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Aerodynamic model identification remains essential for simulator operations and control system design and

operations. In this paper, state-of-the-art methodologies for aerodynamic model identification and validation are

presented, together with a number of novel applications of the identified models that were recently investigated and

developed at the Faculty of AerospaceEngineering ofDelft University of Technology. In particular, this paper focuses

on methodologies for identifying models of aerodynamic stall from flight data, as well as multivariate spline-based

aerodynamic model identification methods, together with their applications in flight simulation and advanced flight

control.

Nomenclature

A = matrix of regression variables
A� = specific force in � direction, m∕s2
a = regression variable vector
a1 = X parameter for shape

Bd
tj �b� = vector of basis polynomials on simplex tj

Bd
κ �b� = single basis polynomial of degree d
�b = aircraft span, m; wingspan, m

bi = single barycentric coordinate component
btj�x� = barycentric transform on simplex tj
b�x� = barycentric transform of x
C� = force/moment coefficient
c = global B-coefficient vector
�c = average chord length, m
ĉ = global B-coefficient estimator
ctj = B-coefficient vector on simplex tj
cκ = single B coefficient

c
tj
κ = single B coefficient on simplex tj
d = polynomial degree

d̂ = number of basis functions per simplex

G = global B-coefficient matrix
H = global smoothness matrix
H0 = stall buffet model gain parameter
I� = angular moment of inertia around � axis, kg ⋅m2

J = cost function value
J = cost function
L = Lagrangian
M = Mach number
m = mass, kg
N = amount of time samples
n = amount of terms in a model structure; number of

dimensions
p = roll rate, rad/s
p = orthogonalized regression variable vector
Q0 = stall buffet model quality factor

q = pitch rate, rad/s

R2 = coefficient of determination

r = continuity order; yaw rate, rad/s
S = wing surface area, m2

Sr
d = degree d spline space with Cr continuity

T = total number of simplices
T = triangulation
tj = simplex with index j
U = Theil statistic
VTAS = true airspeed, m/s
X = flow separation point variable; global regression

matrix
~X = substituted regression matrix

Xthres = stall buffet model threshold
x = regression variables
xE; yE; zE = Cartesian position in FE, m
_xE; _yE; _zE = velocity components in FE, m/s
y = measurement vector; observation vector
ŷ = model output vector
α = angle of attack, rad
α� = X parameter for stall angle of attack, rad
β = angle of sideslip, rad
γk;j = Gram–Schmidt scaling parameter

δa = aileron deflection, rad
δe = elevator deflection, rad
δr = rudder deflection, rad
ϵ = vector of remnant
θ = pitch angle, rad; parameter vector

θ̂ = optimal estimate of parameter vector

κ = multi-index
ρ = correlation
σ = standard deviation
τ1 = X parameter for lag, s
τ2 = X parameter for hysteresis, s
ϕ = roll angle, rad; orthogonal parameter vector

ϕ̂ = optimal estimate of orthogonal parameter vector

ψ = heading angle, rad
ω0 = stall buffet model natural frequency, rad/s
∇δΦ = control effectiveness Jacobian

Subscripts

D = drag
L = lift
l = roll moment
m = pitch moment
n = yaw moment
p = partition index
T = thrust force
tj = simplex identifier
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Y = lateral force
γ = multi-index
κ = multi-index

I. Introduction

M ODELS of aircraft dynamics and aerodynamics play an
increasingly important role in the aircraft design process,

flight control system design, and piloted training simulators. For
example, in 2019, flight simulator-based stall prevention and recov-
ery training has become mandatory [1–3], for which aircraft stall
models are needed to supply effective pilot training [4–6]. We are
witness to the rise of drones, which are often characterized by highly
nonlinear and unsteady aerodynamics (e.g., multirotors [7,8] and
flapping wing drones [9,10]), which can only be fully understood
and accounted for through modeling. Revolutionary new aircraft
designs, both for civil aviation, to radically reduce emissions [11],
as well as for Urban Air Mobility (UAM) applications [12,13], often
ask for accurate models in early design stages and for control system
design and operation. Because of the fact that especially critical
damping and nonlinear aerodynamic characteristics can currently
not be accurately derived from computational fluid dynamics pre-
dictions and (scaled) wind-tunnel experiments to obtain accurate and
relevant models, there is still a strong focus on aerodynamic model
identification based on collected flight-test data. This is particularly
true for nonlinear regions of the flight domain, such as the high angle
of attack, aerodynamic stall, and transonic flight regions. These
developments thus require continuing innovations in aerodynamic
model identification and flight-test procedures that go well beyond
the accepted state of the art.
The section of Control & Simulation (C&S) of the Faculty of

Aerospace Engineering at Delft University of Technology has a long
history in the field of aircraft state reconstruction and system iden-
tification [14–20]. For example, a signature development has been

the so-called two-step method, in which the combined state and
parameter estimation problem is split into a state-estimation problem
and an equation error-based parameter estimation problem [14].
Currently, the C&S group is still highly active on the topics of flight
testing and model identification and is uniquely positioned due to
direct access to a self-owned laboratory aircraft (Cessna Citation II,
PH-LAB), six-degree-of-freedom (DOF) flight simulator [SIMONA
Research Simulator (SRS) [21]]. More recently, the C&S group is
applying its expertise and test facilities (Cyberzoo, Open Jet Wind
Tunnel Facility) to the identification of aerodynamic models of
flappingwingmicro aerial vehicles [10,22–26] andmultirotor drones
[7,8], which bring with it unique challenges and opportunities, such
as low-grade onboard sensors [27,28], highly nonlinear aerodynam-
ics [8], and extreme power-to-weight ratios.
The goal of this paper was to provide an overview of current

research on flight testing and model identification together with
applications of the identified model at Delft University of Technol-
ogy’s C&S research group. To limit the scope and enable including a
useful level of detail, recent work on aerodynamic model identifica-
tion of drones is excluded from this paper. In the popular Delft
University of Technology Master of Science-level course AE4320
“System Identification of Aerospace Vehicles,” the main message is
that in model identification a direct synergy is needed between
1) identification and modeling methods, 2) experiments performed
to collect data for model identification, and 3) obtained results and
desired applications of identified models, together forming the “sys-
tem identification cycle.” This paper is structured along the same
lines and will present key developments in each of these three
elements; see Fig. 1. For methods, we will present novel approaches
to identify nonlinear stall dynamics models directly from stall flight-
test data [29] and novel approaches to aerodynamic modeling based
on multivariate splines [30]. For experiments, we will share our
recent experiences with both standard quasi-steady identification
flight tests and dedicated stall flight tests [29,31]. Finally, key recent

Results/Applications

Methods Experiments

Cessna Citation II 

Flight Tests

Nonlinear Stall 

Model Identification

Multivariate 

B-spline Models

Model-Based 

Control

Flight Simulator 

Model Tolerances

Nominal Aerodynamic and 

Stall Models

Fig. 1 Schematic overview of paper structure.
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results from these methods and experiments will be summarized, as
well as critical considerations for applications of identified aircraft
models for model-based control [32,33] and pilot training in flight
simulators [34,35].
This paper’s structure is also aligned with Fig. 1. First, Sec. II

describes new identification methods for application to flight-test
data. Section III describes recent and innovative flight-test experi-
ments performed to collect data for model identification of fixed-
wing aircraft and drones. Section IV presents an overview of the key
new results obtained and previously presented in [29,36], as well as
selected crucial applications of identified models. The paper ends
with final conclusions and an outlook for essential future research.

II. Methods

A. Nonlinear Stall Model Identification

1. Flow Separation Models

One of the most well-known model structures that has been
proposed to model the nonlinear, dynamic, and time-dependent
phenomena caused by aerodynamic stall is generally referred to as
Kirchhoff’s theory of flow separation [37]. This theory states that the
relation between airfoil lift and the flow separation point X, which
represents the fraction of the chord length affected by flow separa-
tion, can be included explicitly in traditional polynomial models for
the aerodynamic forces and moments [see Eq. (1)] to account for
changes in aircraft dynamics during stalled flight. The flow separa-
tion state X explicitly models the distance along the wing chord,
where the flow separates, and ranges from 1 (for which flow is fully
attached) to 0 (for which flow is fully separated). The flow separation
state X is closely related to the aircraft’s angle of attack α, and its
dynamics can be modeled by the well-known first-order ordinary
differential equation of Eq. (2):

CL � CLα

1� X
p

2

2

α (1)

τ1
dX

dt
� X � 1

2
�1 − tanh�a1�α − τ2 _α − α���� (2)

The flow separation model of Eq. (2) contains four parameters that
each characterizes a physical attribute of the stall. For example, τ1
accounts for inertia in flow separation and reattachment, and thus
adds lag to the dynamics of X compared to α variations. The second
time constant, τ2, models hysteresis effects on X. The shaping
parameter a1 sets the static mapping between X and α, and thereby
accounts for the “abruptness” of the stall. Finally,α� defines the angle
of attack at which stall occurs. With Eq. (2), solving for an aerody-
namicmodel’s parameters (including the four flow separation param-
eters) becomes a nonlinear optimization problem, which makes it
sensitive to initial conditions and computationally more demanding
to solve. Still, previous research consistently shows the validity of
this modeling approach [29,31,38,39].
An important focus of our current research focuses on the effec-

tiveness of extending stall models with multiple flow separation
state variables, as first proposed in [40]. This is an essential part of
most stall models, as in reality it often happens that one wing stalls
before the other, resulting in strong roll motions [3,5]. For example,
in [41], we investigate the modeling improvement obtained by
separately accounting for the flow separation on the left (XL) and
right (XR) wings; see Eq. (3). This novel modeling approach pro-
vides a more versatile and physically meaningful method of model-
ing aircraft dynamics during stalls, but it also facilitates the explicit
introduction of asymmetric model terms that are a direct function of
their respective wing’s flow separation state. In our view, such
multistate flow separation models open the door to possible new
ways of improving aerodynamic stall models identified from flight-
test data [41]:

CL � CL0
� CLαL

1� XL

p
2

2

αL � 1� XR

p
2

2

αR (3)

2. Stall Buffet Models

A key characteristic of a stall is the stall buffet, as buffeting is a
crucial initial cue for pilots that indicates entering a potentially unsafe
flight regime. The stall buffet,which occurs at high angles of attack, is
the aerodynamic excitation due to flow separation causing pressure
fluctuations over the wing [42–44]. In recent research, we have
focused on improving the way in which the temporal variations in
stall buffet intensity are implemented in stall models, by coupling
buffet intensity directly to the models’ flow separation state X [31]
(see Sec. II.A.1) or the angle of attack α [44].
The stall buffet model proposed in [31] (see Fig. 2) was identified

from buffet vibrations measured during flight tests with Delft Univer-
sity of Technology’s Cessna Citation II laboratory aircraft. The basic
characteristic feel of the buffet (i.e., the average frequency spectrum of
the buffet vibrations) ismodeled by passing unity-variancewhite noise
through a second-order shaping filter; see Fig. 2. For modeling the
Cessna Citation II’s vertical stall buffet vibrations, the gain H0, reso-
nance frequencyω0, and quality factorQ0 of the second-order filter are
used to create a band-pass filter focused on 12 Hz (75 rad/s) [31]. To
match the buffet intensity variations that occur during approach to stall,
stall, and stall recovery, the proposed buffet model of [31] uses an
additional scaling with 1 − X (see Fig. 2) and is thus directly linked to
the nonlinear stall dynamics model of Eq. (2). Finally, the stall buffet
model contains a threshold onX (i.e.,Xthres) to trigger the buffetmodel;
only when X < Xthres (for our Cessna Citation II data equal to 0.89
[31]) is the stall buffet model activated and adds vibrations to the
aircraft’s simulated vertical acceleration. This novel stall buffet model
has been implemented for recent simulator experiments [34,35] and
found to provide realistic buffet intensity variations.

3. Model Structure Selection

Also due to our reliance on stall flight-test data that contain only
relatively mild quasi-steady and accelerated stall maneuvers, an
essential factor is selecting a matching aerodynamic model structure
that contains only those model terms needed to explain the data. For
this, an explicit model structure selection algorithm based on the
multivariate orthogonal function (MOF) modeling method described
by Morelli et al. [45] and Grauer and Morelli [46] was developed
[29]. TheMOF enables objective and (semi-)automated model struc-
ture selection by orthogonalizing all candidate model terms, due to
which terms can be added and evaluated independently of each other.
In this way, an MOF algorithm iteratively “builds up” model struc-
tures from scratch based on a predefined pool of orthogonalized
candidate regressor terms. Typically, this process is governed by a
cost function that penalizes both modeling errors and model com-
plexity [45]. As is typically done, for stall model identification, we
use common aerodynamic model regressors, such as α, δe, and p. To
facilitate direct identification of stall-related terms, the candidate
pool is extended with the flow separation state X, as well as several
mathematical transformations of X, as regressors (e.g. [29]):

1;α; _α; β; _β; p; q; r; δa; δe; δr; CT;M;

X; �1 − X�; 1� X
p

2

2

; max�0.5; X� (4)

The variables in Eq. (4) are referred to as the “base regressors,” as
they are considered as candidates directly, but also all unique

Fig. 2 Schematic overview of the stall buffet model proposed in [31],
where PSD stands for Power Spectral Density.
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product-wise combinations of these base regressors, up to and
including a user-defined maximum order of n. As shown in
Eq. (4), four base regressors that contain X are included. The
regressor X itself can be used for explaining an effect that reduces
or disappears during stall. The second regressor, �1 − X�, does the
opposite; it only takes effect during flow separation. The third term
is part of the term appearing in Kirchhoff’s classical theory of flow
separation, which would be created by taking the product of this
term with α. Finally, the term max�0.5; X� was used to take into
account some effects that change during stall but do not completely
disappear for fully separated flow. Of course, a direct measurement
of X is not available, but as explained in Sec. II.A.4 this can be
solved after the flow separation model of Eq. (2) is estimated; then,
X can be fully reconstructed.
The implemented model structure selection algorithm for stall

model identification is shown in Fig. 3. The full details of this
implementation can be found in [29]. The MOF algorithm is ran on
each flight-test dataset separately (see Fig. 3) and also for first-order
candidate regressor terms and second-order combinations of the
candidate regressors of Eq. (4) (gray boxes). For selecting terms,
an objective criterion that combines a fit error term [mean square error
(MSE)] and a penalty term for model complexity (proportional to the
model dimension n) is used [29]. The results of each iteration are then
interpreted manually across all different identification datasets to
decide which model terms are to be added to the model; see the
“Interpret results” block in Fig. 3. Tomaintain an objective procedure
as much as possible, regressors are added to the model when selected
in at least 50% of the individual datasets. In cases where different, yet
to some extent interchangeable, terms are selected across the (lim-
ited) training dataset, the relative usefulness of terms is judged based

on the improved fit quality (MSE and R2) on the validation datasets.
Any selected terms are “frozen” into the model structure and are
always included during later iterations. Iterations are run until no
more new contributing model terms are found.
Ideally, the model structure selection algorithm converges to the

samemodel structure for all datasets. It was found that this, however,

was not the case for our flight-test data [29], especiallywhen settingn
larger than 2; this often causes functionally similar terms (e.g., α and
α ⋅ δe for constant or slightly varying elevator deflections) to be
included in the selected model structure. Thus, also including n >
2 terms may quickly conflict with the goal of selecting a parsimo-
nious and consistent model structure.

4. Model Identification and Parameter Estimation

Incorporating the model structure selection approach outlined in
Sec. II.A.3, we have proposed to split the model identification and
parameter estimation for nonlinear stall models based on flight-test
data in three steps [29], as outlined in Fig. 4.
First, in step 1, the flow separation model (X) parameters are

estimated using nonlinear methods. The X parameters are identified
using the measured CL data, as the lift coefficient’s dependency on
the flow separation state is best documented in literature [37–39,47].
An initial assumption on the model structure of CL needs to be made
[e.g., Eq. (1)]. The implicit assumption is made that the dependence
of the X parameters on the model structure is mild. When the model
structure selection step of step 2 results in a different CL model
structure, the X parameters will also be estimated; see Fig. 4.
With step 1 completed, the estimated X parameters imply that also

the model’s X time response is known. This means that X, and other
transformations of X [see Eq. (1)], can be used directly as potential
(linear) regressors during model structure selection (step 2; see
Sec. II.A.3) and parameter estimation (step 3), in parallel with
measured flight states (e.g., α). Especially for the model structure
selection in step 2, the fact that conventional linear least-squares
methods can be used to fit models of the form of Eq. (1) enables quick
iterations between selecting a model structure, directly solving for its
parameters with least squares and validating the resulting model. As
shown in Fig. 4, steps 2 and 3 are performed identically and inde-
pendently for all aerodynamic force and moment equations. This
three-stepmodel identification and parameter estimationmethodwas
found to effectively deal with the inherently nonlinear aerodynamic

Fig. 3 Flowchart of the stall model structure selection algorithm [29].

Fig. 4 Flowchart of the three-step nonlinear stall model identification approach [29].
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model structure of nonlinear stall models and retrieve accurate and
parsimonious models from measured stall flight-test datasets [29];
see Sec. IV.B.

B. Multivariate Splines for Aerodynamic Model Identification

Multivariate splines provide a powerful alternative to standard
polynomial and lookup table-based modeling approaches; they com-
bine the analytical, continuous nature of polynomials with the global
nonlinear modeling capabilities of lookup tables. While one-
dimensional (i.e., univariate) spline theory is well known and devel-
oped, multidimensional (i.e., multivariate) spline theory is still an
active research field. At Delft University of Technology, a general
multivariate “simplex” B-spline methodology was developed spe-
cifically for aerodynamic model identification [30,32,36,48–50].
Other authors have also introduced splines or equivalent polynomial
smoothing (or “stitching”) approaches for aerodynamic model iden-
tification, in particular the “model stitching” approach from [51,52]
and the physically interpretable splines from [45]. Our methodology
sets itself apart from these approaches by building on multivariate
B-spline theory [53,54], resulting in a formally defined, general
function approximator that allows the user to define splines in any
number of dimensions, polynomial degrees, and continuity orders.At
the same time, the linear regressionmethod formultivariate B-splines
from [36] is fully compatible with (online, distributed) parameter
estimation schemes andmodel validationmethods widely used in the
aircraft system identification community.
This section presents an overviewof the basic theory and necessary

literature references required to develop state-of-the-art multivariate
spline-based aerodynamic model identification and validation
routines.

1. Principles of Multivariate Simplex B-Splines

Multivariate simplex B-splines are a type of multivariate spline
that consists of a smooth combination of polynomials defined on
simplex (e.g., triangular) intervals; see Fig. 5.
By combining any number of simplices into a triangulation [see

Fig. 6 for a two-dimensional (2-D) example], an arbitrarily high
approximation power can be obtained ([54], pp. 276–307). A tri-
angulation T is a special partitioning of a domain inRn into a set of T
nonoverlapping simplices:

T ≔
T

i�1

ti; ti ∩ tj ∈ f∅; ~tg; ∀ti; tj ∈ T (5)

with the edge-simplex ~t a k simplex with 0 ≤ k ≤ n − 1. It should be
noted here that the term “triangulation” is also used for dimensions
n > 2, even though they consist of tetrahedrons, pentachorons, etc.
The polynomial spline pieces on each simplex consist of local

Bernstein basis functionsBd
κ �b� of total polynomial degree d defined

in terms of barycentric coordinates b � �b0; b1; : : : ; bn�, which are
scaled by polynomial coefficients cκ called B coefficients:

p�b� �
jκj�d

cκB
d
κ �b� (6)

This is the well-known B-form [53], with κ a multi-index defined as

κ � �κ0; κ1; · · · ; κn� ∈ Nn�1; κi ≥ 0 (7)

with jκj � n
0 κi � d, and κ! � n

0 κi!. The B-form consists of a

sum of d̂ � �d� n�!∕�n!d!� basis functions, which follows from the
definition of κ. For example, for one-dimensional (1-D) Cartesian
space (n � 1) and quadratic basis functions (d � 2) κ ∈ �2; 0�;
�1; 1�; �0; 2�, and hence, the corresponding B-form consists of a

summation of three basis functions: p�b0; b1� � c20B
2
20�b0; b1��

c11B
2
11�b0; b1� � c02B

2
02�b0; b1�.

