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Loss of control (LOC) is a prevalent cause of drone crashes. Onboard prevention systems should be designed

requiring low computing power, for which data-driven techniques provide a promising solution. This study proposes

the use of recurrent neural networks (RNNs) for LOCprediction. Four architectures were trained in order to identify

which RNN configuration is most suitable and if this model can predict LOC for changing aerodynamic

characteristics, wind conditions, quadcopter types, and LOC events. One-hundred and seventy-two real-world

LOC events were conducted using a 53 g Tiny Whoop, a 73 g URUAV UZ85, and a 265 g GEPRC CineGO

quadcopter. For these flights, LOC was initiated by demanding an excessive yaw rate (2000 deg/s), which

provokes an unrecoverable upset and subsequent crash. All RNNs were trained using only onboard sensor

measurements. It was found that the commanded rotor values provided the clearest early warning signals for

LOC because these values showed saturation before LOC. Moreover, all four architectures could correctly and

reliably predict the impendingLOCevent 2 s before it actually occurred. Furthermore, to investigate generality of the

methodology, the predictors were successfully applied to flight data in which the quadcopter mass, blade diameter,

and blade count were varied.

I. Introduction

T HERE is an ever-increasing number of applications for

unmanned aerial vehicles (UAVs), and they prove invaluable

for tasks such as aerial observation, infrastructure inspection, pack-

age delivery, and entertainment. However, their popularity also raises

safety concerns. In particular, the extreme agility ofmanyUAV types,

such as the quadcopter, can rapidly lead to loss-of-control (LOC)

events, potentially resulting in a crash. A 2017 study showed that out

of 100 reported UAV mishaps, 34 could be categorized as LOC,

making it the largest contributor to UAV mishaps [1].

Indeed, LOC is not only dangerous for UAVs: it is a concern for

many controlled systems. Between 2011 and 2020, 20.5% of all fatal

accidents in commercial aviation resulted from a LOC event [2]. This

emphasizes the importance of extending research on new LOC

prevention techniques.

One of the leading studies on LOC prevention is part of NASA’s

Aviation Safety Program. Belcastro and Jacobson [3] proposed a

holistic LOC prevention approach, which highlights the value of

onboard integrated systems that help in detecting, avoiding, mitigat-

ing, and recovering from LOC scenarios. Some direct results of this

proposal are the envelope-aware flight management system from

Ref. [4] and the flight safety assessment and management system

modeled as aMarkov decision process from Ref. [5], which was also

shown to work on off-nominal systems [6]. The authors presented an

integrated flight envelope estimation, flight planning, and flight

safety assessment and management framework to diagnose high-

risk events that may induce LOC, and they provided automatic

LOC recovery if required. However, this framework does not explic-

itly forecast a time horizon to LOC, and it requires a priori knowledge

on the safe flight envelope (SFE).

Another study addressing aircraft LOC was presented by Rohith
[7]. The author applied bifurcation analysis to identify abnormal
flight dynamics. Bifurcation happens when small changes in system
parameters result in large changes in behavior. The author proposed
to use a sliding mode controller for LOC recovery. However, the
study does not address LOC prevention. On the other hand, a study
that does focus on LOC prevention was published by Zhao and Zhu
[8]. The authors designed a closed-loop system with bandwidth
adaptation for a real-time tradeoff between tracking performance
and robustness against LOC. The study focuses on wind-induced
LOC events only.
As opposed to the previously mentioned studies, most LOC pre-

vention techniques currently rely on knowledge of the safe flight
envelope [9–17]. Some of these studies are concerned with LOC
prevention. They assume that either a predefined flight envelope or a
real-time dynamic flight envelope is available. Tekles et al. [11]
proposed a command-limiting flight envelope protection scheme.
The pilot inputs are limited or overridden by the protection scheme
to avoid excursions for critical flight parameters, such as the angle of
attack. A different approach was taken by Stepanyan et al. [13].
Instead of overriding or limiting the pilot commands, the authors
designed a system that estimates LOC boundaries given pilot inputs,
historical aircraft state data, and estimated aircraft dynamics. Aural,
visual, and tactile cues are presented to the pilot to keep control inputs
within limits. Finally, Kirkendoll [17] addressed aircraft LOC pre-
vention in the vicinity of terrain. The author designed an automatic
LOC prevention system throughmultiple monitoring and controlling
schemes based upon flight envelope limits.
An important topic that is addressed by these studies is the real-

time updating of the flight envelope. The flight envelopemay change
over time due to changing aerodynamic characteristics, operating
conditions, and failures. Thus, continuous and online recalculation of
the SFE is necessary. An example study on this topic was presented
by Schuet et al. [10]. However, in this study, a global (full-envelope)
aircraft dynamical model must be available for envelope estimation,
which may not be available following a failure. Another study on this
topic has been published by Zhang et al. [14]. The flight envelope in
this case is estimated based on an onboard stored database of flight
envelopes, which are precomputed for various characteristic fail-
ure modes.
A downside of the previous studies is that these applications are

mainly tested on aircraft and in simulation. Determining the SFE
for a quadcopter is challenging by virtue of their high state-space
dimension and extreme control authority, particularly in roll and
pitch. Nevertheless, Sun and de Visser [18] applied a Monte Carlo
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simulation in combination with reachable set theory to determine the
set of states in which a quadcopter can maneuver freely and return to
safe conditions within a predefined period of time, leading to an
approximation of the SFE. One other attempt to estimate the flight
envelope in real time on a fixed-wingUAVwas presented inRef. [15].
However, in this study, the flight envelope is derived from a general
nonlinear aircraft model, which is not available or suitable for all
types of UAVs.
Additionally, there are other drawbacks to this approach. Continu-

ous and online recalculation of the SFE of a nonlinear quadrotor
currently represents a computationally intractable problem. This is
especially true on small UAVs with limited onboard computational
capabilities [19]. Therefore, new LOC prediction and prevention
methods should be designed that are computationally efficient.
Ideally, such approaches should rely only on onboard sensor infor-
mation and be able to accommodate varying operating and aero-
dynamic characteristics. Data-driven techniques can meet these
requirements.
One study that touches upon LOC prediction using a data-driven

