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Continuous Occupancy Mapping in Dynamic
Environments Using Particles

Gang Chen , Wei Dong , Member, IEEE, Peng Peng, Javier Alonso-Mora , Senior Member, IEEE,
and Xiangyang Zhu

Abstract—Particle-based dynamic occupancy maps were pro-
posed in recent years to model the obstacles in dynamic environ-
ments. Current particle-based maps describe the occupancy status
in discrete grid form and suffer from the grid size problem, wherein
a large grid size is unfavorable for motion planning while a small
grid size lowers efficiency and causes gaps and inconsistencies. To
tackle this problem, this article generalizes the particle-based map
into continuous space and builds an efficient 3-D egocentric local
map. A dual-structure subspace division paradigm, composed of a
voxel subspace division and a novel pyramid-like subspace division,
is proposed to propagate particles and update the map efficiently
with the consideration of occlusions. The occupancy status at an
arbitrary point in the map space can then be estimated with the
weights of the particles. To reduce the noise in modeling static
and dynamic obstacles simultaneously, an initial velocity estima-
tion approach and a mixture model are utilized. Experimental
results show that our map can effectively and efficiently model
both dynamic obstacles and static obstacles. Compared to the
state-of-the-art grid-form particle-based map, our map enables
continuous occupancy estimation and substantially improves the
mapping performance at different resolutions.

Index Terms—Aerial systems, collision avoidance, dynamic
environment, mapping, perception and autonomy.

I. INTRODUCTION

THE particle-based map is originally proposed in [1] for
dynamic and unstructured environments. Particles with

position and velocity states are used to approximate both
dynamic obstacles and static obstacles on the basis of sequential
Monte Carlo (SMC) filtering. In recent works, [2] introduces the
theory of random finite set (RFS) to particle-based maps. The
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probability hypothesis density (PHD) filter is applied to predict
and update the particles and estimate the dynamics of the grids
in the map. Later, [3], [4], [5] improve the particle-based maps
by considering the mixture model, semantic information and
high-level occupancy status inference, respectively. Due to the
ability to model complex-shaped static and dynamic obstacles
simultaneously, particle-based maps draw more attention in
representing dynamic environments. Currently, the input form of
particle-based maps is the ray-casting-generated measurement
grid map originated from the first work [1], and thus the map
is discretized with grids. This discrete form inhibits the state
estimation resolution and brings the grid size problem, namely
large grids lead to a low resolution that is unfavorable for motion
planning, while small grids increase the computation require-
ments and may cause gaps and inconsistencies [6]. Besides,
desktop GPUs are required to run the particle-based maps in
real time, and a more efficient map is needed for applications in
small-scale robotic systems.

This work proposes a dual-structure particle-based (DSP)
map, a continuous dynamic occupancy map free from the grid
size problem. The input of the map is the raw point cloud
rather than the measurement grid map. A novel dual-structure
map building paradigm, composed of a voxel subspace division
for particle storage and resampling and a dynamic pyramid-
like subspace division for occlusion-aware particle update, is
proposed to model the local environment with particles that
have continuous states. Under the Gaussian noise assumption,
we demonstrate that this updating paradigm is effective and
computationally efficient. To reduce the noise in simultaneously
modeling static and dynamic obstacles, the importance of new-
born particles is addressed by using non-Gaussian initial velocity
estimation and a mixture model that adaptively allocates the
number of static and dynamic particles. With a complete process
of prediction, update, birth, and resampling of particles in the
continuous space, the occupancy status at an arbitrary point in
the map can be estimated using onboard CPU devices.

In the experimental tests, we first evaluated the dynamic
obstacle velocity estimation precision of the map. Then, the ab-
lation study was conducted to identify the mapping parameters.
Subsequently, comparison tests were carried out, involving a
state-of-the-art particle-based dynamic occupancy map [5] and
a widely used static occupancy map [7]. Results show that our
map has the best occupancy status estimation performance in
dynamic environments and competitive performance with [7]
in static environments. Furthermore, we verified the DSP map
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in obstacle avoidance tasks of a mini quadrotor in different
environments. To the best of our knowledge, this is the first
continuous particle-based occupancy map and the first dynamic
occupancy map that can be applied to small-scale robotic sys-
tems like quadrotors.

The main contributions of this work include the following.
1) A novel DSP map building paradigm that enables contin-

uous mapping of the occupancy status in dynamic envi-
ronments.

2) The leverage of initial velocity estimation and an efficient
mixture model to reduce noise in modeling static and
dynamic obstacles simultaneously.

3) The complete procedures of building a DSP map that can
be applied to onboard computing devices of small-scale
robotic systems.

4) The released code at,1 including an example application
in ROS.

The rest of this article is organized as follows. Section II
describes the related work. Section III presents the background
knowledge of our map. Section IV explains the formulations of
the world model and gives an overview of mapping procedures.
Section V expresses the mapping procedures with the dual
structure. In Section VI, more components for mapping are
discussed. Section VII presents some implementation details.
The experimental results are described in Section VIII. Finally,
Section IX concludes this article.

II. RELATED WORK

A. Discrete Map and Continuous Map

Environment representation is fundamental to obstacle avoid-
ance of robotics systems. One of the most popular representation
approaches is occupancy mapping, which originated from [8]
and is capable of modeling cluttered environments. Grid map
(2-D or 3-D) is a kind of computationally efficient form to realize
occupancy mapping. The environment is usually divided into
discrete grids, and the occupancy status of each grid is updated
with the ray casting algorithm [7], [9], [10], [11]. The size of the
grids, however, is difficult to determine. Large grids lead to a
low resolution that is unfavorable for motion planning. Small
grids increase the computation requirements and cause gaps
and inconsistencies when the input point clouds are sparse or
noisy [6]. To avoid the grid size problem and allow arbitrary
resolutions, the paradigm of building the map with continuous
occupancy probability kernels rather than grids is proposed [6],
[12], [13]. Free space and occupied points or segments are first
generated with the input point clouds and then used to update
the parameters in the kernel functions. The occupancy status at
an arbitrary position can then be estimated with nearby kernels.

B. Occupancy Maps in Dynamic Environments

The abovementioned maps [8], [9], [10], [11], [12], [13] are
built under the assumption that the environment is static. As
the robotic systems were deployed in dynamic environments,

1[Online]. Available: https://github.com/g-ch/DSP-map

improvements have to be made to instantly represent the occu-
pancy position of dynamic obstacles, such as pedestrians and
other robots, and, even further, to predict the future positions of
dynamic obstacles. An intuitive approach is to leverage indepen-
dent detection and tracking of moving objects (DATMO) [14],
[15], [16] to model the dynamic obstacles and utilize static occu-
pancy maps still to represent the other objects. A prerequisite of
DATMO is that the detection and shape models of the dynamic
obstacles are well-trained [3], which conflicts with the unknown
environment characters in many tasks. In addition, difficulties
in data association [3] and the trail noise caused by obstacles
movements in the static map [15], [17] are intractable. Therefore,
improving the map itself directly by considering the dynamic
obstacle assumption is required, and the dynamic occupancy
map [18], [19] emerges accordingly.

Early dynamic occupancy maps treat the dynamic obstacles,
such as pedestrians and robots, as spurious data in the map, and
detect and remove the data to build a robust static map [18],
[19], [20], [21]. Starting from the latest decade [1], research
works considering modeling the dynamics, mostly velocities,
of the obstacles in the map have been carried out to improve
the obstacle avoidance performance in dynamic environments.
Various methods have been proposed in these works. Some
apply the dynamic obstacle assumption to the existing structures
of static occupancy maps. For example, [22] adopts optical-
flow-based motion maps to estimate the velocity of grids and
improves the Gaussian process occupancy map [12] to adapt to
dynamic environments. The work in [23] further improves [22]
by learning dynamic areas with stochastic variational inference.
In [24], point clouds from lidar are clustered and filtered to
estimate the velocities of dynamic obstacles. The estimation is
applied to generate nonstationary kernels in the Hilbert space
to build the dynamic Hilbert map. With the popularity of deep
learning methods, some recent works adopt neural networks to
predict the velocity of each grid in a grid map [25], [26] or future
occupancy status [27], [28].

C. Particle-Based Dynamic Occupancy Maps

The particle-based map originates from the autonomous driv-
ing area [1], [29]. In a particle-based map, an obstacle is regarded
as a set of point objects and the particles with velocities are
used to model the point objects. Compared to the dynamic
occupancy maps in Section II-B, the particle-based map is
originally proposed for dynamic environments and has a stronger
potential to improve the mapping performance in complex and
highly dynamic environments. The work in [2] improves [1],
[29] by introducing the RFS theory and deriving map-building
procedures with the PHD filter and the Bernoulli filter. The
improved map can be built in real time in 2-D space with GPU
devices. Later, [5] generalizes [2] to 3-D space.

In a cluttered environment with dynamic and static obstacles,
multiple point objects, dynamic or static, need to be modeled,
and denoising is of great importance. Two approaches are usually
adopted to reduce the noise. The first approach is to use a mixture
model [3], [5], [30], [31], which includes a separate static model
and a dynamic model, to update the states of static and dynamic
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point objects independently. The mixture model works as dual
PHD filters [30] or the grid-level inference [3], [5], [31]. Another
approach is to apply additional information to reduce the noise in
the updating procedure. For instance, [4] adds an extra semantic
grid channel in the input to generate particles with semantic
labels and update with the semantic association.

The abovementioned particle-based maps are still grid maps.
Measurement grids generated by the ray casting method are
adopted as the input, and the environment is described with
discretized 2-D or 3-D girds. This discretized expression suffers
from the grid size problem mentioned in Section I. The grid size
also limits the state estimation resolution of the obstacles. There-
fore, a continuous particle-based occupancy map is required.
In addition, since numerous particles are used, state-of-the-art
particle-based maps usually rely on desktop GPU devices for
computation [2], [5]. To deploy the particle-based map on small-
scale robotic systems, improving computational efficiency is
necessary.