The Bernstein basis functions in Eq. (6) are defined in barycentric
coordinates as follows:

Bd
κ �b� � Bd

κ �b0; b1; : : : ; bn� �
d!

κ!
bκ00 b

κ1
1 · · · bκnn (8)

With Eq. (8), we get for our earlier (n � 1, d � 2) example:

p�b0; b1� � c20�2!∕�2!0!��b20b01 � c11�2!∕�1!1!��b10b11 � c02�2!∕
�0!2!��b00b21.
The barycentric coordinates b � �b0; b1; : : : ; bn� ∈ Rn�1 of any

Cartesian coordinate x � �x1; x2; · · · ; xn� ∈ Rn with respect to an
n-simplext containing the vertices �v0; v1; : : : ; vn� can be computed
as follows:

x �
n

i�0

bivi;
n

i�0

bi � 1 (9)

The barycentric coordinate system is key to defining the stable
local basis for the multivariate B-splines, which leads to numeri-
cally stable and sparse estimation and evaluation schemes, easy-to-
implement continuity conditions, and bounded values for the
B-coefficients of the spline pieces.
In [36], a useful vector formulation of the per-simplex B-form

Eq. (6) was introduced:

p�b� � Bd
tj�b�ctj (10)

withBd
tj �b� ∈ R1×d̂ the vector of basis polynomials of degree d as in

Eq. (8) and with ctj ∈ Rd̂×1 the (column) vector of B-coefficients,

both defined on the simplex tj. The vector formulation requires an

Fig. 5 Principle of themultivariate simplexB-spline: a) a spline function

with continuity defined on simplex intervals, and b) with each simplex
supporting a locally defined basis polynomial scaled by B-coefficients
(gray diamonds).

Fig. 6 B-net (B-coefficients indicatedwith c300 to c003) for a third-degree
2-D spline function on three simplices (t1 to t3) defined by four vertices v1
to v4.
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explicit lexicographical sorting of the individual basis function terms
and B-coefficients [55] as follows:

Bd
tj �b� � Bd

d;0; : : : ;0�b� Bd
d−1;1; : : : ;0�b� · · · Bd

0; : : : ;0;d�b� ∈ R1×d̂

(11)

and the vector of B-coefficients on tj is sorted correspondingly

ctj � cd;0;: : : ;0 cd−1;1;: : : ;0 · · · c0;: : : ;0;d
⊤ � �cκ �jκ�dj ∈ Rd̂×1

(12)

The global vector of B-coefficients is obtained by collecting all T
per-simplex B-coefficient vectors as follows:

c �

ct0
ct1
..
.

ctT

∈ RTd̂×1 (13)

The B-coefficients have a unique spatial ordering inside their
supporting simplices called the B-net (see Fig. 6 for an example),
which is essential for the definition of continuity between simplices
[30,54,56,57], B-coefficient variance surfaces [36], distributed solv-
ers [50,58], and local spline adaptation schemes [32]. The spatial
location, in barycentric coordinates, of any B-coefficient of a dth-
order B-form polynomial with respect to its parent simplex is com-
puted using the multi-index κ from Eq. (7) as follows:

bt�cκ� �
κ

d
(14)

Creating high-quality triangulations is not a trivial task, especially
in dimensions higher than 2, where standard Delaunay triangulation
methods result in ill-conditioned triangulations containing simplices
with close to zero volume (so-called sliver simplices) [30]. For air-
craft system identification, we obtain excellent results using an
extension of Kuhn triangulation method [59,60]. Kuhn triangulation
method, when applied on a unit hypercube, results in a symmetric
triangulation that can be “stenciled” across the flight envelope,
resulting in a triangulation consisting of well-conditioned simplices;
see [30]. This algorithm works as follows: define h � �0; 1�n as the

unit n-D cube, with e1; : : : ; en the set of unit vectors inRn. The set of
n! permutations of the sequence 1; : : : ; n is defined asSn. Each of the
elements π ∈ Sn is used to construct a single n-simplex within the
hypercubeh. Hence,h can be divided inton! simplices. Each simplex

tπ � hx�0�π ; x�1�π ; : : : ; x�n�π i will now have vertices, which are recur-
sively defined as follows:

x�j�π � x�j−1�π � e�π�j��; x�0�π � �0; 0; : : : ; 0�; 1 < j ≤ n (15)

See Fig. 7 for an example of Kuhn triangulation of the three-
dimensional (3-D) cube.
Note that while Kuhn triangulation is defined on hypercubes,

resulting in rectangular global triangulations, it can be easily made
nonrectangular. Simplices placed in nonphysical locations, or loca-
tions where no data are available, can be automatically removed
from the triangulation if desired. If necessary, the resulting triangu-
lation can also be locally refined by inserting vertices inside the

Kuhn triangulation simplices or by moving vertices, as demon-
strated in [30].
Formulating continuity of any orderm < d between the individual

spline pieces is achieved by relating theB-coefficients of neighboring
simplices with continuity conditions [57,61]. For example, the
continuity condition to achieve continuity of order m between the
simplices t1 and t2 in Fig. 6 is given by

ct1�κ0;: : : ;κn−1 ;m� �
jγj�m

ct2�κ0;: : : ;κn−1;0��γB
m
γ �σ�; 0 ≤ m ≤ r (16)

with γ � �γ0; γ1; : : : ; γn� a multi-index independent of κ, and with σ
the out-of-edgevertex of the simplex t1 (i.e., the vertexv3 in t1, which
is not on the edge between t1 and t2 in Fig. 6).
In [30], a more general formulation of the continuity conditions

was introduced that is valid for general triangulations (e.g., continuity
between t1 and t3, and t2 and t3 in Fig. 6). Eventually, to achieveC

m

continuity over the entire spline function, all R continuity conditions
for orders 0 tom for all neighboring simplex pairs are assembled into
the so-called smoothness matrix H as follows:

Hc � 0; H ∈ RR×Td̂ (17)

with c the global vector of B-coefficients fromEq. (13). Construction
of the smoothness matrix is not trivial, especially if it is required to be
of full rank. Refer to [30] for an in-depth discussion and examples.

2. Linear Regression with Multivariate Splines

The scattered data approximation problem for multivariate sim-
plex B-splines can be formulated as the following sparse linear
regression problem [36,62]:

Y � Xc� r ∈ RN (18)

withY the vector containing all observations, with c the global vector
of B-coefficients from Eq. (13), and with r a residual term. X in
Eq. (18) is the sparsematrix ofB-form regressors for all i � 1; : : : ; N
observations:

X� Bd
t0�b�x�i�� Bd

t1�b�x�i��� : : : Bd
tT �b�x�i���

N

i�1
∈ RN×Td̂

(19)

with Bd
tj�b�x�i��� as in Eq. (11) and with b�x�i�� the barycentric

coordinate of the data location (state) x�i�with respect to simplex tj.

It is important here to note that x�i� ∈= tj → Bd
tj �b�x�i��� � �0� by

definition, that is, if a data point x�i� is located outside the simplex tj,
the corresponding columns in the regressionmatrixX are zero; this is
the source of the sparseness of X.
The general optimization problem for the B-coefficients can now

be stated as follows:

min
c

J �c�; subject to Gc � g (20)

with J �c� a cost function in terms of the B-coefficients. The con-

straint matrixG ∈ RG×Td̂ and constraint vector g ∈ RG×1 in Eq. (20)
are defined as follows:

G � H
W

; g � 0
w

(21)

Fig. 7 Kuhn triangulation of the three-cube with six tetrahedrons.
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with H the sparse smoothness matrix from Eq. (17), and with W
and w any additional constraint matrix and vector, respectively.
For example, W and w may hold hard constraints on individual
B-coefficients, or may hold differential constraints [62] for the direc-
tional derivatives of the multivariate splines, which are useful when
imposing Dirichlet, Robin, or Neumann boundary conditions when
approximating partial differential equation solutions; see [63].
The effective degrees of freedom of the problem can be computed

from the null space of the constraint matrix G from Eq. (21) :

Nc � dim ker G (22)

whereNc is in most cases significantly smaller than the total number
of B-coefficients, in particular for higher continuity orders (r > 1)
and lower degrees (d < 5) in higher-dimensional triangulations
(n > 3).