technique was performed by Campbell et al. [16]. Here, an autoen-
coder neural network is trained to detect latent features in the sensor
data of an aircraft and labels dramatic shifts in these features as
anomalies. These anomalies are an indication that a LOC eventmight
occur. Nonetheless, this research still depends on a priori knowledge
of the SFE. To avoid false alerts, information regarding the current
position of the aircraft states with respect to the SFE is used for
training, which is undesirable for LOC prediction on UAVs for the
aforementioned reasons.
The main contribution of this paper is a novel data-driven LOC

prediction methodology for quadcopters that requires only onboard
measurements, and which does not require a priori knowledge of the
SFE. We compare different data-driven techniques for prediction of
LOCon quadcopter flight data and investigate their ability to general-
ize LOC prediction for different operating and aerodynamic charac-
teristics. In particular, various recurrent neural network (RNN)
architectures are analyzed and compared. Furthermore, different
onboard measured parameters will be used to identify the most
informative early warning signals for LOC, providing insights into
the LOC problem itself. This work, to the best of the authors’ knowl-
edge, represents the first attempt to use real-world flight data, which
was obtained during more than 100 LOC events flown with a micro-
quadcopter (56 g), to train the LOCpredictors. The newmethodology
can reliably predict excessive yaw-rate-induced LOC events 2 s
before they occur on two different larger (73 and 265 g) quadcopters,
demonstrating the generality of the approach.
The remainder of this paper is structured as follows: First, an

introduction to RNNs is provided in Sec. II. Information about the
flight tests and data processing is described in Sec. III. Section IV
continues with the results, after which they are discussed in Sec. V.
The conclusions are presented in Sec. VI.

II. Recurrent Neural Networks

Neural networks have the ability to detect patterns in large amounts
of data. This is a favorable characteristic for the LOC prediction
problem because it is unknown what exact combination of quadcop-
ter aerodynamic characteristics, operating conditions, and vehicle
behavior induces a LOC event.
Recurrent neural networks are especially attractive for analysis of

time-series data, such as that obtained from the quadcopter’s sensors.
In a classical recurrent neural network (RNN) layer, nodes are replaced
by memory cells that receive at time t the current input data in addition
to their own output produced at time t − 1 [20]. Due to these cells,
RNNs can identify temporal dependencies in sequential data.
However, when long-term dependencies must be identified, tradi-

tional RNNs suffer fromvanishing or exploding gradient issues during
the training process. To address this concern, other types of memory
cells can be used, of which the long short-term memory (LSTM) [21]
and gated recurrent unit (GRU) [22] are most common. The principle
behind these variants is to control the flow of data within the memory
cell by introducing gates. These ensure that long-term features are

maintained over a longer period, instead of being overwritten each
time step. The GRU has fewer gates as compared to the LSTM,
making it less complex. This means that this network type is compu-
tationally more efficient during training, while hardly losing perfor-
mance. On the other hand, for large datasets, LSTMmight be better at
capturing any longer temporal features present in the data [23].
Besides replacing traditional memory cells with more advanced

cells, there are two other options to improve the performance of an
RNN. The first option is using a bidirectional network, wherein a data
sequence is analyzed both forward and backward (i.e. it extracts
features from both past and future states) [24]. Another option is to
precede the RNN with other types of neural networks, such as a
convolutional neural network (CNN) [25]. This additional network
extracts high-level features from data, after which the RNN extracts
more complex features. However, these advanced RNN structures
require more fine-tuning to achieve better performance than their less
complex counterparts. Moreover, training these networks is more
demanding computationally.
Several studies have already demonstrated the suitability of RNN

structures for UAVs. Sadhu et al. [26] proposed a complex CNN-
BILSTM network to detect the anomalous behavior of a quadcopter,
after which a traditional fully connected neural network classifies the
cause or fault leading to this behavior. Another application of LSTM
networkswas investigated byWang et al. [27]. The authors applied an
LSTM network to create an estimation of gyroscope sensor data and
used this to detect gyroscope drift and bias. The residuals between the
true and estimated data are smoothed to mitigate effects of noise.
Once drifted or biased sensor data are detected, the estimated sensor
data are used to replace this.
Nevertheless, for the studied LOC prediction problem, it is unclear

how obvious any precursors to LOC are, how long any temporal
dependencies last, and if these are even observable through the
limited onboard sensor information. Consequently, four network
architectures are applied to anticipate LOC to determine the complex-
ity of the problem and which of these network configurations is most
equipped to anticipate LOC. The considered networks are an LSTM
network, a bidirectional LSTM (BILSTM) network, an LSTM net-
work preceded by a CNN (CNN-LSTM), and a GRU network.

III. Methodology

To effectively train the RNNs, the moment of LOC should be
established in the flight data. For this, a suitable definition of LOC is
necessary. In this research, LOC is defined as the moment in time
wherein the magnitude of the pitch or roll angle exceeds 90 deg.
Although seemingly arbitrary, the motivation behind this definition
will be clarified in the subsequent subsections, which outline the
flight tests conducted, the RNN configurations, and data processing.

A. Flight Tests

Flight data are obtained through 172 real-world flight tests. Of
these, 144 flights are conducted using an Eachine Trashcan Tiny
Whoop 75 mm quadcopter equipped with a JHEMCU SH50 flight
controller hosting 8.0MB of onboard memory dedicated to flight log
storage. These logs contain Inertial Measurement Unit (IMU) sensor
data, rotor commands, and true rotor outputs made available through
the bidirectional DSHOT (Digital shot) protocol. The controller
update rate is 4 kHz,whereas the logging rate is 1 kHz. Themaximum
power output of the motors is limited to 50% of the nominal output to
emulate the lower thrust-to-weight ratios of larger UAVs. In addition,
the 50% limitation ensures the practicality of conducting the LOC
events manually in our motion-capturing laboratory by keeping the
vertical acceleration (at the maximum commanded yaw rate) close to
zero. Without the limitation, even higher yaw rates can be obtained,
but the additional thrust produced by the active diagonal pair of
motors would quickly accelerate the drone out of the motion-
capturing facility. Figure 1 depicts the employed Tiny Whoop, and
Table 1 summarizes its characteristics.
During the experiments, the quadcopter is deliberately brought

into a LOC condition by demanding an excessively high yaw rate
of �2000 deg ∕s. Although at first the vehicle rotates around its
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z axis as desired, it quickly begins oscillating around the x (roll) and
y (pitch) axes, wherein the amplitude of the roll and pitch angles

oscillate with increasing magnitude. Once the x- and y-axis rotations
reach an amplitude of 90 deg, the quadcopter makes a sudden, and

unpredictable, aggressive turn around one of these axes, afterwhich it

is unrecoverable. The crux for correct LOC prediction is to consis-

tently label the moment in time where LOC starts. From visual

inspection of both the flights and data, this moment is identified as

that where the quadcopter cannot continue rotating purely around

its z axis, and where the roll or pitch rotations become dominant.