III. PRELIMINARIES

This section introduces the main concepts of RFS, PHD,
PHD filter, and SMC-PHD filter. The relationship between the
concepts is: PHD is a first moment of an RFS; PHD filter realizes
multiobject tracking by propagating PHD; SMC-PHD filter is a
particle-based implementation of the PHD filter and is used to
fulfill prediction and update in our DSP map. The notations used
in this section and the rest sections are shown in Table I.

A. Random Finite Set

An RFS is a finite set-valued random variable [2]. The number
and the states of the elements in an RFS are random but finite.
Let X denote an RFS and x(i) ∈ M denote the state vector of
an element in X. M is x(i)’s state space, e.g., map space. Then,
X is expressed as

X =
{
x(1),x(2), . . .,x(N)

}
(1)

where N ∈ N is a random variable representing elements num-
ber in X and is called the cardinality of X. Specially, when
N = 0, X is ∅. A common usage of the RFS is in the multiobject
tracking area, wherex(i) is usually the state of an object and X is
the set composed of the states of all objects. N varies as objects
appear and disappear in the tracking range.

B. Probability Hypothesis Density

PHD [32], [33] is a first moment of an RFS and is raised to
describe the multiobject density. The PHD of X at a state x is
defined as

DX(x) = E

⎡
⎣ ∑
x(i)∈X

δ(x− x(i))

⎤
⎦ (2)

where E[·] is the expectation and δ(·) is the Dirac function.2

2Dirac function: δ(x) = 0, if x �= 0;
∫
δ(x)dx = 1.

TABLE I
NOTATION IN THIS ARTICLE

Two important properties of PHD are used in this work. The
first property is that the integral of PHD is the expectation of the
cardinality of X, which can be expressed as

∫
DX(x)dx = E[|X|] (3)

where |X| represents the cardinality of X.
Another property is that if X(1),X(2), . . .,X(N ′) are indepen-

dent RFSs, and X(1) ∪ X(2) ∪ . . . ∪ X(N ′) = X, then

DX(x) = DX(1)(x) +DX(2)(x) + · · ·+DX(N ′)(x). (4)
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C. PHD Filter

The PHD filter [32] is an efficient filter that propagates the
PHD in the prediction and the update step, and can be used
to handle multiple object tracking problems. Let Xk−1 and
Xk denote the RFS composed of object states at time step
k − 1 and k, respectively. Suppose Zk is the RFS composed of
measurements, i.e., point cloud, to the objects at time k. In the
prediction step of a typical PHD filter, the prior object states RFS
Xk|k−1 can be treated as the union of two independent subsets,
which is Xk|k−1 = Sk|k−1 ∪ Bk|k−1, where Sk|k−1 represents
the persistent objects from the Xk−1, and Bk|k−1 is the newly
born objects. Note that Sk|k−1 and Bk|k−1 are distinguished by
birth time. They are both in map space M but do not share any
element. Sk|k−1 is usually modeled with multi-Bernoulli mixture
(MBM). From Xk−1 to Sk|k−1, the objects have a probability of
Ps to survive. Meanwhile, Bk|k−1 is modeled as a Poisson point
process (PPP) [32] with intensity γk|k−1(xk). Similarly, in the
update step, Zk is expressed as Zk = Ok ∪ Ck, where Ok is the
detected objects set and Ck is the set of clutter. From Xk to Zk,
the objects have a probability of Pd to be detected. The clutter
Ck are modeled as a PPP with intensity κk(zk).

Let DSk|k−1
(xk) and DBk|k−1

(xk) denote the PHD at xk of
RFS Sk|k−1 and Bk|k−1, respectively. Considering the property
(4) and the MBM and PPP models, the general PHD filter [33]
is described as

DXk|k−1
(xk) = DSk|k−1

(xk) +DBk|k−1
(xk)

= PsHk(xk,xk−1) + γk|k−1(xk) (5)

Hk(xk,xk−1) =

∫
πk|k−1(xk|xk−1)DXk−1

(xk−1)dxk−1

(6)

DXk
(xk)=

[
1−Pd+Pd

∑
zk∈Zk

Gk(zk,xk)

]
DXk|k−1

(xk)

(7)

Gk(zk,xk) =
gk(zk|xk)

κk(zk) + Pd

∫
gk(zk|xk)DXk|k−1

(xk)dxk

(8)

where (5) and (6) show the prediction step, and (7) and (8)
present the update step. πk|k−1(·) is the state transition density
of a single object and gk(·) is the single object measurement
likelihood.

D. SMC-PHD Filter

Sequential Monte Carlo PHD (SMC-PHD) filter [34], [35]
uses particles to represent PHD and is an efficient implemen-
tation of the PHD filter. Each particle has a weight and a state
vector with the same dimension as an object’s state. With the
particles, the posterior PHD of X at time k − 1 is approximated
by

DXk−1
(xk−1) ≈

Lk−1∑
i=1

w
(i)
k−1δ(xk−1 − x̃

(i)
k−1) (9)

where Lk−1 is the number of particles at time step k − 1, w(i)
k−1

is the weight of particle with index (i), and x̃
(i)
k−1 denotes the

state vector of particle (i). We distinguish the state of an object
and the state of a particle with the tilde notation.

In the prediction step, with (5), (6), and (9), the prior PHD of
the RFS Xk|k−1 at k is derived as

DXk|k−1
(xk) = DSk|k−1

(xk) +DBk|k−1
(xk)

=

Lk−1∑
i=1

Psw
(i)
k−1πk|k−1(xk|x̃(i)

k−1) + γk|k−1(xk).

(10)

Let w(i)
s,k|k−1 = Psw

(i)
k−1. By sampling πk|k−1(xk|x̃(i)

k−1) and
γk|k−1(xk) with particles, the abovementioned equation can be
further derived as

DXk|k−1
(xk)

=

Lk−1∑
i=1

w
(i)
s,k|k−1δ(xk − x̃

(i)
s,k|k−1) +

Lb,k∑
j=1

w
(i)
b,kδ(xk − x̃

(j)
b,k)

≡
Lk∑
i=1

w
(i)
k|k−1δ(xk − x̃

(i)
k ) (11)

where x̃
(i)
s,k|k−1 represents the particle state sampled from

πk|k−1(xk|x̃(i)
k−1) and x̃

(j)
b,k represents the particle state sampled

from γk|k−1(xk). Lb,k and w
(i)
b,k are the number and the weight

of newborn particles at time k, respectively. The total number
of particles after prediction is Lk = Lk−1 + Lb,k.

In the update step, substitute DXk−1
(xk−1) in (7) and (8) with

the particle representation in the last row of (11). The posterior
PHD at k is reformed into the summation of particles, which is

DXk
(xk) ≈

Lk∑
i=1

w
(i)
k δ(xk − x̃

(i)
k ) (12)

where the particle state x̃(i)
k remains the same as in the prediction

step and the weight w(i)
k is given by

w
(i)
k =

[
1− Pd +

∑
zk∈Zk

Pdgk(zk|x̃(i)
k )

κk(zk) + Ck(zk)

]
w

(i)
k|k−1 (13)

Ck(zk) =

Lk∑
j=1

Pdw
(j)
k|k−1gk(zk|x̃(j)

k ). (14)

The SMC-PHD filter estimates the PHD of X by iterative
prediction with (9)–(11) and update with (12)–(14). Details can
be found in [34], [35].

IV. WORLD MODEL AND SYSTEM OVERVIEW

A. World Model

Our DSP map is an egocentric map built on multiobject
tracking at the point object level in a continuous neighborhood
space. Let M denote the neighborhood map space of the robot.
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Fig. 1. Illustration of the world model: (a) shows a cubic local environment with a static obstacle and a dynamic obstacle. The small blue points are the point
objects that represent the two obstacles. The layout of the point objects depends on the measurement points. The blue points show one kind of layout; (b) presents
the particles (small hollow circles with arrows indicating the velocities) used to model the point objects; (c) and (d) are two different space division structures.
The whole local environment is divided into subspaces, but only a part of the subspaces are plotted to have a clear view of their shapes. In (d), the green pyramids
indicate the current FOV. (a) Point objects. (b) Particles in the local map. (c) Voxel subspaces. (d) Pyramid subspaces.

Fig. 2. System overview of our DSP map.

M is a real space that has a cuboid boundary with size (lx, ly, lz).
The size can be set according to the range of the utilized sensors
or the requirements from the motion planner. At the center of
the cuboid is the robot. We consider the obstacles in M as point
objects, similar to [2]. Fig. 1(a) reveals the relation between
obstacles and point objects. One obstacle can correspond to
multiple point objects. The point objects are used to estimate
the occupancy status at an arbitrary position in the map. Since
the occupancy status rather than the state of each obstacle is
more important in an occupancy map, the mapping from point
objects to obstacles is omitted and the assumption that all the
point objects move independently is made. The same assumption
is used in the existing works on particle-based maps [1], [2], [5].

For the reason that the obstacles are unknown, the number
of the point objects in M and their states are random but finite.
Therefore, these point objects can be modeled as an RFS. At a
discrete time k, the RFS composed of the point object states is
represented as

Xk =
{
x(1),x(2), . . .,x(Nk)

}
(15)

where Nk is the number of point objects at time k, and x with
index from 1 to Nk is the state vector of a point object. The state
vector is given by the 3-D position and velocity, namely

x = [px, py, pz, vx, vy, vz]
T (16)

where the subscripts {x, y, z} are used to represent the axes in
Cartesian coordinate. The core of building the DSP map is to use
the SMC-PHD filter to track the point objects in 3-D continuous
space and estimate Xk’s PHD, which is then used to estimate
the occupancy status of the map.

To realize effective and efficient SMC-PHD filtering in the
continuous space, we divide M into two types of subspaces, i.e.,
the cubic voxel subspaces and the pyramid-like subspaces, by
the position dimensions. The voxel subspaces are used for data
storage and particle resampling. The pyramid-like subspaces are
applied to handle limited sensor FOV and inevitable occlusions
in the continuous space, and realize efficient particle update.
Details are presented in Section V. The following describes
how to acquire the subspaces and defines the sub-RFSs divided
accordingly with the subspaces.

