the MITgcm Darwin eco-
system model35. Using plankton as a proxy might introduce
uncertainty as the community structure varies drastically in dif-
ferent ocean biotic provinces. The Darwin model also does not
consider the vertical migrations of zooplankton. But it is relatively
robust as it is constrained by satellite remote sensing data35. Espe-
cially, the plankton distribution data suggest stronger biofouling in
productive coastal waters than in the open ocean, consistent with
empirical studies14.

The volume of biomass on plastic particles (Vbf) depends on the
algae volume Va, the number density of attached algae per unit area A
(# m−2), and the surface area of the plastic particle θp

33:

dVbf

dt
=V aθp

dA
dt

+V aA
dθp
dt

ð15Þ

where:

dA
dt

=
βaAa

θp
�maA ð16Þ

where βa is the encounter kernel rate (m3 s−1), Aa is the ambient algae
concentration (# m−3), andma is the mortality rate (s−1). The encounter
kernel rate βa is the sum of Brownian motion and advective shear
collision frequencies (m3 s−1):

βa = βbrownian + βshear ð17Þ
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where:

βbrownian = 4πðDp +DaÞðrp + raÞ ð18Þ

βshear = 1:3γðrp + raÞ3 ð19Þ

Dp =
kðT + 273:16Þ

6πμswrp
ð20Þ

Da =
kðT +273:16Þ

6πμswra
ð21Þ

where Dp and Da are the diffusivity of plastics and the individual algae
cells (m2 s−1), respectively, rp and ra are the radius of plastics and the
individual algae cells, respectively, γ is the shear rate (s−1), k is the
Boltzmann constant (m2 kg s−2 K−1), T is the temperature (°C), and µsw is
the dynamic water viscosity (kgm−1 s−1) (Supplementary Table 6).

The transformation rate between different types of plastics τtrans
(s−1) is calculated as:

τtrans = δ
dVbf
dt

ΔV
ð22Þ

where δ is an adjustable coefficient tuned to match the result of Kooi
et al.33, and ΔV is the deviation between the volumes of two plastic
types, e.g.:

ΔV ðPEneutral,PEfloatingÞ=VPEneutral
� VPEfloating ð23Þ

Model sensitivity
We test the sensitivity of model results to key model parameters,
including the rates for fragmentation, abrasion, beaching, biofouling,
and sedimentation processes, and the magnitude of direct ocean
sources (including fishing and shipping activities). We also consider
additional members with different assumptions regarding the beach-
ing and fragmentation processes (Table 1). High- or low-end value is
considered for each model parameter based on value ranges reported
in the literature. All the model scenarios are driven by the same
emission scenario (the Middle one).

Model ensemble
An ensemble of the model (n = 50) is constructed by a Monte Carlo
approach by randomly generated model parameters based on their
ranges reported in the literature. The fragmentation, biofouling, and
sedimentation rates, which are reported to vary a wide range (i.e., no
clearupper boundwith a lower boundof zero), are assumed to followa
log-normal distribution, while the beaching rate and the fraction of
ocean sources, which are reported to have an upper bound, follow a
normal distribution. The parameter values of the test case simulation
are chosen as the means, and the standard deviations are chosen as a
quarter of the literature-reported ranges, i.e., the reported ranges
represent 95% confidence intervals (Supplementary Fig. 3 and Sup-
plementary Table 7). We also include another two models (#51 and
#52) that sample the lowest/highestparameters. Theparametersof #51
(e.g., the lowest marine source and the highest beaching rate) lead to
the lowest surface plastic mass while the parameters of #52 (at the
opposite end of #51 for all parameters in their ranges) lead to the
highest surface plasticmass. All the ensemblemembers are also driven
by the Middle emission scenario.

A super ensemble of the model is built by driving the above-
mentioned 52membersby all the three emission inventories (i.e.,High,
Middle, and Low), resulting in a total number of members of

3 × 52= 156. All the sensitivity and (super) ensemble member models
are run for 69 years, and themodeled surface oceanplasticmass in the
last year is chosen as a metric to compare different model scenarios
and members.

Optimal estimation
A super ensemble three-dimensional variational method is used to
optimally constrain the prior estimate of the global marine plastics
emission by the observed surface ocean plastic masses and derive the
associated emission uncertainty81. To account for the large uncer-
tainties of the global marine plastic emission and modeled transport
and transformation processes, we use the super ensemble (N = 156) as
described above. For the ith ensemble member, the optimal estima-
tion of the emission Ea

i can be obtained by minimizing the cost func-
tion J:

JðEiÞ=
ðEi � Ef

i Þ
2

σ2
E

+
XY

y= 1

ðyoy + εoy � hðEiÞÞ2
σ2
o,y

ð24Þ

in which the superscript f denotes the prior, a denotes posterior,
subscript y denotes the yth observation with Y counts in total, yo is the
observed surface ocean plastic mass concentrations, h is the obser-
vation forward operator that transforms the state variable to the
observedquantities,σ2

E andσ2
o are error variances of theprior emission

and observations, respectively. The observation error variance is the
variance of observed quantities within a model grid for each obser-
vation, which covers the uncertainty of previous estimations of the
overall floating plastic mass based on the observed data11–13. To
represent the observation uncertainty and avoid the collapse of
ensemble spread due to the same observations used to constrain the
estimated emission, observations with perturbations εo that is a ran-
dom draw from Nð0,σ2

oÞ, are used for each ensemble member82. The
cost function J is a combination of the distance to the prior emission
estimate and all available observations. By minimizing the cost func-
tion J for the N members separately, an ensemble of optimally esti-
mated global marine plastic emission fEa

i ,i= 1, . . . ,Ng is achieved.

Data availability
All data are available in the main text, the supplementary materials, or
the web site: Plastic discharge data: https://www.ebmg.online/plastics/
plastic-discharge. Observed plastic database: https://microplastics.
springeropen.com/A-multilevel-dataset-of-microplastic-abundance/.
Stokes drift velocity: https://tds0.ifremer.fr/thredds/GLOBCURRENT/
Stokes.

Code availability
Allmodel code is available at the research groupwebsite: https://www.
ebmg.online/plastics/MITgcm-code.
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