Therefore, the onset of LOC is defined as the moment where the

absolute value of either the pitch or roll angle first exceeds 90 deg

and continues to increase in magnitude thereafter.

It should be emphasized that this is a specific definition tailored for

the considered LOC scenario. Because this research is primarily

concerned with determining if LOC can be predicted through sensor

data at all, this tailored definition is chosen as a starting point. This

definition may then be extended to a more generic case, should the

proposedmethods prove fruitful in anticipating LOC. For example, a

candidate generalized definition may relate to the time to recovery

from a particular state, which is more in line with reachability-

analysis-based LOC prediction methods; see, e.g., Refs. [10,28].

Another option would be to create a bank of neural networks tailored

for one or more scenarios.

In addition to identifying the best-performing RNN architecture

for the LOC prediction problem, it is also appealing to investigate

their generalization capabilities. For this purpose, different flight

tests are performed:
1) In test 1, the quadcopter is brought into LOC in its stan-

dard configuration; i.e., no additional weight is added, the default
four-blade propellers are used, and it is under windless conditions.

The majority of the flights (74) are executed in this way to collect
sufficient data for training.
2) Test 2 only alters the mass of the quadcopter. Five flights are

executed with different masses as compared to the nominal quad-
copter. These mass changes per run are summarized in Table 2.
The LOC scenario remains unchanged.
3) In test 3 the flight characteristics of the quadcopter are changed

by using different propeller types. Six flights are performed using
35mm three-blade propellers instead of 40mm four-blade propellers.
4) Test 4 investigates if networks trained on LOC due to high yaw

rate can generalize to other LOC events. Fifty-three flights are
performed, leading to a similar LOC event by demanding an exces-
sive pitch rate of�2000 deg ∕s. The longest two runs are chosen to
check the generalization capabilities.
5) In test 5, the generalization performance for different operating

conditions is tested. Five flights are performed during which the
quadcopter flies in awind stream. LOC is again achieved by demand-
ing an excessive yaw rate.
6) In test 6, lastly, to test to what extent the algorithm can be

transferred from one vehicle to another, 28 flights are executed with
two other quadcopters. During this test, four flights are performed
with the URUAVUZ85 quadcopter, which is approximately 1.5 times
heavier than the Tiny Whoop; and 24 flights are performed with the
GEPRC CineGO, which is almost five times as heavy as the Tiny
Whoop. The details of these quadcopters are summarized in Table 3.

All considered networks are trained using data obtained from test

1. After training, data from other tests are fed into the networks to

evaluate which network is most adept at generalization for different

conditions. During the training phase, 80% of the data are used for

training and 20%are used as a test set. This division is done randomly

for training each model.

B. Neural Network Architecture

The main goal of the neural networks is to predict the amount of

time, in seconds, left until the LOC event starts. However, to avoid

false predictions during nominal flight, another branch is added to

all networks that detects dangerous maneuvers. This leads to the

configuration shown in Fig. 2, wherein the four different architec-

tures considered in this research are illustrated.

For the LSTM, BILSTM, and GRU network, the first three layers

are not used; instead, their first two layers are labeled through the

LSTM, BILSTM, and GRU cells, respectively. For the CNN-LSTM

Fig. 1 The black-box-equipped 75 mm, 56 g Tiny Whoop used during
experiments.

Table 1 Tiny Whoop characteristics

Characteristic Details

Mass including batteries 56 g
Axis-to-axis diameter 75 mm
Four-blade propeller diameter 40 mm
Three-blade propeller diameter 35 mm
Motor TC0803 with 15,000 kV
Batteries Two 1S (one cell) BETAFPV

with 4.35 Vand 300 mAh
Flight controller (FC) JHEMCU SH50 F4 2S with

8.0 MB black box
FC software Betaflight 4.2

Table 2 Total quadcopter
mass per run

Mass, g

Nominal 56
Run 1 62
Run 2 66
Run 3 72
Run 4 76
Run 5 82

Table 3 URUAV UZ85 and GEPRC CineGO characteristics

Characteristic URUAV UZ85 GEPRO CineGO

Mass including
batteries

73 g 265 g

Axis-to-axis
diameter

85 mm 361 mm

Propeller diameter 52.17 mm 76.5 mm
Motor 1102 with 10,000 kV Emax Eco 1407 with

3300 kV
Batteries Two 1S (one cell)

BETAFPV with
4.35 Vand 300 mAh

One 4S (four cell) Tattu
R-Line with
14.8 Vand 550 mAh

Flight controller (FC) JHEMCU SH50 F4 2S MATEKSYS F722-mini
2-8S

FC software Betaflight 4.2 Betaflight 4.2
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network, the first three layers are used and the following two layers

consist of LSTM cells. In all architectures, the first and second RNN

layers contain 50 and 100 neurons, respectively. All networks are
followed by a dropout layer with a dropout rate of 0.1, which is a

regularization method to mitigate overfitting on the training set and
promote better generalization [29].
Subsequently, the networks are split into two branches, with both

containing two dense layers. The last layer outputs a floating-point

value. For the detection branch, the label is either 0 or “1”: 0 indicates

that the quadcopter is in nominal flight, and 1 specifies that a danger-
ous maneuver is being flown that ends in a LOC event. For the

prediction branch, the label is “−1” before the start of the dangerous
maneuver. Once this maneuver has started, the label changes to the

time in seconds left until the LOC event starts. The output of this
branch only becomes relevant once the detection branch detects a

dangerous maneuver. Examples of the individual outputs of these
branches, along with their aggregated output, are shown in Fig. 3.