3. B-Coefficient Estimators

A number of different linear estimators for the B-coefficients
have been applied to the aircraft system identification problem.
The simplest approach to spline model estimation method is the
equality constrained generalized least-squares estimator for the
B-coefficients, which was introduced in [36]. In this paper, a new
formulation of this estimator is introduced, which includes Tikhonov
[64] regularization to compensate for ill-defined per-simplex regres-
sion matrices resulting from data collinearities and/or insufficient
data content:

ĉ

λ̂
� Q� μP G⊤

G 0

�
⋅X⊤Σ−1Y �

C1 C2

C3 C4

�
⋅X⊤Σ−1Y

(23)

with ĉ the estimated B-coefficients, with λ̂ the estimated Lagrange
multipliers, andwith μ a tuning parameter that scales a square penalty

matrix P ∈ RTd̂×Td̂. Note that if the problem is well conditioned,
μ � 0. In Eq. (23), Q is given by

Q � X⊤Σ−1X ∈ RTd̂×Td̂ (24)

with Σ � Cov�r� ∈ RN×N the residual covariance matrix, which

reduces to the identity matrix I ∈ RN×N if the ordinary least-squares
assumptions hold. Note that the Moore–Penrose pseudo-inverse in
Eq. (23) is required because the smoothness matrixHwill not be full
rank if Eq. (16) is used to construct it without postconstruction
filtering actions, resulting in a rank-deficient constraint matrix G.
Using the top-left block C1 from Eq. (23), the generalized least-

squares B-coefficient estimator can be simplified to

ĉ � C1X
⊤Σ−1Y (25)

In [61], Awanou et al., and in [65], Awanou and Lai introduced an
efficient Lagrange multiplier-based matrix iterative solver (MIS):

c�1� � 2Q� 1

h
GTG

−1
2X⊤Σ−1Y� 1

h
GTg−GTλ�0�

c�k�1� � 2Q� 1

h
GTG

−1
2Qc�k� � 1

h
GTg ; k� 0;1;2;: : : ;M

(26)

withQ as in Eq. (24),G as in Eq. (21), and with λ�0� the initial guess
for theLagrangemultipliers, which can be set equal to 0. The constant

h in Eq. (26) is a small positive number. (For example, h � 10−6

leads to adequate results in most cases.) Convergence is achieved

when jc�k�1� − c�k�j < η ⋅ jX⊤Σ−1Yj, with η � 10−10 providing a
good stopping condition in most cases. The iterative solver is highly
efficient computationally when solving large problems, in which
more than 100,000 B-coefficients are estimated, and converges

quickly, in most cases within five iterations for low continuity orders

(i.e., C1 or less). In terms of computation time, a 100,000

B-coefficient problemwithC1 continuity is solved using aMATLAB
sparse matrix solver (CHOLMOD) in 0.8 s, while a 200,000

B-coefficient problem with C1 continuity is solved in 1.6 s, both on
a single CPU core of an AMD Ryzen-9 5900X 12-core processor
running at 3.7 GHz. This linear time scaling with the problem size
highlights the high computational efficiency that can be obtained
with sparse estimation problems resulting from local basis function
approximations. To further improve performance, the authors of
[62,66] present equality constrained recursive least-squares estima-
tors for the B-coefficients, which only requires large-scale matrix
inversion during initialization. These approaches are more suitable
for online applications than Eq. (26). In [32], the method from [66] is
used online in an adaptive control system for a simulated F-16
aircraft.

4. Distributed B-Coefficient Estimators

Modern parallel hardware architectures (e.g., graphics processing
units) can be used to achieve significant speedup of large-scale prob-
lems, but only if the problem can be properly partitioned into smaller
subproblems that can be executed in a parallel fashion. Multivariate
simplex B-splines are particularly well suited for use with such dis-
tributed solvers because of their local basis property [58].
In [50], a variable splitting alternating direction method of multi-

pliers (VSADMM) was proposed, resulting in a parallelizable dis-
tributed B-coefficient estimator for use in large-scale (online)
aerodynamicmodel identification problems. The first step in creating
a distributed B-coefficient estimator consists of partitioning the full
triangulation into P ≤ T partitions:

T �
P

i�1

T pi
(27)

Creating the partitioning is not trivial, as many configurations are
possible, including partitions consisting of a single simplex (i.e.,
P � T) or partitions with overlaps (see, e.g., [58,67] for details).
To define the VSADMM, a vector of coupling coefficients zp is

introduced for each partition p, such that Hpcp � zp [68,69]. The

coupling coefficients are necessary when defining the distributed
solver in Eq. (30). In this case,Hp is the set of columns of the global

continuity matrix H that form continuity conditions with the per-
partition set of B-coefficients cp (i.e.,H � �H1 : : :Hp : : :HP� such
thatHpcp � zp → 0). To satisfy the continuity conditions, the addi-

tional constraint P
p�1 zp � 0 on the coupling coefficients is

imposed. The VSADMM optimization problem can then be stated
as follows:

argminc J �c� �
P

p�1

1

2
kXpcp − Ypk22

subject to Hpcp � zp
P

p�1

zp � 0 (28)

Setting up the augmented Lagrangian for this optimization prob-
lem, the constraints imposed on the sum of the coupling coefficients
are exchanged for an indicator function IZ , whereZ is the convex set

�z1; : : : ; zP�∶ P
p�1 zp � 0 [68]. This function evaluates to 0

when the solution is part of the setZ, and∞ otherwise, hence forcing
the sum of the coupling coefficients to be exactly zero:

L�c; z; λ� �
P

p�1

1

2
kXpcp − Ypk22 � IZ � λT�Hpcp − zp�

� ρ

2
kHpcp − zpk22 (29)
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with λ the dual vector and with ρ > 0 a penalty factor chosen to
penalize not satisfying the constraints, which improves convergence.
Exploiting the knowledge that the smoothness matrixH is sparse,

it can be partitioned into a set of submatricesHp, which contain only

continuity conditions within the partition p, and a set of submatrices
Hp;n, which describe interpartition continuity between the partition

p and its direct neighbors n [58]. To construct these submatrices, let
H � 1; 2; : : : R be the row indices in the smoothness matrixH. The
subset Hp ∈ H now contains the row indices of the internal con-

straints of partition p, while the subsetHp;n contains the row indices

of the interpartition continuity conditions.
Information is shared between partitions using the coupling coef-

ficients zp, because their overall sum should equal zero as in Eq. (28).
Using the internal and interpartition sets, the update rule for the
internal coupling coefficients zp � 0, and for the interpartition cou-

pling coefficients zp;j the update rule is given by [69]

zp;j � Hp;jcp � λp;j
ρ

−
1

mj

P

i�1

Hi;jci �
λi;j
ρ

;

∀j ∈ Hp ∪ Hp;n (30)

For the multivariate simplex B-splines, there are only two possibil-
ities for mj: either a constraint is internal (i.e., contained in Hp)

implying mj � 1 or a constraint is interpartition (i.e., contained in

Hp;n) implying mj � 2, because a continuity condition is always

between two and only two simplices. Note that if mj � 1, the

coupling update will reduce to 0.
The complete VSADMM estimator is obtained by combining the

coupling coefficient update [Eq. (31)], the B-coefficient update
[Eq. (32)], and the dual update [Eq. (33)] as follows:

zk�1
p;j � Hp;jc

k
p �

λkp;j
ρ

−
1

2

P

i�1

Hi;jc
k
i �

λki;j
ρ

; ∀j ∈ Hp;n

0; ∀j ∈ Hp

(31)

ck�1
p � XT

pXp � ρHT
pHp

−1
XT

pYp � ρHT
pz

k�1
p −HT

pλ
k
p

(32)

λk�1
p � λkp � ρ Hpc

k�1
p − zk�1

p (33)

Note that the B-coefficient and dual update iterations in Eqs. (32)
and (33), respectively, do not depend on other partitions, and hence
can run in parallel limited only by the number of parallel processors
that are available; see Fig. 8. Only the coupling coefficient update
[Eq. (31)] requires gathering of information from all partitions and
subsequent broadcasting of the results to the parallel processes.
Obtaining a stopping condition of the VSADMM is not trivial; see
[50] for possible solutions.

5. Multivariate B-Spline Model Validation

Multivariate simplex B-spline models can be validated using the
same analysis methods as those used with standard polynomial
models, but because of the local basis property and spatial location
of the B-coefficients they also allow for additional model quality
assessment tools. The spline model residual ϵ is computed as
follows:

ϵ � Y −Xĉ (34)

with Y the validation measurements,X the sparse matrix of B-form
regressors for all i � 1; : : : ; N validation data points, andwith ĉ the
global vector of estimated B-coefficients obtained with any estima-
tor from Sec. II.B.3 or Sec. II.B.4. All standard residual-based

global model quality metrics [e.g., residual rms, (adjusted) R2,
and variance accounted for] can be computed from Eq. (34). The
user can also compute per-simplex residuals as follows:

ϵt � Yt − Xtĉt; t ∈ T (35)

Residual covariance matrix estimation is not a trivial task, andmany
different methods for constructing such matrices are presented in
the literature (see, e.g., [70–72]). We use the method introduced by
Klein and Morelli in [72] to calculate an Nt × Nt per-simplex
residual covariance matrix Σt:

Σt �
1

Nt

Nt−k

i�1

ϵt�i�ϵt�i� k�; k � 1; 2; : : : ; Nt (36)

Fig. 8 Parallel flow of VSADMM.
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The per-simplex residual covariance matrix blocks are then
assembled into the global, block diagonal (sparse) N × N residual
covariance matrix ΣT . Here, it should be noted that Eq. (36) pro-
vides a lower bound for the covariances. The data containedwithin a
simplex are not necessarily contiguous in time, and hence, some
correlations in the residuals may be suppressed. In practice, how-
ever, trajectories tracked through phase-space result in per-simplex
datasets that do contain at least segments of contiguous time data.
The B-coefficient covariance matrix provides a second key model

quality metric, which follows directly from the generalized least-
squares estimator [Eq. (25)]:

Cov�ĉ� � C1 (37)

with parameter variances equal to the main diagonal ofCov�ĉ�. Note
that the iterative solver Eq. (26) also provides an approximation of the

covariance matrix: Cov�ĉ� ≈ �2Q� �1∕h�GTG�−1. The spatial
property of the B-coefficients fromEq. (14) leads to the B-coefficient
variance surface or alternatively Cramér–Rao lower-bound surface
[36], a unique property of the simplexB-splines. Thevariance surface
allows the user to spatially pinpoint areas of high parameter variance
in the model domain, which may indicate local data deficiencies, or a
(local) model structure mismatch.
A final metric of multivariate spline model quality is its stability

within the model domain. While this measure is hard, if not impos-
sible, to determine for other nonlinear function approximators, such
as neural networks, it is trivial when using simplex B-splines:

min cti ≤ p�b� ≤ max cti ; ∀b ∈ ti (38)

that is, the B-form polynomial p�b� is bounded on the simplex ti by
the minimum and maximum B-coefficients cti defined on that sim-

plex. By extension, this implies that the global spline itself is bounded
by min c and max c.