The voxel subspaces are divided in the cartesian coordinate
[see Fig. 1(c)]. The voxels can fill up M but have no overlaps
with each other. Assume the resolution of the voxel is l. Then,
the number of the voxels is Nv =

lx·ly ·lz
l3 . Let Vi denote the ith

voxel subspace. Then, Xk can be described as the union of these
sub-RFSs, which is

Xk = X(V1)
k ∪ X(V2)

k ∪ · · · ∪ X(VNv )
k . (17)

Since the voxels have no overlaps, any two sub-RFSs do not
share a point object, and thus, the sub-RFSs are independent. In
the SMC-PHD filter, the voxel subspaces are used to resample
the particles in M in a uniform manner, which is described in
Section V-D. In addition, these voxel subspaces are used to index
and store the particles for efficiency purposes, as described in
Section VII.

For the reason that the field of view (FOV) of a sensor is
usually limited, and the occlusion prevents observations of the
area behind obstacles, only a part of M is visible. Let Mf ⊂ M
denote the visible space. Mf must be distinguished from the
occluded space to realize map updating. However, the voxel
subspaces have a limited resolution and cannot continuously
express Mf . Thus, another division structure is still required.

Inspired by the perspective projection model for sensors,
we also divide M into pyramid-like subspaces in the spherical
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Fig. 3. Illustration of the pyramid subspaces in the FOV and the update step: (a) shows the visible space and the occluded space; (b) reveals the visible space
and the map space in the same plot. The pyramid subspaces out of the current FOV are partially presented to have a clear view. For a point object x that lies in a
pyramid subspace belonging to the visible space, such as the subspace outlined with black dashes, we define the activation space of x as the union of this pyramid
subspace and its adjacent n pyramid subspaces. The adjacent n pyramid subspaces of a pyramid are within the range of n rows and n columns from the pyramid.
n = 2 in this case; (c) shows a cutaway view of the activation space. Point cloud measurement zk locates out of the activation space. The distance from the point
object x to the map center is rk . (a) FOV space composed of visible pyramid subspaces. (b) Pyramid subspaces in map and FOV. (c) Update in activation space.

coordinate [see Fig. 1(d)]. These subspaces are divided dynam-
ically and uniformly in the sensor frame when the robot pose
is given. (Details can be found in Section VII and Algorithm 2
in the Appendix.) The real shape of a pyramid-like subspace is
composed of four near-triangular faces and one face on the map
boundary face. For simplification, we loosely name the subspace
as pyramid subspace in the following content.

In the spherical coordinate, the azimuth angle range is [0, 2π]
and the zenith angle range is [0, π]. Suppose the angle interval
of the pyramid division, namely the pyramid angle, is θ > 0.
The number of these subspaces is Np = 2π·π

θ2 . To make Np an
integer, θ satisfies Iθ = π, where I ∈ N+. Denote by Pi the
ith pyramid subspace, and by X(Pi)

k the RFS composed of point
objects in Pi. Xk satisfies

Xk = X(P1)
k ∪ X(P2)

k ∪ · · · ∪ X
(PNp )

k . (18)

The measurement of the point objects is the point cloud from
sensors, such as stereo cameras or lidars. The points in the point
cloud at time k form a measurement RFS Zk. In analogy to the
point objects, Zk is written as

Zk =
{
z(1), z(2), . . ., z(Mk)

}
(19)

whereMk represents the number of the measurement points, and
each measurement point z consists of the 3-D position, which
is

z = {zx, zy, zz} . (20)

With the measurement points and the pyramid-like subspaces,
we can determine the visible space Mf and occluded space. As
is shown in green in Fig. 3(a) and (b), Mf is the union of the
free space and obstacle surface in each pyramid subspace in the
FOV. Denote the visible space of pyramid subspace Pi by P f

i .
When the pyramid angle θ of Pi equals the angular resolution
of the sensor, there is either one or no measurement point in Pi.
If there is one point z, the subspace behind the measurement

point is occluded (painted in gray in Fig. 3), while the rest space
is the visible pyramid subspace P f

i . P f
i ⊂ Pi and the length of

P f
i is |z|. If there is no measurement point, P f

i = Pi. Suppose
that the FOV is θh × θv . The number of P f

i isNf = θhθv
θ2 . Since

the FOV usually cannot cover the whole neighborhood space,
Nf < Np. Then, Mf = P f

1 ∪ · · · ∪ P f
Nf

, and Zk can be divided
into subsets with these visible pyramid subspaces, which is

Zk = Z
(Pf

1 )
k ∪ Z

(Pf
2 )

k ∪ · · · ∪ Z
(Pf

Nf
)

k . (21)

With the measurement Zk, the PHD of Xk is updated by using
the SMC-PHD filter. The hollow circles with velocity arrows in
Fig. 1(b), (c), and (d) show the particles used in the SMC-PHD
filter. The basic element in our map is the particle.

B. System Overview

An overview of the procedures to build our DSP map can
be found in Fig. 2. The core procedure is filtering the PHD
of Xk with the SMC-PHD filter. In the SMC-PHD filter, the
prediction step and update step iteratively update the PHD. The
particle birth step generates new particles and is then used in
the prediction step. A resampling step is added after the update
step to prevent degeneration and control the maximum number
of particles. The pyramid subspace division is used in the update
step to distinguish visible space and improve computational
efficiency. The voxel subspace division is used in the resampling
step to realize efficient and uniform particle resampling. Details
about the SMC-PHD filtering procedure in our map can be found
in Section V. The filtered result is particles with position and
velocity states. Then, the map output can be calculated with the
particles into two forms designed for motion planning. The first
form is the current occupancy status, and the second is the pre-
diction of future occupancy status. An initial velocity estimation
procedure is introduced to reduce the noise in mapping. Details
about the output and initial velocity estimation are presented in

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2024 at 15:16:09 UTC from IEEE Xplore.  Restrictions apply. 



70 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Section VI. The particles used in all the procedures are stored
in the voxel subspaces.

V. MAPPING WITH DUAL STRUCTURE

This section presents the core procedures to build our map
with the dual-structure space divisions, including prediction,
update, particle birth, and resampling steps. The prediction and
the particle birth are conducted in space M. In the update step,
the pyramid subspaces Pi are utilized to update the point objects’
PHD efficiently. The voxel subspaces Vi are adopted in the
resampling step.

A. Prediction

The prediction step predict the prior PHD of Xk|k−1 and the
general form has been described in Section III-D. In our map, the
motion model of a single point object is defined by the constant
velocity (CV) model, then a point object xk that survived from
k − 1 is predicted by

xk = fQ (xk−1) + ξ =

[
I3×3 ΔtI3×3

03×3 I3×3

]
xk−1 + ξ (22)

where I is the identity matrix and ξ is the noise. The noise is
supposed to obey a Gaussian distribution with a covariance Q,
which is ξ ∼ N (0,Q).

Then, the state transition density in (6) turns to a Gaussian
probability density

πk|k−1(xk|xk−1) = N (xk; fQ (xk−1) ,Q) . (23)

Thus, from (10) to (11), πk|k−1(xk|x̃(i)
k−1) can be sampled by

particles using the Gaussian probability density, and x̃
(i)
s,k|k−1 in

(11) is given by

x̃
(i)
s,k|k−1 = fQ

(
x̃
(i)
k−1

)
+ u (24)

where u is a noise sampled from N (0,Q).
The weight and state of newborn particles in (11) are described

later in Section V-C.

B. Update

The update step utilizes the measurement Zk to get the
posterior PHD of Xk. Two major points are addressed in the
update step. The first point is to tackle the limited FOV and
the occlusion. Since the FOV of a sensor is usually limited, and
the occlusion prevents observations to the area behind obstacles,
Zk can only be in the visible space Mf defined in Section IV.
The objects that do not belong to Mf are in an unknown area
and should not be updated; otherwise, their existence probability
will be falsely reduced. Thus, the notations in (12) should
contain a superscript f , such as Df

Xk
(xk), w

f,(i)
k , and x̃

f,(i)
k .

Let superscript f̄ represent the definitions in M \ Mf . Then, by
using the property in (4), the PHD of the all objects in M should
be estimated as

DXk
(xk) = Df

Xk
(xk) +Df̄

Xk
(xk) (25)

where Df̄
Xk
(xk) = Df̄

Xk|k−1
(xk) because the objects in M \ Mf

are not updated. Df
Xk
(xk) can be updated with (12), (13), and

(14) by considering the point objects and particles in Mf only.
For notation simplification, the superscript f is omitted in what
following. We still use (12), (13), and (14) to represent the
general update form but now x̃

(i)
k ∈ Mf and Lk only counts

the particles in Mf .
The second point is to reduce the computational complexity.

It should be noted that Ck(zk) in (13) and (14) is controlled
by zk, and thus, for every w

(i)
k , Ck(zk) can be shared for the

same zk. Therefore, to calculate all the required Ck(zk), the
multiplication operation and PDF calculation calculation in (14)
should be performedLk ·Mk times, whereMk is the cardinality
of Zk. In addition, considering the summation operations in (12)
and (13), another Lk ·Mk times of multiplication, division, and
PDF calculation operations should be performed. The algorith-
mic complexity isO(LkMk). In an unknown environment, there
could be many obstacles and over a million particles can be
required to approximate the states of the point objects. Hence,
Lk ·Mk can be very large, and the efficiency of the map is not
adequate. The following considers using the pyramid subspaces
to reduce the complexity.

Considering the measurement noise of the commonly used
point cloud sensors, such as depth camera and lidar, the sin-
gle object measurement likelihood gk(·) can be assumed as a
Gaussian distribution, which is

gk(zk|xk) = N (zk; fR(xk), R(xk)) (26)

where fR(xk) = [I3×3, 03×3] · xk since the measurement is
only position. Unlike the prediction covariance Q, the measure-
ment covariance R(xk) is usually not constant but related to the
distance dk of the obstacle in regular sensor models.