Note that in Fig. 3c, the left y axis belongs to the detection branch and
the right y axis relates to the prediction branch.
The performance of the trained networks is assessed using the root-

mean-squared error (RMSE). Thismetric represents the average error
between themodel’s predicted and true times toLOC.Thus, the lower

the RMSE value, the better the network performance. The benefit of
using thismetric is that the unit is the same as the quantity that is being

estimated, which is the time in seconds for the LOC prediction
problem. The RMSE value is calculated through

RMSE � 1

n

n

i�1

�Ŷi − Yi�2 (1)

where Ŷi represents the model’s estimated time to LOC, and Yi is the
actual time to LOC. Furthermore, n is the total number of time steps,

or data points, present in a failure run.
It should be noted that, although different network hyperparameter

configurations were experimented with in the preliminary phase of

the research, the optimization of these hyperparameters is out of the

scope of the present study. Here, we are more concerned with the

feasibility of an RNN-based LOC predictor. Consequently, such

hyperparameter optimization is not a focus of this paper but rather

an avenue of future work.

C. Data Processing

Data obtained during the experiment must be processed before

they are fed into the networks to improve prediction performance

and to reduce training and inference time. Inference here refers to

using a trained neural network on a new, unknown dataset to get a

prediction [29].

To minimize the training time, the flight data are truncated about

the dangerous maneuver that induces the LOC event. The onset of

this maneuver is identified by observing the pilot stick input com-

mands, and datawithin 5 s preceding this input are preserved as a lead

up to the maneuver, as is visible in Fig. 3. Data after LOC are also

removed.

Another way to reduce the training and inference time is by limit-

ing the number of network inputs. Thus, only sensor measurements

that provide useful early warning signals for LOC should be selected.

To do so, all variables that are logged during flight are plotted, and

those that exhibit a trend preceding LOC are chosen. These are:

1) rotor commands for each of the four rotors (ω1cmd, ω2cmd,

ω3cmd, and ω4cmd), 2) true rotor outputs for each of the four rotors

(ω1true, ω2true, ω3true, and ω4true), 3) smoothed accelerometer mea-

surements (ax, ay, and az), 4) measurements from the gyroscope (roll

rate p, pitch rate q, and yaw rate r), and 5) quadcopter attitude

(heading roll, heading pitch, and heading yaw).

Figure 4 illustrates the responses of the selected variables from the

start of the dangerous maneuver until the onset of the LOC event for

one of the failure runs, i.e., flights. The difference in behavior

between the rotor command and the true rotor output is due to the

electronic speed controller. This device adjusts the rotor commands,

which are outputted by the BetaFlight PID (proportional–integral–

derivative) controller, to the true revolutions per minute of the rotors.

To investigate which variables show the clearest early warning

Fig. 2 Architectures of the different recurrent neural networks used in this research.

Fig. 3 Output of the two network branches and combined output. The first 5 s are nominal flight: after which, a dangerous maneuver leads to loss of
control after 1.7s.
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signals for LOC, a variety of combinations is used during the training

phase to find the most optimal mix of variables. In case of no clear
preference for specific combinations, fewer variables are preferred

to minimize processing and inference time.
Additionally, to mitigate the vanishing gradient problem [29], the

input data are standardized using the Z Score, which is calculated

according to

x 0
i �

xi − μ

σ
(2)

where μ represents the mean and σ the standard deviation. To ensure
that the proposed algorithm can run in real time, these values are

determined using all failure runs obtained during test 1.
Apart from using advanced memory cells, there is another way to

stimulate the network to identify time-dependent features. The data

are cut into chunks of window size M with a step size of one. For
example, the first chunk contains all data points of all used variables

from time t � 1 until t � M, whereas the second chunk contains all
data points from time t � 2 until t � M� 1. The associated time to

loss of control is defined as the time from the last data point present
in the chunk until LOC. The window size is set to 20.
To further promote the prediction capacity of the networks, addi-

tional variables can be defined. It is evident from Fig. 4 that rotor
saturation occurs before LOC for most flights. It is therefore hypoth-

esized that including information about rotor saturation improves
prediction performance. Thus, an additional feature, which is derived

from the rotor commands, is designed that counts the number of
saturated rotors at each moment in time. This is done as follows:

NumSat �
4

i�1

zi

zi �
0 165 < ωicmd < 1000

1 ωicmd ≤ 165 ∨ ωicmd ≥ 1000
(3)

where the mentioned values are based upon the output range of the
rotor commands, which lies between 118 and 1048. A value of 118
means 0% throttle, and a value of 1048 means 100% throttle. A
margin is included in case the commands remain close to these values
but are not exactly equal to them, leading to a saturated rotor for
commands lower than 165 or higher than 1000.
In addition to preprocessing data, the results outputted by the

networks are also postprocessed to improve performance. The detec-
tion branch outputs a value in the range (−∞,�∞), where a negative
value represents a nominal flight and a positive value represents a
dangerous flight. This output is mapped to 0 or 1. By default, this
value ismapped to 0.Once the output of this branch is a positive value
for 20 consecutive time steps, equal to 20 ms, the output is mapped
to 1. This is switched back to 0 if the output of the branch is a negative
value for 20 successive time steps. These 20ms are chosen such that it
equals the window size M mentioned earlier.
The output of the prediction branch acts like a switch and is based

upon the output of the detection branch according to

YPred �
−1 YDet � 0

Prediction YDet � 1
(4)

whereYPred equals -1 in case nominal flight is detected and equals the
output of the prediction branch otherwise.

IV. Results

All four network types are trained 10 times on 74 runs from test 1
flights using different combinations of parameters outlined in
Sec. III.C and shown in Fig. 4, leading to 40 trained models in total.
However, because random processes are involved in training, this is
done three times, culminating in 120 models. The performance of
eachmodel is assessed using onevalidation failure run from test 1 that
was not in the training set. During this validation run, the LOC event
began 1.7 s after the dangerous maneuver initiated.

Fig. 4 Variables showing a trend before loss of control. The red line indicates the time where LOC starts.
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The performances of the models are grouped in three ways to
compare them based on different characteristics. First, they are cat-
egorized by model type to identify which architecture performs best.
Second, they are grouped by the parameter combination employed
during training to investigatewhich variables are the most informative
early warning signals for LOC. Lastly, the results of the generalization
scenarios are presented to determine the generalization capabilities of
different model architectures and variable combinations.