6. Procedure for Aerodynamic Model Identification with Multivariate

Simplex B-Splines

With all theory in place to identify and validate multivariate
simplex B-spline models from scattered multidimensional data, a
general procedure is presented for their use in aerodynamic model
identification:
1) The dimension n is selected based on physical/expert knowl-

edge of the system (i.e., which inputs and states are expected to play a
role in the aerodynamic model).
2) The required continuity order r is determined; if the model is to

be used for direct simulation (without linearization), C0 continuity
suffices. If the model is to be linearized at some point or used in a

nonlinear model-based controller, C1 is recommended. It should be
noted that increasing the continuity order comes at the cost of reduced
degrees of freedom to model the data according to Eq. (22) and often
requires increasing the spline degree to maintain model quality.
3) If no triangulation exists, an initial (prototype) triangulation T is

created in the form of a single Kuhn triangulated hypercube; see
Sec. II.B.1. If the user is increasing the resolution of the triangulation,
the stenciled Kuhn triangulated hypercube method can be used, and/
or local triangulation refinements can be applied; see [30].
4) A data membership search is performed for all data points in the

identification dataset; each data point is assigned to a single parent
simplex. The user checks if each simplex t ∈ T contains at least d̂ �
�d� n�!∕n!d! data points. If this is not the case, the resulting
estimation problem may be ill-defined. This requires removal of
the low-data volume simplex from the triangulation, application of
additional (differential) constraints [62], or application of (per-sim-
plex) Tikhonov regularization as in Eq. (23).
5) The spline degree d is selected. This is based on physical/expert

insight into the system while taking into consideration the selected
continuity order. The spline degree is equivalent to the degree of a
standard Cartesian (physical) polynomial model fitting the data, that
is, if a spline degree of d � 3 is selected, then it is expected that there

are cubic physical polynomial terms present in the aerodynamic
model. A new constraint matrixGmust be formulated using Eq. (21).
6) A (distributed) estimator (ĉ) is formulated for the prototype

spline model using, for example, Eq. (25); Eq. (26) for centralized
approaches; or Eq. (32) for a distributed approach. TheB-coefficients
are estimated and B-coefficient (co)variance (surfaces) [Eq. (37)]
analyzed. Model residuals are computed with Eq. (34) (global) or

Eq. (35) (per-simplex) and analyzed using standardmetrics {e.g.,R2,
MSE, rms error (RMSE), and spline specific metrics such as the
B-form bounds [Eq. (38)]}.
7) If themodel does notmeet validation accuracy requirements, the

user first increases the spline degree and repeats steps 5 and 6.
However, if this is not physically meaningful or does not sufficiently
improve the model, the user must improve the triangulation and
repeat steps 3–6.
When using multivariate splines for aerodynamic model identifi-

cation, the user should be aware that the arbitrarily high approxima-
tion power of the multivariate splines can lead to local overfitting.
Overfitting can easily be detected during spline construction using
solution system condition numbers and pinpointed by analyzing the
B-coefficient variances, which peak in areas where local overfitting
is present. However, even though multivariate spline models can
have a large number of parameters [e.g., >250;000 in the case of
some five-dimensional (5-D) submodels of the highly nonlinear
Innovative Control Effectors (ICE) aircraft [73]], these parameters
are only locally “active.” This is a direct result of the local basis
property of the multivariate B-splines. In the case of ICE, the 5-D
spline model contains 56 B-coefficients per simplex, implying that
56 B-coefficients need to be estimated per simplex (and evaluated at
every time step). In addition, a significant subset of these 56 B-
coefficients is used to obtain smoothness between neighboring
simplices and is constrained by the continuity conditions. Hence,
a more accurate metric of the multivariate simplex B-spline model
complexity is the DOF of the model Nc, which is computed using
Eq. (22). In the case of the aforementioned 5-D ICE submodel,

enforcing C1 continuity reduces the degrees of freedom from
>250;000 to just 768, that is, 99.7% of all B-coefficients are

required just to achieve C1 continuity.

III. Flight-Test Experiments

A. Flight-Test Vehicle and Hardware

In support of our aerodynamic and stall model identification
research, flight tests are performed in the Cessna Citation II labo-
ratory aircraft (call sign PH-LAB) that is co-owned by Delft Univer-
sity of Technology’s Faculty of Aerospace Engineering and The
Netherlands Aerospace Center [Nationaal Lucht en Ruimtevaartla-
boratorium (NLR)]. Schematic views of the aircraft can be found in
Fig. 9. Tables 1 and 2 contain general mass [based on the aircraft’s
basic empty weight (BEW)] and geometric properties, and list
the flight-test equipment relevant to this research. The aircraft is
equipped with an advanced flight-test instrumentation system, which
connects and centrally logs data from installed sensors (see Table 2),
such as an external air data boom that is mounted on the nose of the
aircraft for angle of attack and angle of sideslip measurements; see
Fig. 9. Finally, a custom in-house-developed fly-by-wire system is
available for this aircraft [74,75], which enables providing automated
flight-test inputs.

B. Stall Flight-Test Maneuvers

For example, for our recent experiments on stall model identifica-
tion [29,31], we have performed dedicated flight tests focusing on
symmetric quasi-steady stall maneuvers and accelerated stall maneu-
vers with bank angles of 30–45 deg (approximately 1.1 or 1.3 g). To
collect valuable data for model identification, we ensure that before
each stall maneuver the aircraft trimmed in nominal flight, to include
stall entry, the stall itself, as well as recovery phases. Figures 10a and
10b show an overview of all flight-test recordings collected in the
experiment of van Ingen et al. [29], which shows a focus on stall data
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collection at altitudes between 4500 and 5500 m, for which angles of
attack up to 27 deg were achieved.
A focus area of our recent stall flight testing has been the refine-

ment of flight-test inputs that are provided during the portion of
stalled flight, to achieve sufficient excitation of the aircraft’s
dynamics to facilitate model identification, as well as collecting
direct measurements of degraded control surface effectiveness. For
example, as illustrated in Fig. 10c, we have used manually applied
quasi-random flight-test inputs on multiple control surfaces, based
on a technique described byMorelli et al. [45]. Figure 10c shows the
change in angle of attack α, in gray for reference, to clearly indicate
where the stall occurs. In blue, the aileron, elevator, and rudder input
traces are shown; for the elevator, pilot inputs are required to keep
the aircraft at the desired stalled flight condition, while (semi-)
random inputs for excitation are visible on the aileron and rudder

inputs. Alternatively, we have leveraged the PH-LAB’s experimen-
tal fly-by-wire control system [74,75] to execute fully automated
flight-test inputs to achieve more consistent and repeatable flight-
test experiments; see Fig. 10d. Overall, the result of these focused
flight-test inputs is that they directly increase the essential excita-
tion in our flight-test datasets, which greatly benefits model iden-
tification accuracy [29].

C. Flight-Test Data Preprocessing

An integral part of all flight tests is that next to the aerodynamic
data collected, the many sensor measurements will require prepro-
cessing to make signals suitable for model identification. For stall
flight tests, for example, a number ofmeasured signals are affected by
the stall buffets that occur during the (approach to) stall in most
aircraft. The buffet vibrations are vital to a realistic stall model
implementation in a simulator, but these are modeled by a separate
buffet model [31,44]. As the buffets in general do not directly affect
the aircraft’s kinematic movement, it is essential that the strong
impact the stall buffet may have on certain measurements is removed
before flight path reconstruction or model identification. Figure 11
shows example air data boom measurement data from [29] for the
angle of attack that shows how strongly theαmeasurement is affected
by stall buffet vibrations. In red, Fig. 11 shows the same data but then
preprocessed with a fourth-order Butterworth filter (applied both in
forward and reverse directions to avoid filter-induced phase lag) to
remove the buffet vibrations.

IV. Results and Applications

A. Nominal Envelope Aerodynamic Model Identification

1. Multivariate Splines-Based Model of the Cessna Citation II

The multivariate simplex B-splines introduced in Sec. II.B were
used to identify a global aerodynamicmodel of the Cessna Citation II

Fig. 9 Schematic views of the Delft University of Technology/NLR PH-LAB laboratory aircraft, including the body-fixed reference frame definition.

Table 1 PH-LAB dimensions and
mass properties (BEW)

Parameter Value

Dimensions

S 30.0 m2

�b 15.9 m

�c 2.09 m

Mass and inertia

m 4,157 kg

Ixx 12;392 kg ⋅m2

Iyy 31;501 kg ⋅m2

Izz 41;908 kg ⋅m2

Ixz 2;252.2 kg ⋅m2

Table 2 Flight-test equipment installed on the PH-LAB Cessna Citation II aircraft,
including the measured variables relevant to this research

Name Explanation Measures Variables Units

GPS Global positioning system Position in FE xE; yE; zE m

Velocity in FE _xE; _yE; _zE m/s

DADC Digital air data computer Total airspeed VTAS m/s

AHRS Attitude and heading reference system Aircraft attitude ϕ; θ;ψ rad

Body rotation rates p; q; r rad/s

Body specific forces Ax; Ay; Az m∕s2

Synchro Angle measurements Control surface deflection δa; δe; δr rad

Boom Air data boom Air incidence angle α, β rad
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laboratory aircraft (see Sec. III.A) from flight-test data. In total, 8
million data points resulting from 247 doublet and 3211 maneuvers
(79 longitudinal, 62 lateral, and 106 coupled) were used to create the
multivariate B-spline model.
An iterated extended Kalman filter was used for flight path

reconstruction, the first step of the two-step method [20]. The model

structure selection process for the multivariate simplex B-splines
presented in Sec. II.B.6 was used to determine adequate model
structures for all force and moment coefficient models.
Table 3 shows the results of the validation of the multivariate

spline-based aerodynamic models using an independent subset
of the flight data. The models forCZ, Cl, and Cm and Cn are of high

a) Flight envelope: ( ) b) Flight envelope: ( )

c) Flight test inputs: quasi-random d) Flight test inputs: 3211

Fig. 10 Example of Cessna Citation II stall flight-test results from [29]: a–b) the part of the flight envelope covered in the flight tests; c–d) examples of
(manual) quasi-random and (automated) 3211 flight-test inputs, respectively, that were given during stalled flight to obtain data on degraded control

surface effectiveness.