First, we assume that the measurement error of a point ob-
ject xk ∈ Mf is independent on each axis, and the standard
deviation on each axis is equally ρ(dk), where ρ(·) is a func-
tion. The coordinate of xk in the sphere coordinate system is

(rk, αk, βk) [see Fig. 3(c)], where rk =
√

p2k,x + p2k,y + p2k,z ,

αk = arccos
pk,z

rk
, and βk = arccos

pk,x

r sin(αk)
, if pk,y ≥ 0, and

βk = arccos
pk,x

r sin(αk)
+ π, if pk,y < 0.

rk andαk are bounded. Suppose the robot is in a sphere model
with radius rmin > 0. The space inside the sphere is considered

free and not updated. Let rmax = 1
2

√
l2x + l2y + l2z . Then, rk ∈

[rmin, rmax]. Considering the sensor has a limited FOV with
vertical view angle θv < π, we have αk ∈ [π−θv

2 , π+θv
2 ].

With the coordinates in the sphere coordinate system, the
covariance turns to R(xk) = ρ2(rk)I3×3 and gk(zk|xk) can
then be rewritten as

gk(zk|xk) =
∏

i∈{x,y,z}
N (

zk,i; pk,i, ρ
2(rk)

)
(27)

where zk,i and pk,i are the single-axis position of a measurement
and an object, respectively, at time k, which are described in (20)
and (16).
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In (14), gk(zk|xk) involves the transition density from xk

to every observed zk and thus makes the update step time-
consuming. Let ε denote a small constant. If zk satisfies Condi-
tion gk(zk|xk) < ε, the approximation gk(zk|xk) = 0, i.e., the
strategy that the zk is omitted in (14), is applied to improve the
update efficiency. To find the zk that satisfies the condition, we
define an activation space Axk for point objectxk. The activation
space indicates that zk out of Axk satisfies gk(zk|xk) ≈ 0. Axk

is the adjacent space of xk, and is composed of the union of
the pyramid subspace where xk is and the adjacent n pyramid
subspaces. The adjacent n pyramid subspaces are within the
range of n rows and n columns from the pyramid subspace. For
example, Fig. 3(b) and (c) shows the activation space of xk with
n = 2. The number of pyramid subspaces in Axk is (2n+ 1)2.

Let Δd(zk,xk) denote the Euclidean position distance be-
tween an measurement point zk and the point object xk. Con-
sider the 3-D Gaussian probability density, gk(zk|xk) can be
further written as

gk(zk|xk) =
1

(2π)
3
2 ρ3(rk)

e
−Δd(zk,xk)2

2ρ2(rk) . (28)

If zk /∈ Axk , the absolute azimuth angle and the zenith angle
difference between xk and zk is no less than nθ. Let θ′ = nθ.
In Appendix A, we derive that the lower bound of Δd(zk,xk)
is rk sin θ′ sinαk. Thus, for ∀zk /∈ Axk , the maximum density
is

gk,max(zk|xk) =
1

(2π)
3
2 ρ3(rk)

e
− (rk sinθ′ sinαk)2

2ρ2(rk) . (29)

When (rk sin θ
′ sinαk)

2 increases, gk,max(zk|xk) decreases
monotonically.

Let gk,max(zk|xk) = ε. (29) can be reformed as

θ′ = arcsin

√
2ρ2(rk)

r2ksin2αk

ln
[
ε(2π)

3
2 ρ3(rk)

]−1

. (30)

Since rk ∈ [rmin, rmax] and αk ∈ [π−θv
2 , π+θv

2 ] are in close
intervals, θ′ must have a maximum value θ′max. For example,

Case 1: when ρ(rk) equals a constant value σ, θ′max is

θ′max = arcsin

√
2σ2

r2mincos2 θv
2

ln
[
ε(2π)

3
2σ3

]−1

. (31)

Case 2: when ρ(rk) = σ′rk, which means the measurement
standard deviation grows linearly with rk, then

θ′max = arcsin

√
2σ′2

cos2 θv
2

ln
[
ε(2π)

3
2σ′3r3min

]−1

. (32)

Therefore, given a threshold ε, θ′max can be calculated and
the parameter n for the activation space is n =  θ′

max
θ �. Then,

∀zk /∈ Axk , gk(zk|xk) ≤ ε ≈ 0. Note that the formula in the
square root symbol in (31) or (32) should be in the range [0,1],
which generally holds given real-world sensor parameters and
robot size. Special cases when θv is near π or ρ(rk) is very large
can make the condition invalid. Then, the strategy of increasing
rmin or decreasing θv in the map can be adopted to make the
condition valid. The strategy increases the sphere model size or

decreases the pyramid number, and thus, sacrifices part of the
space to be updated.

If the measurement variances on each axis are not identical,
the upper envelope of the variances can be taken as ρ(rk), and the
abovementioned inference still holds. If the measurement errors
on each axis are not independent, (27) to (32) cannot hold but
the derived result can be used as an approximation to determine
n. In the following context, we suppose the measurement errors
on each axis are independent.

At the particle level, substitute xk with x̃
(i)
k , and then,

gk(zk|x̃(i)
k ) ≈ 0 if zk /∈ Ax̃

(i)
k , where Ax̃

(i)
k is the activation

space of particle x̃
(i)
k and Ax̃

(i)
k = Axk if x̃(i)

k is in the same
pyramid subspace of xk. Let LAzk

k denote the number of par-
ticles whose activation space includes zk, (13) and (14) can be
expressed as

w
(i)
k =

⎡
⎢⎣1− Pd +

∑
zk∈A

x̃
(i)

k

Pdgk(zk|x̃(i)
k )

κk(zk) + Ck(zk)

⎤
⎥⎦w

(i)
k|k−1

(33)

Ck(zk) =

LAzk
k∑
j=1

Pdw
(j)
k|k−1gk(zk|x̃(j)

k ). (34)

LAzk

k is about (2n+1)2

Nf
times of Lk and Nf = θhθv

θ2 is the
number of pyramid subspaces in Mf . Hence, the complexity of

the update step in (33) and (34) is about (2n+1)2

Nf
times to (13)

and (14). To speed up computing, θ = θ′max is adopted in prac-
tice. Then, n =  θ′

max
θ � = 1 and the computational complexity

is reduced to θ2

θhθv
times of (13) and (14). Take rmin = 0.15 m,

σ′ = 1%, and ε = 0.01 as example. With (32), it can be derived
that θ = θ′max = 3◦ and θ2

θhθv
≈ 0.002.

C. Particle Birth

Following the method in [35], we generate newborn particles
with measurement points Zk. Since Zk ∈ Mf , the newborn
particles are also in Mf . For measurement point zk ∈ Zk, we
generate particles with a number of Lb. Then, the number of
newborn particles in total isMkLb. The position of each newborn
particle is sampled from the Gaussian noise model in (26).
Normally, the velocity of the newborn particle is randomly
sampled in a feasible velocity range. However, this random
sampling leads to heavy noise, and the convergence speed is
slow. Thus, we sample the velocity of each newborn particle
through an initial velocity estimation method, which is described
in Section VI-A and VI-B. The weight of these particles are set

to be
vb
k|k−1

MkLb
, where vbk|k−1 =

∫
γk|k−1(xk)dxk is a parameter

that controls the expected number of newborn objects.
According to [35], the weight of the newborn particle is

calculated separately in the update step. Then, the weight update
(33) and (34) are reformed to represent the survived particles and
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the newborn particles separately

w
(i)
s,k =

⎡
⎢⎣1− Pd +

∑
zk∈A

x̃
(i)

k

Pdgk(zk|x̃(i)
k )

κk(zk) + C′
k(zk)

⎤
⎥⎦w

(i)
s,k|k−1

(35)

w
(j)
b,k =

∑
zk∈A

x̃
(i)

k

w
(j)
b,k|k−1

κk(zk) + C′
k(zk)

(36)

C′
k(zk) =

MkLb∑
j=1

w
(j)
b,k|k−1 +

LAzk
s,k∑
j=1

Pdw
(j)
k|k−1gk(zk|x̃(j)

k ) (37)

where LAzk

s,k ≤ LAzk

k is the number of survived particles whose

activation space includes zk. w(j)
b,k|k−1 is the prior weight of the

newborn particle and is
vb
k|k−1

MkLb
.

D. Resampling

The resampling step is to constrain the number of particles and
prevent degeneration. After resampling, the cardinality expec-
tation and the posterior PHD of Xk, i.e., E[|Xk|] and DXk

(xk),
should not change. With DXk

(xk) in the form of (12), the
cardinality expectation of Xk is estimated by (3)

E[|Xk|] =
∫ Lk∑

i=1

w
(i)
k δ(xk − x̃

(i)
k )dxk =

Lk∑
i=1

w
(i)
k . (38)

For a single voxel subspace Vj , the cardinality expectation

E[|X(Vj)
k |] can also be estimated with the weights of the particles

inside, which is

E[|X(Vj)
k |] =

∫
D

X
(Vj)

k

(x)dx ≈
L

(Vj)

k∑
i=1

w
(i)
k (39)

where L
(Vj)
k represents the number of particles in Vj at time

k. Although some particles outside of Vj but close to Vj may
be relevant to D

X
(Vj)

k

(x), they are not considered and thus the

approximately equal sign is used.
Then, the resampling is conducted by rejection sampling [36]

in each voxel subspace. The voxel subspace rather than the
whole map is used. The reason is that if an area contains only
low-weight particles, rejection sampling in the whole map may
reject all these particles and decrease the occupancy probability
of the area falsely. Let LV

max and Lmax denote the allowed
maximum number of particles in a voxel subspace and in the
map, respectively, after resampling. Lmax = LV

maxNv . Then, the
number of particles after resampling is

L̂
(Vj)
k =

{
LV

max, if L(Vj)
k > LV

max

L
(Vj)
k , otherwise.