A. Model Performance

Figure 5 compares the RMSE, in seconds, achieved by each of the
model architectures when applied to the validation LOC flight run.

Each model type has 30 data points, due to 10 parameter combina-

tions for three trials.

Eachmodel shows a few high error outliers. These are all related to

one specific variable combination, which will be addressed in the

subsequent subsection. Besides this, the GRU model shows more

outliers with high values in comparison to the other configurations.

However, the associated RMSE values are comparable to the values

within the whiskers of the other models. All other values are within

the interquartile range or within the whiskers, which is 1.5 times the

interquartile range.

Moreover, all the median values, denoted by the green lines in the

boxplots, are similar and are all within each other’s interquartile

range. Furthermore, the spread around the median is comparable

for different model types. Consequently, it is clear that the results are

inconclusive on which model performs best with respect to the

validation run. As a result, all types will be checked for their gener-

alization capabilities to identify if one type is preferred above another.

To get an impression of the average prediction performance, the

run forwhich theRMSEvalue is closest to themedian for themodel is

plotted in Fig. 6. The parameter combination used for these runs is

also reported. Evidently, all model types are able to detect the

maneuver leading to LOC correctly. Furthermore, although the time

to LOC is overestimated at the beginning of the maneuver for all

models, all predictions show a downward trend, indicating that they

observe stronger failure features closer to the LOC event.

B. Variable Performance

Reminiscent of the model architecture comparison, Fig. 7 depicts

the differences in RMSEs for various variable combinations

employed during training. Each combination has 12 data points,

which are the RMSE values for the four model types and three

random training processes. Note that these are the same data that

are used in Fig. 5, only grouped differently.Fig. 5 RMSE values in seconds for different model types.

Fig. 6 Best performance for each model on the validation run including RMSE value and used variables.
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Unlike the model type comparison, it is possible to observe
preferences for specific parameters. From left to right, it is clear from
the first three boxes that the inclusion of the commanded rotor speeds
boost performance. However, using this variable alone is insufficient.
Likewise, from the sixth box, the inclusion of the heading appears to
be detrimental to performance, which is confirmed by the seventh
box. In fact, these heading runs are responsible for the high RMSE
outliers observed in Fig. 5.
Furthermore, the results shown in Fig. 7 suggest that combining

more parameters does not necessarily improve performance. This
leads to preference for models reliant on only two variables: one of
which should be the commanded rotor values. The combination with
the true rotor speed outputs is selected for the subsequent generali-
zation performance analysis because the average RMSE value of this
combination is the lowest.

C. Generalization Performance

Five different scenarios are tested where one condition is changed
as compared to the flights from test 1. As mentioned earlier in this
paper, only the generalization performance of the networks trained on
commanded rotor values and true rotor outputs will be assessed in
detail. However, because there are scenarios where there is a clear
difference in generalization due to the used variables, these will be
examined where relevant.

1. Changing Mass

The nominal mass of the Tiny Whoop including batteries is 56 g.
Five flights are performed where mass is added to the quadcopter by
attaching coins to the frame. Because it is assumed that the center of
mass is in the middle of the quadcopter, attaching the coins here
minimizes changes to the moment of inertia. The resulting RMSE
values of the considered models applied to the different masses are
presented in Fig. 8. Because each model is trained three times to
cancel out the randomness of the training process, the presented
RMSE values are the averages per model per mass. The average
RMSE values achieved on the validation run for the nominal quad-
copter of 56 g are depicted for reference.
It is expected that for increasing mass, the prediction will be less

accurate due to a greater difference in the dynamic behavior of the
quadcopter. This trend is observed for all models, except for the run
with a mass of 76 g. This can be explained by looking at the time
between the start of the dangerous maneuver and LOC. This is
between 2.1 and 2.4 s for all runs, but is only 1.67 s for the run with
a mass of 76 g. This lower time to LOC leads to a lower RMSE score.
Although Fig. 8 provides an overview of the performance of the

models with respect to a mass change, it does not describe how the
time to LOC evolves after the start of the dangerous maneuver.

Instead, it is necessary to look at the individual prediction plots.

Figure 9 illustrates the prediction response of the BILSTMmodel for

the heaviest mass case. The BILSTM model is chosen because the

RMSE of 0.501 s is near the median performance between models.

The detection of the dangerous maneuver still works as desired, and

the prediction is lower than the true time to LOC for the majority of

the run. Moreover, there still is a downward trend ending close to 0 s

at the onset of the LOC event.

Fig. 7 RMSE values in seconds for different variable combinations.

Fig. 8 Average RMSE values in seconds for different quadcopter
masses.

Fig. 9 Predictionof theBILSTMnetworkon theheaviest quadcopter run.

654 ALTENA, VAN BEERS, AND DE VISSER

D
ow

nl
oa

de
d 

by
 T

ec
hn

is
ch

e 
U

ni
ve

rs
ite

it 
D

el
ft

 o
n 

Ja
nu

ar
y 

2,
 2

02
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.I
01

12
31

 



2. Different Propellers

In the default configuration, the Tiny Whoop is equipped with

40 mm four-blade propellers. To investigate whether different pro-
pellers influence the LOCprediction capabilities, thesewere replaced
by 30 mm three-blade propellers. The yawing moment authority of
the smaller propellers is significantly lower, and hence the time to
spin up to high yaw rates is longer, which extends the time to LOC. In

total, six flights are performed with these propellers. Figure 10
visualizes the RMSE values for the first flight using the three-blade
propellers for different variable combinations because there is a clear
difference in RMSE values between them.
On average, models trained using the true rotor output experience

higher RMSE values than those that do not. Therefore, to assess the
suitability of the networks for LOC prediction with different propel-
lers, themodels trained on the commanded rotor values and true rotor

outputs will not be used. Instead, models trained on commanded
values only are considered because these show the best performance
in Fig. 10. The average RMSE values for the different models trained
only on the commanded rotor values across all the propeller general-
ity flights are summarized in Table 4.
It is clear that there is a large variation in performance between the