9
45 46 47 48 49 50 51 52 53 54 55 0 5 10 15 20 25 30 35 40 45 50

10

11

12

13

14

15

16

17

18

a) Boom measurement time trace

-80

-60

-40

-20

0

20

40

60

b) Boom measurement spectrum
Fig. 11 Examples of raw and filtered angle-of-attack air data boommeasurements from stall flight-test data [29], where PSD stands for Power Spectral
Density.
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quality with relative rms scores of less than 5% (implying 95%
global accuracy). The model for CY with a relative rms score
of 7.2% has a lower quality, albeit with a global accuracy that is
higher than 90%. This lower quality can be explained by a lack of
excitation along the Y axis, resulting in a triangulation with most of
the data close to the trim point (center of the triangulation) and very
little data present at the edges of the triangulation, causing high
variances in these regions, and consequently lower-quality model
validation scores. The total number of B-coefficients per spline
model is also shown, but as mentioned in Sec. II.B.6, the actual
DOF of the models is significantly lower due to the continuity
conditions that constrain an increasing number of B-coefficients
as the continuity order increases.

2. Multivariate Splines-Based Aerodynamic Model for the ICE Aircraft

The LockheedMartin ICE configuration is an overactuated 65 deg
sweep, highly maneuverable, supersonic tailless flying wing with 13
ICE with nonnegligible nonlinear cross-effector couplings resulting
in a non-control affine system [33,73,76,77]. The configuration of the
ICE control effectors is shown in Fig. 12.
At Delft University of Technology, a new incremental nonlinear

control allocation (INCA) method was introduced that exploits the
nonlinear state–effector and effector–effector couplings [33]. The
core element of INCA is a first-order continuous global multivariate
simplex B-spline model of the force and moment coefficients of ICE
with the following structure:

Si � Si1�α;M� � Si2�α; β;M� − Si3�α; β; δLIBLEF�
− Si4�α; β; δLIBLEF; δLOBLEF;M� � Si5�α; δLSSD; δLEL;M�
� Si6�α; δLSSD; δRSSD; δPF;M� � Si7�α; β; δLAMT�
� Si8�α; δLEL; δLAMT� � Si9�α; δLOBLEF; δLAMT�
− Si10�α; δREL; δRAMT� − Si11 �α; δROBLEF; δRAMT�
� Si12 �α; β; δLSSD� � Si13 �α; β; δRIBLEF�
� Si14 �α; β; δRIBLEF; δROBLEF;M� − Si15�α; δRSSD; δREL;M�

− Si16�α; β; δRAMT� − Si17 �α; β; δRSSD� �
bp

2V
Si18 �α;M�

� br

2V
Si19 �α;M� (39)

with i � fl; m; n; X; Y; Zg, where each model term Sin is a multivari-

ate B-spline function with C1 continuity. This model was identified
from the ICE aerodynamic database [73] using both a global
approach from Sec. II.B.3 and the distributed approach from
Sec. II.B.4; see [50]. The full spline-based aerodynamic model
consists of 108 spline functions of dimensions varying from 1-D to
5-D. In Fig. 13, an illustration is given of the significant high-
dimensional nonlinearities present in the ICE spline models.
In Fig. 14, the normalized (with respect to the minimum and

maximum submodel outputs) RMSEon a validation dataset is plotted
for all 108 multivariate B-spline submodels that together form the
ICE spline-based aerodynamic model. The submodel indices (hori-
zontal axis) correspond to those in Eq. (39). The largest normalized
validation error is 1.4%. Each aerodynamic force and moment
coefficient consists of 19 spline models with a total of 486e3 B-
coefficients. As mentioned in Sec. II.B.6, the total DOF of the model
is significantly less (≈5000); more than 99% of all B-coefficients are

constrained by continuity conditions to achieve C1 continuity
between spline pieces.
In Fig. 15, the convergence of the distributedVSADMMapproach

is shown as a function of the total number of iterations. From this
figure, it can be concluded that when using Kuhn triangulation,
excellent convergence toward the global solution can be obtained,

Table 3 Results of the Citation II spline model validation

Coefficient Spline model Degree Continuity Simplices B-coefficients R2 Error rms Relative error rms, %

CX fX�α; δe;M� 5 C1 6 336 0.88 1.6e–2 4.68

CY fY�β; δr; r� 3 C1 6 120 0.42 3.8e–2 7.18

CZ fZ�α; δe; q;M� 6 C3 21 4410 0.92 6.5e–2 3.40

Cl fl�β; δa; p� 5 C3 6 336 0.64 9.6e–4 1.57

Cm fm�α; β; δe; q� 5 C2 21 2646 0.72 8.9e–3 2.69

Cn fn�β; δr; r;M� 5 C3 22 2772 0.66 1.9e–3 2.48

Fig. 12 Lockheed Martin ICE aircraft.

Fig. 13 Example of ICE spline-based aerodynamic model: slices through the original 5-D (cubic interpolated) dataset (left), the 5-D spline function SX6

(middle), and the model residual (right).

DE VISSER AND POOL 1491

D
ow

nl
oa

de
d 

by
 T

ec
hn

is
ch

e 
U

ni
ve

rs
ite

it 
D

el
ft

 o
n 

Ja
nu

ar
y 

2,
 2

02
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.C
03

72
83

 



in particular when a per-hypercube [(3)-Hyp in the figure] partition-
ing system is used.
Finally, a multivariate simplex B-spline model obtained with the

distributed VSADMMmethod is validated within an open-loop six-
DOF time-based simulation framework against the output of the
lookup table-based aerodynamic model from [73]. In its default
configuration, the lookup table-based model uses mixed linear and
cubic interpolation in each of its 108 (table-based) submodels. In
Table 4, the aerodynamic force andmoment coefficients predicted by
the spline-based aerodynamic model are validated against those
predicted by the lookup table-based model for a set of four 10 s
simulation runs with specified control surfaces deflecting after 4 s.
In Fig. 16, a 10 s open-loop simulation run, with all control

surfaces moved to their maximum deflection setting after 4 s, is
shown for both the multivariate spline and lookup table-based mod-
els. Here, the multivariate spline model clearly can match the lookup
table-based model for most coefficients. Only the Cl model shows
significant mismatch; in this case, this is caused by the state moving
out of bounds of the model domain after the aggressive (open-loop)
input, highlighting to different clipping behavior between the spline
and lookup table-based models.
Finally, the computational performance of the multivariate spline-

based aerodynamic models during simulation was assessed. The
complete (108 submodels) C0 multivariate spline model from [33]
is evaluated at a given state within on average 0.01 ms on a single

CPU core of an AMD Ryzen-9 5900X 12-core processor running at

3.7 GHz. The complete C1 model presented in this paper can be
evaluated on average in less than 0.10ms on the same hardware at any
given state. The lookup table-based model evaluates on average in
0.12ms on the samehardware. Hence, increasing the continuity order
of a multivariate spline-based aerodynamic model increases the
computational cost of model execution, which is caused by the fact
that a higher degree must be selected to achieve adequate modeling
accuracy with the additional continuity constraints. However, the

computational cost for a C1 continuous model is at least comparable
to the lookup table-based model.

B. Aircraft Stall Modeling

1. Model Structure Selection

The proposedmodel structure selection algorithm (see Sec. II.A.3)
was found to be highly effective for selecting appropriate aerody-
namic model terms. Figure 17 shows example results of the approach
outlined in Fig. 3 for the model for the lift coefficient CL. The x-axis
range in Fig. 17 shows that 27 of the 34 available stall flight-test
datasets were used in [29] as training data. Furthermore, the results of
the first iteration of adding model terms are shown in Fig. 17a, while
Fig. 17b shows the second iteration’s results. Gray bars indicate terms
that were already frozen into the model prior to both iterations.
For the first iteration, three terms were found to be useful (i.e.,

occurring in more than 50% of datasets; dashed line in Fig. 17): α;
��1� X

p �∕2�2; and the combination of the two, the Kirchhoff term:

��1� X
p �∕2�2α. Based on the first iteration result, only the latter

term was selected, as it resulted in the largest improvement in model
validation fit quality. For the second iteration (see Fig. 17b), further

angle-of-attack-related terms (e.g., α or α2) were identified as effec-
tive additions. After further experimenting with several variations of

α-related terms, in [29] the term �α − 6 deg�2� was in the end added to
theCL model. This notation indicates a univariate quadratic spline in

α with C1 continuity at α � 6 deg, which only adds an additional
effect of the angle of attack on CL for α > 6 deg:

Fig. 15 Convergence of the distributed algorithm for different values of the penalty factor ρ at 0% noise intensity; (3) is a multihypercube per partition
3-D simplex B-spline; (3)-Hyp is a per-hypercube partitioned 3-D simplex B-spline (both using Kuhn triangulation).