(40)

Fig. 4. (a) Illustration of the particle false update problem and (b) the initial
velocity estimation procedures. In (a), a dynamic obstacle (a mobile robot)
moves rightwards from t = k − 1 to t = k. At t = k − 1, a measurement point

z
(1)
k−1

, on the right-hand side of the obstacle, is observed. With z
(1)
k−1

, a particle
with state x̃k−1 is generated in the particle birth step (see Section V-C). Since

z
(1)
k−1

does not provide velocity, the commonly used way is to give x̃k−1 a
random velocity, e.g., a velocity to the left. At t = k, following the CV model,
x̃k−1 moves to x̃k . Since the particle’s velocity is the opposite to the obstacle’s
velocity, this particle should belong to noise and its weight should be decreased
in the update procedure at k. However, due to the large size of the robot, another

measurement pointz(2)
k

, close to x̃k , may be observed at k and falsely increased
the weight of the particle in the update step. We call this problem the particle
false update. Note the problem also exists in modeling large-size static obstacles
and is more frequent when multiple dynamic and static obstacles exist, in which
case particles generated from one obstacle may be falsely updated with the
measurement from another obstacle. (a) Particle false update. (b) Initial velocity
estimation.

The weight of the particles in Vj after resampling is identically

ŵ
(i)
k =

E[|X(Vj)
k |]

L̂
(Vj)
k

. (41)

VI. EXTENSIONS IN MAPPING

This section proposes some important extension modules.
First, the initial velocity estimation module for newborn particles
and a mixture model composed of a static model and a CV model
are proposed to reduce the noise in mapping. Then, the occu-
pancy status estimation and future status prediction modules,
which generate the output designed for motion planning, are
expressed. Finally, several useful extra extensions are discussed.

A. Initial Velocity Estimation

The particle-based maps model the obstacles as point objects.
This model is very friendly with particle-based tracking but
works only at the subobject level, which will cause nonnegligible
noise when the obstacle has a relatively large volume. Specif-
ically, the noise is caused by the false update of the particles.
Fig. 4(a) illustrates the false update. The false update leads to
many particles with a large weight but a wrong velocity, and
further causes heavy noise in predicting the occupancy status of
the area out of the FOV or at a future time. When the velocity
of the newborn particle is randomly generated, the particle false
update problem occurs frequently.

To alleviate the problem and reduce noise, we add an object-
level estimation by considering initial velocities for the newborn
particles. The procedures to acquire the initial velocities from
two adjacent point clouds are shown in Fig. 4(b). The point
cloud that obviously belongs to static obstacles, like the ground,
is segmented by considering the height dimension and assigned
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zero velocity. The rest point cloud is clustered, and the result
clusters are matched with the clusters extracted from the last
frame. Then the velocity of each cluster can be estimated by
differentiating the position of the matched clusters’ centers. We
use the Euclidean cluster extraction based on K-D tree [37] for
clustering and the Kuhn–Munkras (KM) algorithm for matching.
In the matching process, the position of the cluster center and the
number of points in the cluster are used as features. If a cluster
at time k cannot be matched, this cluster is regarded as a new
obstacle, and no velocity estimation result is assigned.

The velocity estimated by position differentiating between
two adjacent inputs is quite noisy because of three main reasons.
The first reason is that the position error of the point cloud mea-
surement is amplified and propagated to the velocity estimation
by differentiating. The second reason is that the position of a
cluster center varies when using point clouds observed from
different angles, and the third is that the clustering and matching
result might contain many errors in complex environments. We
have assumed that the measurement noise of the point cloud
is Gaussian noise. Thus, the noise caused by the first reason is
still Gaussian noise. However, the noise caused by the latter two
reasons can be very random. Therefore, the estimated velocity
cannot be regarded as the velocity measurement and utilized
in the update step. We, thus, adopt this estimated velocity as
a reference of initial particle velocities in the particle birth
step on the basis of a mixture model. Details are presented in
Section VI-B.

B. Mixture Model

To further reduce the noise caused by the false update and
model static objects better, we adopt a mixture model. The mix-
ture model supposes the state of a point object is the combination
of two components, i.e., xk = λ1xk,d + λ2xk,s. λ1 and λ2 are
weight coefficients that satisfy λ1 + λ2 = 1. xk,d is a dynamic
object state component. xk,s is a static object state component
with zero velocity. Since the environment is unknown, the value
of λ1 and λ2 should not be fixed but should be updated in
the filtering process. We assume that the objects in one voxel
subspace, a small subspace, have the same weight coefficients.
In each voxel subspace, the dynamic object states and the static
object states can be regarded as two independent RFSs, X(V )

d

and X(V )
s , respectively. Then, λ1 and λ2 is estimated by the ratio

between |X(V )
d | and |X(V )

s |.
Using the property described in (3) and the same deduction in

(38), |X(V )
d | and |X(V )

s | can be estimated with the weight summa-
tion of the particles. A particle x̃(i) might correspond to xk,d or

xk,s, depending on the transition density πk|k−1(xk,d|x̃(i)
k−1) or

πk|k−1(xk,s|x̃(i)
k−1). For simplicity, the particle’s speed, namely

V (x̃(i)) is used as the feature to determine the correspondence,
and the Dempster Shafer theory (DST) is adopted to approximate
|X(V )

d | and |X(V )
s |. The time subscript k is omitted to simplify the

notation. The universe of DST, in our case, is U = {d, s}, where
d is the dynamic hypothesis and s is the static hypothesis. The
power set is 2U = {∅, {d}, {s}, U}. The mass function m(A)
has the properties that

∑
A∈2U m(A) = 1 and m(∅) = 0.

We suppose the weight summation of particles that satisfy
V (x̃(i)) = 0 isW (V )

s and the weight summation of particles that
satisfyV (x̃(i)) ≥ V̂ isW (V )

d , where V̂ is a threshold suggesting
that particles with a velocity larger than V̂ correspond to xk,d

rather than xk,s. The particles with 0 < V (x̃(i)) < V̂ , however,
can correspond to xk,d or xk,s. Suppose the weight summation

of these particles is W (V )
d,s . Then, the masses are defined with

m({d}) = W
(V )
d

W (V )
, m({s}) = W

(V )
s

W (V )

m(U) =
W

(V )
d,s

W (V )
, W (V ) = W

(V )
d +W (V )

s +W
(V )
d,s (42)

which describes the basic belief. Then, the belief and the plau-
sibility are

bel({d}) = m({d}), pl({d}) = m({d}) +m(U)

bel({s}) = m({s}), pl({s}) = m({s}) +m(U). (43)

According to DST, the probability is between the belief and
the plausibility. We simply take the median as the probability
estimation, which is pr(·) = bel(·)+pl(·)

2 . The cardinalities of dy-
namic and static objects in a voxel are approximated by

|X(V )
d | ≈ W (V ) [bel({d}) + pl({d})] /2

|X(V )
s | ≈ W (V ) [bel({s}) + pl({s})] /2. (44)

Then, the coefficients λ1 and λ2 are estimated with the ratio
of the cardinalities

λ1 =
|X(V )

d |
|X(V )

d |+ |X(V )
s |

=
W

(V )
d

W (V )
+

1

2

W
(V )
d,s

W (V )

λ2 =
|X(V )

s |
|X(V )

d |+ |X(V )
s |

=
W

(V )
s

W (V )
+

1

2

W
(V )
d,s

W (V )
. (45)

In the prediction step, the motion model in (22) from time
k − 1 to k turns to

xk = λ1 [fQ (xk−1,d) +Σ] + λ2 [xk−1,s +Σ′] (46)

whereΣ′ is the Gaussian noise whose velocity dimension is zero.
At the particle level, with (45) it can be derived that particles
satisfying V (x̃(i)) > V̂ and half number of particles satisfying
0 < V (x̃(i)) < V̂ correspond toxk−1,d, and their prior states are
sampled with (24). The rest particles correspond to xk−1,s, and

their prior states are sampled with x̃
(i)
k|k−1 = x̃

(i)
k−1 + u′, where

u′ does not contain velocity noise. The update step remains
the same because the measurement does not contain velocity
observation.

In the particle birth step, the velocities of the newborn par-
ticles are assigned based on λ1 and λ2 in the corresponding
voxel subspace, and the initial velocity estimation results in
Section VI-A. If a measurement point is labeled static, e.g., the
ground, in the initial velocity estimation procedure, the velocities
of the particles generated from this point are all zero. Otherwise,
the mixture model is used. The number of dynamic particles
generated from a measurement point is λ1Lb, and the number of
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Fig. 5. Occupancy status estimation of the DSP map in a scenario with a static obstacle and a dynamic obstacle: (a) shows the scenario with an RGB image;
(b) illustrates the particles in the current DSP map. The color is painted in the HSV color space, with the hue keeping red and the saturation indicating the particle’s
weight. Higher saturation, i.e., a greater proportion of red relative to black, indicates a larger weight. The estimated occupancy status in a continuous form is shown
in (c). Higher saturation indicates a larger occupied probability; (d) utilizes the voxel subspaces to calculate a 3-D grid map. The color of the grids changes with
their z-axis height. The obstacles are from a scenario in the pedestrian street world in Fig. 8, and the map is built with the recorded flight data used in Section VIII-C.
Some parts of the tree and the ground are missing because they have not been observed. (a) RGB image view. (b) Particle view. (c) Continuous occupancy status.
(d) Voxelized occupancy status.

static particles is λ2Lb. According to the discussion of estimation
noise in Section VI-A, the velocities of dynamic particles are
composed of two parts: velocities sampled from a Gaussian
distribution and random velocities. Since real-world sensors
usually contain heavy noise, we set a large variance for the
Gaussian distribution, and the particles with random velocities
take 0.5λ1Lb. If too few particles exist in the voxel subspace
where the measurement point belongs, e.g., the situation when
the voxel subspace is observed for the first time, an initial guess
of λ1 = λ2 = 0.5 is used.