six flights. This can be explained by looking at the time between the

start of the dangerous maneuver and LOC, summarized in Table 5.
The longer the time to LOC, the higher the RMSE score. Further-
more, as expected, the time before the onset of the LOC event is
longer with the new (smaller) propeller than the time to LOC in the
validation run.
To investigate why there is such a variation in time to LOC, the

prediction of one of themodels on the second and worst propeller run
is analyzed. Figure 11 depicts the prediction of the BILSTM model,

which scored the median RMSE value of 1.66 s on this run. Once the
dangerousmaneuver is detected correctly, the time to LOCprediction
instantiates at around 2 s. Subsequently, the characteristic downward
prediction behavior is visible. The reason the time to LOC caps at
around 2 s lies in the fact that the average time to LOC in the training

set is 1.980 s. The trained networks are not familiar with runs that take
much longer and can therefore fail to produce accurate prediction
results for these runs. A longer time to LOC leads to a higher RMSE

value because the difference between the prediction and the true time
to LOC is higher when compared to shorter runs.

3. LOC Due to High Pitch Rate

Another evaluated scenario iswhether themodels can generalize to
different LOC events. Instead of instigating LOC by demanding a
high yaw rate, it is induced by demanding a high pitch rate. In this
scenario, LOC is defined similarly as for the nominal scenario. Data

Fig. 10 RMSE values in seconds for different variable combinations on the first flight with three-blade propellers.

Table 4 Average RMSE values in seconds on different propeller flights using models trained on

commanded rotor values (Props, propeller)

Nominal Props 1 Props 2 Props 3 Props 4 Props 5 Props 6

LSTM 0.369 1.043 1.637 0.466 1.260 0.560 0.567
BILSTM 0.392 1.044 1.670 0.475 1.262 0.549 0.576
CNN-LSTM 0.432 1.239 2.375 0.514 1.516 0.611 0.653
GRU 0.368 1.028 1.642 0.562 0.921 0.527 0.634

Table 5 Time to loss
of control in seconds

Time to LOC

Nominal 1.700
Propellor 1 4.007
Propellor 2 5.507
Propellor 3 2.142
Propellor 4 4.721
Propellor 5 2.645
Propellor 6 2.027

Fig. 11 Prediction of the BILSTMnetwork on the second propeller run.
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analysis shows that the quadcopter flips around its pitch axis for a few
rounds, after which it starts to flip around its roll axis. LOC is defined
as the moment in time where this flip over the roll axis initiates
because this is themoment where it stops behaving theway it should.
This happens faster than for the flights from test 1: on average, the
time to LOC for the pitch runs is 0.470 s. To aid the prediction of the
models, the two runs with the longest time to pitch-induced LOC are
chosen, with a time to LOC of 1.1 s for both runs. Even though these
favorable runs are used, all networks already fail in detecting the
dangerous maneuver correctly.

4. Flying in Wind

To simulate the effects of wind, a Master DF 30P fan is used. This
fan has a constant airflowof 10; 200 m3∕h, resulting in an air velocity
of 6.25 m∕s given the fan diameter of 760 mm. Five flights are
performed wherein wind is blowing on the quadcopter. The wind is
coming from behind with respect to the quadcopter coordinate sys-
tem (i.e. from the negative x axis direction towards the positive x axis
direction), and at a small angle from beneath. During the first three
flights, the quadcopter is flown into the stream before the maneuver
starts, emulating constant wind conditions. During these flights, it is
noted that the quadcopter is pushed away and upward by the stream.
For the last two flights, themaneuver is started before it is flown in the
stream, which can be seen as a wind gust acting on the quadcopter.
Although the vehicle is again pushed away by the wind, it is influ-
enced for a shorter period of time before the LOC event. It is expected
that the wind gust influences the performance less because the wind
speed is kept constant across both wind cases. The RMSE values
obtained under the various wind conditions are visualized in Fig. 12,
wherein runs 1–3 represent constant wind conditions and runs 4–5
denote wind gust conditions.
The prediction performances vary heavily and do not appear to

depend on specificwind conditions. Consider, for example, the similar
performances between runs 2 (constant wind) and 5 (wind gust). The
limited number of tests in these conditions makes it challenging to
draw any conclusions pertaining to specific wind conditions.
To explore the suitability of the models for LOC prediction in

general windy conditions, the prediction response plots are assessed.
The third flight is chosen, which has the highest RMSE value, and
therefore represents the worst condition. Figure 13 illustrates the
prediction of the GRU network on this flight, which scored the
median RMSE value of 0.745 s. The detection shows a false positive
after 2 s, which is likely caused by turbulent flight due to the presence
of wind. Indeed, another false positive precedes the correct detection
of the dangerous maneuver. Although the false positives are some-
thing to consider for practical implementations of the LOCpredictors
discussed here, developing a false positive mitigation strategy is out
of the scope of the present work. Furthermore, the prediction branch
is primarily overestimating the time to LOC and oscillates more as

compared to the nominal case. Nonetheless, the characteristic down-

ward trend remains visible.

5. Different Quadcopters

Ideally, the developed LOC predictors may be applied to any
quadcopter. As a data-driven approach, it is often undesirable to

collect LOC data for new quadcopters. Hence, the final test aims to
investigate the performance of themodels trained on the TinyWhoop

when applied to other (larger) quadcopters. To this end, four yaw-
induced LOC flights with the URUAV UZ85 quadcopter and 24

flights with the GEPRC CineGO quadcopter are evaluated. The
UZ85 has a (diagonal) length of 85 mm and weighs 73 g at takeoff,

whereas the CineGO has a (diagonal) length of 361 mm and weighs
265 g. Both quadcopters are induced into LOC similarly to the flights

from test 1 described in Sec. III.A. It is interesting to note that even
though both quadcopters are larger and up to five times heavier than
the Tiny Whoop, they show the exact same LOC behavior. This

reinforces the relevance of the experiments conducted with the Tiny
Whoop, even for larger quadcopters. Nevertheless, there remains a

key difference: the average time to LOC varies per quadcopter. For
the TinyWhoop, this is 1.98 s; whereas for the CineGO, this is 2.68 s.