Table 4 Normalized RMSE between the original lookup table-based
model of ICE from [74] and the multivariate B-spline model during 10 s

simulation runs

Input CX , % CY , % CZ, % Cl, % Cm, % Cn, %

None 2.14 1.90 2.82 3.36 2.75 2.18
Elevons/all-moving wingtips 1.75 4.39 2.50 1.99 1.23 2.78
differential leading-edge
flaps/spoiler–slot–deflectors

1.54 2.10 1.71 6.54 2.76 1.68

All 1.20 1.56 1.55 6.41 2.49 3.03

Fig. 14 ICE spline model validation results for all 108 submodels
(submodel index on horizontal axis).
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�α − 6 deg�2� � �α − 6 deg�2 when α ≥ 6 deg

0 when α < 6 deg
(40)

During a third iteration, no newmodel terms were found. Overall, the
fact that the final CL model obtained from the proposed model
structure selection contains the classical Kirchhoff equation as its
dominant term, aswould be expected based on flow separation theory
and available literature [39], is further proof of the effectiveness of
this approach. Similarly, in [29], the detailed results for the obtained
model structures for all aerodynamic force and moment coefficients
are presented. The final obtained model structures, which are seen to
include explicit X-dependent regressors in the CL, CD, and Cm

models, are listed in Eq. (41):

ĈL � CL0
� CLα

1� X
p

2

2

α� CL
α2
�α − 6 deg�2�

ĈD � CD0
� CDα

α� CDδe
δe � CDX

�1 − X� � CDCT
CT

ĈY � CY0
� CYβ

β� CYp

p �b

2V
� CYr

r �b

2V
� CYδa

δa

Ĉl � Cl0 � Clβ β� Clp

p �b

2V
� Clr

r �b

2V
� Clδa

δa

Ĉm � Cm0
� Cmα

α� CmXδe
max

1

2
; X δe � CmCT

CT

Ĉn � Cn0 � Cnβ β� Cnr

r �b

2V
� Cnδr

δr (41)

2. Parameter Estimation

As explained in Sec. II.A.4, in our approach, the flow separation
model (X) parameters τ1, τ2, a1, and α

� were estimated in an iterative
scheme for model structure selection. The final X parameters were
obtained using the final converged CL model structure, as listed in
Eq. (41). The results of this optimization are presented in this section.
Figure 18 shows the parameter estimates obtained from the 27
identification datasets. The median estimated parameter values

across all datasets were taken as the final parameter estimates θ̂ and
are listed in Table 5. In Fig. 18, the figures on the diagonal represent
histograms of each estimated parameter, while the off-diagonal
graphs show scatterplots of all X-parameter combinations. In the

off-diagonal figures, the red star marks the median (θ̂), and correla-
tion coefficient values (ρ) are indicated. Table 5 further lists the upper
and lower bounds (θub and θlb) used in the optimization, the spread

[σ�θ̂�] across the 27 estimates for each parameter, and the results of a
one-sample t test (p-value and test decision h) performed to verify if
estimated parameter values were statistically different from zero. For
the t tests, a Bonferroni correction was applied to adjust the signifi-
cance level for performing multiple comparisons.
Across the 27 training datasets, Fig. 18 shows consistent

X-parameter estimation results, without strong correlations between
parameters. For τ1, a1, and α�, the parameter estimate distributions
can also be considered normally distributed (see Fig. 18), and the
standard deviation across the estimated values (σ) is considerably
smaller than the average estimated value. For τ2, the skewed distri-
bution and large spread are indicative of reduced accuracy in the
estimation of this parameter. Still, as shown in Table 5, one-sample

0 5 10 15 20 25

0 5 10 15 20 25

a) First iteration

0 5 10 15 20 25

0 5 10 15 20 25

b) Second iteration
Fig. 17 Model structure selection outcomes for theCL model; the vertical dashed line indicates the reference limit of 50% of the training datasets, while
gray bars indicate a term frozen in the model prior to that iteration [29].

Fig. 16 Comparison of force andmoment coefficients between lookup table (LuT) and spline-based aerodynamicmodel for a 10 s simulation runwith all
effectors at maximum deflection.
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t tests performed to verify if estimated parameter values were sta-
tistically different from zero confirmed this for all X parameters,
including τ2.
Furthermore, Table 6 compares the estimated X parameters for the

Cessna Citation II with values reported for other aircraft in literature
[47,78]. Note that for this comparison, the τ1 and τ2 time constants are
made dimensionless. The estimated a1 and α

� values were found to be

consistent with estimates for the other aircraft types. However, our
estimated τ1 and τ2 are comparatively lower, a factor of 2 and 5,
respectively, compared to the comparison aircraft in Table 6. Overall,
a lower accuracy of the τ1 and τ2 estimates was not unexpected and can
be considered a direct result of the quasi-steady stalls performed in the
flight tests (see Sec. III). As illustrated in Fig. 19, while the static
parameters a1 and α� influence the modeled CL throughout the con-
sidered stall maneuver, the effect of variations in τ1 and τ2 is only
limited. These parameters are essential for modeling deep aerodynamic
stalls, with the flow (re-)attachment and hysteresis effects that occur
then but not fully excited in (benign) quasi-steady stall maneuvers.
In the same format as Fig. 18, Fig. 20 shows the estimated values

for the three coefficients (CL0
, CLα

, and CL
α2
) of the identified CL

model structure; see Eq. (41). Similar results for the other aerody-
namic force andmoment coefficients are not included here for brevity
but are reported in [29]. Figure 20 shows that the estimated bias and α
coefficients are strongly negatively correlated (ρ � −0.9). This is a
direct result of the segments of flight-test data (e.g., see Fig. 21) used
for model identification, which intentionally included considerable
stretches of normal (unstalled) flight prior to and following the stall.
While this ensures that the aerodynamic coefficient values for our
stall model remain consistent with parameter values estimated from
nominal flight, it is unavoidable that during these (considerable) parts
of the identification data the angle of attack is approximately con-
stant. While this constant α causes CL0

and CLα
to be somewhat

interchangeable and thus correlated, removing either of these param-
eters results in a strong increase in modeling errors. Similar obser-
vations were made for the CD and Cm modeling results in [29].

3. Model Validation

In [29], seven of the available 34 flight-test datasets were used
for model validation (80–20 split). Table 7 lists the MSE and the

0.18 0.2 0.22 0.24 0.26 0.2810 20 30 400 0.1 0.2 0.3 0.40 0.2 0.4 0.6 0.8

0.18

0.2

0.22

0.24

0.26

0.28

20

30

40

0

0.1

0.2

0.3

0.4

0

0.2

0.4

0.6

0.8

Fig. 18 Matrix plot of the estimated X parameters.

Table 5 Estimated X-parameter values and one-
sample t-test results

Parameter Results t test

Name Unit θ̂ θlb θub σ�θ̂� p h

τ1 s 0.2547 0.001 0.80 0.1565 0.000 *

τ2 s 0.0176 0.000 0.50 0.0819 0.002 *

a1 — 27.6711 15.000 40.00 6.7177 0.000 *

α� rad 0.2084 0.100 0.35 0.0202 0.000 *

*Indicates a statistically significant result.

Table 6 Comparison of estimated X-parameter values to
literature (for Cessna Citation II: �c � 2.06 m and

Vstall ≈ 75 m∕s)

Parameter Citation II VFW-614 [47] C-160 [47] AT-26 [78]

τ1
V
�c

9.27 15.6 14.5 —

τ2
V
�c

0.64 4.45 3.46 —

a1 27.67 15.00 25.70 25.00

α�, rad 0.21 0.34 0.36 0.25
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coefficient of determination (R2) for both the training and validation
data. Time histories comparing model output to measured data for
three selected validation datasets, representing the best-, average-,
and worst-quality fit, are shown in Fig. 21.
Figure 21 shows good agreement of the fitted models with the

flight-test data, also during the stall. There are some stall-related

effects that are not reflected by the model, for instance in the CL

and CD time histories of the “average” plot in Fig. 21. However,
the model realigns with the data once the aircraft recovers from the
stall. Furthermore, model quality is approximately the same on the
training and validation sets (see Table 7), which suggests no issues
occur with under- or overfitting and the effectiveness of the used

Fig. 19 Visualization of the sensitivity of themodel output to theXparameters;whereas the static parameters influence almost the entire time history, the
dynamic parameters only affect the part where the aircraft actually stalls; dataset 3 (training) is shown.

5 10 15 20 253.5 4 4.5 5 5.50.1 0.15 0.2 0.25

5

10

15

20

25

3.5

4

4.5

5

5.5

0.1

0.15

0.2

0.25

Fig. 20 Matrix plot of the estimated CL parameters.
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model identification and model structure selection. The min(R2)
columns in Table 7 show that for some of the asymmetric models

(lateral force, roll, and yaw), negative R2 values were found. This is
explained by the lacking excitation of the lateral aircraft dynamics
present in some of the (symmetrical) stall datasets (see Sec. III), for
which the identified model was found to overpredict the correspond-
ing force or moment coefficient changes.

C. Model-Based Control

Multivariate spline-based aerodynamic models open up new pos-
sibilities in nonlinear model-based control of aircraft with highly
nonlinear aerodynamics. Not only does the control performance
improve due to a potentially smaller mismatch between reality and
the model, but also analytical (directional) derivatives are readily
available, smoothness is guaranteed, and bounds on model quality

0

0.5

1

1.5
Best

flight data
model

Average Worst

0

0.2

0.4

-0.1

0

0.1

-0.02

0

0.02

-0.2

0

0.2

-0.01

0

0.01

0 20 40 60 80
0

10

20

0 20 40 60 80 0 20 40 60 80
0

0.5

1

0

0.5

1

Fig. 21 Model validation results for three levels of validation fit quality (best/average/worst) [29]; the bottom figure shows the corresponding angle of
attack and the flow separation state X.