C. Occupancy Status Estimation

At an arbitrary point p in the map, the occupancy status is es-
timated by the cardinality expectation of point objects in a small
neighborhood space of p. Assume the point objects representing
an obstacle are uniformly distributed in the space occupied by the
obstacle and has no overlap. The distance between two adjacent
point objects is l′. Then, in a cubic neighborhood space with
side length l′ and centered by p, there should be either one or
no point object. In our case, the point cloud is prefiltered by a
voxel filter with resolution Res. Thus, l′ = Res. Denote the cubic
neighborhood space by Vp and the RSF composed of the point

objects in Vp by XVp

k . According to (3) and (12), the expectation

of the cardinality of XVp

k is calculated with

E[|XVp

k |] =
∫

D
X

Vp
k

(x)dx ≈
∑

x̃
(i)
k ∈Vp

w
(i)
k (47)

which is the weight summation of particles in Vp.
We denote the occupancy probability at p by Pocc(p). Since

E[|XVp

k |] represents the expectation of the point object number
in Vp, and Vp is occupied as long as there is a point object inside,

Pocc(p) can be estimated by Pocc(p) = E[|XVp

k |], if E[|XVp

k |] ≤
1. In practice, E[|XVp

k |] can be larger than one because of the

noise in the input data and camera motions. If E[|XVp

k |] > 1,
Pocc(p) = 1 is adopted.

The occupancy probability of a general voxel subspace, such
as the voxel subspace Vi defined in Section IV with side length

l, is estimated with

Pocc(Vi) =

{
Min{E[|X(Vi)

k |] · ( l′l )3, 1}, if l ≤ l′

Min{E[|X(Vi)
k |], 1}, otherwise

(48)

where E[|X(Vi)
k |] is calculated with weight summation of parti-

cles in Vi like (47). A scale factor ( l
′
l )

3 is applied because the
volume of Vi is ( l

l′ )
3 times smaller than Vp. If l > l′, the esti-

mated point object numberE[|X(Vi)
k |] can be larger than one even

if the estimation has no error. If E[|X(Vi)
k |] > 1, Pocc(Vi) = 1 is

adopted. With the occupancy probability, a probability threshold
can then be used to get a binary occupancy status, i.e., occupied
or free. Fig. 5 shows an example occupancy estimation result
in a scenario with a static obstacle and a dynamic obstacle. The
voxelized map is shown in Fig. 5(d). It should be noted that
this voxelized map does not suffer from the grid size problem
because the mapping process is realized in the continuous space.

D. Future Occupancy Status Prediction

Predicting the future occupancy status is very useful for
motion planning in dynamic environments. In our DSP map,
the future occupancy status prediction is fulfilled by predicting
the position of the particles according to the motion model in
(22) and (46), and then using (47) and (48) for occupancy status
estimation. Fig. 6 presents the future occupancy estimation
results of the map shown in Fig. 5. The occupancy status of
the static obstacle, the tree, almost stays the same in each plot.
The occupied position of the dynamic obstacle, the pedestrian,
is predicted to move down with the CV model. The occupied
grids are spreading, and their occupancy probabilities are getting
lower as the prediction time increases. The reason is the uncer-
tainty in velocity estimation, which is reflected by the variance
of particles’ velocities. The estimation uncertainty also causes
noise in other parts of the plots. Since future occupancy status
prediction in dynamic environments has inevitable uncertainty,
the predicted occupancy probability can be used as the risk in
motion planning algorithms.
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Fig. 6. Future occupancy status prediction. We predict the future occupancy
status of the scenario in Fig. 5 at six future times. Only the layer z = 1.6m is
shown to have a clear view. The black ellipses show the predicted occupancy
status of the pedestrian. The pedestrian walks with a CV to the bottom side. The
red occupied area in the upper left corresponds to the tree’s trunk and branches.

E. DSP-Static Map

By assuming the point objects as static objects and using only
the static model described in Section VI-B, the DSP map turns to
a static map, named the DSP-static map. In this case, the number
of particles used in this map can be very small since the velocity
dimension is not considered, which means the DSP-static map
is more computationally efficient. Compared to the voxel map
for static environments, the DSP-static map is continuous and
free from the voxel size problem. In the experiment section, the
DSP-static map is also tested.

VII. IMPLEMENTATION

This section describes an implementation of the DSP map.
The implementation includes the data structure to realize sub-
space division and particle storage, and the specific algorithms
used to build the DSP map.

A. Data Structure

The number of particles in the map can be up to one million.
Thus, storage and operation of the particles are important to
efficiency. Three techniques are utilized to improve efficiency
as follows.

1) The voxel subspaces are used to store particles while the
pyramid subspaces only store the indexes of particles.

2) Large arrays with preallocated size rather than unordered
sets, which represent RFSs natively, are used to store
elements in an RFS.

3) The operations of adding and deleting particles are sim-
plified using a flag variable.

The first technique is to reduce memory consumption, while
the second is to avoid dynamic memory allocation and increase
the cache hit rate. The last technique is employed to simplify
operations on particles. Detailed data structure can be found in
Appendix D.

Fig. 7. Flowchart of the algorithms used to implement the DSP map.

B. Mapping Algorithms

A flowchart showing the order of the algorithms used for
mapping is presented in Fig. 7. After the input point cloud is
prefiltered by a voxel filter with resolution Res and transformed
to the map frame, two threads are opened to run the particle
initial velocity estimation in parallel with prediction, update, and
resampling. Resampling, occupancy estimation, and mixture
model coefficients calculation are conducted in one loop to
improve efficiency. Future occupancy status prediction is not
shown but is realized by predicting particle states to more future
times in the prediction step. Detailed algorithms can be found
in Appendix E.

VIII. EXPERIMENTAL RESULTS

This section first evaluates the velocity estimation precision
of the DSP map since velocity estimation ability is a major
difference between static maps and dynamic maps. Then, the
DSP map is tested with different parameters to evaluate the effect
of the parameters on mapping performance and identify the
best parameter values. With the identified parameter values, the
mapping performance is further compared with existing works
in different simulation worlds with different resolutions. To test
the practicality of using the DSP map on robotics platforms,
we also show computational efficiency comparison results on
an NVIDIA Jetson board. Finally, a demo of using this map for
drone obstacle avoidance is presented.

A. Velocity Estimation

The velocity estimation experiments were conducted with the
data collected in an indoor testing field with the Nokov motion
capture system. An Intel Realsense d435 camera was fixed at
an edge of the testing field to collect the point cloud. Two
pedestrians, wearing helmets with markers, walked around in
the testing field, and their trajectories estimated by the motion
capture system were recorded synchronously with the point
cloud. The experiments can be divided into two groups. In the
first group, the pedestrians tried to walk at a CV. In the second
group, the pedestrians walked randomly and freely. Fig. 8(a)
shows the data collection scenario.

We compared the velocities estimated by four different point-
cloud-based methods. The first method differentiates the center
position of two matched clusters, and no filter is adopted. The
matching is achieved by the KM algorithm. The second is a
multiobject tracker realized by the KM algorithm and Kalman
filters (KF) with a CV model. The input of the KF is the center
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Fig. 8. Real-world scenario for velocity estimation test (a), and simulation
worlds for mapping performance comparison (b)–(d). The pedestrian square
world (b) contains only dynamic obstacles (the ground is excluded in the
evaluation tests), while the forest world (c) contains only static obstacles. The
pedestrian street world (d) contains both static obstacles and dynamic obstacles.
(a) Velocity estimation test. (b) Pedestrian square. (c) Forest. (d) Pedestrian
street.

TABLE II
VELOCITY ESTIMATION RESULTS OF DIFFERENT METHODS

Fig. 9. Velocity estimation curves of a typical tracklet. The serrated orange
and blue background show the variance of the estimation results from the DSP-
dynamic map and the DSP-random map, respectively. At t = 6 s to t = 8 s, the
pedestrian turns back.

positions of matched clusters. The third method is the DSP
map with the suffix “random,” whose newborn particles have
random velocities. The fourth method is the DSP map with
the suffix “dynamic,” whose newborn particles consider initial
velocity estimation. Since our maps do not explicitly segment the
objects, the state of a pedestrian was estimated with the particle
cluster near the pedestrian’s real position. Table II presents the
estimation results of the two groups. We consider a pedestrian
walking from one side of the testing field to another a tracklet.
Over thirty tracklets were collected in each group. Fig. 9 shows
the velocity estimation curves of a typical tracklet.

Three metrics are used for evaluation. The root-mean-square
error (RMSE) reflects the estimation precision evaluated with the
mean of the velocity estimation distribution and the ground truth
from the motion capture system. The Var. is the mean variance
of the different axes on every point. The differentiating method
outputs a single value rather than a distribution, and thus a dash is
placed in its Var. in Table II. The bolded values in Tables II– IV
signify the top-performing entries within each column. For a
particle-based map, a large variance means the particles would
disperse to a large scale of the area and cause much noise in
the map. Mean Bhattacharyya distance (MBD) measures the
similarity between the estimated and ground-truth velocity dis-
tribution. MBD considers both mean value and variance and is a
composite metric. The results in Table II show that DSP-dynamic
performs best with all three metrics. The differentiated velocity
has a large RMSE, and the error can be huge sometimes, as
Fig. 9 shows. Using KF can reduce the error, but the Var. is over
30% larger than that of DSP-dynamic, and the MBD is over
12% larger. Compared to DSP-random, DSP-dynamic decreases
over 14% on RMSE, over 68% on Var., and over 34% on MBD,
showing the importance of the initial velocity estimation.

B. Mapping With Different Parameters

Inspired by [2], [5], [24], we evaluated the occupancy map-
ping performance by assessing the binary classification results,
i.e., free or occupied, of the voxel subspaces. The metrics include
average precision, recall, F1-score,3 and time consumption of
a complete mapping process. The tested parameters include
maximum particle number Lmax, the voxel size Res of the
voxel filter for the point cloud preprocess before mapping, the
pyramid subspace angle θ, and the voxel subspace size l. When
Res is larger, the measurement point number Mk is smaller.
Each parameter was tested with three levels. A full factorial
experiment was conducted with data collected in the pedestrian
street world [see Fig. 8(d)], where both static and dynamic
obstacles exist. The world is built in the Gazebo4 simulation
software. A simulated IRIS quadrotor with a Realsense camera
is controlled manually to collect point cloud and pose data for
mapping.