It is therefore expected that networks trained on data from the Tiny
Whoop will underestimate the time to LOC for the other two quad-

copters, resulting in larger RMSE values than on the original nominal
test run. Next to this, another hypothesis is that the results will differ

for different parameter combinations.
The reason for this is the standardization step that is taken during

preprocessing. Namely, a mean and standard deviation are deter-

mined using data from the flights performed during test 1 of the Tiny
Whoop. Because the range of true rotor outputs differs between the
Tiny Whoop, UZ85, and CineGO, this standardization step will

incorrectly scale the true rotor speeds of the UZ85 and CineGo.
Indeed, we observe a poor performance of models that include the

true rotor speed output as a variablewhen looking at theRMSE scores
for all different variable combinations in Fig. 14. Another observa-

tion is that the RMSE values are higher for the CineGO than for the
UZ85. This is in line with expectations due to its longer time to LOC

in comparison to the UZ85. Therefore, the models tend to under-
estimate this time to LOC more for the CineGO than for the UZ85,

leading to higher RMSE values overall.
To find out if these expectations are true, the prediction results on

one flight of both droneswill be compared. For theUZ85 quadcopter,
a run with a model trained on commanded rotor values only will be

chosen; whereas for the CineGO, one run with a model trained on
both the commanded rotor values and gyroscope measurements is

taken. These are shown in Figs. 15 and 16, respectively. These plots
confirm that for the CineGO, the model underestimates the time to

LOC, resulting in a high RMSE value. Furthermore, a comparison of
both plots provides the insight that higher RMSE scores do not

always mean that the performance is worse. Even though there is
an underestimation for the CineGO, there is no false positive detec-

tion; and the prediction is more stable than for the UZ85.
Fig. 12 RMSE values in seconds for different runs in wind. Runs 1, 2,
and 3 represent constant wind; and runs 4 and 5 represent wind gusts.

Fig. 13 Prediction of the GRU network on the third run in windy
conditions.
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V. Discussion

Combining the results outlined in the previous section leads to new
findings about early warning signals, the suitability of RNN archi-

tectures for LOC prediction, and the application of these models.

A. Loss-of-Control Early Warning Signals

Of the considered early warning signals, the commanded rotor

values are most informative in anticipating an impending LOC event,
as noticed in Fig. 7. This is an interesting result because it implies that

LOC is driven by trying to achieve a desired behavior instead of the
true behavior of the quadcopter.
This can be explained by comparing the commanded rotor values

and true rotor outputs in Fig. 4. The commanded rotor values expe-
rience saturation, whereas the true rotor outputs do not hit their
minimum or maximum value. This validates the hypothesis stated

in Sec. III.C that the rotor command saturation is an informative
precursor for LOC. This signal is also recognized by the networks.
Apart from identifying a clear early warning signal, it is also

possible to exclude certain variables. For the nominal case, including

the heading reduces the prediction performance of all network types,
as shown in Fig. 7, and is therefore unfavorable for LOC prediction.

Furthermore, for the generality scenarios evaluating different pro-
pellers and different quadcopters, models trained on the true rotor

outputs show worse performance than other models, as seen in
Figs. 10 and 14, respectively. Although the combination of com-

manded rotor values and true rotor outputs performs best on the
nominal run, other variable combinations follow closely, making this
combination not necessarily superior to other combinations.
Following this analysis, two combinations turn out to be most

useful for LOCprediction: the commanded rotor values together with
either gyroscopic or acceleration measurements.

B. RNNs for Loss-of-Control Prediction

Based upon Fig. 6, it can be concluded that RNNs can detect

dangerous maneuvers leading to LOC accurately for the scenarios it
is trained on. Furthermore, the prediction branch tends to overesti-

mate the time to LOC at the beginning of the dangerous maneuver,
after which a clear downward trend can be observed in tandem with

the slope of the true time to LOC. Additionally, all network archi-
tectures show an average prediction error close to 0.400 s. When

using this RMSE value as an uncertainty margin for the output of the
network, the prediction provides sufficient information for an (auto)
pilot to understand that a LOC event is approaching and at what rate

this is happening. This means that RNNs cannot only be used to
detect a dangerous maneuver but also to predict a LOC event for the

scenarios it is trained on.
Therefore, these results can be used for LOC prevention of quad-

copters. The average time to LOC in the training set is almost 2 s.
Human pilots need time to process a received warning signal and to

take action to recover to safe flight. Two seconds may be too short to
do this. Therefore, in further research, the usage of a trained model in

a closed-loop control system should be investigated. Combining the
outputs of both the detection and prediction branches ismost useful to
create an algorithm that can override pilot commands just in time.
However, conclusions on what model architecture is most viable

for such a LOC prevention system are inconclusive. All model types

Fig. 14 Box plots created using the RMSE values of one run of the UZ85 and one run of the CineGO.

Fig. 15 Prediction of the GRU network on the second UZ85 run.

Fig. 16 Prediction of the GRU network on the 14th CineGO run.

ALTENA, VAN BEERS, AND DE VISSER 657

D
ow

nl
oa

de
d 

by
 T

ec
hn

is
ch

e 
U

ni
ve

rs
ite

it 
D

el
ft

 o
n 

Ja
nu

ar
y 

2,
 2

02
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.I
01

12
31

 



show a median RMSE value close to 0.400 s on the validation run.
Likewise, for the different generalization scenarios, the median
values of the different models were also comparable to each other.
Despite this, useful insights pertaining to the causes of LOC can be
derived. Because both simple and complex RNNs perform similarly,
the failure features are less time dependent than originally expected.
Thismeans that LOC is likely caused by themore short-term, perhaps
instantaneous, behavior of the quadcopter. To confirm these findings,
simple RNN structures or even traditional fully connected neural
networks should be tested to see if they can still predict LOC
correctly.