Table 7 Fit quality metrics for training and validation data [29]

Training data (27 sets) Validation data (seven sets)

Coefficient MSE R2 Min (R2) Max (R2) MSE R2 Min (R2) Max (R2)

CL 1.65 × 10−3 0.92 0.71 0.98 1.45 × 10−3 0.91 0.77 0.96

CD 1.01 × 10−4 0.74 −1.47 0.97 6.72 × 10−5 0.89 0.84 0.94

CY 4.68 × 10−5 0.66 −0.67 0.91 4.55 × 10−5 0.57 0.29 0.82

Cl 2.40 × 10−6 0.54 −0.60 0.85 1.97 × 10−6 0.47 0.08 0.92

Cm 9.93 × 10−5 0.68 −0.39 0.92 9.87 × 10−5 0.73 0.26 0.92

Cn 8.21 × 10−7 0.49 −0.66 0.96 8.66 × 10−7 0.12 –0.43 0.80
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can be provided. In [79], the firstmultivariate simplexB-spline-based
nonlinear dynamic inversion controller was applied on a simulation
of the F-16 fighter aircraft. In [32], this approach was made adaptive
by using a recursive multivariate simplex B-spline estimator to
compensate for aerodynamic uncertainties. In [33], a novel INCA
approachwas presented that is suitable for usewith non-control affine
systems with nonlinear state–effector and effector–effector inter-
actions for the ICE aircraft. The INCA approach is made possible
by an internal (analytical) multivariate spline-based control effective-
ness model.
Consider the following non-affine system dynamics:

_x � F�x� �Φ�x; u� (42)

where F�x� contains purely aerodynamic forces and moments not
produced by the control effectors, and with Φ�x; u� the nonlinear,
non-affine control effector model, which may contain state–effector
and effector–effector interactions. The INCA approach is an incre-
mental control approach [80] with accompanying assumptions (see
[81] for an in-depth discussion), and hence computes actuator posi-
tion incrementsΔu, which are added to the current actuator positions
u0 to reach the absolute effector position command: u � u0 � Δu. In
incremental form, Eq. (42) reduces to

_x ≈ _x0 � ∇uΦ�x; u�Δu (43)

with _x0 the current state derivative, which is either directly measured
using (angular) accelerometers or derived from ratemeasurements. In
Eq. (43), the control effectiveness Jacobian (CEJ) ∇uΦ�x;u� is
defined as follows:

∇uΦ�x; u� � ∂Φ�x; u�
∂u

∈ Rn×m; m > n (44)

where the CEJ is not invertible for an overactuated system. In the case
of the ICE aircraft, the CEJ from Eq. (44) is derived analytically from
the multivariate spline-based aerodynamic moment models Slj , Smj

,

and Snj from Eq. (39) using the methodology from [63]. This yields

13 analytical partial derivatives for each of the 108 splinemodelswith
which the CEJ matrix for the ICE aircraft is constructed as follows:

∇uΦ�x;u� �

20
j�1

∂Slj �x;u�
∂δ1

20
j�1

∂Slj �x;u�
∂δ2

· · · 20
j�1

∂Slj �x;u�
∂δ13

20
j�1

∂Smj
�x;u�

∂δ1
20
j�1

∂Smj
�x;u�

∂δ2
· · · 20

j�1

∂Smj
�x;u�

∂δ13

20
j�1

∂Snj �x;u�
∂δ1

20
j�1

∂Snj �x;u�
∂δ2

· · · 20
j�1

∂Snj �x;u�
∂δ13

(45)

Each element in Eq. (45) is itself a continuous multivariate
B-spline function, which is locally evaluated at the current state x
and input u at each time step; no separate interpolation schemes are
required, which improves both transparency and execution perfor-
mance. The local nature of the multivariate spline basis functions
results in highly efficient evaluation routines, as the CEJ only needs
to be evaluated on a single simplex for each of the 108 submodels at
every time step. The result is that>90;000 complete CEJ evaluations

per second can be performed for the C0 continuous model and

>10;000 per second for the C1 model, both on a single CPU core
of desktop computer (AMD Ryzen 9 5900X at 3.7 GHz).
The INCA optimization problem is then formulated as follows:

given the current state x0, the current actuator positions u0, accel-
eration measurements _x0 (if available, and acceleration estimations if
not; see, e.g., [80]), and a pseudocontrol input command dc �
�ν�x� − _x0�, determine an increment in the control input vector Δu
such that

∇uΦ�x0; u0�Δu � dc

subject to Δu ≤ Δu ≤ Δu (46)

whereΔu andΔu are the most restrictive upper and lower bounds on
the actuator rates, as well as actuator position limits, translated into
local incremental constraints.
Next to solving Eq. (46) with an easy-to-implement pseudo-

inverse-based approach, it can also be solved as a numerical opti-
mization problem with explicit constraints. A common approach
formulates the control allocation problem as a multi-objective con-
strained optimization problem, solved as a quadratic program:

min
Δu

J � Wdk∇uΦ�x; u�Δu − dck22 � ηWukf�x; u�k22
subject to u ≤ u ≤ u; Δu ≤ Δu ≤ Δu (47)

where η is a scalar, selected sufficiently small to prioritize the
minimization of the allocation error over the secondary objectives,
andWd andWu are nonsingular weighting matrices that are tunable
by the user, and with f�x; u� a secondary objective function (e.g.,
aircraft drag and/or desired actuator positions). The optimization
problem from Eq. (47) can be solved effectively using the active
set algorithm described in [82]. In Fig. 22, the tracking performance
of INCA is compared to a linear control allocation (LCA) approach
employing a redistributed weighted pseudo-inverse optimization, in
which the CEJ in Eq. (42) is linearized over the flight envelope.
Clearly, the tracking performance of INCA is superior to the LCA,
with the LCA at some stages suffering from significant excursions
from the reference trajectory. In Fig. 23, the respective control
effector deflections are compared, showing that INCA effector
deflections are comparable in magnitude to the LCA deflections.
This demonstrates that INCAwith the multivariate spline-based CEJ
is better able to exploit state–effector and effector–effector inter-
actions than the LCA approach.

D. Model Parameter Tolerances

Next to direct applications of improved models of aircraft flight
dynamics, a focus of our research has also been to investigate how
accurate such models in fact need to be. For example, since 2019, it
has become obligatory for airline pilots to receive stall training in
flight simulators [3,5,83,84]. As a result, new stall and poststall
dynamic models were developed for use in flight simulators. How-
ever, as of yet current regulatory standards for stall model accuracy in
simulators used for pilot training, both for the stall aerodynamics and
stall buffet, reflect persistent uncertainty regarding the required level
of model fidelity for sufficiently accurate stall simulations and effec-
tive pilot training [4,85].
To address this issue, we have performed a number of flight

simulator experiments in Delft University of Technology’s SRS
(see Figs. 24a and 24b) to provide quantitative guidance on the
required accuracy of simulated stall dynamics [34] and stall buffet
characteristics [35] in flight simulators. In these experiments, mini-
mum safe requirements on keymodel parameterswere determined by
measuring their just noticeable difference (JND) thresholds (i.e., the
largest allowable offset in the parameter value that could be noticed
by pilots in the simulator). Tomeasure these JND thresholds, we use a
experimental paradigm (see Fig. 24c), where a participating pilot
experiences simulated stall maneuvers as an observer. Through
psycho-physical experiments with a subjective staircase procedure,
consisting of repeated pairwise comparisons of a stall with the true
“baseline” model parameter setting and a stall with an “offset”
parameter setting, the JND thresholds for individual model parame-
ters can be determined.
Figure 24d shows an overview of the experimental results obtained

for the flow separation model parameters τ1 (lower and upper JND)
and a1 (lower and upper JND) in [34], as well as results from [35] for
the stall buffet model parameters Xthres (only lower JND) and ω0

(upper and lower JND). These results were obtained from type-
licensed Citation II pilots, as well as other (commercial, private, or
glider) pilots. The right vertical axes in all figures indicate the
measured JND in terms of the Weber fraction (i.e., the maximum
allowable percentage-wise offset in parameter value). While these
results indicate that small parameter offsets indeed are unlikely to be
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Fig. 23 Comparisonof control effector deflections resulting fromINCAandanLCAapproach for a coupled 3211maneuver onbothq andp;pf � pitch
flap, am t = all moving tip, lfi � inboard leading-edge flap, lfo � outboard leading-edge flap, ss d = spoiler–slot–deflector, ele � elevons, tv � thrust
vector, and δT = engine thrust.

Fig. 22 Comparison of tracking performance of INCA and an LCA approach for a coupled 3211 maneuver on both q and p.
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noticed by pilots on average, Fig. 24d shows that even parameter
offsets of 10% or less (e.g., a1) may already result in differences that
are noticeable for pilots. In our view, such results indicate that human
pilots’ capacity for noticing differences in simulated aircraft dynam-
ics should be taken into account when accepted maximum modeling
tolerances are defined.

V. Conclusions

This paper provides an (incomplete) overview of current research
on flight testing and model identification at the authors’ research
group at Delft University of Technology, focusing only on methods,
(numerical) experiments, and outcomes obtained forDelft University

of Technology’s Cessna Citation II laboratory aircraft, and the
Lockheed Martin Innovative Control Effector demonstrator. The
presented work on nonlinear stall model identification and aerody-
namic modeling with multivariate B-splines shows the importance of
synergy between identification and modeling methods, flight-test
experiments, and modeling results and applications for focusing
research activities and achieving structural progress. For example,
the required accuracy of new models of aircraft stall dynamics for
simulator-based pilot training, aswell as the identificationmethods to
obtain them, should be based on pilots’ sensitivity to variations in
identified model parameters but perhaps not for better efficiency.
Focused identification inputs during flight testing and objective
model structure selection approaches are found to be invaluable for
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Fig. 24 Overview of stall model parameter tolerance flight simulator experiments.

DE VISSER AND POOL 1499

D
ow

nl
oa

de
d 

by
 T

ec
hn

is
ch

e 
U

ni
ve

rs
ite

it 
D

el
ft

 o
n 

Ja
nu

ar
y 

2,
 2

02
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.C
03

72
83

 



reliable estimated model parameters and valid aerodynamic model-
ing results. Novel control approaches, such as the INCA method,
cannot be implemented with traditional aerodynamic model struc-
tures (e.g., simple polynomials), but they require new approaches for
implementing nonlinear state-varying aerodynamic coefficients,
such as multivariate simplex B-spline-based models.
With the current emphasis on drones and revolutionary new air-

craft concepts aimed at reducing the environmental impact of avia-
tion and/or realize our visions for UAM, the importance of the field of
flight testing and model identification will only grow in the years to
come. There will be more demand for models in design processes
and as integral parts of onboard control systems and ground-based
simulation facilities. Especially, given the increasing nonlinearity of
the aerodynamics governing many of these new aerial vehicles, the
recent lessons learned from traditional fixed-wing flight testing and
aerodynamic modeling that have also focused increasingly more on
nonlinear effects (e.g., stall) will be of great benefit. Going beyond
the “stalls and splines,” as summarized in this paper, the section of
C&S of the Faculty of Aerospace Engineering at Delft University of
Technology will continue to contribute to this crucial topic in aero-
space engineering.
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