To generate the ground-truth occupancy map, we densely
and uniformly sampled points from the mesh surfaces of the
static objects in the world and generated a Euclidean distance
field (EDF) for the objects using the sampled points. The EDF
changes caused by pedestrians are updated online at each eval-
uation step using the mesh and pose of the pedestrians. A voxel
subspace was considered occupied if the distance value at the
voxel’s center position was no larger than l

2 and free otherwise.
We also added a label array to distinguish the observed and
unobserved labels of the voxels. The array is updated using the
ray-casting approach with dense rays. Only the observed voxels
were considered in the evaluation.

The result is shown in Fig. 10(a). When Lmax increases from
0.8 to 2.4 million, the precision does not have a noticeable

3F1-score = 2precision·recall
precision+recall is a balanced metric of precision and recall.

4Gazebo simulation software: [Online]. Available: https://gazebosim.org/
home
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Fig. 10. (a) Mapping performance with different parameters. Each parameter has three levels and is analyzed in an individual plot. (b) Precision–recall curve
comparison. Results in different worlds are shown in different rows, and results with different voxel sizes are shown in different columns.

Fig. 11. Snapshots of different maps in the pedestrian street world when the mapping resolution is 0.1 m. A pedestrian moves along the direction indicated by
the white arrow from t = 18.1 s to t = 19.4 s. The color of the voxels changes with their z-axis height. The pink lines show the current FOV of the camera. The
voxels in the FOV are painted brighter than those out of the FOV. The semitransparent blue cylinders in the maps present the real position of the pedestrians. The
red rectangle in the DSP-dynamic map at t = 19.4 s outlines an area out of the FOV corresponding to a pedestrian. The pedestrian is out of the FOV, and thus, its
occupancy status is predicted. Red dashed boxes show typical gaps and inconsistencies in grid maps when the resolution is high. (a) Ground truth. (b) Ewok [7].
(c) K3DOM [5]. (d) DSP-static. (e) DSP-random. (f) DSP-dynamic.

change, while the average time consumption increases from 50 to
160 ms. The recall rises from 0.22 to 0.30 whenLmax increases to
1.6 million but almost remains unchanged when Lmax increases
further. The F1-score has the same trend as the recall. Raising
Res leads to fewer measurement points in the point cloud and
shows a positive effect on precision but a negative effect on
recall. The balanced metric F1-score reaches the maximum value
of 0.38 when Res is 0.1 m. The time consumption decreases as
Res increases.

The pyramid subspace angle θ slightly affects precision, re-
call, and F1-score. The F1-score increases merely 0.005 when
θ grows from one degree to five degrees. Meanwhile, the time
consumption increases from 67 to 144 ms. The voxel subspace

size l positively correlates to all the metrics. When l is larger, the
number of voxels to classify is less, and the occupancy status
of a voxel is easier to determine because more measurement
points and particles are contained in one voxel. As a result, the
precision, recall, and F1-score all improve. However, a larger
voxel size is usually unfavorable in motion planning. The time
consumption rises because the particle operations in Algorithm
1 are slower with more particles in one voxel subspace.

To achieve the best F1-score with an acceptable time con-
sumption (about 100 ms), Lmax = 1.6× 106, Res = 0.1, and
θ = 3◦ are chosen. We further compare the performance of our
map with other maps using different resolutions in the following
experiment.
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Fig. 12. Snapshots of different maps in the pedestrian square world when the mapping resolution is 0.3 m. The red ellipses show the trail noise caused by
moving pedestrians in Ewok [7] and K3DOM [5]. From t = 1.2 s to t = 2.8 s, the movement of three pedestrians causes more trail noise. The red rectangle
in Column (f) shows the predicted occupancy of a pedestrian out of FOV. (a) Ground truth. (b) Ewok [7]. (c) K3DOM [5]. (d) DSP-static. (e) DSP-random.
(f) DSP-dynamic.

Fig. 13. Time consumption of different maps on Jeston Xavier NX.

C. Mapping Performance Comparison

In this experiment, we compared our DSP map with a static
local occupancy map named Ewok [7] and a state-of-the-art
particle-based dynamic occupancy map named K3DOM [5].
K3DOM is the only 3-D dynamic occupancy map with a released
code currently. We also compared our map with two variants:
One uses newborn particles with random velocities and consid-
ers the CV model only, i.e., extensions in Section VI-A and VI-B
are not adopted; another uses static newborn particles and con-
siders the static motion model, i.e., the extension in Section VI-E.
To distinguish the variants, we call our map with particle initial
velocity estimation and mixture model DSP-dynamic map, and
the variants DSP-random map and DSP-static map, respectively.

K3DOM runs on NVIDIA RTX 2060 GPU, and the rest maps
run on AMD Ryzen 4800HS CPU in the tests. The map size
(lx, ly, lz) is (10 m, 10 m, 6 m). The rest parameters in K3DOM
and Ewok remain the same as the original settings in the released
code. No voxel filter is used for point cloud preprocessing in
K3DOM and Ewok to reach their best performances. In DSP
map and its variants, the initial weight of the particle is 0.0001.
Three different voxel sizes, from 0.1 to 0.3 m, were tested in
the simulation worlds shown in Fig. 8(b)–(d). Using different
occupancy probability thresholds, which determine the binary
status, i.e., occupied or free, we draw precision–recall curves in
Fig 10(b). Snapshots of different maps can be found in Figs. 11
and 12.

In Fig 10(b), a larger area under the curve (AUC) suggests a
better overall performance in classifying the occupancy status
with different thresholds. The specific AUC values are presented

TABLE III
AUC COMPARISON

in Table III. The DSP-dynamic map has the largest AUC in
the two worlds with pedestrians and a comparable AUC with
Ewok and DSP-static map in the static forest world. When the
voxel size is 0.1 and 0.2 m, the recall of Ewok and K3DOM is
relatively low because of the gaps and inconsistencies in high-
resolution grid maps. Red dashed boxes in Fig. 11 illustrate
the gaps and inconsistencies. In Fig. 12, the areas in the red
ellipses show that Ewok has noticeable trail noise, which can
lower the precision, when the voxel size is 0.3 m. The dynamic
occupancy map K3DOM has less trail noise. In comparison, our
DSP-dynamic map does not suffer from gaps, inconsistencies,
or trail noise.

DSP-random, which does not have initial velocity estimation
and uses only the CV model, has obvious noise in the area out
of FOV, especially when representing static obstacles. Column
(e) in Fig. 11 shows the noise. Consequently, the AUC of DSP-
random is the smallest in the forest world. DSP-static adopts
only the static motion model and achieves the best AUC in the
forest world when the voxel size is 0.2 and 0.3 m. However, it
cannot predict the future occupancy status of dynamic obstacles,
and the AUCs in the worlds with pedestrians are smaller than
DSP-dynamic. The red rectangles in Column (f) in Fig. 11 and
Fig. 12 show the predicted occupancy status of a pedestrian out
of the FOV in the DSP-dynamic map.

Table IV shows the best F1-score, i.e., the highest classifica-
tion performance that each map reaches with different proba-
bility thresholds in Fig. 10(b). When the testing scenario is the
forest world, and the voxel size is 0.3 m, the DSP-dynamic map’s
score is slightly lower than the DSP-static map’s. In all other
situations, DSP-dynamic has the highest best F1-score. Note in
the pedestrian square world, where only dynamic obstacles exist,
the dynamic map K3DOM has a lower best F1-score than the
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Fig. 14. Snapshots of building the DSP-dynamic map in different scenarios. The first row shows the RGB image in current FOV. The second row presents the
voxelized map view with a resolution of 0.15 m. The pink outlines show the FOV. Red dashed boxes indicate the dynamic obstacles in current FOV. (a) Pedestrian.
(b) Canteen. (c) Outdoor cyclist. (d) Corridor with desks. (e) Lab. (f) Woods.

Fig. 15. Testing scenarios for obstacle avoidance. (a) and (b) are dynamic
environments. (c) is a static environment. Red rectangles outline the quadrotor.

TABLE IV
BEST F1-SCORE COMPARISON

static map Ewok when the voxel size is 0.3 m. The reason is that
although Ewok has a low precision due to its heavy trail noise,
its recall rate is higher than K3DOM’s. However, from Table III,
it can be seen that the AUC, which evaluates the overall classifi-
cation performance when using different occupancy probability
thresholds, of K3DOM is still higher than that of Ewok.

The average F1-score and AUC of our DSP-dynamic map in
different worlds with different resolutions are 0.46 and 0.47,
respectively. In comparison, the average F1-score and AUC of
the existing particle-based dynamic occupancy map K3DOM
are 0.33 and 0.37, respectively. Our map increases the F1-score
by 39.4% and AUC by 27.0%. If only the two worlds that contain
dynamic obstacles are considered, the average F1-score and
AUC increase from 0.24 to 0.39 (62.5% increase) and 0.27 to
0.40 (48.1% increase), respectively.

D. Robotics Platform Efficiency Tests

This section first compares the efficiency of Ewok [7],
K3DOM [5], and our DSP map (with particle initial velocity es-
timation and mixture motion model) on NVIDIA Jetson Xavier
NX, which is a small computing board widely used on robotics
platforms. Xavier NX has a 384-core NVIDIA Volta GPU with
48 Tensor Cores and a 6-core NVIDIA Carmel ARM v8.2 CPU.
K3DOM [5] runs on the GPU, and the rest maps run on the CPU.

The average time consumption of each map with different voxel
sizes is shown in Fig. 13. The map size in the test is (10 m, 10 m,
6 m).

When the voxel size is 0.1 m, our DSP map is the fastest. The
existing particle-based dynamic occupancy map K3DOM is 4.5
times slower than the DSP map. The static map Ewok runs fastest
when the voxel size is 0.2 or 0.3 m. K3DOM is the second fastest,
and our DSP map is the slowest. However, with the results in
Fig. 10(a), we can further raise the computational efficiency
of our map by sacrificing a little performance on the F1-score.
Fig. 10(a) indicates that decreasing the pyramid subspace angle θ
from 3° to 1° can reduce the computation time while the F1-score
drops merely 1%. In addition, increasing the filter voxel size Res
from 0.1 m to 0.15 m can also reduce the computation time, and
the F1-score decreases 12% accordingly. If θ = 1◦ is used in the
tests on Xavier NX, the DSP map’s computation time is only
0.56 times that of K3DOM’s when the voxel size is 0.2 m and is
close to K3DOM’s when the voxel size is 0.3 m. If Res = 0.15 m
is further adopted, the DSP map’s computation time is shorter
than the K3DOM’s for all tested voxel sizes.