C. Applications

For both changing mass and different propellers, the detection and
prediction behaviors of the models are similar. Even for theworst run
encountered for both scenarios, the detection branch still detects the
dangerous maneuver correctly, as depicted in Figs. 9 and 11 for
changing mass and different propellers, respectively.
In both scenarios, the prediction branch underestimates the time to

LOC. For changing mass, this can be explained through additional
mass itself. To keep a heavier quadcopter in the air, higher thrust
should be generated. The commanded and true rotor outputs will thus
be higher, which for the nominal case happens closer to the LOC
event, leading to an underestimation. For different propellers, this can
be explained by looking at the time to LOC. As was already expected
beforehand, the time between the dangerous maneuver and LOC is
longer for the shorter 35 mm three-blade propellers. Because the
average time to LOC in the training set is only 2 s, the outputted
sensor values are associated with a shorter time to LOC by the trained
models, leading to an underestimation.
Moreover, based upon the results from these two scenarios, it is

clear that the time to LOC influences the RMSE values. For changing
mass, the seemingly anomalous flight with a low RMSE despite an
increased mass can be explained by a faster time to LOC of 0.5 s
lower than the other flights. For different propellers, all flights had
longer times to LOC than the ones from the training set, leading to
higher RMSE values. These results imply that the application of the
trained models is limited to failure runs with similar time-to-LOC as
those used to train the models.
On the other hand, for the presented scenarios, the incorrect

prediction behavior can be explained and therefore accounted for.
When investigating the usage of these models in a closed-loop
system, it is advised to incorporate information about the aerody-
namic characteristics of the quadcopter and the associated expected
deviations of the prediction to the true time to LOC. When these
characteristics are changed, the output of the prediction branch can be
adjusted according to the expected deviations, which would make
these models suitable for LOC prediction under different aerody-
namic characteristics.
When looking at the application of the trained models to different

LOC scenarios, as is done for the pitch runs in this research, it can be
concluded that the approach is limited to knownLOC scenarios. This
can be explained by looking at howdifferent scenarios alter the sensor
outputs of the quadcopter. Indeed, the other considered generaliza-
tion scenarios do not lead to complete new sensor outputs; similar
trends are observable: only with different values. A new LOC sce-
nario shows completely new and potentially unknown behavior, and
subsequently unknown sensor outputs. One option to overcome this
is to create a model for each LOC event; but for the sake of available
memory on the quadcopter, it is worth investigating if one model can
be trained for different scenarios.
When flying in wind, the dynamic behavior of the quadcopter is

changed more than for different aerodynamic characteristics. When
looking at Fig. 13, false positives can be observed, as well as large
differences between the predicted and true times to LOC. Further-
more, the predicted time oscillates with high amplitudes as compared
to the other scenarios, culminating in unreliable predictions. This is
due to turbulence caused bywind,whichmakes themovements of the
quadcopter rather unpredictable. However, the dangerous maneuver
can be detected correctly and the prediction still exhibits a downward

trend. It is therefore expected that for lowwind speeds, the prediction
will fall within the error margin of the nominal predictions, which
makes these models suitable for LOC prediction but only for limited
wind conditions. To confirm this, more flights in windy conditions
should be executed.
When flying different quadcopters, the detection branch can still

identify the dangerous maneuver correctly, as shown in Figs. 15 and
16. For the UZ85 quadcopter, the prediction branch follows the
downward trend clearly but appears to plateau towards the end.
Likewise, for the CineGO quadcopter, the downward trend is present
as well. However, there is a constant underestimation of the true time
to LOC. The downward trend for all runs clearly shows that all
quadcopters have similar failure behavior. However, due to a combi-
nation of the quadcopter specific time to LOCand the standardization
step taken during data preparation, the prediction of the models is
inaccurate. Nonetheless, two actions can be taken to overcome this
problem. First, the same solution as proposed for changing the mass
and propellers can be used. In a closed-loop system, information
regarding the quadcopter characteristics can help to adjust for the
expected deviations in the prediction branch. Second, it is recom-
mended to look into modifying the standardization step. By using
different mean and standard deviation values for different quadcop-
ters, the sensor values might be mapped to the same range as for the
first quadcopter. When this is possible, the same model may be
suitable for correct detection and prediction of LOC with similar
quadcopters.
In combinationwith the results derived from thewindy conditions,

some false positives are observable. It should be noted that within this
research, there is no tradeoff included between the detection time,
false positives, and false negatives. This becomes a relevant topic
when such a prediction system is incorporated into a closed-loop
system that actively attempts to prevent LOC. It is therefore recom-
mended to further investigate the optimal tradeoff to avoid false
positives but still reliably anticipate LOC. Such a closed-loop system
would not only benefit the detection branch but also the prediction
branch. Moreover, a filter could be included to make the prediction
time less noisy.
Aggregating the generality scenarios considered here, it becomes

apparent that the prediction branch is biased toward a 2 s prediction. It
should be noted that this is not explicitly learned by the network
because the time to LOC is not an input. However, it seems that the
models are capturing some of the dynamics specifically associated
with the TinyWhoop. Quadcopters in a similar weight class, like the
UZ85, show a similar time to LOC in their conventional configura-
tions; however, heavier quadcopters like the CineGO result in a
different time to LOC. This has had a negative influence on the
generalization capabilities of the neural networks for larger quad-
copters. To determine if a more varied dataset results in better
generalization performance, it is worth finding failure maneuvers
that are less biased toward one specific time to LOC.
Finally, similar algorithms can be created for other (autonomous)

vehicles suffering from LOC, where one important requirement is
that sufficient failure runs can be performed such that the networks
can learn failure features. To reduce the number of necessary crashes,
the use of data from simulators or generative models that are capable
of mimicking failure data should be investigated. Only when these
techniques can create sufficient failure datawill it be possible to apply
the proposed method on aircraft to make aviation safer.

VI. Conclusions

Loss of control remains the primary cause of crashes for both
aircraft and UAVs. To reduce the amount of LOC events, onboard
LOC prevention systems should be designed. In this work, it was
demonstrated that recurrent neural networks can be used for LOC
prediction in quadcopters using only onboard sensor measurements.
Training and testing these networks by using data from 172 real-
world LOC events showed that the commanded rotor values provide
the clearest early warning signals for LOC. The RNNs can predict
LOC 2 s before the actual event occurs using these values in combi-
nation with either the gyroscopic or accelerometer measurements.
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However, the application is currently limited to scenarios that show
similar behavior as that used by the training set in terms of the LOC
scenario and time to LOC. It was found that for varying aerodynamic
and mass or inertia characteristics, the prediction can still be used if
the expected deviation in prediction behavior is compensated for. To
draw conclusions about the usability of themodel inwind conditions,
different quadcopters, and for different types of LOC, additional
research is necessary.
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