We also tested the computation efficiency of our DSP map
on two other onboard computers for robotics platforms: an Intel
NUC with a Core i7-10710 u CPU and an Up core board with an
Intel Atom x5-z8350 CPU. When θ = 1◦ and Res = 0.15 m are
adopted, and the voxel size is 0.2 m, the average time consump-
tion on the two boards is about 133 and 254 ms, respectively.
For robotics obstacle avoidance tasks without fast movement,
a smaller map can be used to reduce time consumption. For
example, when the map size is reduced to (8 m, 8 m, 3 m), the
average time consumption on the up core board is below 150 ms.

In Appendix B, we present a test with omnidirectional and
multichannel lidar point cloud data. The time consumption is
about two times when using point cloud data from the Realsense
camera, which has a limited FOV. Improvements in computa-
tional efficiency will be conducted further to realize real-time
mapping with multichannel lidars.

E. Applications

Fig. 14 presents several snapshots of building the DSP-
dynamic map in different scenarios. The localization was real-
ized by a Realsense T265 tracking camera, and the point cloud
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was from a Realsense d435 camera. To further demonstrate
the effectiveness and efficiency of our map in robotic systems.
We deployed the DSP-dynamic map on a miniquadrotor with
a weight of only 320 g and utilized a sampling-based motion
planning method [38] to realize obstacle avoidance in environ-
ments with static and dynamic obstacles. The method samples
motion primitives and evaluates the collision risk of each motion
primitive with the current and predicted particles in the DSP-
dynamic map. Details can be found in [38]. The point cloud
was collected from a Realsense d435 camera, and everything,
including mapping and motion planning, was performed on the
CPU of a low-cost up core computing board. Fig. 15 shows the
testing scenarios. The testing demos can be found at.5

IX. CONCLUSION

This article presents a novel DSP 3-D local map, named
DSP (dynamic) map, that allows continuous occupancy mapping
of dynamic environments. Voxel subspaces and pyramid-like
subspaces are adopted to achieve efficient updates in continuous
space. The initial velocity estimation and a mixture model are
considered to reduce noise. Experiments show that the DSP map
can increase the dynamic obstacle velocity estimation perfor-
mance by over 30% on MBD, compared to other tested point-
cloud-based methods. In occupancy status estimation tests, the
DSP map increases the F1-score of the state-of-the-art particle-
based occupancy map from 0.33 to 0.46 (39.4% increase) and
the AUC from 0.37 to 0.47 (27.0% increase) on average. Further-
more, efficiency tests and a real-world application demo demon-
strated the broad prospect of this map in obstacle avoidance tasks
of small-scale robotic systems. Future works will consider two
main points. The first is to introduce semantic information to this
map to better identify and model different obstacles and further
predict their future states with multiple hypotheses. The second
is to connect this dynamic local map to a global static map to
achieve global mapping in dynamic environments.

APPENDIX A
LOWER BOUND DISTANCE CALCULATION

This appendix calculates the lower bound distance from a
point object to a measurement point whose azimuth angle and
zenith angle differences with the point object are no less than θ′.
Fig. 16 shows two limiting cases where the zenith and azimuth
angle difference are θ′, respectively. In Fig. 16(a), when P zk

is
in the same vertical plane with P xk

and P xk
P zk

⊥ P zk
O,

the minimum distance between P xk
and P zk

exists and is
|P xk

P zk
| = rksinθ′. In Fig. 16(b), |P xk

P zk
| ≥ |P ′

xk
P ′

zk
|,

where |P ′
xk

P ′
zk
| is the distance between the projection points

of P xk
and P zk

. When P ′
xk

P ′
zk

⊥ P ′
zk
O, |P ′

xk
P ′

zk
| has the

minimum value rksinαksinθ′. Since rksinαksinθ′ ≤ rksinθ′, the
lower bound of |P xk

P zk
| is rksinαksinθ′.

5[Online]. Available: https://youtu.be/seF_Oy4YbXo

Fig. 16. Calculation of the lower bound distance from a point object position
Pxk

to a measurement point the position P zk
. The azimuth angle and zenith

angle difference betweenP zk
andPxk

is no less than θ′. In (a), the zenith angle
difference is θ′. In (b), the azimuth angle difference is θ′. O is the origin point.
αk is the zenith angle of Pxk

. rk is the distance from O to Pxk
. P ′

xk
and

P ′
zk

are the projection point of Pxk
and P zk

in the x− y plane, respectively.

Fig. 17. Snapshots of mapping with the point cloud from lidar. Subfigures in
the top row, (a)-(c), show the DSP map. Subfigures in the bottom row, (d)-(f),
show the point cloud data collected when the top map was generated. The yellow
ellipses outline three pedestrians. In (d) and (e), the two pedestrians on the right
are occluded or partially occluded but are clearly shown in the map. In (f), the
pedestrians are detected by the lidar again.

APPENDIX B
TEST WITH LIDAR INPUT

This appendix presents a qualitative test result with point
cloud data from a simulated Velodyne HDL-32E Lidar. This
lidar is an omnidirectional and 32-channel lidar with a horizontal
resolution of 0.16° and a vertical resolution of 1.33°. The FOV is
360◦ × 40◦. The point cloud data are collected in the pedestrian
street world shown in Fig. 8(d). The mapping parameters are θ =
3◦, Res = 0.15m, andLmax = 1.6× 106. The map size is (10 m,
10 m, 6 m). Fig. 17 shows several snapshots of the mapping
result.

When the voxel size for discrete occupancy status estimation
is 0.1, 0.2, and 0.3 m, the time consumption for mapping is
194.9, 259.4, and 470.4 ms, respectively. In Section V-B, we
have discussed that the complexity in the update procedure is
O( θ2

θhθv
LkMk). The omnidirectional character of the used lidar

increases θhθv but also increases the particle numberMk in Mf .
The result is that the time consumption is about two times the
time consumption of using a depth camera with a smaller FOV
(90◦ × 60◦). This time consumption is not small enough for real-
time usage. Further improvements in computational efficiency
will be conducted to realize real-time mapping with this kind of
lidar.
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Algorithm 1: Particle Storage and Operation in Voxel Subspaces.

Algorithm 2: Particle Index Storage and Operation in Pyramid Subspaces.

APPENDIX C
UNKNOWN AREA REPRESENTATION

Representing the unknown area is very useful in exploration
tasks. For static grid maps, the grids are initialized with a tag
“unknown,” and the tag is removed when a ray generated from
point cloud measurement passes through or hits the grid. In
the DSP map, the unknown area can be represented by the
update time of the particles. Adding time stamps on the common
particles does not work because the particles are born only in the
area with obstacles, and thus the unknown area and the free area
cannot be distinguished. Therefore, when a new area appears in
the map, a small number of static particles, named time particles,
which have a zero weight and a time stamp, can be uniformly
added to the map. When the measurement point cloud comes, the
time particles only update their timestamp to the current time.
Then, the unknown property of each area can be evaluated by
checking the time stamp.

APPENDIX D
DATA STRUCTURE DETAILS

Algorithm 1 shows the data structure to store particles in voxel
subspaces and basic operations used in the mapping algorithms.
ptc_voxel_array is a fixed-size array that stores particles in
voxels. The maximum particle number that can be stored in a
voxel subspace is η1Lmax

Nv
, where η1 > 1 is an empirical factor

used to allocate large storage space. If no storage space is left in
the array, the particle to be added is omitted. Note that η1Lmax

Nv
is

larger than LV
max used in the resampling step because, in the

prediction and particle birth steps, more than LV
max particles

may enter one voxel subspace and should all be stored. In the
resampling step, the number of particles is reduced to LV

max with
(40).

Algorithm 2 illustrates how the indexes of particles are stored
in the pyramid subspaces. vr_ptc_pyd_array is the array to
store particle indexes in pyramid subspaces. η2 > 1 is another
empirical factor that works similar to η1. In practice, η1 = η2 =
3 is adopted. Note that the pyramid subspaces are divided dy-
namically with the sensor’s orientation, and thus, all the particle
indexes in vr_ptc_pyd_array must be updated in real time.
Therefore, vr_ptc_pyd_array is emptied after each mapping
process and recalculated in the prediction step (see Algorithm
5).

APPENDIX E
ALGORITHMS FOR MAPPING

The algorithms to realize DSP map building are illustrated
in Algorithms 3–8. In practice, we use C++ for programming.
Algorithms 5–8 correspond to the prediction, update, particle
birth and resampling steps in Section V, respectively. These
algorithms show one way to implement the mapping methods.
The computational complexities of Algorithms 5, 6, 7, and 8
are O(Lmax), O(MkLmaxθ

2), O(Lmax), and O(Mk), respec-
tively. The overall computational complexity of the map is
then O(MkLmaxθ

2). Note that the lookup operation in function
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Algorithm 3: Point Cloud Preprocess.

Algorithm 4: Particle Initial Velocity Estimation.

1: ptcl_vel_array[Nf ][M
A
s ]{px, py, pz} �This array stores the estimated velocities of points in the point cloud;

2: ptcl_vel_array = calPointVelocity(ptcl_array) �Calculate ptcl_vel_array with procedures in Fig. 4(b);

Algorithm 5: Prediction Step.

Algorithm 6: Update Step.

Algorithm 7: Resampling, Occupancy Estimation and Mixture Model Coefficients Calculation.

Algorithm 8: Particle Birth.
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getVacancyIdx is disregarded in the computational complexity
analysis to simplify the expression. The lookup operation is
confined to a small subspace and costs little computing resource.
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